

Machine Learning of Semi-Autonomous Intelligent Mesh Networks Operation

Expertise

Alex Bordetsky

Naval Postgraduate School

 abordets@nps.edu

Carsten Glose

German Armed Forces (Bundeswehr) /

Exchange Scientist

carstenglose@bundeswehr.org

Steven Mullins

Naval Postgraduate School

 sjmullin@nps.edu

Eugene Bourakov

Naval Postgraduate School

 ebourako@nps.edu

Abstract

Operating networks in very dynamic environments

makes network management both complex and

difficult. It remains an open question how mesh or

hastily formed networks with many nodes could be

managed efficiently. Considering the various

constraints such as limited communication channels on

network management in dynamic environments, the

need for semi-autonomous or autonomous networks is

evident. Exploitation of machine learning techniques

could be a way to solve this network management

challenge. However, the need for large training

datasets and the infrequency of network management

events make it uncertain whether this approach is

effective for highly dynamic networks and networks

operating in unfriendly conditions, such as tactical

military networks. This paper examines the feasibility

of this approach by analyzing a recorded dataset of a

mesh network experiment in a highly dynamic, austere

military environment and derives conclusions for the

design of future mesh networks and their network

management systems.

1. Introduction

The management of tactical military networks is a

much harder challenge than conventional network

management, but the potential benefits to network

centric warfare are enormous [3]. In addition to

classical network management, it is important to

consider difficulties associated with tactical network

operations, such as adversaries trying to disturb or shut

down the network, and various other constraints.

Network management is especially difficult in dynamic

environments and/or complex situations.

For tactical networks with a small number of

entities, the management can be done manually by a

Network Operations Center (NOC). However, it

remains an open question how to manage a large-scale

network. Classical network management decision

support techniques like rule-based algorithms have not

always succeeded in highly dynamic environments.

Even some data center professionals who manage large

companies or university networks, sometimes do not

make use of decision-support components, as they are

considered to be impractical and laborious to set up

and maintain.

Although some progress has been made [5], further

automation of network management is vital even in

standard and non-military networks, as various efforts

show [9].

Greater automation has been shown to be feasible

in managing a decentralized network by using a

distributed artificial intelligence [7]. In the field of

tactical networks, the idea of distributed network

management was adopted by Bordetsky and Hayes-

Roth [2]. They propose the concept of hyper-nodes for

command and control networks because the

fundamental advantages could be demonstrated [1].

However, the details of network management and

control systems of the hyper-nodes were not explained

at that time.

Recently, Chen et al [4] developed an algorithm for

cloud radio access networks based on echo state

networks (ESN) that could predict several relevant

parameters in a simulated environment, such as users’

positions and content request distribution of users.

Although this result could lead to more automated

network management, research regarding the

automation of network management has tended to

focus on standard or mobile networks and ignored

networks in contested or austere conditions such as

tactical military networks. For these networks, large

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59562
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 1221

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:abordets@nps.edu
mailto:carstenglose@bundeswehr.org
mailto:sjmullin@nps.edu
mailto:ebourako@nps.edu

training datasets do not exist. Additionally, infrequent

network management events are a special feature of

these networks. Machine learning algorithms like

artificial neuronal networks (see e.g. [8]) require large

training datasets and sometimes have difficulties to

learn infrequently occurring data points. Therefore, it is

doubtful that the different approaches seen in

commercial networks can be transferred and applied to

the environment of tactical military networks. We

assume that machine learning techniques cannot fully

solve the problem of tactical network management

because the limitations of machine learning techniques

have a much higher impact in such environments.

We investigate whether and to which degree

machine learning techniques could lead to a more

automated network management in the field of tactical

military networks. We do this by analyzing and

applying machine learning algorithms to some real-

world data.

2. Experiment Setup and Description

We analyzed the recorded network data of an

experiment that employs a Network Control System of

unmanned and manned nodes in support of a notional

military mission. In different operational areas

(offensive and defensive) the experiment examined

technical solutions to autonomous vehicle support of

tactical military tasks. The goal was to bring together

unmanned aerial, surface and underwater vehicles as a

collaborative networked system to support a difficult

military objective.

The experiment focused on the littoral maritime

domain. By using a range of different unmanned

systems, it was proposed that military operations could

be accomplished more rapidly, effectively, and with a

reduced requirement for military personnel to be

exposed to risk. One rationale for this was that more

robustness through a higher diversity of sensors could

be achieved. Another is that with this approach the

ability to operate in all domains in and around the

littorals could be enhanced.

The experiment was conducted from November 4-

13, 2017 on an island off southern California, and

consisted of:

• Two Scan Eagle Unmanned Aerial Vehicles

• Two SeaFox Unmanned Surface Vehicles

• Two Remus Autonomous Underwater Vehicles

• One Shield AI Quadrotor UAV

Persistent Systems Mesh radios comprised both the

primary and the backup mesh ground networks.

3. Methodology

Mesh network performance data, including the

Figure 1. Overview of the experiment

Page 1222

behavior of unmanned nodes was captured and

collected based on the Simple Network Management

Protocol (SNMP) technique (see e.g. [10]).

 To ensure a high-quality dataset, we post-

processed the recorded data and filtered out invalid or

faulty data items. After this, we performed some basic

statistical analysis to learn more about the nature of the

data, find interesting properties or even identify

features and/or a feature set for the machine learning

step. Then we applied several machine learning

algorithms like rule-based, lazy learning, tree-based

and support vector machines with this dataset to

investigate whether machine learning can be used in

such an environment.

3.1. Data Collection

Data was collected by an SNMP Agent specifically

created for this project utilizing a Node.js framework.

Since Node.js is a platform independent environment,

the SNMP Agent was able to run on Windows and

Linux OS. For this particular experiment, the SNMP

Agent was running on Raspberry PI 3 and Odroid

microcomputers (Linux OS) added to the unmanned

aerial vehicle (UAV) and unmanned surface vehicle

(USV) payloads. These agents recorded performance

data and also device-specific non-SNMP data such as

the GPS position. The data was uploaded to a central

database after the experiment. This database consists of

online and offline network performance data. In

addition to the automated recorded data, significant

events, interesting discoveries and relevant information

that could not be collected automatically were recorded

in textual form, manually entered into the central

database. For our analysis, we used the automatically

recorded data. The manually recorded data had no

standard structure, and it would have been prohibitive

to incorporate this into our machine learning analysis.

Nevertheless, the manually recorded data was helpful

meta-data for cleansing the dataset and to identify and

filter out invalid values.

3.2. Dataset Description

In total 135,546 items were recorded. Data items

consist of the following attributes in Table 1. A

database entry contains more attributes than are listed

in Table 1; the additional attributes were not measured

in this experiment and contain unknown or invalid

values. Therefore, the following attributes were not

used in our analysis: OriginType, DestID, Altitude,

Speed, Course, EventType, EventDescription,

EventStatus, fromGCU, coord_system, heave_vel, roll,

Table 1. Name and description of attributes in
each data item

Attribute name Description Type

Log

Index of items. Not used by

machine learning

algorithms.

Numeric

(Long)

WhenOccured

Time of event (timestamp),

accurate to one second. Not

used by ML algorithms.

Numeric,

Format:

YYYY-

MM-DD

HH:MM:SS

OriginID
Unique identifier of the

sending entity

Numeric

(Integer)

Lat Latitude: decimal degrees.
Numeric

(Float)

Longi Longitude: decimal degrees. “

platform

Describes if entity is an

AUV, UAV, USV) or null

(unknown)

Nominal,

Values:

{AUV,

UAV, USV,

None}

utm-zone, utm-

northin, utm-

easting

Position in UTM

coordinates. Not used.

depth

Altitude (meters above sea-

level) (negative if under

water). Not available for all

entities.

Numeric

(Float)

forward_vel
Velocity in forward

direction in m/sec
“

sideslip_vel Velocity in m/sec “

yaw_rate Rate of yaw in degrees “

throughputin

source: SNMP

Number of incoming

packets (size = pktsize)

Numeric

(Long)

throughputout

source: SNMP

Number of outgoing packets

(packets have size pktsize)

Numeric

(Long)

rtt

source: SNMP

Round-trip time in

milliseconds.

Numeric

(Float)

pktloss

source: SNMP

Number of lost packets in

last period

Numeric

(Integer)

pktsize

source: SNMP

Size of network packet in

octets

Numeric

(Integer)

Reachable

1, if the SNMP-poller could

reach the entity within 30

seconds through the mesh

network.0, otherwise.

Null, if unknown/not

measured.

Nominal

Values:

{1, 0, Null}

hasSnmpPoller

Flag, if an entity has an

SNMP poller. Not used by

ML algorithms.

Nominal

Values:

{1, 0, Null}

timestamp

timestamp in unix epoch

(accurate to 1 minute). Not

used.

Numeric

snrList

String containing observed

SNR in dB to its neighbors.

String format is: IP-Address

SNR-value, IP-Address

SNR-value

Nominal

(String)

Page 1223

roll_rate, pitch_rate, IconColor.

Additionally, the attributes Universal Transverse

Mercator (UTM) “utm-zone”, utm-northing,” “utm-

easting” and “timestamp” were not used in the

analysis, because they are redundant with the attributes

“Lat,” “Longi” and “WhenOccured” and were

measured with similar or lower accuracy.

Values that were not measured were given a null

value in the dataset. Some entities’ radios contained

more than one antenna. In these cases, an IP address

can occur more than once (for every antenna) in the list

of IP addresses in the attribute snrList.

In addition, a dataset with a map of an IP address to

its object name is available (database name

“mapObject”). The information in the mapObject

database is irrelevant for machine learning purposes

and therefore was not used.

3.3. Post-Processing

We cleansed the dataset of invalid or faulty items

and removed unused or duplicate attributes that carry

the same information, such as a position both in

decimal degrees and in UTM format.

Even without the “Lat”/”Lon” attributes, the

resulting dataset consisted of a total of 14 attributes (13

attributes and the target attribute “reachable”). To

further minimize the dimensionality, we omitted the

“snrList” attribute for the moment. Then, every

numeric attribute from the resulting set was normalized

(range [0-1]) and a principal component analysis was

performed.

4. Analysis

In the first step of our analysis, we conducted a data

exploration using a simple statistical analysis. This was

done to learn more about the nature of the data and to

find interesting properties of the underlying dataset. To

apply machine learning techniques to the dataset, we

sought to reduce its dimensionality.

After preprocessing, the size of the cleansed dataset

was quite small for the use of machine learning

algorithms. To avoid an overfit of the learned models

we did not use some attributes that could give away too

much information to the learning algorithm or would

reduce possible generalizability. These attributes were

“Log,” “WhenOccured,” “hasSnmpPoller,” and in

some cases “Lat”/”Lon.” In addition to removing

attributes to avoid overfitting, we tried to design a

system where all decision-relevant attributes could be

directly measured by the unmanned device. This is the

case for the remaining attributes.

4.1. Principal Component Analysis

The Principal Component Analysis (PCA) for the

attribute “reachable” and a variance of 95% covered,

resulted in 12 remaining attributes. Although this result

fell short of our expectations regarding the reduction of

attributes, we found ourselves in the unusual situation

where we were able to identify key factors and derive

conclusions just by closely looking at the components.

Table 2. Excerpt of PCA result

Prop. Component

1 0.217 0.56 platform=AUV-
0.56platform=USV+0.506depth...

2 0.157 -0.541throughputout-0.536pktloss-
0.47throughputin-

0.313pktsize+0.199OriginID...

3 0.138 -0.664sideslip_vel-0.638forward_vel-
0.366yaw-

0.057platform=AUV+0.057pla...

4 0.118 -0.663OriginID+0.606pktsize-
0.264throughputin-0.23pktloss-...

5 0.077 -0.983yaw_rate-
0.098rtt+0.097throughputin-...

6 0.075 0.979rtt-0.119pktsize-0.091yaw_rate-
0.063throughputout+0.06 depth...

7 0.056 0.868yaw-0.383forward_vel+0.16
platform+...

8 0.047 0.791throughputin-0.359throughputout-
0.328pktloss-0.288OriginID-

0.203pktsize...

9 0.034 0.709pktloss-0.514throughputout-
0.303OriginID-0.3pktsize-0.146depth...

10 0.029 0.609pktsize+0.557OriginID-
0.482throughputout+0.205thr...

4.2. PCA Findings

Platform-specific attributes (platform type) have

the most influence (component 1 and 3). This is not

surprising as the platforms possessed different

capabilities and fulfilled different functions.

A bigger packet size and a larger throughput make

reachability harder (component 2). We presume that

this is caused by the priority algorithms in the device’s

network stack. With a higher workload, packets as the

SNMP poll request could be dismissed. This part of the

system could offer room for improvement.

We found that it matters which entities

communicate (components 2, 4). This result is

expected because it directly correlates to the

“platform” attribute.

Page 1224

Velocity and yaw can have a positive or a negative

impact on reachability (components 3, 5, 6, 7). This is

an inconclusive result and requires further

investigation.

The first four components account for

approximately 60% of variance. The rest seems to be

quite random and noisy, and without a direct

interpretation. Figure 2 depicts this.

Figure 2. Number of PCA components vs.
variance covered

4.3. Statistical Properties of some Informative

Attributes

A closer examination of the statistical properties of

the original attributes revealed some interesting

insights. We found that the attribute “throughputin”

seems to have an underlying Gaussian distribution.

Figure 3. Histogram of “throughputin”

Having said that, it is notable that we found several

outliers for certain frequencies (see Figure 3). Several

protocols use fixed-size messages. It seems plausible

that these outliers are a direct result of this. A similar

situation exists for attribute “throughputout” where an

underlying superimposition of two Gaussian

distributions seems to take place.

We opine that this kind of outlier and the huge

variance that we have discovered are a special feature

of a tactical mesh networks.

Figure 4. Distribution of “throughputout”

Figure 4 shows the frequency of the values of the

attribute “throughputout.” The figure was restricted to

values under 60,000, and the five most frequent values

were removed. Values over 60,000 occurred relatively

rarely in the dataset and the Gaussian distribution of

the data is hard to see in the full picture (compare e.g.

to Figure 3).

We did find a linear correlation between the

attributes “throughputin” and “throughputout.”

Figure 5 shows the identified linear model for the

attributes “throughputin” related to “throughputout”.

The plot was restricted to values under 30,000 for

“throughputout” and values under 60,000 for

“throughputin” to clear the clutter of a lot of outliers.

We think that this finding can be explained as a

feature of the mesh network. Many incoming messages

are forwarded to neighbor nodes and as such, output

traffic correlates to input traffic. This indicates that our
network design and setup for a mesh network is sound,

as there are no “supernodes” which receive and put all

the data to the network. In addition, this also means

that communication devices used in mesh networks

could be designed with symmetrical up- and downlink

channels.

Page 1225

Figure 5. Linear fit for throughputin vs.

throughputout

Additionally, we found that a positive value of

“yaw” leads to unreachability in higher altitudes

(Figure 6).

Figure 6. Yaw vs depth (altitude)

Our assumption is that features of the antenna

characteristics and subsequently characteristics in the

beam pattern lead to a link loss if the device moves or

rotates.

In conclusion, our analysis found that there are

strong statistical regularities and that all attributes seem

to be important. Based on this assessment, we decided

to use all remaining 12 PCA attributes for the machine

learning step.

4.3. Application of Machine Learning

Techniques to the Recorded Dataset

We used several supervised learning methods with

the target attribute “reachable” to examine whether

learning could be done in this environment. The prior

probability of the target attribute is 71.2%. The

analysis was conducted with Weka [11] and Orange

[6]. We used cross-validation with a 10-fold for each

run.

Many classic machine learning algorithms master

this particular learning problem (Table 3). Except for

Naïve Bayes, Logistic Regression, SVM and Ripper,

performance does not differ significantly between the

learning algorithms. As 5% of the variance is lost via

the PCA transformation, we were surprised that the

best learning algorithms have a higher classification

rate and were curious whether we could obtain better

results by using the original dataset. As it turns out, a

very similar performance result is achieved with the

original dataset. Interestingly, the kNN and Naïve

Table 3. Result for different machine learning
algorithms regarding target attribute

“reachable”

Algorithm Impl. Correctly
Classifica.

F-
Score

Remarks

Random

Forest

Weka 97.09 % 0.97 Number of

trees: 10, No

split subsets

smaller than

5

kNN Weka

iBK

96.59 % 0.96 5-NN

C 4.5 Weka

J48

(prune)

96.45 % 0.96 Size: 3175

Number of

Leaves:

1588

Neuronal

Network

Orange 95 % 0.95 Hidden

Layers:

50,150

Activation:

ReLu,

Solver:Adam

RIPPER Weka

JRIP

94.86 % 0.94 17 Rules

SVM Weka

(SMO)

92.52 % 0.91 Poly-kernel

Log.Reg. Weka 91.56 % 0.90 Regularizatio

n Ridge (L2),

C=1

Naïve

Bayes

Weka 56.39 % 0.62

Bayes algorithms perform very differently between the

transformed and untransformed datasets. Whereas kNN

benefited enormously (performance of 57.28% correct

classification on the untransformed dataset compared

to 96.59% on the transformed dataset) from the

Page 1226

transformation, Naïve Bayes suffered (from 84.76%

correct classification to 56.39% on the transformed

dataset) from the transformation. Closer examination

of the learned models (original and transformed

datasets) indicates that the models seem to be

overfitted. One example of this overfitting is the tree

built by the J48 algorithm with a size of 3175 and 1588

leaves. As we do not have a dataset of a different

operation available, we have not yet been able to

investigate whether and to what extent the models

generalize to different scenarios.

5. Conclusions

Our research as it is presented in this paper

indicates that the initial assumption (automation of

network management in tactical networks is much

harder than automation of classical networks and

therefore machine learning techniques may be not

applicable) was overstated.

We found strong statistical regularities in the

recorded network data of the observed mesh network

designed to support a tactical military mission. These

regular patterns are sufficient to predict relevant

network management decision features related to

unmanned system operation, subject to changing

network performance and configuration conditions.

Our analysis is based on one recorded dataset of the

performance data of one tactical network and therefore,

the results are limited.

Nevertheless, we believe that our findings give

some cause to expect that distributed autonomous

network management systems for unmanned systems

in tactical networks are in the realm of feasibility. On

the contrary, the data also shows clearly a much higher

degree of variance than is seen in other network data.

We assume that these irregularities are the special

feature of tactical networks.

Nevertheless, it seems that in the big picture,

tactical mesh networks are not so different from

classical networks with regard to the question of

network management automation. However, it is

different when the details of tactical networks are taken

into account.

In conclusion, it still seems plausible to us that it is

infeasible to fully automate management of tactical

military networks. It is unclear how machine learning

algorithms could meet the challenge of unprecedented

forms of attacks to a tactical network. Having said that,

we propose the concept of semi-automation of network

management for tactical military networks. This means

that autonomous nodes perform the easy and regular

parts of network management (hyper-node concept). In

this refined concept, machine learning techniques are

used to enrich the decision support systems of the

hyper-nodes. A network operations center remains in

charge of the main network operation but the task

shifts from monitoring and controlling the network to

dealing with unprecedented or very exceptional

situations. The hyper-nodes help to quickly identify

irregularities in network behavior using their

autonomous intelligence and report this to the NOC

decision makers. The NOC crew analyzes the situation

and takes appropriate action.

Due to the fact that few datasets of tactical mesh

networks are available, we call upon others to conduct

similar experiments and collect more data in this area

of research. It is our understanding that the continuing

process of experimentation and data collection

generates a much-needed and valuable network

knowledge base. This helps to develop machine

learning systems in operating semi-autonomous tactical

networks. Experimentation and data collection is one

of the major tasks on which our team is planning to

concentrate our future efforts.

i- In particular we would like to conduct a series of

experiments that is similar to the one described above

in terms of scale, type of manned-unmanned nodes,

and their mobility. We would want to see whether the

ML algorithm would be able to generalize the rules of

network performance management and nodes’ mutual

adaptation. Based on a series of experiments with a

similar tactical scale, node types and tactical scenarios,

we would explore whether other, different patterns of

node performance adaptation emerge, which we could

capture in an ML algorithm.

 Based on more data captured during similar tactical

scenarios, we would develop an adaptive network

management simulator to be integrated in the hyper-

nodes’ mutual adaptation in real-time. This would

create an element of data analytics for use by human

operators in conjunction with the ML actions executed

by mutually adapting machines.

 Note: A Machine Learning algorithm might

accidentally learn the features of the simulator.

Everything must be validated by real data. For

example, our criticism to Chen et al [4] is that they

have used their simulator most of the time to create the

algorithm. The simulator would be fed real-data;

however it might be the case that their algorithm learns

the features of the simulator and didn’t generalize.

 Our data can be found at the following website:

https://nps.box.com/s/hx3djmibiz8mot48y37aelncqwfi

5lbm

6. Acknowledgements

The authors would like to thank Dr. Ray Buettner

for the opportunity to conduct this study and Dr. Doug

Page 1227

https://nps.box.com/s/hx3djmibiz8mot48y37aelncqwfi5lbm
https://nps.box.com/s/hx3djmibiz8mot48y37aelncqwfi5lbm

Horner for his invaluable contributions in putting

together and conducting the experiment.

7. References

[1] Bordetsky, A. and Hayes-Roth, R., 2007. Extending the

OSI model for wireless battlefield networks: a design

approach to the 8th Layer for tactical hyper-nodes, In

International Journal of Mobile Network Design and

Innovation. Inderscience Publishers

[2] Bordetsky, A. and Hayes-Roth, R., 2006. Hyper-Nodes

for Emerging Command and Control Networks: The 8th

Layer, In 11th International Command and Control

Research and Technology Symposium (ICCRTS)

[3] Burbank, J. L. et al., 2006. Key Challenges of Military

Tactical Networking and the Elusive Promise of

MANET Technology, In IEEE Communications

Magazine, vol. 44, no. 11, pp. 39-45, November 2006.

[4] Chen, Mingzhe, et al., 2016. Caching in the Sky:

Proactive Deployment of Cache-Enabled Unmanned

Aerial Vehicles for Optimized Quality-of-Experience. In

IEEE Journal on Selected Areas in Communications

2016, 10.

[5] Chiang, C. y. J., et al., 2006. Towards Automation of

Management and Planning for Future Military Tactical

Networks. In MILCOM 2006 - 2006 IEEE Military

Communications conference, Washington, DC, 2006, pp.

1-7.

[6] Demsar J., et al., 2013. Orange: Data Mining Toolbox in

Python. In Journal of Machine Learning Research 14,

pp. 2349-2353.

[7] Koch, F., et al., 2004, Distributed Artificial Intelligence

for Network Management Systems --- New Approaches.

In Service Assurance with Partial and Intermittent

Resources. Springer Berlin Heidelberg.

[8] Kotsiantis, S. B., 2007. Supervised Machine Learning: A

Review of Classification Techniques. In Proceedings of

the 2007 Conference on Emerging Artificial Intelligence

Applications in Computer Engineering: Real Word AI

Systems with Applications in eHealth, HCI, Information

Retrieval and Pervasive Technologies. IOS Press.

[9] Sohail, S., 2010. Automation of Network Management

with Multidisciplinary Concepts. In International

Journal of Computer Technology and Applications, 2010,

11.

[10] Subramanian, M., 2010. Network Management:

Principles and Practice. Prentice Hall; 2nd edition.

[11] Witten, Ian H., et al, 2016. The WEKA Workbench.

Online Appendix for "Data Mining: Practical Machine

Learning Tools and Techniques". Morgan Kaufmann, 4th

edition, 2016.

Page 1228

