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Abstract 
 

In an era dominated by ongoing urbanization and 

rising e-commerce, the efficient delivery of goods within 

cities becomes a major challenge. As a new element of 

urban logistics, we discuss the potential of autonomous 

unmanned ground vehicles (AUGV) regarding the last 

mile delivery of shipments to customers. We propose an 

optimization model to minimize the delivery costs of 

urban shipments using AUGV. Simultaneously, best 

locations from a set of existing stations are selected for 

AUGV positioning and optimal route determination. 

With our developed Location Routing Problem, we 

provide decision support for parcel service providers, 

city authorities, and other relevant decision makers. 

Regarding the Green Information Systems domain, we 

tackle the lack of solution-oriented research addressing 

a more sustainable and locally emission free supply of 

goods within urban areas. 

 
 

1. Introduction and motivation 
 

The world’s urban population is growing rapidly, 

already accounting for a share of 54% [1]. Combined 

with the continuous growth of e-commerce, 

urbanization leads to increased transportation 

requirements in cities. This represents a challenging risk 

of pollution and increased traffic, influencing the health 

and living quality of city populations. Aspects of 

sustainable public transport are already tackled and 

implemented through subway or bus networks, as well 

as car- or bike-sharing. Resource-saving and sustainable 

business-to-consumers (B2C) transport of goods 

represents a growing business sector as several cities 

conduct pilot projects to increase sustainability. 

The urban last mile delivery (LMD) is the most 

expensive part of the supply chain, as high personnel 

costs incur [2]. Consequently, transportation companies 

seek to improve this section of their business. City 

authorities are also interested in LMD because it 

represents a growing source of pollution. To keep cities 

clean and to reduce the urban road traffic, action is 

required. One possibility represents the delivery of 

goods with autonomous unmanned ground vehicles 

(AUGV), also referred to as delivery robots, which are 

subject to different restrictions compared to 

conventional delivery vehicles. In addition to a range 

limited by the battery capacity, the storage space is 

typically divided into compartments. This represents a 

considerable restriction for the use of delivery robots, 

which must be taken into account at route planning. The 

development as well as the operative use of delivery 

robots strongly depend on the digitalization of our 

society. With today’s information and communication 

technologies, it is possible to move such robots 

autonomously within public space [3]. With the 

increasing e-commerce, more customers want to receive 

the ordered products as quickly as possible. This 

demand is addressed by same-day or even instant 

delivery services, where delivery robots may be able to 

assist the last mile transports of small goods. Based on 

these characteristics, delivery robots do not appear 

capable of solving the discussed problems completely, 

but represent a useful supplementary option saving 

personnel expenses, road space, emissions, and noise.  

Besides these trends, our society is becoming 

increasingly aware of environmental and economic 

sustainability [4]. This attention is also recognized in 

Information System (IS) research, as information is a 

prerequisite for making appropriate decisions on 

sustainability actions [5]. The emerged research domain 

of Green IS addresses the transformative role of IS in 

the context of a sustainable society and business 

strategies, while considering the role of people and their 

livability. The foci in this field vary by 

conceptualization, analyses, design, and impact of such 

systems [5]. Studies on Green IS by Malhotra et al. [6] 

and Gholami et al. [7] reveal that design and impact-

oriented research is lacking. Since the IS domain is 

described as an interdisciplinary space [8], we combine 

elements of operations research, management science, 

transportation, and logistics within our approach to 

support locally emission free deliveries. 
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Based on the situation described above, we derive 

our solution-oriented urban delivery approach. As part 

of our concept, we suggest best-possible stations from a 

set of existing stations, e.g., parcel service points, at 

strategic locations throughout the city and make use of 

AUGV for delivery purposes. To support the planning 

process of such a network consisting of stations and 

delivery robots for urban logistic applications, we 

elaborate on the following research question: 

RQ: How can an IS support the establishment of an 

urban delivery network for route planning using 

autonomous unmanned ground vehicles?  

To answer this question, the article is structured as 

follows: first, the foundations covering research design, 

urban logistics, autonomous unmanned vehicles, and 

routing problems are described. Afterwards, the 

optimization approach is introduced. A case study and 

benchmarks are presented to evaluate our approach. 

After a discussion regarding the delivery concept, 

contributions as well as limitations are elaborated. We 

complete our article with conclusions and outlook. 

 

2. Research background 
 

2.1. Research design 
 

Our research methodology is based on Design 

Science Research (DSR) principles proposed by Hevner 

et al. [9]. This method stands in contrast to behavioral 

science because the design science approach 

systematically seeks to create “new and innovative 

artifacts” [10]. This means it is the most suitable 

approach for creating, specifying, and evaluating a 

particular topic while addressing its relevance and its 

rigor. Hevner [10] presents three cycles (relevance, 

rigor, and design) influencing each other. Figure 1 

visualizes our design science research approach. 

The topic’s environment and related issues are 

addressed by the relevance cycle. Our research is 

motivated by the observation that developed AUGV are 

increasingly used for B2C delivery processes. This is in 

line with the ongoing discussion of newly and disruptive 

urban logistic concepts that were piloted and 

implemented within several projects using IS to 

optimize LMD activities. This trend is motivated by the 

continuing urbanization and the progressive climate 

change as air quality, traffic load, and noise pollution 

can be improved using delivery robots to reduce the 

number of trips conducted with standard delivery 

vehicles. By providing efficient routing support, we 

contribute to the lack of solution-oriented Green IS and 

increase the livability in cities by securing needs [6,7].  

Within the rigor cycle, the review of existing 

scientific knowledge depicts a crucial part of the 

research process. We carried out a literature review on 

the superordinate topic of urban logistics as well as on 

vehicle routing problems (VRP) and location routing 

problems (LRP). To ensure an appropriate focus on the 

application domain, the scope of the routing problem 

review is narrowed to novel applications using 

autonomous unmanned vehicles and their respective 

modeling approaches.  

 

Figure 1. Applied DSR approach  

The design cycle is defined as an iterative process 

that uses several build-and-evaluate loops and revises 

developed design artifacts until they are ready for a real-

world application. In our research, we conducted several 

cycles while respecting the ongoing society trends, 
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scientific methods, and existing knowledge. Our 

approach covers a concept for the urban LMD of goods 

by using AUGV with an effective network of stations 

within urban areas. The mathematical model was 

iteratively developed, verified, and improved at each 

stage of the design process to allow for relevant decision 

support. By conducting several benchmark calculations, 

we tested the optimization model while obtaining 

sensitivities of the results to enable proper 

documentation of results.  

 
2.2. Urban logistics  
 

The term urban logistics is defined as “the 

movement of goods, equipment and waste into, out, 

from, within or through an urban area” [11]. Closely 

related to this definition is the term city logistics that is 

specified as “process for totally optimising the logistics 

and transport activities by private companies with 

support of advanced information systems in urban areas 

considering the traffic environment, the traffic 

congestion, the traffic safety and the energy savings 

within the framework of a market economy” [12]. As 

already mentioned above, the trends of a growing e-

commerce and urbanization lead to an increasing 

number of transport activities in cities. Concurrently 

politics and city authorities aim for eco-friendly logistic 

solutions in the future, which likely become challenging 

for the transport sector. When addressing the subject of 

sustainability, the considerate handling of given 

resources becomes a crucial aspect.  

To make our approach most relevant for practical 

urban applications, this article concentrates on the 

optimization of the LMD. Within the (global) supply 

chain of goods, LMD represents the final and most 

expensive section of the transport chain [2]. Today, 

trucks and light duty vehicles perform the majority of 

urban logistic activities. Different strategies and 

concepts aim to improve the LMD and the city logistics 

in general regarding environmental issues. Besides 

alternative transport vehicles (e.g., electric cars or cargo 

bicycles), the use of urban distribution centers is a 

feasible approach to implement new elements to the city 

infrastructure [13, 14]. However, further innovative 

forms of operations are required to achieve an integrated 

city structure [15]. Intelligent transport systems can 

contribute to increase the efficiency of LMD activities 

[16]. Several ongoing projects investigate sustainable 

LMD solutions such as pro-e-bike, cyclelogistics, 

Civitas, FREVUE, and many others. These projects 

focus on sharing best practices between different cities 

or on testing innovative distribution concepts to 

introduce eco-friendly ways of urban freight 

transportation. Most of these concepts support parcel 

service providers to implement improved logistic 

concepts and encourage manufacturers to offer eco-

friendly transport vehicles to reach a persistent change 

regarding a more sustainable way of urban life. 

 

2.3. Autonomous unmanned vehicles 
  

In the last decade, autonomous unmanned vehicles 

have been designed and used for various applications, 

e.g., for container handling at port operations, intra- as 

well as hospital and medicine logistics [17]. Nowadays, 

autonomous unmanned vehicles are also developed to 

assist B2C logistic operations within public spaces, 

whereas they can be differentiated between aerial- and 

ground-operated vehicles. Autonomous unmanned 

aerial vehicles (AUAV), also referred to as drones, and 

AUGV were especially tested within pilot projects to 

investigate the feasibility as well as customer 

acceptance. In our approach, we focus on AUGV in the 

public space using so called delivery robots with the 

goal of transporting small shipments to private 

customers. Due to their size, they are designed for the 

use on pedestrian walkways, but generally not for traffic 

on public roads. Compared to traditional delivery 

vehicles such as trucks, vans, or cars, delivery robots 

can only transport a few shipments. The number of 

shipments per tour and per AUGV depends on the 

number of individually lockable compartments. These 

compartments, which are electronically secured against 

unauthorized access, can be unlocked at the destination 

by the recipient with an individual code, so that each 

recipient only has access to his own shipment. Delivery 

robots run electrically and are therefore limited in terms 

of range. Thus, they are particularly suitable for use in 

the last mile for transporting shipments over short 

distances. On their way to the customers, the vehicles 

avoid obstacles autonomously. The length of the route 

is affected by the number of obstacles a robot encounters 

on its tour to the customer's door. Obstacles can be 

groups of people, stairs, secured properties, or other 

objects that robots cannot overcome. In situations where 

a robot cannot find a way out, a so-called operator can 

take over the control, who has access to cameras and 

other sensors of the AUGV via the mobile network. 

In practice, a rather small number of delivery robot 

manufacturers exists. The most popular providers are 

Starship Technologies, Dispatch, and Marble. These 

three companies are currently carrying out various pilot 

projects in several cities, whereas many of the other 

manufacturers are still in the development phase not 

operating in public space yet. In various projects, 

Starship Technologies even tested the supply of 

prepared dishes, e-grocery, or the dispatch of medicines 

[18]. First analyses show that the public's perception of 

the delivery with autonomous vehicles is mostly 

positive and predict an urban parcel delivery rate of up 
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to 80 percent by autonomous vehicles in 2025 

accounting for cost advantages of parcel service 

providers up to 40 percent [19]. 

 

2.4. Vehicle routing problems 
 

In view of the large body of scientific works, the 

VRP is widely considered as a distinct field of 

knowledge in operations research and computer science 

[20, 21]. Regarding the planning horizon of transport 

and logistics processes, the VRP assists short-term and 

daily decisions related to diverse transportation services 

of goods and passengers. The LRP can be understood as 

a special case of the VRP. In addition to route 

optimization, the ideal number of locations (e.g., depots, 

warehouses, stations, etc.) is determined simulta-

neously. In doing so, LRP approaches focus on the 

operational and the tactical decision level. First route 

planning analyses have been carried out for more than 

50 years by Danzig and Ramser [22]. Yet, this section 

aims to give a brief overview about VRP and LRP 

focused on autonomous techniques, which is an 

emerging field of route planning. 

The first published VRP concerning autonomous 

vehicles were focused on the application of logistic port 

operations. The central optimization objective was 

mainly the minimization of makespans or costs for 

efficient unmanned container scheduling. Examples for 

such operations are Geraleh et al. [23], Xin et al. [24], 

or Schmidt et al. [25]. Further VRP applications are 

developed for intra-logistic operations minimizing 

makespans or penalizing earliness and tardiness, as for 

instance presented by Dang and Nguyen [26] or by 

Fazlollahtabar et al. [27]. In 2015, Murray and Chu [28] 

present an article concerning AUAV and different 

operation modes minimizing the aerial delivery time. 

Other optimization approaches regarding urban LMD 

also apply AUAV. Shavarani et al. [29] introduce a 

facility location problem to determine optimal number 

and locations of launch and recharge stations for AUAV 

minimizing overall system costs. However, most of 

existing approaches combine a classical parcel delivery 

with trucks together with AUAV services (also as 

referred to as tandem delivery) to maximize the total 

delivery efficiency [30, 31, 32, 33]. Similarly, Boysen 

et al. [34] present an optimization model for combining 

trucks and AUGV together for minimizing the weighted 

number of late deliveries without considering cost 

components. There are also approaches regarding the 

optimization and planning of healthcare and hospital 

logistics [35, 36] or automated cleaning services [37]. 

To conclude, certain articles deal with autonomous VRP 

and its diverse specifications on different operational 

purposes. To our knowledge, no research on VRP and 

especially LRP concerning the sole application of 

AUGV for urban logistic applications is already 

existing. To address this lack, we focus on these 

operations with the objective of minimizing delivery 

costs. For proper development of our optimization 

model presented in the next section, we take ideas, 

considerations, and assumptions of the above mentioned 

articles into account. 

 

3. Optimization approach  

 
3.1. Problem, assumptions, and notation 

 

This section introduces a mixed-integer linear 

problem for optimizing LMD operations of AUGV. 

This is characterized as a special case of the LRP, 

related to the use of electrically driven delivery robots 

under consideration of demand- and supply-related time 

windows. These robots start and end their tours at one 

of several potential stations (e.g., at parcel service 

points) and visit customer locations to supply them with 

their demanded goods.  

By solving the model with the goal of minimizing 

total costs, simultaneously the number and locations of 

the stations to be opened, the assignment of customers 

to these stations, the number of necessary AUGV, and 

the number as well as the routes of the driving tours are 

determined. Within the framework of route planning, 

the customers are grouped into tours and the sequence 

for delivery to customers within the tours is optimized. 

In addition to time restrictions for delivery, capacity 

restrictions regarding the battery and the transport 

volume of the delivery robots are considered. Summing 

up, the model is classified as electric location routing 

problem with time-windows (ELRP-TW). To allow for 

the optimization of the underlying problem, the 

following assumptions must be made: 

 The potential locations of the stations are given. 

 There is sufficient space at the potential stations for 

short-term storage of shipments ready for dispatch 

as well as for the charging infrastructure of the 

delivery robots. 

 Since each AUGV is assigned to a station, each tour 

starts and ends at the same place. 

 The locations as well as the associated demand 

levels of the customers are given. 

 Maximum possible transport weight as well as 

volume are considered and the capacity restrictions 

are met. The individual orders are referred to as a 

uniform package, so that each package unit 

represents the maximum weight and volume of the 

delivery robot. The demand therefore represents a 

certain number of uniform packages. 

 Identical AUGV with a limited transport capacity 

are used for shipment delivery whereby each 
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delivery robot has a certain number of separated 

compartments for serving different customers. A 

delivery robot’s compartment can contain one 

uniform package. 

 Each delivery robot is able to conduct several tours 

per day by taking capacity limits into account. 

Sufficient time to prepare the AUGV for its delivery 

between two consecutive tours exists, and, if 

necessary, to change the battery. 

 Each customer location is served by at least one 

vehicle and split deliveries are possible. 

 Since shipments are delivered within time windows, 

the demand can be fully met so that undeliverable 

shipments and multiple delivery attempts do not 

exist. As a result, each customer is available to 

receive his shipment at the desired time window.  

 

The indices, parameters, and decision variables are 

summarized in the following: 

 
𝑔, ℎ ∈ 𝒢 Set of locations / graph nodes  

𝑖, 𝑙 ∈ ℐ ⊆ 𝒢 Set of customers demand locations 

𝑗 ∈ 𝒥 ⊆ 𝒢 Set of potential stations 

𝑘, 𝑜 ∈ 𝒦 Set of tours 

𝑟 ∈ ℛ Set of potential delivery robots 

𝑎𝑖 Demand of customer 𝑖 

𝑏𝑟𝑎𝑛𝑔𝑒 Maximum battery electric range of a delivery robot 

𝑏𝑡𝑖𝑚𝑒 
Maximum battery operating time of a delivery 
robot 

𝑐 Transport costs per distance unit 

𝑑𝑔ℎ Distance between location 𝑔 and ℎ 

𝑒 Auxiliary parameter  

𝑓 Daily rental fee per delivery robot 

𝑀 Sufficiently large number 

𝑛 Number of minutes of a time interval 

𝑝 Personnel costs per minute 

𝑞𝑗
𝑠𝑡𝑎𝑡𝑖𝑜𝑛 Storage capacity of station 𝑗 

𝑞𝑟𝑜𝑏𝑜𝑡 Number of a delivery robot’s compartments 

𝑠𝑟𝑎𝑛𝑔𝑒 Safety buffer for the battery electric range 

𝑠𝑡𝑖𝑚𝑒 Safety buffer for the battery operating time 

𝑡𝑙𝑜𝑎𝑑 Loading time per shipment 

𝑡𝑠𝑒𝑟𝑣 Service time per customer  

𝑡𝑔ℎ
𝑡𝑖𝑚𝑒 Travel time from location 𝑖 to 𝑔 

𝑣𝑗
𝑐𝑙𝑜𝑠𝑒  Closing time of station 𝑗 

𝑣𝑗
𝑜𝑝𝑒𝑛

 Opening time of station 𝑗 

𝑤𝑖
𝑐𝑙𝑜𝑠𝑒 Latest possible delivery time of customer 𝑖 

𝑤𝑖
𝑜𝑝𝑒𝑛

 Earliest possible delivery time of customer 𝑖 

𝛼𝑔ℎ𝑘 
1, if tour 𝑘 leads from location 𝑔 to location ℎ 
0, else 

𝛽𝑟𝑗 
1, if robot 𝑟 is located at station 𝑗 
0, else 

𝛾𝑗 
1, if a station is selected at location 𝑗 
0, else 

𝛿𝑔𝑘 Arrival time of tour 𝑘 at location 𝑔 

휀𝑖𝑗𝑘 Compartments of station 𝑗 in tour 𝑘 to customer 𝑖 

휁𝑘𝑟 
1, if tour 𝑘 is driven by robot 𝑟 
0, else 

𝜆𝑘𝑜𝑟 
1, if robot 𝑟 drives tour 𝑜 after finishing tour 𝑘 
0, else 

𝜇𝑘 Duration of tour 𝑘 

𝜌𝑟 
1, if robot 𝑟 is used for at least one tour 

0, else 

𝑢𝑔𝑘  Auxiliary variable  

𝑦𝑔𝑘  
1, if tour 𝑘 contains location 𝑔 
0, else  

 

3.2. Mathematical model 

 

𝑀𝑖𝑛. 

∑ 𝜌𝑟 ∗ 𝑓

𝑟

+ ∑ 𝑎𝑖 ∗ 𝑡𝑙𝑜𝑎𝑑 ∗ 𝑝

𝑖

+ ∑ ∑ ∑ 𝑑𝑔ℎ ∗ 𝑐 ∗ 𝛼𝑔ℎ𝑘

𝑘ℎ𝑔

 (1) 

∑ ∑ 휀𝑖𝑗𝑘 =

𝑘𝑗

𝑎𝑖 ∀ 𝑖 (2) 

휀𝑖𝑗𝑘 ≤ 𝑦𝑖𝑘 ∗ 𝑀 ∀ 𝑖, 𝑗, 𝑘 (3) 

휀𝑖𝑗𝑘 ≤ 𝑦𝑗𝑘 ∗ 𝑀 ∀ 𝑖, 𝑗, 𝑘 (4) 

∑ 𝑦𝑖𝑘 ≤ (
𝑎𝑖

𝑞𝑟𝑜𝑏𝑜𝑡⁄ )

𝑘

+ 1 − 𝑒 ∀ 𝑖 (5) 

∑ 𝛼𝑔ℎ𝑘 = 𝑦𝑔𝑘

ℎ

 ∀ 𝑔, 𝑘 (6) 

∑ 𝛼𝑔ℎ𝑘 = 𝑦ℎ𝑘

𝑔

 ∀ ℎ, 𝑘 (7) 

𝑢𝑙𝑘 − 𝑢𝑖𝑘 + |ℐ| ∗ 𝛼𝑙𝑖𝑘 ≤ |ℐ| − 1 ∀ 𝑖, 𝑙, 𝑘; 𝑖 ≠ 𝑙 (8) 

𝛼𝑔𝑔𝑘 = 0 ∀ 𝑔, 𝑘 (9) 

∑ ∑ 휀𝑖𝑗𝑘

𝑗

≤

𝑖

𝑞𝑟𝑜𝑏𝑜𝑡 ∗ ∑ 휁𝑘𝑟

𝑟

 ∀ 𝑘 (10) 

∑ 휁𝑘𝑟

𝑟

≤ 1 ∀ 𝑘 (11) 

∑ 휁𝑘𝑟

𝑘

= ∑ ∑ 𝜆𝑘𝑜𝑟 + 1

𝑜𝑘

 ∀ 𝑟 (12) 

𝜆𝑘𝑘𝑟 = 0 ∀ 𝑘, 𝑟 (13) 

∑ 𝜆𝑘𝑜𝑟 ≤

𝑘

휁𝑜𝑟 ∀ 𝑜, 𝑟 (14) 

∑ 𝜆𝑘𝑜𝑟 ≤

𝑜

휁𝑘𝑟 ∀ 𝑘, 𝑟 (15) 

𝜇𝑘

= ∑ ∑(𝑡𝑠𝑒𝑟𝑣 + 𝑡𝑖𝑔
𝑡𝑖𝑚𝑒)

𝑔𝑖

∗ 𝛼𝑖𝑔𝑘 + ∑ ∑ 𝑡𝑗ℎ
𝑡𝑖𝑚𝑒 ∗ 𝛼𝑗ℎ𝑘

ℎ𝑗

 ∀ 𝑘 (16) 

𝛿𝑗𝑘 ≤ 𝛿𝑗𝑜 − 𝜇𝑜 − 𝑡𝑙𝑜𝑎𝑑 + (1 − 𝜆𝑘𝑜𝑟) ∗ 𝑀 
∀ 𝑗, 𝑘, 𝑜, 𝑟; 

𝑘 ≠ 𝑜 
(17) 

∑ ∑ 휀𝑖𝑗𝑘

𝑘

≤ 𝑞𝑗
𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ∗ 𝛾𝑗

𝑖

 ∀ 𝑗 (18) 

∑ 𝛽𝑟𝑗

𝑗

= 1 ∀ 𝑟 (19) 

휁𝑘𝑟 − (1 − 𝑦𝑗𝑘) ≤ 𝛽𝑟𝑗 ∀ 𝑗, 𝑘, 𝑟 (20) 

∑ 휁𝑘𝑟 ≤ 𝜌𝑟 ∗ 𝑀

𝑘

 ∀ 𝑟 (21) 
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∑ ∑ 𝑑𝑔ℎ ∗ 𝛼𝑔ℎ𝑘 ≤ 𝑏𝑟𝑎𝑛𝑔𝑒 − 𝑠𝑟𝑎𝑛𝑔𝑒

ℎ𝑔

 ∀ 𝑘 (22) 

𝜇𝑘 ≤ 𝑏𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑖𝑚𝑒 ∀ 𝑘 (23) 

𝛿𝑖𝑘 ≥ 𝑤𝑖
𝑜𝑝𝑒𝑛

 ∀ 𝑖, 𝑘 (24) 

𝛿𝑖𝑘 ≤ 𝑤𝑖
𝑐𝑙𝑜𝑠𝑒 ∀ 𝑖, 𝑘 (25) 

𝛿𝑔𝑘 ≥ 𝛿𝑖𝑘 + 𝑡𝑠𝑒𝑟𝑣 + 𝑡𝑖𝑔
𝑡𝑖𝑚𝑒 − (1 − 𝛼𝑖𝑔𝑘) ∗ 𝑀 ∀ 𝑔, 𝑖, 𝑘 (26) 

𝛿𝑔𝑘 ≤ 𝛿𝑖𝑘 + 𝑡𝑠𝑒𝑟𝑣 + 𝑡𝑖𝑔
𝑡𝑖𝑚𝑒 − (1 − 𝛼𝑖𝑔𝑘) ∗ 𝑀 ∀ 𝑔, 𝑖, 𝑘 (27) 

𝑣𝑗
𝑜𝑝𝑒𝑛

+ 𝑡𝑗𝑖
𝑡𝑖𝑚𝑒 − 𝛿𝑖𝑘 − (1 − 𝛼𝑖𝑔𝑘) ∗ 𝑀 ≤ 0 ∀ 𝑖, 𝑗, 𝑘 (28) 

𝛿𝑗𝑘 ≤ 𝑣𝑗
𝑐𝑙𝑜𝑠𝑒 ∀ 𝑗, 𝑘 (29) 

𝛼𝑔ℎ𝑘 , 𝛽𝑟𝑗  , 𝛾𝑗  , 휁𝑘𝑟 , 𝜆𝑘𝑜𝑟 , 𝜌𝑟, 𝑦𝑔𝑘 ∈ {0,1} ∀ 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑜, 𝑟 (30) 

𝛿𝑔𝑘 , 𝜇𝑘 , 𝑢𝑔𝑘 ≥ 0 ∀ 𝑔, 𝑘 (31) 

휀𝑖𝑗𝑘 ∈ ℤ≥0 ∀ 𝑖, 𝑗, 𝑘 (32) 

 

The objective function (1) minimizes the total costs 

of one working day. These consist of the rental costs of 

all utilized delivery robots, the personnel costs for 

preparing the robots, and the variable delivery costs for 

all tours. The latter correspond to the total distance to be 

covered multiplied with the transport cost rate 𝑐. As it is 

assumed that the stations are placed at existing locations 

with an existing workforce, the personnel costs are 

modelled according to the time that is needed to prepare 

the robots for delivery purposes.  

Constraints (2) to (9) refer to the classical VRP. 

Constraint (2) requires that the entire order quantity is 

delivered to the corresponding customer. Constraint (3) 

ensures that a customer 𝑖 is only supplied within tour 𝑘 

if this customer is assigned to the tour 𝑘 using the binary 

variable 𝑦𝑖𝑘. Similarly, condition (4) assigns the stations 

𝑗 to the tours 𝑘. Using the auxiliary parameter 𝑒, 

constraint (5) ensures that a customer is not visited more 

often than necessary. The maximum number of 

deliveries is determined based on the order quantity and 

robot capacity. Constraint (6) guarantees that on tour 𝑘 

the location ℎ can only be reached from location 𝑔 if this 

place 𝑔 is also included in tour 𝑘. Similarly, constraint 

(7) requires that tour 𝑘 leads from location 𝑔 to location 

ℎ only if that tour also includes the location ℎ. 

Constraint (8) serves to avoid short cycles which are 

tours that do not include a station. The auxiliary variable 

𝑢𝑖 assumes a higher value the later the location 𝑙 is 

visited in tour 𝑘. Further, constraint (8) secures that a 

tour cannot end in a customer location. Constraint (9) 

causes a location not to be accessed by itself.  

Constraints (10) to (17) exist for the assignment of 

AUGV to tours. Constraint (10) ensures that deliveries 

are only made during tour 𝑘 if a robot is assigned to this 

tour, and furthermore that the delivery quantity does not 

exceed the AUGV’s capacity. Due to constraint (11) 

only one AUGV can be assigned to a tour. Constraint 

(12) implies that a sufficient number of binary variables 

𝜆𝑘𝑜𝑟  takes the value 1 to represent the tour order driven 

by robot 𝑟. Constraint (13) ensures that in the case of a 

robot with only one assigned tour, the variable 𝜆𝑘𝑜𝑟  is 

zero for all 𝑘 and all 𝑚. Constraint (14) requires that the 

adjacent tour 𝑚 after the following tour 𝑘 can only be 

scheduled for robot 𝑟 if tour 𝑚 is assigned to this robot. 

Similarly, the constraint (15) ensures that tour 𝑘 can 

only be scheduled before tour 𝑚 of robot 𝑟 if the tour 𝑘 

is assigned to this robot. Using constraint (16), the 

variable 𝜇𝑘 is assigned to a value equal to the time 

required for tour 𝑘. If robot 𝑟 drives tour 𝑚 directly after 

tour 𝑘, the constraint (17) requires that these tours do 

not overlap in time and that there is sufficient time 

between them for replacing the battery as well as 

loading the shipments into the AUGV. 

The constraints (18) to (21) control the assignment 

of AUGV’s to stations. Constraint (18) requires that 

customer 𝑖 can only be supplied from location 𝑗 if a 

station is selected there. Furthermore, this constraint 

prevents the available capacity of a station from being 

exceeded by the cumulative demand of the customer 

locations assigned to it. Constraint (19) requires that 

each robot is positioned at exactly one station. 

Furthermore, restriction (20) ensures that a robot is only 

assigned to tours that begin at its associated stations. 

Constraint (21) secures that each utilized robot must be 

assigned to at least one tour. 

Constraint (22) ensures that no tours are planned that 

exceed the electric range of the battery. The safety 

buffer on the right side of the inequality assures that a 

certain reserve for unforeseen events (e.g., impassable 

pathways) is held back during the tour. Similarly, 

constraint (23) adds a time-dependent safety buffer for 

a tour to not exceed the maximum usage time of the 

battery. 

The auxiliary conditions (24) to (29) refer to the 

observance of time windows in the context of tour 

planning and delivery processes. For this, constraint 

(24) requires that a customer location is not reached 

before its earliest possible delivery time. Similarly, 

constraint (25) prevents a customer location from being 

visited after the corresponding time window has 

expired. Constraint (26) ensures that within tour 𝑘 the 

arrival time at location 𝑔 is not before the arrival time at 

location 𝑖 plus the service time and travel time between 

both locations. Similarly, constraint (27) requires that 

within tour 𝑘 the arrival time at location 𝑔 is not after 

the arrival time at location 𝑖 plus service time and travel 

time between both locations. Constraint (28) causes that 

the first customer location 𝑖 of a tour cannot be supplied 

before opening the assigned base station 𝑗 plus the 

respective travel time. For each station 𝑗, constraint (29) 

secures that the arrival time of tour 𝑘 must not be after 

the end of the delivery time. The constraints (30), (31), 

and (32) limit the permissible value range of the 

decision variables. 
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4. Proof of concept 
 

4.1. Single case study 
 

The described optimization model is developed to 

establish a delivery network of stations to determine the 

optimal assignment of customers to these stations. The 

amount of AUGV as well as the number and the 

customer order of the driving tours are calculated as 

well. When applying the optimization approach, the 

quality and level of the input values strongly affect the 

results of the underlying model. This not only includes 

cost-related parameters, such as vehicle and personnel 

costs, but also the assumed demand, which considerably 

influences the solution.  

In the following case study, three potential stations 

are available to be opened. At least one of them has to 

fulfill the requests of ten demand locations. These 

demand locations are assigned to at least one selected 

station. The locations are distributed within an area of 

3000 x 3000 meters (m) and can therefore be used to 

determine the distances and resulting driving time. One 

time interval is equal to one hour and contains 60 

minutes. The storage capacity of a station (𝑞𝑗
𝑠𝑡𝑎𝑡𝑖𝑜𝑛) is 

set to fifty shipments, as the place within a parcel service 

point is limited. These service points are open from 8:00 

to 20:00. Based on the number of compartments, an 

AUGV is able to deliver several shipments 

simultaneously. The following Table 1 summarizes the 

parameter values applied within this example.  

Table 1. Assigned parameter values 

Parameter Value [unit] Parameter Value [unit] 

𝑏𝑟𝑎𝑛𝑔𝑒 10,000 [m] 𝑝 0.5 [€/min] 

𝑏𝑡𝑖𝑚𝑒 360 [min] 𝑠𝑟𝑎𝑛𝑔𝑒 200 [m] 

𝑐 0.001 [€/m] 𝑠𝑡𝑖𝑚𝑒 36 [min] 

𝑓 20 [€/day] 𝑡𝑙𝑜𝑎𝑑 1 [min] 

𝑀 / e 10000 / 0.0001 𝑡𝑠𝑒𝑟𝑣 10 [min] 

 

 

 

Figure 2. Customers' time windows and arrival 
times 

The demand level per customer varies between one 

and six shipments resulting in an aggregated demand of 

20 shipments. The requested time windows of the 

customers of this example are shown in Figure 2. The 

optimized arrival times of the shipments are also 

visualized. For this case study, the number of 

compartments per AUGV (𝑞𝑟𝑜𝑏𝑜𝑡) is set to four. 

The total costs, represented by the objective function 

value (OFV), are 45.82 €/day and consist of 20 € AUGV 

rental costs (43.65%), 10 € personnel costs for preparing 

the robot (21.82%), and 15.82 € variable distance costs 

(34.53%). As a result, one station is opened. Starting 

from this, five tours are driven by one AUGV. To satisfy 

all customer demands within their specified time 

window, one battery swap is necessary.  

The calculation for this application case and the 

following benchmarks were performed on a standard 

computer (Intel Core i5-6200 CPU, 2.30 GHz, and 8 GB 

RAM) using modelling software GAMS 24.5.6 with the 

solver CPLEX. We limit the computation time to 10,000 

seconds and an optimization gap of 5%.  

 

4.2. Benchmarks on AUGV compartments 
 

To show the influences on the total driving distance 

as well as on the OFV, we provide benchmarks varying 

the number of compartments per AUGV (𝑞𝑟𝑜𝑏𝑜𝑡) ceteris 

paribus. The following Figure 3 visualizes these results. 

The total daily costs (blue font) are shown on the left 

vertical axis and the resulting distance covered (green 

font) is indicated on the right vertical axis. 

 

Figure 3. AUGV compartment benchmarks 

It is apparent that if the number of compartments 

increases, both the total costs and the distance travelled 

decrease. The total daily costs are nearly halved 

(- 46.45%) when two compartments are present instead 

of one. This is because three AUGV are required for the 

delivery of the 20 shipments due to time window 

restrictions as each shipment is carried alone. When 

installing two or more compartments, it is sufficient to 
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use only one AUGV. For this reason, the financial 

savings of two compartments compared to eight 

compartments are rather low. These financial 

differences are based on lower variable vehicle costs as 

the covered distance decreases. In the one compartment 

case, each customer is visited once per shipment, even 

if a customer demands more than one shipment. This 

way of delivery can be described as round-trip delivery, 

whereby pooling advantages due to the proximity of 

different customers are not possible. These benefits can 

increase the more customers are supplied on a tour. This 

combination allows to gradually reduce the distance 

covered. Up to a compartment number of four, the 

covered distance decreases significantly, further range-

related advantages are rather less cost-efficient.  

As shown, the number of compartments depict a 

crucial parameter for route planning with AUGV. 

Depending on the purpose and size of the shipments, the 

use of AUGV with multiple compartments is beneficial 

as several customers can be supplied within one tour. 

The use of an AUGV with only one compartment is less 

cost-efficient, also if two of three manufacturers of 

AUGV for delivery purposes offer a single compartment 

robot. To conclude, the operational effectiveness 

depends on the present distances and the (size and 

weight of the) transported goods (e.g., prepared dishes, 

e-grocery, or the dispatch of medicines). 

 

5. Discussion and implications 
 

We answer our research question with the developed 

ELRP-TW as final artifact of the applied DSR process. 

Our ELRP-TW represents a special case of the LRP for 

the application of AUGV in the context of urban parcel 

delivery depicting a new element for urban logistics 

operations. By solving the model with the main goal of 

minimizing the total daily costs, we are able to select 

optimal locations from a set of existing stations and to 

determine the quantity of AUGV and its tours 

simultaneously. Restrictions regarding the battery 

capacity and time windows for delivery to customers 

were considered.  

First of all, the possibilities for implementing the 

delivery concept within urban spaces must be 

mentioned. Based on the assumption that only AUGV 

are used to supply customers, the ELRP-TW is 

unsuitable for some business models and application 

areas. Especially when the expected order quantities 

vary considerably in terms of volume as well as weight, 

the AUGV’s capacity can be exceeded. In such cases, a 

combination of AUGV and conventional delivery 

vehicles, such as vans, is plausible as suggested by [34]. 

However, the shipments to be delivered must be 

preselected in terms of volume to assign the small-sized 

packages to AUGV. 

Not to be ignored is also the field of application as 

urban areas are differently designed. Since the AUGV 

move exclusively on footpaths, it is possible that these 

paths are inappropriate or that too many pedestrians 

hinder an efficient movement. Further, in some 

countries, there are also strict legal restrictions that 

prevent the operation of AUGV in public spaces. 

However, forecasts on automated unmanned vehicles 

within the urban delivery as well as investigations 

regarding customer acceptance reveal positive future 

projections for this field [19].  

A crucial factor regarding the delivery robots’ 

efficiency is the number of its compartments. It is 

notable that the Starship robot and the Marble robot 

only have one single lockable compartment, whereas 

Dispatch offers a robot with four compartments. As 

consequence, the Starship and Marble robots can only 

supply one customer per tour, so that each tour consists 

of a round-trip with a single destination. The Dispatch 

robot, on the other hand, can supply up to four 

customers per tour so that the routes can be optimized 

across all tours. Yet, these differences also result in a 

variety of possible applications. The conducted 

sensitivity analysis indicates a strong relationship 

between robot capacity and total costs. As increasing the 

robot’s number of compartments lowers the resulting 

overall costs, the further development of delivery robots 

with multiple compartments makes sense.  

 

6. Contributions  
 

Our approach integrates existing knowledge on VRP 

and LRP together with computer-aided decision support 

while combining scientific literature of transportation, 

logistics, operations research as well as management 

science. Previous research activities in these fields 

demonstrate the lack of decision support for the urban 

delivery with AUGV and the related route planning and 

optimization. In doing so, we promote innovative 

delivery concepts and their manifold implementation 

possibilities. With the developed optimization model, 

we assist an efficient implementation of the proposed 

logistics concept.  

We further contribute to the Green IS literature as 

our research addresses relevant issues regarding the 

locally emission free supply of goods within urban 

areas. We developed an optimization model which 

assists the planning of the urban LMD by using AUGV. 

With our approach, we reacted to the call of Malhotra et 

al. [6] and Gholami et al. [7], who point out the 

overrepresentation of conceptualization and analyses 

compared to solution-oriented research. We combined 

transportation and Green IS research to promote the 

transformative role of IS in contributing to enhanced 

economic and environmental sustainability. With the 

Page 1545



 

 

help of the optimization model, we enable decision-

making for parcel service providers, city authorities, and 

other (potential) stakeholders (e.g., provider of prepared 

meals) in finding appropriate solutions for the urban 

delivery of goods with AUGV. By using this concept, it 

is possible to optimize the last mile and thereby to 

reduce personnel costs as well as pollution, road space, 

and noise to increase the livability in urban areas. 

 

7. Limitations 
 

The model formulation of the ELRP-TW aims at the 

simultaneous determination of station locations, AUGV 

quantity, and tours. As a result, this optimization model 

can only be used for applications where location 

planning is carried out at the same frequency as route 

planning. One example of this could be the daily 

repositioning of mobile depots in the form of trucks or 

containers from which AUGV carry out deliveries on 

the last mile. However, it is possible to fixate the 

selected stations for following optimizations resulting in 

an adjusted VRP. Further, the model could be used for 

network expansion reasons raising the number of 

stations to meet increased demands.  

In any case, the model-user must be aware that the 

optimization problem can become infeasible, if a 

customer is too far away from any potential station. 

Also, too narrow time windows can lead to 

incompatibilities. It should be noted that the actual 

weight and the dimension of the shipments are not 

modelled. In reality, shipments differ in a wide range. 

As the ELRP-TW is based on the LRP which is 

classified as np-hard problem. Since the computing 

effort increases exponentially with increasing problem 

size, optimal or sufficiently good solutions for large 

problem instances cannot typically be found within 

reasonable computing time [38]. Regarding the results 

already discussed, it should be noted that all calculations 

in the context of this work were based on a small 

problem instance with fictive demand levels. Based on 

the input parameters, an optimization process can take 

several hours. For a more differentiated assessment, 

further analyses using larger problem instances are 

recommended. 

In addition, Euclidean distance measurement (L2 

metric) is used as basis for the application case. 

However, this distance measurement is only limitedly 

suitable for practical use in real applications in urban 

logistics. Instead, it is preferable to use the actual 

distances of the routes envisaged. For example, data 

could be obtained from web-based routing providers 

offering application programming interfaces.  

To conclude, the assumptions, the optimization 

model, and the input parameters serve as starting points 

for future research regarding the topic of AUGV within 

urban delivery operations. It should be noted that the 

utilization of delivery robots cannot solve the problems 

of urban logistics on its own but can make a beneficial 

impact in taking over certain consignments. They could 

also be responsible for the short-term dispatch of locally 

available goods to the end customer, such as same-day 

or same-hour deliveries. 

 

8. Conclusions and outlook 
 

The ELRP-TW was presented as an optimization 

model for simultaneous planning of locations, delivery 

robots, and tours to maximize the AUGV application 

efficiency. Due to increasing urbanization worldwide, 

this integration of a new element within urban logistics 

represents a promising approach for various delivery 

operations reducing personnel costs, emissions, road 

space, and noise for more sustainable and locally 

emission free deliveries. However, it should be noted 

that the use of AUGV cannot fully compensate existing 

delivery operations. Yet, AUGV will cause a perceptible 

impact taking over special shipments promoting new 

business models for urban delivery, e.g., same-day or 

same-hour deliveries. We recommend future research 

on AUGV applications in the field of urban logistics and 

the implementation of our implications for better 

planning, optimization, and decision support. 
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