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Abstract 

 

Operating networks in very dynamic environments 

makes network management both complex and 

difficult. It remains an open question how mesh or 

hastily formed networks with many nodes could be 

managed efficiently. Considering the various 

constraints such as limited communication channels on 

network management in dynamic environments, the 

need for semi-autonomous or autonomous networks is 

evident. Exploitation of machine learning techniques 

could be a way to solve this network management 

challenge. However, the need for large training 

datasets and the infrequency of network management 

events make it uncertain whether this approach is 

effective for highly dynamic networks and networks 

operating in unfriendly conditions, such as tactical 

military networks. This paper examines the feasibility 

of this approach by analyzing a recorded dataset of a 

mesh network experiment in a highly dynamic, austere 

military environment and derives conclusions for the 

design of future mesh networks and their network 

management systems. 

 

 

1. Introduction  

 
The management of tactical military networks is a 

much harder challenge than conventional network 

management, but the potential benefits to network 

centric warfare are enormous [3]. In addition to 

classical network management, it is important to 

consider difficulties associated with tactical network 

operations, such as adversaries trying to disturb or shut 

down the network, and various other constraints. 

Network management is especially difficult in dynamic 

environments and/or complex situations. 

For tactical networks with a small number of 

entities, the management can be done manually by a 

Network Operations Center (NOC). However, it 

remains an open question how to manage a large-scale 

network. Classical network management decision 

support techniques like rule-based algorithms have not 

always succeeded in highly dynamic environments. 

Even some data center professionals who manage large 

companies or university networks, sometimes do not 

make use of decision-support components, as they are 

considered to be impractical and laborious to set up 

and maintain. 

Although some progress has been made [5], further 

automation of network management is vital even in 

standard and non-military networks, as various efforts 

show [9]. 

Greater automation has been shown to be feasible 

in managing a decentralized network by using a 

distributed artificial intelligence [7]. In the field of 

tactical networks, the idea of distributed network 

management was adopted by Bordetsky and Hayes-

Roth [2]. They propose the concept of hyper-nodes for 

command and control networks because the 

fundamental advantages could be demonstrated [1]. 

However, the details of network management and 

control systems of the hyper-nodes were not explained 

at that time. 

Recently, Chen et al [4] developed an algorithm for 

cloud radio access networks based on echo state 

networks (ESN) that could predict several relevant 

parameters in a simulated environment, such as users’ 

positions and content request distribution of users. 

Although this result could lead to more automated 

network management, research regarding the 

automation of network management has tended to 

focus on standard or mobile networks and ignored 

networks in contested or austere conditions such as 

tactical military networks. For these networks, large 
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training datasets do not exist. Additionally, infrequent 

network management events are a special feature of 

these networks. Machine learning algorithms like 

artificial neuronal networks (see e.g. [8]) require large 

training datasets and sometimes have difficulties to 

learn infrequently occurring data points. Therefore, it is 

doubtful that the different approaches seen in 

commercial networks can be transferred and applied to 

the environment of tactical military networks. We 

assume that machine learning techniques cannot fully 

solve the problem of tactical network management 

because the limitations of machine learning techniques 

have a much higher impact in such environments. 

We investigate whether and to which degree 

machine learning techniques could lead to a more 

automated network management in the field of tactical 

military networks. We do this by analyzing and 

applying machine learning algorithms to some real-

world data. 

 

2. Experiment Setup and Description 

 
We analyzed the recorded network data of an 

experiment that employs a Network Control System of 

unmanned and manned nodes in support of a notional 

military mission. In different operational areas 

(offensive and defensive) the experiment examined 

technical solutions to autonomous vehicle support of 

tactical military tasks. The goal was to bring together 

unmanned aerial, surface and underwater vehicles as a 

collaborative networked system to support a difficult 

military objective.  

The experiment focused on the littoral maritime 

domain. By using a range of different unmanned 

systems, it was proposed that military operations could 

be accomplished more rapidly, effectively, and with a 

reduced requirement for military personnel to be 

exposed to risk. One rationale for this was that more 

robustness through a higher diversity of sensors could 

be achieved. Another is that with this approach the 

ability to operate in all domains in and around the 

littorals could be enhanced. 

The experiment was conducted from November 4-

13, 2017 on an island off southern California, and 

consisted of: 

•    Two Scan Eagle Unmanned Aerial Vehicles 

•    Two SeaFox Unmanned Surface Vehicles 

•    Two Remus Autonomous Underwater Vehicles 

•    One Shield AI Quadrotor UAV 

 

Persistent Systems Mesh radios comprised both the 

primary and the backup mesh ground networks. 

 

3. Methodology 

 
Mesh network performance data, including the 

Figure 1. Overview of the experiment 
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behavior of unmanned nodes was captured and 

collected based on the Simple Network Management 

Protocol (SNMP) technique (see e.g. [10]). 

 To ensure a high-quality dataset, we post-

processed the recorded data and filtered out invalid or 

faulty data items. After this, we performed some basic 

statistical analysis to learn more about the nature of the 

data, find interesting properties or even identify 

features and/or a feature set for the machine learning 

step. Then we applied several machine learning 

algorithms like rule-based, lazy learning, tree-based 

and support vector machines with this dataset to 

investigate whether machine learning can be used in 

such an environment.  

 
3.1. Data Collection 

 
Data was collected by an SNMP Agent specifically 

created for this project utilizing a Node.js framework. 

Since Node.js is a platform independent environment, 

the SNMP Agent was able to run on Windows and 

Linux OS. For this particular experiment, the SNMP 

Agent was running on Raspberry PI 3 and Odroid 

microcomputers (Linux OS) added to the unmanned 

aerial vehicle (UAV) and unmanned surface vehicle 

(USV) payloads. These agents recorded performance 

data and also device-specific non-SNMP data such as 

the GPS position. The data was uploaded to a central 

database after the experiment. This database consists of 

online and offline network performance data. In 

addition to the automated recorded data, significant 

events, interesting discoveries and relevant information 

that could not be collected automatically were recorded 

in textual form, manually entered into the central 

database. For our analysis, we used the automatically 

recorded data. The manually recorded data had no 

standard structure, and it would have been prohibitive 

to incorporate this into our machine learning analysis. 

Nevertheless, the manually recorded data was helpful 

meta-data for cleansing the dataset and to identify and 

filter out invalid values. 

 

3.2. Dataset Description 

  
In total 135,546 items were recorded. Data items 

consist of the following attributes in Table 1. A 

database entry contains more attributes than are listed 

in Table 1; the additional attributes were not measured 

in this experiment and contain unknown or invalid 

values. Therefore, the following attributes were not 

used in our analysis: OriginType, DestID, Altitude,  

Speed, Course, EventType, EventDescription, 

EventStatus, fromGCU, coord_system, heave_vel, roll, 

Table 1. Name and description of attributes in 
each data item 

 
Attribute name Description Type 

Log 

Index of items. Not used by 

machine learning 

algorithms. 

Numeric 

(Long) 

WhenOccured 

Time of event (timestamp), 

accurate to one second. Not 

used by ML algorithms. 

Numeric, 

Format: 

YYYY-

MM-DD 

HH:MM:SS 

OriginID 
Unique identifier of the 

sending entity 

Numeric 

(Integer) 

Lat Latitude: decimal degrees. 
Numeric 

(Float) 

Longi Longitude: decimal degrees. “ 

platform 

Describes if entity is an 

AUV, UAV, USV) or null 

(unknown) 

Nominal, 

Values: 

{AUV, 

UAV, USV, 

None} 

utm-zone, utm-

northin, utm-

easting 

Position in UTM 

coordinates. Not used. 
 

depth 

Altitude (meters above sea-

level) (negative if under 

water). Not available for all 

entities. 

Numeric 

(Float) 

forward_vel 
Velocity in forward 

direction in m/sec 
“ 

sideslip_vel Velocity in m/sec “ 

yaw_rate Rate of yaw in degrees “ 

throughputin 

source: SNMP 

Number of incoming 

packets (size = pktsize) 

Numeric 

(Long) 

throughputout 

source: SNMP 

Number of outgoing packets 

(packets have size pktsize) 

Numeric 

(Long) 

rtt 

source: SNMP 

Round-trip time in 

milliseconds. 

Numeric 

(Float) 

pktloss 

source: SNMP 

Number of lost packets in 

last period 

Numeric 

(Integer) 

pktsize 

source: SNMP 

Size of network packet in 

octets 

Numeric 

(Integer) 

Reachable 

1, if the SNMP-poller could 

reach the entity within 30 

seconds through the mesh 

network.0, otherwise. 

Null, if unknown/not 

measured. 

Nominal 

Values: 

{1, 0, Null} 

hasSnmpPoller 

Flag, if an entity has an 

SNMP poller. Not used by 

ML algorithms. 

Nominal 

Values: 

{1, 0, Null} 

timestamp 

timestamp in unix epoch 

(accurate to 1 minute). Not 

used. 

Numeric 

snrList 

String containing observed 

SNR in dB to its neighbors. 

String format is: IP-Address 

SNR-value, IP-Address 

SNR-value 

Nominal 

(String) 
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roll_rate, pitch_rate, IconColor. 

Additionally, the attributes Universal Transverse 

Mercator (UTM) “utm-zone”, utm-northing,” “utm-

easting” and “timestamp” were not used in the 

analysis, because they are redundant with the attributes 

“Lat,” “Longi” and “WhenOccured” and were 

measured with similar or lower accuracy. 

Values that were not measured were given a null 

value in the dataset. Some entities’ radios contained 

more than one antenna. In these cases, an IP address 

can occur more than once (for every antenna) in the list 

of IP addresses in the attribute snrList. 

In addition, a dataset with a map of an IP address to 

its object name is available (database name 

“mapObject”). The information in the mapObject 

database is irrelevant for machine learning purposes 

and therefore was not used. 

 
3.3. Post-Processing  
 

We cleansed the dataset of invalid or faulty items 

and removed unused or duplicate attributes that carry 

the same information, such as a position both in 

decimal degrees and in UTM format. 

Even without the “Lat”/”Lon” attributes, the 

resulting dataset consisted of a total of 14 attributes (13 

attributes and the target attribute “reachable”). To 

further minimize the dimensionality, we omitted the 

“snrList” attribute for the moment. Then, every 

numeric attribute from the resulting set was normalized 

(range [0-1]) and a principal component analysis was 

performed. 

 

4. Analysis 

 
In the first step of our analysis, we conducted a data 

exploration using a simple statistical analysis. This was 

done to learn more about the nature of the data and to 

find interesting properties of the underlying dataset. To 

apply machine learning techniques to the dataset, we 

sought to reduce its dimensionality. 

After preprocessing, the size of the cleansed dataset 

was quite small for the use of machine learning 

algorithms. To avoid an overfit of the learned models 

we did not use some attributes that could give away too 

much information to the learning algorithm or would 

reduce possible generalizability. These attributes were 

“Log,” “WhenOccured,” “hasSnmpPoller,” and in 

some cases “Lat”/”Lon.” In addition to removing 

attributes to avoid overfitting, we tried to design a 

system where all decision-relevant attributes could be 

directly measured by the unmanned device. This is the 

case for the remaining attributes.  

 
4.1. Principal Component Analysis 

  
The Principal Component Analysis (PCA) for the 

attribute “reachable” and a variance of 95% covered, 

resulted in 12 remaining attributes. Although this result 

fell short of our expectations regarding the reduction of 

attributes, we found ourselves in the unusual situation 

where we were able to identify key factors and derive 

conclusions just by closely looking at the components. 

 

Table 2. Excerpt of PCA result 
 

# Prop. Component 

1 0.217 0.56 platform=AUV-
0.56platform=USV+0.506depth... 

2 0.157 -0.541throughputout-0.536pktloss-
0.47throughputin-

0.313pktsize+0.199OriginID... 

3 0.138 -0.664sideslip_vel-0.638forward_vel-
0.366yaw-

0.057platform=AUV+0.057pla... 

4 0.118 -0.663OriginID+0.606pktsize-
0.264throughputin-0.23pktloss-... 

5 0.077 -0.983yaw_rate-
0.098rtt+0.097throughputin-... 

6 0.075 0.979rtt-0.119pktsize-0.091yaw_rate-
0.063throughputout+0.06 depth... 

7 0.056 0.868yaw-0.383forward_vel+0.16 
platform+... 

8 0.047 0.791throughputin-0.359throughputout-
0.328pktloss-0.288OriginID-

0.203pktsize... 

9 0.034 0.709pktloss-0.514throughputout-
0.303OriginID-0.3pktsize-0.146depth... 

10 0.029 0.609pktsize+0.557OriginID-
0.482throughputout+0.205thr... 

 
4.2. PCA Findings 

 
Platform-specific attributes (platform type) have 

the most influence (component 1 and 3). This is not 

surprising as the platforms possessed different 

capabilities and fulfilled different functions. 

A bigger packet size and a larger throughput make 

reachability harder (component 2). We presume that 

this is caused by the priority algorithms in the device’s 

network stack. With a higher workload, packets as the 

SNMP poll request could be dismissed. This part of the 

system could offer room for improvement. 

We found that it matters which entities 

communicate (components 2, 4). This result is 

expected because it directly correlates to the 

“platform” attribute. 
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Velocity and yaw can have a positive or a negative 

impact on reachability (components 3, 5, 6, 7). This is 

an inconclusive result and requires further 

investigation. 

The first four components account for 

approximately 60% of variance.  The rest seems to be 

quite random and noisy, and without a direct 

interpretation. Figure 2 depicts this. 

 

 
 

Figure 2. Number of PCA components vs. 
variance covered 

 
4.3. Statistical Properties of some Informative 

Attributes 

 
A closer examination of the statistical properties of 

the original attributes revealed some interesting 

insights. We found that the attribute “throughputin” 

seems to have an underlying Gaussian distribution. 

 
Figure 3. Histogram of “throughputin” 

 
Having said that, it is notable that we found several 

outliers for certain frequencies (see Figure 3).   Several 

protocols use fixed-size messages. It seems plausible 

that these outliers are a direct result of this. A similar 

situation exists for attribute “throughputout” where an 

underlying superimposition of two Gaussian 

distributions seems to take place. 

We opine that this kind of outlier and the huge 

variance that we have discovered are a special feature 

of a tactical mesh networks. 

 
Figure 4. Distribution of “throughputout” 

 
Figure 4 shows the frequency of the values of the 

attribute “throughputout.” The figure was restricted to 

values under 60,000, and the five most frequent values 

were removed. Values over 60,000 occurred relatively 

rarely in the dataset and the Gaussian distribution of 

the data is hard to see in the full picture (compare e.g. 

to Figure 3). 

We did find a linear correlation between the 

attributes “throughputin” and “throughputout.”  

Figure 5 shows the identified linear model for the 

attributes “throughputin” related to “throughputout”. 

The plot was restricted to values under 30,000 for 

“throughputout” and values under 60,000 for 

“throughputin” to clear the clutter of a lot of outliers. 

We think that this finding can be explained as a 

feature of the mesh network. Many incoming messages 

are forwarded to neighbor nodes and as such, output 

traffic correlates to input traffic. This indicates that our 
network design and setup for a mesh network is sound, 

as there are no “supernodes” which receive and put all 

the data to the network. In addition, this also means 

that communication devices used in mesh networks 

could be designed with symmetrical up- and downlink 

channels. 
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Figure 5. Linear fit for throughputin vs. 

throughputout 

 
Additionally, we found that a positive value of 

“yaw” leads to unreachability in higher altitudes 

(Figure 6). 

 
Figure 6. Yaw vs depth (altitude) 

 
Our assumption is that features of the antenna 

characteristics and subsequently characteristics in the 

beam pattern lead to a link loss if the device moves or 

rotates. 

In conclusion, our analysis found that there are 

strong statistical regularities and that all attributes seem 

to be important. Based on this assessment, we decided 

to use all remaining 12 PCA attributes for the machine 

learning step. 

 
4.3. Application of Machine Learning 

Techniques to the Recorded Dataset 

 

We used several supervised learning methods with 

the target attribute “reachable” to examine whether 

learning could be done in this environment. The prior 

probability of the target attribute is 71.2%. The 

analysis was conducted with Weka [11] and Orange 

[6]. We used cross-validation with a 10-fold for each 

run. 

Many classic machine learning algorithms master 

this particular learning problem (Table 3). Except for 

Naïve Bayes, Logistic Regression, SVM and Ripper, 

performance does not differ significantly between the 

learning algorithms. As 5% of the variance is lost via 

the PCA transformation, we were surprised that the 

best learning algorithms have a higher classification 

rate and were curious whether we could obtain better 

results by using the original dataset. As it turns out, a 

very similar performance result is achieved with the 

original dataset. Interestingly, the kNN and Naïve  

 

Table 3. Result for different machine learning 
algorithms regarding target attribute 

“reachable” 
 

Algorithm Impl. Correctly 
Classifica. 

F-
Score 

Remarks 

Random 

Forest 

Weka 97.09 % 0.97 Number of 

trees: 10, No 

split subsets 

smaller than 

5 

kNN Weka 

iBK 

96.59 % 0.96 5-NN 

C 4.5  Weka 

J48 

(prune) 

96.45 % 0.96 Size: 3175 

Number of 

Leaves: 

1588 

Neuronal 

Network 

Orange 95 % 0.95 Hidden 

Layers: 

50,150 

 

Activation: 

ReLu, 

Solver:Adam 

RIPPER Weka 

JRIP 

94.86 % 0.94 17 Rules 

SVM Weka 

(SMO) 

92.52 %  0.91 Poly-kernel 

Log.Reg. Weka 91.56 % 0.90 Regularizatio

n Ridge (L2), 

C=1 

Naïve 

Bayes 

Weka 56.39 % 0.62  

 

Bayes algorithms perform very differently between the 

transformed and untransformed datasets. Whereas kNN 

benefited enormously (performance of 57.28% correct 

classification on the untransformed dataset compared 

to 96.59% on the transformed dataset) from the 

Page 1226



 

 

transformation, Naïve Bayes suffered (from 84.76% 

correct classification to 56.39% on the transformed 

dataset) from the transformation. Closer examination 

of the learned models (original and transformed 

datasets) indicates that the models seem to be 

overfitted. One example of this overfitting is the tree 

built by the J48 algorithm with a size of 3175 and 1588 

leaves. As we do not have a dataset of a different 

operation available, we have not yet been able to 

investigate whether and to what extent the models 

generalize to different scenarios. 

 

5. Conclusions 

 
Our research as it is presented in this paper 

indicates that the initial assumption (automation of 

network management in tactical networks is much 

harder than automation of classical networks and 

therefore machine learning techniques may be not 

applicable) was overstated. 

We found strong statistical regularities in the 

recorded network data of the observed mesh network 

designed to support a tactical military mission. These 

regular patterns are sufficient to predict relevant 

network management decision features related to 

unmanned system operation, subject to changing 

network performance and configuration conditions. 

Our analysis is based on one recorded dataset of the 

performance data of one tactical network and therefore, 

the results are limited. 

Nevertheless, we believe that our findings give 

some cause to expect that distributed autonomous 

network management systems for unmanned systems 

in tactical networks are in the realm of feasibility. On 

the contrary, the data also shows clearly a much higher 

degree of variance than is seen in other network data. 

We assume that these irregularities are the special 

feature of tactical networks. 

Nevertheless, it seems that in the big picture, 

tactical mesh networks are not so different from 

classical networks with regard to the question of 

network management automation. However, it is 

different when the details of tactical networks are taken 

into account. 

In conclusion, it still seems plausible to us that it is 

infeasible to fully automate management of tactical 

military networks. It is unclear how machine learning 

algorithms could meet the challenge of unprecedented 

forms of attacks to a tactical network. Having said that, 

we propose the concept of semi-automation of network 

management for tactical military networks. This means 

that autonomous nodes perform the easy and regular 

parts of network management (hyper-node concept). In 

this refined concept, machine learning techniques are 

used to enrich the decision support systems of the 

hyper-nodes. A network operations center remains in 

charge of the main network operation but the task 

shifts from monitoring and controlling the network to 

dealing with unprecedented or very exceptional 

situations. The hyper-nodes help to quickly identify 

irregularities in network behavior using their 

autonomous intelligence and report this to the NOC 

decision makers. The NOC crew analyzes the situation 

and takes appropriate action. 

Due to the fact that few datasets of tactical mesh 

networks are available, we call upon others to conduct 

similar experiments and collect more data in this area 

of research. It is our understanding that the continuing 

process of experimentation and data collection 

generates a much-needed and valuable network 

knowledge base. This helps to develop machine 

learning systems in operating semi-autonomous tactical 

networks. Experimentation and data collection is one 

of the major tasks on which our team is planning to 

concentrate our future efforts. 

i-      In particular we would like to conduct a series of 

experiments that is similar to the one described above 

in terms of scale, type of manned-unmanned nodes, 

and their mobility. We would want to see whether the 

ML algorithm would be able to generalize the rules of 

network performance management and nodes’ mutual 

adaptation. Based on a series of experiments with a 

similar tactical scale, node types and tactical scenarios, 

we would explore whether other, different patterns of 

node performance adaptation emerge, which we could 

capture in an ML algorithm.  

     Based on more data captured during similar tactical 

scenarios, we would develop an adaptive network 

management simulator to be integrated in the hyper-

nodes’ mutual adaptation in real-time. This would 

create an element of data analytics for use by human 

operators in conjunction with the ML actions executed 

by mutually adapting machines.  

     Note: A Machine Learning algorithm might 

accidentally learn the features of the simulator. 

Everything must be validated by real data. For 

example, our criticism to Chen et al [4] is that they 

have used their simulator most of the time to create the 

algorithm. The simulator would be fed real-data; 

however it might be the case that their algorithm learns 

the features of the simulator and didn’t generalize. 

     Our data can be found at the following website:  

https://nps.box.com/s/hx3djmibiz8mot48y37aelncqwfi

5lbm 
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