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Abstract 

 
As e-commerce reaches one of the last strongholds 

of traditional fulfillment, how can grocers leverage the 

omni-channel trend and stay competitive in today’s 

changing market landscape? To improve operating 

outcomes and address food waste concerns, this study 

investigates various scenarios in which the grocery 

retailer accepts online orders in advance. We examine 

the value of advance demand information through a 

Markov Decision Process-based model, in terms of 

changes to expected profits, outdating, freshness, and 

several inventory and service performance metrics. 

Our results indicate that when the demand lead time 

is longer than the replenishment lead time, close to 20% 

safety stock reduction on average can be achieved, 

leading to a 15% decrease in product deterioration and 

26% less outdating. In some cases, we also find that it 

is possible to profitably offer discounted prices in 

exchange for the customer’s future demand information. 

 

1. Introduction 

 
The fridge is nearly empty. Where do we go to stock 

up on perishable food items? According to data from the 

Bureau of Labor Statistics, on an average day 1 out of 7 

American adults visit the grocery store [1]. The US 

grocery industry is highly consolidated and generates 

$683 Billion in sales [2]. However, despite a growing 

number of stock-keeping units (average 38,900 per 

store), profit margins remain extremely slim [3]. 

In contrast to other retail sectors, a distinctive 

challenge faced by grocers is in the handling of 

inventory with very limited shelf lives. Due to biological 

decay and microbial growth, perishable food items 

deteriorate over time. When freshness drops below a 

certain quality threshold, the product loses salability and 

gets marked down or discarded. We call this ‘outdating’. 

It has been estimated that outdating accounts for a 

loss of $2,300 per store per day [4]. Further 

complicating the problem, millennial shoppers have 

practically declared war on preservatives. Without 

chemical agents to prevent deterioration, healthier foods 

often have lower and less predictable shelf lives [5]. 

 

 
The costs associated with having inventory on hand 

expire presents a major obstacle in maintaining adequate 

service level while minimizing operating costs. As a 

result of demand variability, ordering too much leads to 

outdating of perished products, and ordering too little 

translates to more lost sales; an unpleasant experience 

potentially degrading the customer’s loyalty. 

The economic impacts from food waste resonate 

both upstream to producers, and down all the way to 

consumers. Many grocers have turned to technological 

solutions to combat this issue, including RFID and GPS 

tracking of replenishments [6]. Others have explored 

using blockchain technology to track shipment data 

logs, such as place of origin or temperature variations 

during transport [7]. These new developments greatly 

improve the visibility of supply-side information; 

allowing retailers to accurately predict the remaining 

shelf lives of products at the time they arrive at the store. 

Likewise, more consumers than ever have adopted 

the use of smart devices. This has led to the emergence 

of additional internet retailing and omni-channel 

experiences through flexible shopping and fulfilment 

platforms (e.g. Walmart’s order online, pickup in-store). 

Across the nation, brick and mortar grocery retailers are 

currently finding themselves in a transition phase 

toward online commerce. What are the implications on 

perishable inventory management? 

While online grocery accounts for just over 4% of 

total grocery sales, various estimates suggest the figure 

is growing at an accelerated rate [8]. More importantly, 

transactions data collected from 200 stores over a 1 

month period found that 85% of online grocery orders 

included at least one produce item; and 66% contained 

meat, seafood or deli products [9]. Big or small, online 

grocery is encroaching on traditional grocers’ territories. 

Are there characteristics currently present in multi-

channel retailing that may help physical grocers deal 

with perishables more effectively? 

Due to shipping times, online shoppers have become 

accustomed to varying levels of delay between the time 

of placing orders and fulfillment. A survey of over 

30,000 respondents reported 28% have had online 

grocery delivered to home at some point [10]. Could the 

time gap between order placement and order fulfillment 

be useful in deciding the daily replenishment quantities? 
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What if omni-channel is actually not a burden, but 

part of a solution to managing perishables? Specifically, 

our research attempts to understand the consequences of 

accepting advance online grocery orders through 

providing customers with options to place orders in 

advance. Using decision analytics, we assume the 

perspective of a retailer facing stochastic end consumer 

demand, as well as costs associated with outdating 

products, losing sales, and holding inventory. 

The objectives here are to reduce outdating and 

improve long run expected profits for perishable foods 

with short shelf lives; such as soft-skinned fruits, leafy 

vegetables, or fresh seafood. By having better access to 

supply and demand information, and deciding the 

optimal amount of products to stock, could retailers 

reduce waste from outdating, increase margins, or even 

offer discount to customers? 

 

2. Literature review  

 
From perishables supply chain to decision science 

and e-commerce, this work brings together multiple 

streams of literature. To gain a better understanding of 

later discussions, the following three sub-sections 

briefly review relevant past contributions and recent 

advances in decision analytics of perishables retailing. 

 
2.1. Perishable inventory management 

 
The literature review by Karaesmen et al. (2011) 

references almost 200 articles and book chapters on the 

topic of managing perishables [11]. They classify the 

literature into fixed and random life time, as well as 

periodic and continuous review of inventory control 

policy. Research focusing on random life time, as in our 

case here, can mostly be traced back to Nahmias (1977) 

[12]. Nahmias (1982) further provides a review of the 

ground work on determining suitable ordering policies 

for inventory subject to continuous decay [13]. 

Later, Williams and Patuwo (1999) derive the 

equations to decide order quantities for a product with a 

useful lifetime of two periods, and indicate that order 

quantity is a function of the lead time and the quantity 

of goods on-hand and in arrival [14]. Minner and 

Transchel (2010) propose a method to determine 

dynamic order quantities for perishable products with 

limited shelf-life, positive lead time, along with FIFO 

issuing policy. They also illustrate the superiority of this 

method over common order-up-to policies [15]. 

More recently, Bakker et al. (2012) show an updated 

review of the advances made in the field of perishable 

inventory control and classify contributions by system 

characteristics such as pricing discounts, backordering 

or lost sales [16]. Overall, there appears to be a clear 

interest in reducing not only costs, but also to integrate 

production and distribution planning of perishable 

products with considerations given to other business 

aspects, including  product quality and waste reduction 

(Amorim et al. 2012; Pahl and Voß, 2014) [17, 18]. 

 
2.2. Time and temperature monitoring 

 
The value proposed here is based partly on the 

information obtained from time and temperature history 

(TTH). Taoukis et al. (1999) explore various conditions 

that perishable products are exposed to during shipment 

[19]. Most fruits and vegetables first enter the supply 

chain after harvest at ambient temperature. They are 

then delivered to regional distribution centers and enter 

a temperature-controlled chain. External factors such as 

distance, time spent, or weather could all cause 

variations to the amount of remaining life of products. 

Nunes et al. (2005) report that temperature is the main 

characteristic of distribution environment to cause the 

greatest negative impact on shelf life of perishables [20]. 

An application of RFID technology to perishables 

tracking can be found, for instance, in Chande et al. 

(2005); where an integrated framework for inventory 

management and dynamic pricing in a discrete time 

setting is described in detail [21]. In addition, Sahin et 

al. (2007) provide a number of potential benefits that 

can be expected from the use of TTH, including 

information on product freshness and remaining shelf 

lives, as well as directions for quantitative models that 

can be developed to assess these benefits [22]. 

Many studies suggest replacing traditional expiry 

dates with some form of remaining-shelf-life indicator 

based on TTH data. Grunow and Piramuthu (2013) 

explore the utility of sensor-enabled, item-level tags in 

a highly perishable food supply chain from several 

perspectives including the distributor, retailer and 

consumer [23]. Herbon et al. (2014) also propose many 

advantages of implementing TTH tracking to reduce the 

risk of selling subpar products to customers [24]. 

 
2.3. Value of information 

 
Sahin and Robinson (2002), as well as Huang et al. 

(2003), provide a broad overview of literature on value 

of information (VOI) for inventory management [25, 

26]. Publications concerning the value of ‘supply-side’ 

information (lead time, product life, etc.) for managing 

perishables can be found as early as Pierskalla and 

Roach (1972); where quantitative results support 

policies that issue the oldest inventory units to satisfy 

demand [27]. Apart from the inventory issuing policy, 

the store’s daily replenishment decision is of great 

interest to our target of reducing outdating at retail level. 
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The mathematical framework of Markov Decision 

Processes (see, e.g., Puterman (1994)) allows for an 

insightful investigation of the problem in states of 

inventory where the grocer takes action periodically 

through placing orders [28]. Aggoun et al. (1999) later 

establish an integer-valued model for perishables along 

with various parameter estimators to find an optimal 

replenishment schedule [29]. Kouki et al. (2010) and 

(2015) further describe the use of transition probabilities 

and steady-state properties to predict the effects of life 

time variability on cost performance; taking into 

account lost sale and outdating costs [30, 31]. 

Currently, there are considerable research activities 

in assessing the value of supply information. Studies on 

VOI gained through implementing RFID in perishable 

inventory management by Ketzenberg et al. (2015) and 

dynamic expiration dates by Gaukler et al. (2017) report 

up to 43.2% and 41.2%, respectively, in cost reductions 

on average with a 1 day lead time [32, 33]. Chua et al. 

(2017) explore optimal discounting and replenishment 

policies for products with mean shelf lives of 2 days, and 

found that discounts are best offered when inventory 

units are below a certain age class [34]. Adenso-Diaz et 

al. (2017) and Buisman et al. (2017) also present studies 

on using dynamically-set shelf life and offering dynamic 

pricing based on remaining life [35, 36]. Most recently, 

Ketzenberg et al. (2018) derive inventory control and 

expiration dating policies where a hazard cost of selling 

perished units is considered, and provide insights on the 

link between perishability and inventory cost [37]. 

Additionally, much work has been done to study and 

quantify the value of ‘demand-side’ information. The 

seminal paper by Hariharan and Zipkin (1995) reveals 

how advance orders can improve an inventory system in 

the same way that supply lead times degrade it; coining 

the term ‘demand lead time’ [38]. Gallego and Özer 

(2001), as well as Karaesmen et al. (2004), later 

investigate inventory systems that incorporate advance 

demand information (ADI). Both studies show that 

applying the appropriate replenishment policy can lead 

to significant cost reductions, and that the impact on cost 

performance is dependent on both demand lead time and 

supply lead time [39, 40]. Wang and Toktay (2008) 

further extend the work of Gallego and Özer by allowing 

flexible demand lead times, and suggest that increasing 

the demand lead time is more cost effective than 

reducing the supply lead time by the same amount [41]. 

Numerous other contributions can be found on the 

topic of ADI, however, those that deal with perishable 

inventory are less common at the moment. Thus, this 

paper aims to complement the value of ADI stream of 

literature; with a distinctive focus on freshness-

constrained products. Siawsolit et al. (2018) closely 

resemble our starting point in terms of modeling and the 

grocery retail setting [42]. It is from here that we 

continue to expand the ADI literature. The novelty of 

this work includes a quantitative study on accepting 

online grocery orders in advance, the benefits of 

extending the demand lead time for perishable products, 

and the feasibility of offering a discount to customers. 

 

3. Setting  

 
Consumers have been seeing the rise of multi-

channel service offerings such as ‘order online today 

pick up in-store tomorrow’, or ‘free 2-day shipping on 

orders above $50’. Younger millennials are particularly 

more inclined to use these services, with up to 15% 

saying they are willing to pay a premium, compared to 

4% of older boomers [43]. We investigate a setting in 

which the grocer allows customers to purchase products 

by offering two basic fulfillment options: (1) traditional 

fulfillment: the customer comes to the store as usual and 

selects products from the shelves; (2) advance online 

ordering: the customer places an order online 1 or 2 days 

ahead of time and either picks up the items from the 

store, or has the store deliver the items. 

With advance ordering, a store employee prepares 

the pickup order before the customer’s designated 

arrival time. Certain Walmarts in China have already set 

aside convenience-store sized areas for workers to fulfill 

this role. For a more sophisticated approach, advance 

orders can also be prepared at a distribution warehouse 

level through automated robot handling as implemented 

by Ocado in the United Kingdom [44]. 

In essence, online ordering allows the store to collect 

ADI, because demand occurrence and fulfillment do not 

coincide. The goal here is to reduce safety stock levels; 

thereby also reducing the frequency of outdating events. 

The research questions include: can ADI substantially 

improve inventory performance, and if so, what are the 

implications on food waste? Should the store entice 

more of its customers to place order in advance, perhaps 

by offering a discount on prices? 

It is not clear at this point, though, how the incentives 

would correlate with the customer’s willingness to place 

advance orders. Therefore, our study explores the 

implications of offering a specified fulfillment option 

with some response rate (for example: 20% of demands 

are pick up next day), in comparison to the base case 

where all demands must be immediately filled (i.e., 

traditional fulfillment). The setting is analyzed through 

an inventory optimization model based on Markov 

Decision Processes (MDP). Overall, we are interested in 

finding out if stores could afford to offer discounts at all. 

Given insights into future shelf lives and ADI, how will 

the scenarios outlined above affect expected profits, 

outdating, freshness, and various inventory metrics? 

Can sustainability be profitable at the same time here? 
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4. Modeling  

 
The study is performed through the use of a profit-

maximization MDP, which allows us to view the system 

as being in one of a number of possible states, 𝑆, of 

inventory status. In each respective state, the grocer is 

presented with a choice of how much to order, 𝑞.  

The store places an order once a day and receives 

replenishment from suppliers with a constant lead time 

of 1 day. We assume the supplier can provide accurate 

estimates as to when a given lot of goods will perish 

based on time & temperature history (TTH) from RFID 

tracking (see, for instance, Gaukler et al. 2017 for a 

detailed modeling treatment of TTH data for perishables 

management) [33]. Specifically, once products are 

received, the remaining shelf life (referred to as age 

class 𝑎) becomes known and is described by a discrete 

probability distribution 𝜑(𝑎) with a maximum length of 

𝑀 days. Each passing day the particular lot of goods 

remains in inventory, its age class reduces by one. Once 

𝑎 reaches 0, the lot is presumed to drop below the 

quality threshold and is outdated by the grocer. 

For tractability, we assume there are no shortages in 

supply, and a product retains constant utility while its 

remaining shelf life is greater than 0. All units received 

in the same lot of replenishment will expire at the same 

time due to undergoing the same environmental 

conditions during transport. Inventory units are sold by 

first-to-expire, first-out policy (FEFO) based on 

information available through TTH monitoring. Let 𝑖𝑎 

denote the amount of inventory on hand having age class 

𝑎. For example, if 𝑖𝑎 could be 0 or 1, and 𝑀 = 2, we have 

4 possible inventory states; namely {0, 0}, {1, 0}, {0, 1} 

and {1, 1}. The probability of moving from one state (𝑆) 

to another (𝑆’) by taking action (𝑞) is represented 

by 𝑃𝑞 (𝑆, 𝑆’), or 𝑃𝑞 ({𝑖1, … , 𝑖𝑀}, {𝑖1
′ , … , 𝑖𝑀

′ }). 

Demand is modeled as discrete, stochastic, and 

stationary over time. When advance ordering is allowed, 

incoming demand is split into independent streams of 

immediate demand and advance orders (pick up 1 or 2 

days later). Immediate demand is denoted by  𝑑𝑖𝑚𝑚, and 

follows a probability mass function  𝜙(𝑑𝑖𝑚𝑚). Advance 

demand, 𝑑𝑎𝑑𝑣, is accounted for through backlogging, 

based on the distribution Ɵ(𝑑𝑎𝑑𝑣). All backlogged 

demands are given priority fulfillment once inventory 

arrives. 

The order of events each day consists of: (i) receive 

replenishment from an order made the previous day, (ii) 

allocate the replenishment into specified age categories 

and place an order if necessary, (iii) face incoming 

demand throughout the day, and (iv) reduce age classes 

of all unsold inventory at the end of the day by 1 and 

outdate any perished units from inventory. 

We introduce an additional state variable for 

backlogs, denoted 𝑏, to keep track of the amount of 

previously received advance orders to be fulfilled in the 

subsequent period. Our state transition probability is 

now represented by 𝑃𝑞 ({𝑖1, … , 𝑖𝑀, 𝑏}, {𝑖1
′ , … , 𝑖𝑀

′ , 𝑏′}). 

The probability of moving from state 𝑆 to state 𝑆’ is 

governed by 𝜑(𝑎), 𝜙(𝑑𝑖𝑚𝑚), and the choice of 𝑞 

primarily through the following inventory transfer 

equation for any age class 𝑥 of interest (1 ≤ 𝑥 ≤ 𝑀): 

 

𝑖𝑥
′ = {

[𝑖𝑥+1 − (𝑑𝑖𝑚𝑚 + 𝑏 − ∑ 𝑖𝑗
𝑥
𝑗=1 )

+
]

+

+ 𝑞,    𝑥 = 𝑎

[𝑖𝑥+1 − (𝑑𝑖𝑚𝑚 + 𝑏 − ∑ 𝑖𝑗
𝑥
𝑗=1 )

+
]

+

       ,    𝑥 ≠ 𝑎
  

 

where (𝑣𝑎𝑙𝑢𝑒)+ is equivalent to 𝑚𝑎𝑥(0, 𝑣𝑎𝑙𝑢𝑒). All 

advance online orders from Ɵ(𝑑𝑎𝑑𝑣) simply become the 

next state’s 𝑏. 

Let matrix �̅� represent all elements of 𝑃𝑞 (𝑆, 𝑆’). 

Principally, each element equals the sum of all possible 

combinations of 𝑎, 𝑑𝑖𝑚𝑚, and 𝑑𝑎𝑑𝑣 that moves 𝑆 to 𝑆’. 
 

𝑃𝑞(𝑆, 𝑆′) = ∑  ∑ ∑  Ɵ(𝑑𝑎𝑑𝑣) · 𝜙(𝑑𝑖𝑚𝑚)

𝑑𝑎𝑑𝑣 𝑑𝑖𝑚𝑚𝑎

· 𝜑(𝑎) 

 

The reward (or cost) of ordering 𝑞 units while in state 

𝑆 is calculated as expected reward over all possibilities 

of applicable incoming demand. It is modeled through 5 

components, each with respective parameters including: 

the retail price of the item 𝑝, the markdown sales given 

in percent of retail price 𝑠, a goodwill penalty 𝑔 for each 

occurrence of stock-out, the purchase cost of a unit of 

inventory 𝑐, and a holding cost per unit per period ℎ. We 

observe an outdating event whenever an inventory unit 

reaches the end of its freshness life prior to being sold. 

Let 𝐼 = ∑ 𝑖𝑥
𝑀
𝑥=1 , and we have the first component 

accounting for revenues gained from units sold at retail 

price. 

𝑝 · 𝑚𝑖𝑛 [𝑑𝑖𝑚𝑚, (𝐼 − 𝑏)+]       (1) 

 

The second component tracks revenues from units 

sold at discounted price, and is given by: 

 

(1 − 𝑠) · 𝑝 · 𝑚𝑖𝑛 (𝐼, 𝑏)       (2) 

 

where 𝑝 denotes retail price of the particular product and 

𝑠 represents the discount given in percent. 

Let 𝑔 stand for the goodwill penalty that results from 

being unable to fulfill a customer’s demand. Essentially, 

this refers to the loss of reputation when a customer goes 

through the unpleasant experience of a stock-out. 

 

−𝑔 · (𝑑𝑖𝑚𝑚 + 𝑏 − 𝐼)+       (3) 
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When placing replenishment requests, the retailer is 

billed accordingly based on unit cost 𝑐. 

 

−𝑐 · 𝑞       (4) 

 

Holding costs are assessed on all inventory; less any 

units that are expected to expire or be sold. 

 

−ℎ · [𝐼 − 𝑚𝑎𝑥 (𝑖1, 𝑑𝑖𝑚𝑚 + 𝑏)]+       (5) 

 

We now combine the reward and cost components 

(numbered equations) to calculate the expected net 

reward of being in state 𝑆 and taking action 𝑞 as: 

 

𝑅𝑞(𝑆) = ∑ [(1) + (2) + (3) + (4) + (5)] · 𝜙(𝑑𝑖𝑚𝑚)

𝑑𝑖𝑚𝑚

 

 

For example, when met with 1 unit of immediate 

demand for the selling period, if the system was in state 

{𝑖1=2, 𝑖2=1, 𝑏=0} and {𝑞, 𝑝, 𝑠, 𝑔, 𝑐, ℎ} were {1, $3, 0, 

$0, $2, $0.1}, then the expected reward would consist of 

making a sale of 1 unit ($3), ordering 1 unit (-$2), and 

holding 1 unit (-$0.1) for a resulting period net profit of 

$0.9. Similar to the probability matrix �̅�, we collectively 

call all combinations of the expected reward of being in 

state 𝑆 and taking action 𝑞, 𝑅𝑞(𝑆), as elements of the 

reward matrix �̅�. 

 

5. Method & parameters  

 
To solve the MDP, we use the open-source R-Studio 

programming environment (see, rstudio.com) and the R 

package MDPtoolbox developed by Chades et al. (2017) 

[45]. For each experiment, the appropriate transition 

probability matrix �̅� and reward matrix �̅� are calculated 

for all choices of 𝑞. A relative value iteration algorithm 

that seeks to maximize the long run expected profit is 

then applied to solve the following objective function: 

 

𝑓𝑛+1(𝑆) ∶= max
𝑞

{ ∑ �̅�𝑞(𝑆, 𝑆′)(�̅�𝑞(𝑆, 𝑆′) + 𝛾𝑓𝑛(𝑆′)) 

𝑆′

} 

 

where 𝑛 is the iteration number (max 𝑛 = 1000) and 𝛾 is 

the discount factor set at 0.9999. 

 

For demand input, we explore how growing portions 

of advance orders from online purchases may impact a 

grocery retailer. A total incoming demand with mean 5 

is split into independent proportions of advance and 

immediate demands, including 0%:100%, 20%:80%, 

and 40%:60%. For example, a 40% advance order case 

will take mean advance demand of 2 units, and mean 

immediate demand of 3 units as input parameters. 

To ensure that we perform a fair comparison of 

differing demand ratios and allow for tractable state 

space dimensions in the MDP formulation, we model 

demand as following a truncated Poisson distribution. 

The pmf 𝑣1(𝑥) with 𝑠𝑢𝑝𝑝(𝑣1(𝑥)) = {0, 1, 2, 3} is 

defined as a base demand distribution with mean 1 

(Table I), and is calculated according to the 

optimization: 

𝑚𝑖𝑛   
1

4
∑ |𝑃𝑜𝑖(𝑥) − 𝑣1(𝑥)|

3

𝑥=0
 

 

𝑠. 𝑡.   ∑ 𝑣1(𝑥)3
𝑥=0 = 1, 𝑎𝑛𝑑   ∑ 𝑥𝑣1(𝑥)3

𝑥=0 = 1  

 

Table I. Truncated Poisson distribution with mean 1 
 

 x = 0 x = 1 x = 2 x = 3 sum mean 

𝑃𝑜𝑖(𝑥) 0.368 0.368 0.184 0.061 0.981 0.919 

𝑣1(𝑥) 0.360 0.368 0.184 0.088 1.000 1.000 

 

From the base distribution 𝑣1(𝑥) we construct 

demand distributions for means {2, 3, 4, 5}, namely 

𝑣2(𝑥) through 𝑣5(𝑥), by applying the generic discrete 

convolution formula below: 

 

𝑃(𝑣𝑗+𝑘(𝑥) = 𝑧) = ∑ 𝑃(𝑣𝑗(𝑥) = 𝑦) · 𝑃(𝑣𝑘(𝑥) = 𝑧 − 𝑦)
𝑦

 

 

We now have comparable demand distributions as 

the first input parameter. Also, to better understand the 

relationship between ADI and supply lead time, online 

orders can be placed either 1 or 2 days in advance. For 

simplicity, only one pickup delay duration is offered per 

each experiment case. 

Specific to products with low shelf lives, a maximum 

age class of 𝑀 = 3 days is used for items received from 

replenishment. To provide a meaningful analysis across 

the many products in the perishables category, the unit 

cost of the product to the retailer covers $1, $5, and $10. 

These may represent organic soft-skinned fruits 

(berries, grapes, peaches) as well as ripened avocadoes 

and various vegetables. Many preservative-free, ready-

to-eat meals (cooked-meat dishes, sushi platter) that are 

delivered to the store and cannot be frozen, or specialty 

baked goods not made in the store’s pantry are also 

represented here. Other freshness-constrained products 

such as bouquet flowers or Cheesecake Factory-branded 

desserts fall closer to the higher end of this range. 

Since profit varies from product to product, we set 

the markup at 20%, 50%, or 80% of the cost to retailer 

[46]. When applicable, the discount to be offered in 

exchange for the customer’s future demand information 

is given at 5%, 10%, and 15% of the full retail price. For 

instance, if 𝑐 = 5 and markup = 20%, the customer 

would pay $5.7 after 5% discount. 
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Taking into account the unpleasant experience of a 

stock-out, which may leave the customer with a negative 

impression, we assign either $0 or $1 as the goodwill 

penalty. Note that this penalty is in addition to the loss 

of revenue from not making the sale. Finally, holding 

cost is kept constant at $0.05 per unit per period. This 

represents costs from potential mishandling of products; 

as well as storage and refrigeration requirements. 

We conducted 720 experiments based on a full 

factorial design, less any that are redundant, comprising 

the parameter choices outlined in Table II. They include 

a total of 20 cases; each containing experiments with the 

same portion of advance orders, pickup delay and 

discount given. Product-specific parameters include the 

age distribution of supply (at the time of arrival), unit 

purchase cost, retail markup, and goodwill penalty; for 

which there are a total of 36 distinctive sets to cover a 

wide range of perishable products. 

 

Table II. Test parameters for all experiments 
 

Parameters Values 

Advance orders 0%   /   20%   /   40% 

Pickup delay 1 day   /   2 days 

Age dist. of supply 𝜑(𝑎) (0.2, 0.6, 0.2)  /  (0.3, 0.4, 0.3) 

Unit cost (𝑐) $1   /   $5   /   $10 

Retail markup 20%   /   50%   /   80% 

Discount (𝑠) 0%   /   5%   /   10%   /   15% 

Goodwill penalty (𝑔) $0   /   $1 

 

The size of the problem is primarily determined by 

the amount of information each state needs to carry. In 

our case, this includes the quantity of inventory in each 

age class, and the number of received advance orders 

that need to be fulfilled in the subsequent period(s). The 

�̅� matrix of the largest experiment here contains 

51,042,215,532 unique elements. The average runtime 

for each experiment is approximately 10 minutes with a 

quad-core i7 processor and 16 gigabytes of memory. 

 

6. Results & discussion  

Results are presented in relation to the base case with 

no advance orders. In the figures, each horizontal 

category shows the mean, along with the 1st and 3rd 

quartiles, of the value of interest for all experiments 

having the same portion of advance orders and pickup 

delay. For example, a (20%, 1day) case indicates that 

20% of orders are placed in advance and will be picked 

up 1 day later. Two experiment sets (both with 

unfavorable 𝑝=1.2 and 𝑔=1) returned unprofitable 

results at the base case, and are excluded from further 

analyses. All dotted lines are displayed for ease of 

comparison and do not imply continuity. 

First, we review the changes to average long run 

expected profit between the study cases (Figure 1). Net 

profit (or loss) is produced through following the 

suggested optimal ordering policy; taking into account 

costs incurred from purchasing, holding inventory, 

goodwill penalty, and revenues gained from sales. For a 

meaningful comparison, the outcomes are shown in 

percentage changes over the base case. 

 

 
 

Figure 1. Changes to average long run expected profit 

 

From Figure 1, it is evident that receiving up to 40% 

of demand information 1 day in advance proves to offer 

little benefits to expected profit. Given a 1 day supply 

lead time, the retailer is only able to adequately 

accommodate demand that is known more than 1 day in 

advance. However, when such information is available 

2 days prior to fulfillment, profit improves considerably 

as the known demand portion increases. 

We observe a similar improvement trend over the 

base case in terms of the number of units expected to 

outdate per day (Figure 2). While receiving orders 1 day 

in advance produce limited benefits, on average a 26% 

reduction to outdating is achieved by knowing 40% of 

demand 2 days early. Conceptually, as the amount of 

orders that are placed in advance by longer than the 

replenishment lead time approaches 100%, outdating at 

retail level should reduce to minimal. This fundamental 

logic is well captured by the slim quartile-deviations 

from the mean reduction; as marked below in Figure 2. 

 

 
 

Figure 2. Reductions to average outdating per period 
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Considering the amount of perishable groceries sold 

daily nationwide, these differences could translate to 

substantial progress in combating the plaguing issue of 

food wastes within the distribution chain. To understand 

the underlying cause of why advance orders are able to 

reduce outdating occurrences, we proceed to examine 

various inventory metrics in a comprehensive manner. 

Recall that in all cases the total incoming demand has 

a mean of 5 units per period. Figure 3 shows the average 

stock level and order quantity on the same vertical axis. 

Each vertical bar signifies the average amount of 

inventory held across selling periods. Given sufficient 

time to react, the store is able to slightly increase order 

sizes as advance order percentage grows. 

 

 
 

Figure 3. Various inventory performance metrics 

 

At the base case, an average of 0.88 units of 

inventory are held as safety stocks at the start of every 

period. When 40% of the orders are known 2 days in 

advance, safety stock decreases to 0.71 units; a striking 

19.32% reduction. The difference between mean stock 

level and mean order quantity is, in fact, the mean daily 

unsold inventory; which must be held overnight and are 

potentially subjected to outdating. In effect, when the 

demand lead time is longer than the supply lead time, 

the presence of 40% ADI significantly reduces cross-

period holding from 1.16 to 0.94 units. This also implies 

that, on average, each unit of inventory spends less time 

in the grocer’s possession. The combined effects of 

holding less inventory for less amount of time directly 

impacts the likelihood of having products expire while 

on hand. And the resulting cost-savings, along with 

more selling opportunities from larger replenishment 

quantities, together help improve profit margins. This is 

another instance where a greener operation can occur 

alongside a leaner and more profitable operation. 

Next, we shift our attention to the implications on 

customers through a number of service performance 

metrics. Figure 4 reveals the store’s ability to fulfill 

demand, measured by fill rate, which is calculated from 

total sales over mean demand. As demand uncertainty 

decreases, more sales take place overall. Remarkably, 

not only do advance orders help lower inventory; they 

also increase the fill rate simultaneously. 

 

 
 

Figure 4. Fill rates and availability levels 

 

However, due to prioritizing the fulfillment of any 

backlogged demand first, the tradeoff consequently 

leads to a reduction in availability to immediate demand 

(Figure 4). We define availability as the probability that 

a given demand will be readily fulfilled, for each 

respective channel. With more advance demands, 

customers who need products immediately may face 

lower availability levels. Without a limit to how much 

advance orders should be accepted each day, a sudden 

demand hike today could result in high backlogs that 

draw on an already-depleted inventory tomorrow. 

On the other hand, customers who place advance 

orders enjoy near-perfect availabilities. As an example, 

moving from base case to the (40%, 2days) case reduces 

availability from 91.2% (all customers) to 88.9% (60% 

of customers); whereas customers who placed orders in 

advance (40%) will experience a 99.9998% service 

level. Note that the ‘overall’ availability level actually 

improves when viewing all channels as a whole. The 

higher availability levels could also be advertised to 

entice more shoppers to place orders in advance. 

Another very important metric for any perishable 

grocery product is freshness. We learn how the various 

cases can impact freshness by looking at the remaining 

lives of products at the time they are sold (Figure 5). 

 

 
 

Figure 5. Remaining freshness at the time of purchase 
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Replenishments are received with a mean remaining 

freshness life of 2 days, and continue to deteriorate from 

there. Figure 5 shows minor improvements in general 

toward ideal conditions. When 40% of the orders are 

placed 2 days in advance, the average deterioration that 

occurs while the product is at the retail location reduces 

by up to 15.79%. Essentially, more advance orders lead 

to holding less left-over inventory over selling periods; 

thus allowing more customers to purchase newly-

replenished products on the same day they arrive. 

Finally, we attempt to answer the question whether 

retailers could afford to offer any discount to orders 

placed in advance. We assign markdowns of 5%, 10%, 

and 15% on the retail price for all advance orders. While 

these discounts may appear small, they account for large 

portions of the retailer’s profit margin. For example, a 

particular item that costs $10 and retails for $15 would 

be sold at $14.25 after 5% discount; taking 15% away 

from the profit the store would have made otherwise. In 

contrast, to customers who do not mind planning ahead, 

the price cut could very well be a worthy bonus saving. 

 

 
 

Figure 6. Changes to expected profit with 5% discount 

 

Since the discount applies to all advance orders, we 

find that profits are negatively affected when such 

orders are placed only 1 day in prior to the fulfillment 

(Figure 6). This occurs even at a low, 5% discount rate, 

which aptly exemplifies the challenges faced by grocery 

retailers. At 15% discount, the grocer’s expected profit 

could reduce by 23% on average when 40% of the 

orders are placed 2 days in advance; and as much as one-

third if the offered pickup delay duration is only 1 day. 

Thus, care should be taken when deciding how much 

discount could be feasibly offered by the store in 

exchange for the customer’s demand information. 

Other metrics, such as average order quantity or 

outdating, remain unaffected when offering discount to 

advance orders. This is because the advance order 

portions are fixed inputs to the model, and are not 

dependent on the amount of discount given; as the 

relationship between the two is not yet clear at this time. 

Nevertheless, our results indicate that it is possible to 

‘profitably’ offer up to a 5% discount when the demand 

lead time is longer than the supply lead time.  In such a 

scenario, both the retailer and the customer fare better 

economically in the long run.  

 

7. Conclusion 

 
We set out to explore how the presence of advance 

online orders can affect the bottom line of an omni-

channel grocery retailer. The goals include finding out 

if ADI can improve the inventory performance for 

perishables, and if so, what are the implications on food 

waste? Given insights into future shelf lives of 

inventory, how do differing levels of advance orders 

relate to expected profit, outdating, freshness, and 

service performance metrics? Could the store afford to 

offer any discount in exchange for the customer’s 

willingness to place orders 1 or 2 days in advance? 

In addition to the previously stated benefits of 

integrating TTH information in order placing decisions 

from earlier works, such as Gaukler et al. 2017, we 

report that more value could be extracted by having 

better access to ADI and deciding the optimal amount of 

products to stock [33]. While accepting orders 1 day in 

advance proves to offer little value, we find that 

expected profits increase by 12.7% on average when 

40% of the orders are placed 2 days in advance. 

The profit improvement continues to be positive 

even after giving 5% discounts to customers, as long as 

the time window for fulfilment is longer than the 

replenishment lead time. More importantly, these extra 

profits do not come at the expense of more wastes; as 

evidenced by a 26% reduction in outdating occurrences 

for the (40%, 2days) case when 5% discounts are given 

to advance orders (last column of Table III). Table III 

presents feasible discount percentages that can be 

offered to customers who place orders in advance; 

without negatively impacting the grocer’s profits. By 

simply sharing information, customers and retailers can 

join hands to enhance both their standpoints, while 

helping the environment at the same time. 

 

Table III. Feasible discounts for various scenarios 
 

Advance orders 20% 

 

40% 

Pickup delay 1 day 2 days 1 day 2 days 

Discount given 0% 5% 0% 5% 

Outdate reduces 1.5% 12% 2.1% 26% 

Profit improves 0.8% 0.1% 1.7% 0.8% 

 

Though it has been well-documented that ADI can 

help improve profit or reduce waste, our study appears 

to be the first to quantify the values of such information 

in a multi-channel grocery retail setting. Moreover, this 
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work reveals the potential impacts of ADI on key 

contextual metrics, including product freshness and 

omni-channel service performance. When the demand 

lead time exceeds the supply lead time, the grocer can 

expect the amount of cross-period inventory holding to 

decrease and the overall fill rate to increase in tandem. 

To a lesser extent, product freshness also improves as 

more customers place their orders in advance. Thus, 

Figure 7 summarizes the benefits to each of the three 

stakeholders, including People, Planet, and Profit: 

 

 
 

Figure 7. Potential benefits to the triple bottom line 

 

To conclude, our results suggest that physical 

grocery retailers should embrace the multi-channel 

trend and consider taking advantage of ADI. We 

encourage a careful selection of the fulfillment options 

to manage demand when discounts are involved, as in 

some cases the price cuts outweigh potential benefits to 

be gained. When appropriately applied, the additional 

profits may help expand the breathing room for an 

industry running mostly on slim margins. Concurrently, 

retailers can also become more environmentally-

conscious by directly contributing to reduce food waste. 

Future research could be done, for instance, to optimize 

for parameters other than profit such as freshness, 

identify incentives that can effectively increase the 

customer’s willingness to order in advance, or explore 

new ways to manage costs associated with preparing 

orders for in-store pick up and last-mile delivery. 

 

8. Acknowledgements 

 
The authors greatly appreciate the reviewers’ time 

and insightful suggestions to improve this paper. This 

study was funded by the Center for Supply Chain & 

Logistics, Claremont Graduate University. 

 

9. References 

 
[1] Goodman, J. (2016). Who does the grocery shopping, and 

when do they do it? The Time Use Institute. Retrieved from 

timeuseinstitute.org/Grocery16paper.pdf 

 

[2] Anonymous (2018). 85th Annual report of the grocery 

industry. Progressive Grocer. April, 2018. p. 30. 

[3] Anonymous (2016). Supermarket Facts. Food Marketing 

Inst. Retrieved from fmi.org/our-research/supermarket-facts 

 

[4] Bloom, J. (2010). American Wasteland. Da Capo Books. 

ISBN 978-0738215280. p. 166. 

 

[5] Hartman, L. (2016). Manufacturers seeking natural ways 

to extend foods shelf life. Putman Media. Retrieved from 

foodprocessing.com/natural-ways-to-extend-shelf-life 

 

[6] Anonymous (2017). RFID is ready to revolutionize the 

retail industry. National Retail Federation. Retrieved from 

stores.org/rfid-ready-revolutionize-retail-industry 

 

[7] Myler, L. (2018). Farm-to-table: how blockchain tech will 

change the way you eat. Forbes Magazine. Retrieved from 

www.forbes.com/sites/larrymyler/2018/02/16/ 

 

[8] Anonymous (2017). The digitally-engaged food shopper.  

Food Marketing Inst. Product ID 3184. January 2017. p. 12.  

 

[9] Dudlicek, J. (2017). Online grocery growth accelerating. 

Progressive Grocer. Retrieved from progressivegrocer.com/ 

online-grocery-growth-accelerating 

 

[10] Anonymous (2017). Connected commerce report. The 

Nielsen Company. January, 2017. p. 9. 

 

[11] Karaesmen, I. Z., Scheller–Wolf, A., & Deniz, B. (2011). 

Managing perishable and aging inventories: Review and 

future research directions. Planning production and 

inventories in the extended enterprise, 393-436, Springer. 

 

[12] Nahmias, S. (1977). On ordering perishable inventory 

when both demand and lifetime are random. Management 

Science, 24(1), 82-90. 

 

[13] Nahmias, S. (1982). Perishable inventory theory: A 

review. Operations Research, 30(4), 680-708. 

 

[14] Williams, C. L., & Patuwo, B. E. (1999). A perishable 

inventory model with positive order lead times. European 

Journal of Operational Research, 116(2), 352-373. 

 

[15] Minner, S., & Transchel, S. (2010). Periodic review 

inventory-control for perishable products under service-level 

constraints. OR Spectrum, 32(4), 979-996. 

 

[16] Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review 

of inventory systems with deterioration since 2001. European 

Journal of Operational Research, 221(2), 275-284. 

 

[17] Amorim, P., Günther, H., & Almada-Lobo, B. (2012). 

Multi-objective integrated production and distribution 

planning of perishable products. International Journal of 

Production Economics, 138(1), 89-101. 

 

[18] Pahl, J., & Voß, S. (2014). Integrating deterioration and 

lifetime constraints in production and supply chain planning: 

A survey. European Journal of Operational Research, 238(3), 

654-674. 

Page 1526



 

 

[19] Taoukis, P., Koutsoumanis, K., & Nychas, G. (1999). Use 

of time–temperature integrators and predictive modelling for 

shelf life control of chilled fish under dynamic storage 

conditions. Intl. Journal of Food Microbiology. 53(1), 21-31. 

 

[20] Nunes, M., Emond, J., Chau K., Rauth, M., Dea, S. & 

Pelletier, W. (2005). Effects of in-store conditions on the 

quality of fresh fruits and vegetables. Research Report for 

Publix Super Markets. University of Florida. 

 

[21] Chande, A., Dhekane, S., Hemachandra, N., & Rangaraj, 

N. (2005). Perishable inventory management and dynamic 

pricing using RFID technology. Sadhana, 30(2-3), 445-462. 

 

[22] Sahin, E., Zied Babaï, M., Dallery, Y., & Vaillant, R. 

(2007). Ensuring supply chain safety through time 

temperature integrators. The International Journal of 

Logistics Management, 18(1), 102-124. 

 

[23] Grunow, M., & Piramuthu, S. (2013). RFID in highly 

perishable food supply chains–Remaining shelf life to 

supplant expiry date? International Journal of Production 

Economics, 146(2), 717-727. 

 

[24] Herbon, A., Levner, E., & Cheng, T. (2014). Perishable 

inventory management with dynamic pricing using time–

temperature indicators linked to automatic detecting devices. 

International Journal of Production Economics, 147, 605-613. 

 

[25] Sahin, F., Robinson, P. (2002). Flow coordination and 

information sharing in supply chains: review, implications, 

and directions for future research. Decision Sciences, 33(4). 

 

[26] Huang, G., Lau, J., & Mak, K. (2003). The impacts of 

sharing production information on supply chain dynamics: A 

review of the literature. Intl. J. of Production Research, 41(7). 

 

[27] Pierskalla, W. P., & Roach, C. D. (1972). Optimal issuing 

policies for perishable inventory. Management Science, 

18(11), 603-614. 

 

[28] Puterman, M. (1994). Markov decision processes: 

Discrete stochastic dynamic programming. John Wiley & 

Sons. ISBN 978-0471619772. 

 

[29] Aggoun, L., Benkherouf, L., & Tadj, L. (1999). A 

stochastic inventory model with perishable and aging items. 

International Journal of Stochastic Analysis, 12(1), 23-29. 

 

[30] Kouki, C., Sahin, E., Jemai, Z., & Dallery, Y. (2010). 

Periodic review inventory policy for perishables with random 

lifetime. Proceedings of the 8th Intl. Conference of Modeling 

and Simulation (MOSIM). 

 

[31] Kouki, C., & Jouini, O. (2015). On the effect of lifetime 

variability on the performance of inventory systems. 

International Journal of Production Economics, 167, 23-34. 

  

[32] Ketzenberg, M., Bloemhof, J., & Gaukler, G. (2015). 

Managing perishables with time and temperature history. 

Production and Operations Management, 24(1), 54-70. 

[33] Gaukler, G., Ketzenberg, M., & Salin, V. (2017). 

Establishing dynamic expiration dates for perishables: An 

application of RFID and sensor technology. International 

Journal of Production Economics, 193, 617-632. 

 

[34] Chua, G., Mokhlesi, R., & Sainathan, A. (2017). Optimal 

discounting and replenishment policies for perishable 

products. Intl. Journal of Production Economics, 186, 8-20. 

 

[35] Adenso-Díaz, B., Lozano, S., & Palacio, A. (2017). 

Effects of dynamic pricing of perishable products on revenue 

and waste. Applied Mathematical Modelling, 45, 148-164. 

 

[36] Buisman, M., Haijema, R., & Bloemhof-Ruwaard, J. 

(2017). Discounting and dynamic shelf life to reduce fresh 

food waste at retailers. Intl. Journal of Production Economics, 

In press. DOI: https://doi.org/10.1016/j.ijpe.2017.07.016. 

 

[37] Ketzenberg, M., Gaukler, G., & Salin, V. (2018). 

Expiration dates and order quantities for perishables. 

European Journal of Operational Research, 266(2), 569-584. 

 

[38] Hariharan, R., & Zipkin, P. (1995). Customer-order 

information, leadtimes, and inventories. Management 

Science, 41(10), 1599-1607. 

 

[39] Gallego, G., & Özer, Ö. (2001). Integrating 

replenishment decisions with advance demand information. 

Management Science, 47(10), 1344-1360. 

 

[40] Karaesmen, F., Liberopoulos, G., & Dallery, Y. (2004). 

The value of advance demand information in 

production/inventory systems. Annals of Operations Research, 

126(1-4), 135-157. 

 

[41] Wang, T., & Toktay, B. (2008). Inventory management 

with advance demand information and flexible delivery. 

Management Science, 54(4), 716-732. 

 

[42] Siawsolit, C., Gaukler, G., & Seepun, S. (2018). RFID-

enabled Management of Highly Perishable Inventory: A 

Markov Decision Process Approach. Proceedings of the 

Hawaiian Intl. Conference on System Sciences (HICSS-51). 

 

[43] Anonymous (2018). Food & beverage consumer trends. 

Information Resources, Inc.  p. 40. Retrieved from 

iriworldwide.com/en-us/IRI/media/Library/Q1-FB-Trends-

2018.pdf 

 

[44] Clarke, P. (2017). How an online grocery platform could 

reshape retail as we know it. Harvard Business Review. 

Retrieved from hbr.org/sponsored/2017/05/how-an-online-

grocery-platform-could-reshape-retail-as-we-know-it 

 

[45] Chades, I., Chapron, G., Cros, M., Garcia, F., & 

Sabbadin, R. (2017). R Package ‘MDPtoolbox’. 

 

[46] Crowe, A. (2011). Biggest grocery store markups: The 

worst deals in the aisles. Retrieved from 

aol.com/2011/02/18/biggest-grocery-store-markups

Page 1527


