
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ICEB 2001 Proceedings International Conference on Electronic Business
(ICEB)

Winter 12-19-2001

A Design of Intelligent Pre-fetching Materialized Views A Design of Intelligent Pre-fetching Materialized Views

Mechanism for Enhancing Summary Queries on Data Warehouses Mechanism for Enhancing Summary Queries on Data Warehouses

Chin-Feng Lee

Main-Che Tsai

Follow this and additional works at: https://aisel.aisnet.org/iceb2001

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in ICEB 2001 Proceedings by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326833899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2001
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2001?utm_source=aisel.aisnet.org%2Ficeb2001%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

A DESIGN OF INTELLIGENT PRE-FETCHING MATERIALIZED VIEWS MECHANISM
FOR ENHANCING SUMMARY QUERIES ON DATA WAREHOUSES

Chin-Feng Lee and Main-Che Tsai

Department of Information Management, Chaoyang University of Technology
No. 168, Gifeng E.Rd., Wufeng, Taichung County, Taiwan 413

EMAIL{lcf, s8854606}@mail.cyut.edu.tw

ABSTRACT

To build up a materialized view that perfectly satisfies the
need of the specific enterprise it serves is now the biggest
challenge especially when it comes to larger and larger
scale enterprises as well as more and more complicated and
yet necessary socio-economical information. In this paper,
we shall develop an Intelligent Materialized VIews
Pre-fetching mechanism, also known as an IMVIP, from the
characteristics of affinity grouping so as to enhance the
efficiency of summary data warehouse querying.
The IMVIP mechanism consists of the following two
methods: the Apriori-Model association method and the
Linear Structure Relation. The Apriori-Model association
method explores and deduces the combination of the
relations among individual user session. It is especially
suitable for applications where the combinations of the
relations are to be explored among multi-objective queries
made by more than one decision maker. On the other hand,
the Linear Structure Relation Model develops a set of
principles as to the explorations into the deduced relation
combination above with an aim to constructing a series of
causal-effect association rules. Thus, we can not only
pre-fetch and materialize views that really satisfy the needs
of the decision makers so as to enhance the efficiency of
summary data warehouse queries but also build up
intelligent query paths according to the cause-and-effect
association rules in order to attain the goal of providing
helpful suggestions for decision-making.
Keywords: data warehouse, materialized view, data
mining, association rule, linear structure relation model.

1. INTRODUCTION

As the business management environment becomes more
and more complicated, bunches and bunches of different
data sources are to be consulted during the decision-making
process in order to make the decision more deliberately
considered. However, one of the most important problems
we must face up to is that the places where the data are
stored are most probably widely distributed, divergent, and
heterogeneous. To solve this problem, such a design as the
summary table manageable mechanism, or namely view
materialization, has been implemented in decision
supporting systems or data warehouses [9][10][12][13].
This way, the information needed for decision-making can
be filtered and combined beforehand at the data sources,
and the summarized data can be offered by functions such
as total (sum), average, or count.
At the first glance, it looks as if the interconnections
between materialized views and data sources could solve
the above problem; however, in reality, it is whether the
materialized view constructed can meet the requirement of
the query for decision-making or not that is the key point

that determines whether or not the problem above can be
successfully solved. Therefore, how to build up
materialized views and make sure that the contents of the
materialized views constructed can really satisfy the needs
is the biggest challenge for all enterprises at the present
time. In addition, in the multi-user environment, a decision
maker would often have to make a series of queries into the
data warehouses for one single decision, where the

collection of the series of queries is called a “user session”.
Queries for decision-making are races against time, and
therefore, to profit more in the tough competitions
nowadays, shortening the time consumed to answer queries
and speeding up the acquisition of summary information
are tasks that cannot wait. In this paper, making use of the
characteristics of affinity grouping among strings of
summary queries, we shall develop an intelligent
materialized views pre-fetching mechanism, also known as
an IMVIP, to enhance the efficiency of summary data
warehouse querying.
The mechanism that we plan to develop here is based on
the very feature of views that they are purely customized.
Finding out the angles from which users dig into the data,
keeping record of the data utilization, we shall propose the
Apriori-Model, which is a revised association method of
Aprioriall [1] of higher efficiency, to dig into the
association combinations between the individual user
sessions and the categories that the data referenced fall into.
With the help of the pre-fetching mechanism, we can
effectively cut down the occurrence of situations where the
target information falls off the data warehouses and has to
be found in the jungle outside. On the other hand, if we can
take a step further and establish the causal relations among
the association combinations, then we can succeed in
providing data warehouse users with an intelligent
information offering environment. Therefore, in this paper,
we shall adopt the linear structure relation (LISREL)[7] to
develop a set of principles that govern the digging into the
association combinations by means of building up the
cause-and-effect association rules. After the two stages of
data mining above, we can not only pre-fetch as well as
materialize the views the decision makers are really in need
of, but also establish intelligent query paths according to
the behavioral patterns of the decision makers and the
causal relations and hierarchical ranking of the data
referenced.
The rest of this paper is organized as follows. In Section 2,
we shall explore into the literature concerned to have a
clear picture of what steps researchers have made in the
history of this field of study. Section 3 will portray the
process in which we translate the records of data utilization
into the data structure we need. Then, in Section 4, we shall
discuss the methodology and steps in our procedure. Here,
we shall give a detailed description as to how we can come
up to the association combinations by means of the Apriori-

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

Model to avoid the weakness of AprioriAll in repeatedly
scanning the data warehouses. Besides that, we shall also
describe how we derive the causality of the association
combinations from the digging principles we develop out of
the linear structure relation model. Then, in Section 5, we
shall discuss the practicability of the association
combinations with causality we come up with in real
applications. Finally, the conclusions will be in Section 6.

2. LITERATURE REVIEWS

The metadata is an important element of the data
warehouses environment. The term “metadata” refers to the
descriptive information of the data in the data warehouses.
It has multiple functions, among which is the establishment
of the rules for data association and access [3]. Therefore,
the rules for causality-attached relations that we derive in
this paper can be stored in metadata as criteria for the
establishment of materialized views. However, little has
been discussed as to how to evaluate whether the contents
of materialized views can successfully cover the needs of
decision makers as well as how to build up a pre -fetching
mechanism to speed up the decision-making process. These
two untouched problems are right the points of this paper.
Deducing association rules for the decisions to be made in
different areas and different data structures can be very
helpful for sequence patterns [1], for multiple-level data [5],
and for weighted items [4]. In addition, the establishment
of the web searching engine with text mining method [8],
and the restoration of mining values via association rules
[11] are all effective ways to help settling on business
strategies and action plans. To join the club, in this paper,
we shall propose a revised version of the Aprioriall
association method [1], named the Apriori-Model. Based
on the strong association among individual sessions under
the same decision to be made, the Apriori-Model is indeed
more effective in deriving association rules.
To measure the interrelationships among the factors
affecting decision-making, statistics proves to be a good
choice. The linear structure relation (LISREL) is a good
statistical method to turn causal relations among variables
into numbers [2][7]. In this paper, we shall make use of
LISREL to derive the causality of the association
combinations. As we mentioned earlier, LISREL is
basically an analytical method to determine if a linear
relation exists between two factors that are not directly
observable. Such a model can help determine if there exists
a causal relationship between the unobservable dependent
variable (derived from the observable dependent variables)
and the unobservable independent variable (derived from
the observable independent variables). As Figure 1 shows,

the goodness of fit indicator (GFI) is used to measure the
fitness of this causality model. The GFI value can be
anywhere between 0 and 1, and a greater GFI value means
a higher degree of fitness. The GFI threshold is determined
according to professional need for different subjects. The
symbol ë stands for every unobservable independent (or
dependent) variable to observable independent (or
dependent) variable regression coefficient (magnitude of
influence). In this paper, there is only one observable
dependent variable; in other words, ë4 is equal to one. On
the other hand, there is more than one observable
independent variable in our research. Nevertheless, all the
observable independent variables cannot be included in the
relation model. Only when the evaluation result of a
“cause” reveals that the p-value is less than 0.05 does it
mean that this cause has a significant impact on the effect
and that this cause is to be taken as an element of the
association rule.

3. DEFINITION OF DATA STRUCTURE

To make the materialized views of data warehouses meet
the needs of decision makers and thus to enhance the
efficiency of data access as well as to reduce the load of the
network and the frequency of data access in heterogeneous,
distributed data warehouses, in this paper, we shall build up
association rules of causal relationships for the data queried
by decision makers. Based on the Apriori-Model and the
linear structure relation, the association rules are derived
from the interrelations among user sessions. That is to say,
according to the behavioral patterns of the decision makers
revealed by the queries, we can deduce rules that can not
only serve as guides of data withdrawal for every decision
maker but also enhance the effective use of data resources
if the association rules derived are incorporated in the data
warehouses.
Back in the first section, we have defined a user session as
the collection of a series of queries made by one decision
maker for one decision to be made in some multiple-user
environment. Here in this place, we shall take one step
further. The queries made for one decision are defined as
the string of queries a decision maker makes from the
moment she/he enters the data warehouse (or is led by the
warehouse to some other databas es if the data warehouse
lacks the data wanted) until when she/he leaves. Each and
every query can be recorded in the data structure shown in
the first part of Figure 2. Then, the series of queries made
for one decision (namely one user session) can be
organized as the second part of Figure 2 shows, where the
session code is the sequential number of the user session
and the code for data queried is composed of the data codes

(Significance tested

by p-value)

Unobservable
independent
variable

Unobservable
dependent
variable

Observable
independent
variable #1

 Observable
independent
variable #2

Observable
independent
variable #3

λ1

λ2

λ3

Observable
dependent
variable

λ4

Figure 1. Part of the causal relationships in our research

GFI value

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

of a series of queries.
In addition, there are still two features to the data that we
keep in store. Number one, a decision maker may probably
ask for data of an especially wide variety in her/his one
user session. For example, in the series of queries (sql 1, sql
2, sql 3, sql 4), suppose query sql 1 is made for “population
density,” query sql 2 for “crime rate,” query sql 3 for
“income,” and query sql 4 is made for “salary.” In this
place, the sequential order of the queries made is decided at
random; in other words, for the decision maker, there is no
sequential order to the queries. Although sometimes the
sequential order might actually mean something to the
decision maker, we decide to ignore it here. To give an
example, suppose a user wants to analysis the “crime rate.”
She/he makes queries in the arbitrarily decided order of
“population density,” “income,” and then “salary;” namely,
the queried items are only weighted according to their
expected magnitude of influence on the “crime rate” in
such order subjectively by the user. However, in the rest of
paper for simplify the process, we can give sequential order
to the data codes belonging to the same session code (see
the third part of Figure 2). Second, there can be no
repetition in one user session. In other words, the
“population density,” for example, is unlikely to be queried
twice in one user session because there is simply no
meaning to it (also see the third part of Figure 2).

4. THE METHODOLOGY AND PROCEDURE

To gather the information needed to make one decision, a
decision maker must make a string of queries in a user
session. For a same decision to be made, the user sessions
of different decision makers must bear certain relativity
and similarity with each other. The major objective of this
paper is to derive the behavioral patterns of query makers
from the data access records and thus to design an
intelligent materialized views pre-fetching mechanism. In
practice, such a mechanism can materialize views for data
warehouse users beforehand, or the materialized views can
be pre-fetched and stored in memory or buffer memory so
as to save the time wasted on gathering widely distributed

data and to relieve the load of the networks. Thus, the
efficiency of data querying can be enhanced. Besides, up to
now, data mining techniques have been widely used. Under
such circumstances, if we can analyze the behavioral
patterns of the users and explore the goals of the data
queries they make, establishing the causal relations among
the elements in the association combinations via the linear
structure relation, then we can weight the causes and
effects accordingly, giving them their query order, and
generate an intelligent instructive structure to guide data
warehouse users through the querying process. Thus, the
efficiency of data warehouse operation can be dramatically
raised.
Take Figure 3 for example. According to the data structure
derived in Section 3, we can put the meaning into the codes
in Figure 3. Thus, the series of queries (sql 1, sql 3, sql 5,
sql 8) can be considered the SQL queries some certain user
makes for “population” (sql 1), “average income per
capita” (sql 3), “land area” (sql 5), and “average tax paid
per capita” (sql 8). By means of association mining, we can
build up the association combination among the three
{the query for “population” (sql 1), the query for “average
income per capita” (sql 3), & the query for “land area” (sql
5)} (see the second part of Figure 3). Then, with the help of
the linear structure relation, we come to the conclusion that
there exists a causal relationship in the string of the query
for “population” (sql 1), the query for “land area” (sql 5),
and the query for “average income per capita” (sql 3) (see
the third part of Figure 3). Finally, we can figure out that
the query for “land area” (sql 5) is weighted heavier than
the query for “population” (sql 1). Therefore, the final
causal relationship goes that the query for “land area” (sql
5), the query for “population” (sql 1) -> the query for
“average tax paid per capita” (sql 3) (see the fourth part of
Figure 3). Such a rule can be stored in the metadata. This
way, we can put together a rule-based engine organized by
causality rules. Users can then profit from the materialized
views pre-fetching rules and the intelligent instructive
mechanism for querying.
To establish association rules of causal relations that the
materialized views can base themselves upon in order to

Figure 2. Procedure of integrating user sessions into data structure

Define a user session as the string of queries a
decision maker makes from the moment she/he
enters the data warehouse until when she/he
leaves. Integrate the queries in one session into
a whole.

Remove repeated data codes. Assign
sequential order to the data codes in
the same user session.

User code + time +
data codes

Session code + data code +
data code + data code + …

Session code + data code #1 +
data code #2 + …

1

2 3

Figure 3. Example of association rule of causal relation

Association ombination

{sql 1, sql 3, sql 5}
… … … .

Association rule of
causality

sql 1, sql 5 -> sql 3
… … … .

Weighted association
rule of causality
sql 5, sql 1 -> sql 3

… … … .

Association mining

LISREL According to calculation result, the
influence of sql 5 on sql 3 is greater
in magnitude than that of sql 1.

2 3
4

Session
Code
S1 (sql 1, sql 3, sql 5, sql 8)
S2 (sql 1, sql 3, sql 5, sql 9, sql 10)
S3 (sql 1, sql 3, sql 5, sql 11)

… … … … .

1

Data codes of every session

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

provide decision makers with intelligent guides, we take
the following five steps:

Step 1. Establishing Decision Models
When the queries are asked for the same objective by a
number of decision makers different from each other, the
data accessed must have considerable similarity. User
sessions that are similar to each other can then be organized
into a decision model. This way, we can roughly classify
sessions whose objectives cannot be told at the first glance.
Such association rule establishment upon similar sessions is
obviously more meaningful than that built upon all sessions
with mixed objectives. For example, to explore the
increase/decrease rate of population in a certain district,
decision maker A might make queries for “marriage rate”
(sqli), “migration rate” (sqlj), as well as “birth rate” (sqlr).
That is to say, the user session for decision maker A is SA =
(sqli, sqlj, sqlr). For another decision maker B, the three
items above might not be enough. Another query might be
made for “unemployment rate” (sqlt). Namely, the user

session for decision maker B is SB = SA ∪{(sqlt)}. These

two very much similar sessions can be organized into a

decision model SA ∪ SB = {(sqli, sqlj, sqlr), (sqli, sqlj, sqlr,

sqlt)}.
Here, we employ a formula to figure out the probability of

overlapping for two events that goes P(A∩B) = n(A∩B) /

n(A∪B) [6] to help decide if two sessions are similar to

each other. In the formula, the item n(A∩B) stands for the

number of elements occurring in both events A and B. On

the other hand, the item n(A ∪ B) represents the total

number of the elements included in the two events, where
an element occurring in both events can only be counted

once; in other words, n(A∪B) = n(A) + n(B) - n(A∩B). In

this paper, we define the term “model affinity” as the
degree of resemblance between the two events A and B.
When testing the model affinity, the decision maker has to
offer a threshold to filter the events and decide whether
they should be put into the decision model. Such a
threshold is given the name of “minimum model affinity”
in this paper.
In the process of decision model construction, one session
Si is picked out to be the primary session at first, and the
other sessions, named compared sessions, are extracted one
by one to compare with the primary session and decide the
model affinity, which is represented by ma(Si, Sj). Here, the
same sqls between Si and Sj can be collected together and
represented by same(Si, Sj). When the value of ma(Si, Sj)
turns out to be higher than the minimum model affinity (î)
preset by the decision maker, then, by definition, Si and Sj
are declared to be similar to each other, and Sj is put into
the decision model DM(Si)| î where Si is the primary
session. For example, the total number of sessions in Figure
4 is N = 5. The following are the steps of decision model
construction.

Step 1-1. Take S1 for the prima ry session (suppose î =
50%).
(1) Take S2 for the compared session.

Since session S1 and sessionS2 have three queries in
common, namely same (S1, S2) = {sql 1, sql 3, sql 4},
the model affinity between S1 and S2, namely ma(S1, S2),
is: number of queries S1 and S2 have in common / total
number of queries in sessions S1 and S2 (repetitions
eliminated) = 3 / 5 = 60%.

(2) Take S3 for the compared session and obtain ma(S1, S3)
= 3 / 6 = 50%.

(3) Take S4 for the compared session and obtain ma(S1, S4)
= 2 / 5 = 40%.

(4) Take S5 for the compared session and obtain ma(S1, S5)
= 1 / 5 = 20%.

Learning from (1) through (4) of Step 1-1, when S1 acts as
the primary session, we take S2, S3, S4, S5, as well as S1 out
one by one to compare them with the primary session.
Among them, S2 and S3 are more similar to S1 because both
of their model affinity values are larger than î (in other
words, ma(S1, S2) > 50% and ma(S1, S3) > 50%). Therefore,
we can establish the decision model whose primary session
is S1 that goes DM(S1)| î=50%= {S1, S2, S3}.
Step 1-2. By the same token, we can establish a decision
model whose primary session is S2 as DM(S2)|î=50% = {S1,
S2, S4, S5}. Then, based on another primary session S3, we
can establish the decision model DM(S3)|î=50% = {S1, S3};
for primary session S4, the decision model is DM(S4)|î=50%
= {S2, S4}. Finally, for primary session S5, the decision
model is DM(S5)|î=50% = {S2, S5}.

Step 2. Pruning Subset Decision Models
Some of the decision models we come up with might turn
out to be the subsets of other decision models. For two
decision models where one is the subset of the other, they
can be considered a long sequence queries for on purpose
and treated as a whole decision model. Cutting off the
redundancy, we remove the smaller decision model (also
called the subset decision model). For example, DM(S3) is
a subset of DM(S1) and should thus be eliminated; at the
same time, DM(S4) and DM(S5) are both subsets of DM(S2),
and thus they should both be removed. For now, only
DM(S1) and DM(S2) survive.

Step 3. Filtering out Non-Significant Decision Models
When a decision model has been established, we should
then consider its popularity among all the sessions. In other
words, if a decision model seldom appears, then it is
non-significant to the needs of decision makers. Therefore,
such a decision model of low popularity is considered not
worthy of exploring and is thus eliminated. In this paper,
we define the session support of Si as ss(Si) = |DM(Si)| / N,
where |DM(Si)| stands for the number of sessions whose
decision models are based on the primary session Si, and N
stands for the total number of the sessions. When the value
of session support is higher than the minimum session

support (β), it means the decision model is significant. In

our example, the session support value of DM(S1) is ss(S1)
= 3/5 = 60%, and the session support of DM(S2) is ss(S2) =
4/5 = 80%. Suppose the preset minimum session support is
70%, then DM(S1) should be eliminated. Therefore, for
now, only DM(S2) survives.

Fig. 4 User sessions

Session code Query codes for every session
S1 (sql 1, sql 2, sql 3, sql 4)
S2 (sql 1, sql 3, sql 4, sql 5)
S3 (sql 1, sql 2, sql 3, sql 6, sql 7)
S4 (sql 1, sql3, sql 5)
S5 (sql 4, sql 5)

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

Step 4. Mining Association Combinations
Now, we can start to build up association combinations
among the sessions in every decision model DM(Si) by
association method. Here, we shall first describe how to
construct association combinations by the Aprioriall
association method [1]. Then, to enhance the efficiency, we
shall propose the Apriori-Model to get rid of Aprioriall’s
weakness of repeatedly scanning the databases. In this
paper, we define “model support” as the probability of
occurrence of the query for a certain data item in different
sessions of the same decision model. To filter data items
and decide if they can be admitted in the association
combination, a minimum model support value (represented
by the symbol á) is set for comparison.
Take Figure 5 for example (where the decision model is
DM(S2)). Following the Aprioriall association method, we
come from C1 through L1 and C2 to L2, and so on and so
forth. Here, Ci is the candidate set of i-itemset’s, and Li is
the set composed of i-itemset’s that have the property of
Large, meaning that the model support values of these
i-itemset’s are greater than the minimum model support. In
this example, we set the minimum model support to be
50%. Besides, to make the association combinations in Li (i
= 1, 2, 3 and 4) acceptable, they must be maximal. Here, an
association combination that is maximal cannot be a subset
of another association combination.
When deriving decision models DM(Si) empirically, what
we need are decis ion models that bear high resemblance
among them so that there can be high similarities among
sessions, which in turn means a convergent objective.
Decision models sorted out by a higher minimum model
affinity value have sessions of higher resemblance.
Therefore, association combinations can be more easily
derived from the common queries among sessions, namely
same(Si, Sj) instead of following the Aprioriall association
method through the long way from 1-itemset, 2-itemset, …,
to n-itemset.According to the discussion above, we
propose the Apriori-Model association method here to
derive association combinations with the property of
“Large” from same(Si, Sj). The procedure is described as
follows:
[P1] Sort out sessions with the property of “Large” from

DM(Si)|î
When the minimum model support is set to be d%, we can
use the equation N × d% = f to turn the threshold value
from the form of a percentage (d%) into a number (f). This
number of appearances f is the lowest point that the itemset
must reach to demonstrate it is “large” enough. This lowest
f is entitled the minimum model support count.

In a certain DM(Si)|î, in case that some of the sessions have
identical contents of queries and that the number of such
sessions is larger than or equal to the minimum model
support count, then the contents of these sessions are
immediately “large” and deserve the name of association
combinations. Therefore, these sessions can skip the
processing afterwards. For example, as Figure 6(b) shows,
S10, S11, and S12 share identical query contents, and their
number adds up to be 3, which is equal to the minimum
model support count. Therefore, these three sessions are to
be directly sorted out to establish the association
combination {sql 2, sql 3, sql 4, sql 5, sql 6} without going
through the processing afterwards.
[P2] Establish same(Si, Sj) for Sj ∈ DM(Si)|î, j ≠ i
In this step, Si acts as the primary session, and the
compared sessions Sj take turns to compare with Si. After
the comparisons, the same query codes sql are organized
into same(Si, Sj). For example, in Figure 6, S2 = (sql 1, sql
2, sql 3, sql 4, sql 5, sql 6, sql 7, sql 8), and S1 = (sql 1, sql
2, sql 3, sql 4, sql 5, sql 6, sql 7, sql 8, sql 9). Therefore,
same(S2, S1) = { sql 1, sql 2, sql 3, sql 4, sql 5, sql 6, sql 7,
sql 8}. Keep on with the work, and we can get the result in
Figure 6(c): same(S2, Sj), where j = 1, 3, 4, 5.
[P3] Build up t complex sets ijsame_com for j = 1, 2, …,

t, where t = 1 -)|DM(S|
1 - f

iC

Organizing the elements in any f-1 sets of the name
same(Si, Sj) based on the primary session Si, where the total
number of such sets named same(Si, Sj) is |DM(Si) | - 1, we

can build up t (= 1 -)|DM(S|
1 - f

iC) sets of the kind com_same;

that is, ijsame_com = {Si, same(Si, 1iS), same(Si,

2iS), …, same(Si, 1) - f(iS)}, where j = 1, 2, …,
1 -)|DM(S|

1 - f
iC , and same(Si, 1iS), same(Si, 2iS), …, same(Si,

1) - f(iS) are any f-1 elements in the set same(Si, Sj). For

example, the primary session is S2 in Figure 6(c). There are
four sets of the name same(S2, Sj), where j = 1, 3, 4, 5, and
the minimum model support count is 3. As a result, we can

build up 4
1 - 3C = 4! / (2! 2!) = 6 sets of the kind

com_same.
[P4] Derive large itemset Rij from the sets ijsame_com

Examining the content of every com_same set, if the
number of appearances of a same sql is equal to the
minimum model support count, then we can put this sql in
the large itemset. In our example, com_same21 = {S2,
same(S2 , S1), same(S2 , S3)}. Here, the number of

C3

Fig. 5 Example of association
method

3-itemset
{sql 1,sql 3,sql 4}
{sql 1,sql 3,sql 5}
{sql 1,sql 4,sql 5}
{sql 3,sql 4,sql 5}

3-itemset support
{sql 1,sql 3,sql 4} 2
{sql 1,sql 3,sql 5} 2

4-itemset
{sql 1,sql 2,sql 3,sql 4}

Session Codes of queries in each
code session

S1 (sql 1, sql 2, sql 3, sql 4)
S2 (sql 1, sql 3, sql 4, sql 5)
S4 (sql 1, sql 3, sql 5)
S5 (sql 4, sql 5)

1- item
set

{sql 1}
{sql 2}
 {sql 3}
 {sql 4}
 {sql 5}
 {sql 6}

1-itemset support
{sql 1} 3
{sql 3} 3
{sql 4} 3
{sql 5} 3

C1 L1

2-itemset
{sql 1,sql 3}
{sql 1,sql 4}
{sql 1,sql 5}
{sql 3,sql 4}
{sql 3,sql 5}
{sql 4,sql 5}

2-itemset support
{sql 1,sql 3} 3
{sql 1,sql 4} 2
{sql 1,sql 5} 2
{sql 3,sql 4} 2
{sql 3,sql 5} 2
{sql 4,sql 5} 2

C2 L2

L3
C4

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

appearances is three for each of sql 1, sql 2, sql 4, sql 6, sql
7, and sql8, which is equal to the preset minimum model
support count 3. Therefore, we can derive the association
combination {sql 1, sql 2, sql 4, sql 6, sql 7, sql 8}.
Combining the derived association combination sets by the
rule “maximal,” we can come to the final association
combination set Ri.
The following examples are two cases for illustrating the
Apriori-Model procedure:
Example 1
(1) Sort out sessions that are large from DM(Si)|î and build

up same(Si, Sj)
In Figure 6(a), the query sessions are made by many
decision makers for their individual objectives; therefore,
we can establish decision models following Steps 1
through 3. Suppose the minimum model affinity is set to
be 60%, then we can set up two decision models
MD(S2)| î=60% = {S1, S2, S3, S4, S5} and MD(S5)| î=60% =
{S1, S2, S4, S5, S6}. Take MD(S2)| î=60% for example,
which is shown in Figure 6(b). Picking out sessions S10,
S11, and S12 that are large, we get the association
combination set {sql 2, sql 3, sql 4, sql 5, sql 6}. Then
we derive same(S2, Sj), where j = 1, 3, 4, 5 as Figure 6(c)
shows.

(2) Build up complex set com_same
In case the minimum model support is 60%, then the

minimum model support count is 4 ×60%≒ 3. That is

to say, this complex set com_same can be any set based
on the primary session S2 with any two other sets inside
that are members of the family same(S2, Sj) (j = 1, 3, 4,
5). In other words, such complex sets include
com_same21 = { S2, same(S2, S1), same(S2, S3)},
com_same22 = { S2, same(S2, S1), same(S2, S4)},
com_same23 = { S2, same(S2, S1), same(S2, S5)},
com_same24 = { S2, same(S2, S3), same(S2, S4)},
com_same25 = { S2, same(S2, S3), same(S2, S5)}, and
com_same26 = { S2, same(S2, S4), same(S2, S5)}.

(3) Derive the large itemset from the complex set
com_same
In com_same21 = { S2, same(S2, S1), same(S2, S3)}, sql 1,
sql 2, sql 4, sql 6, sql 7, and sql 8 are query codes that
appear three times each; in other words, they meet the
requirement that the minimum model support count is
equal to 3. Therefore, we can derive a second

association combination set {sql 1, sql 2, sql 4, sql 6, sql
7, sql 8} here. Then, according to the complex set
com_same ij (i = 2, j = 2, 3, 4, 5, 6) built up just above,
we can come up with association combination sets {sql
1, sql 2, sql 4, sql 5, sql 6, sql 8}, { sql 1, sql 3, sql 4,
sql 5, sql 6, sql 8}, { sql 1, sql 2, sql 4, sql 6, sql 8},
{ sql 1, sql 4, sql 6, sql 8}, and { sql 1, sql 4, sql 5, sql 6,
sql 8}. Again, following the rule of “maximal,” the large
itemsets for MD(S2)| î=60% are R21 = {sql 2, sql 3, sql 4,
sql 5, sql 6}, R22 = { sql 1, sql 2, sql 4, sql 6, sql 7, sql
8}, R23 = { sql 1, sql 2, sql 4, sql 5, sql 6, sql 8}, and R24

= { sql 1, sql 3, sql 4, sql 5, sql 6, sql 8}, and R2 = R21∪

R22∪R23∪R23. To put it another way, to come to the

same result, our Apriori-Model needs to do 5 model
support calculations on com_same ij (i = 2, j = 1, 2, 3, 4,
5, 6), while Aprioriall [1] has to go all the way through
144 itemset model support calculations. In addition,
according to the empirical studies in [1][4][5], model
support calculations are the major factor that affects the
efficiency of the practice of association models.

Example 2
(1) Sort out sessions that are large from DM(Si)|î and build

up same(Si, Sj)
Take DM(S2)|î=50% =
{S1, S2, S4, S5} built up
through Steps 1 to 3
for example. We can
establish the same(S2,
Sj) in Figure 6(d). In
this example, there are
no large sessions.

(2) Build up complex sets com_same
If the minimum model support is set to be 50%, then the

minimum model support count is 3 ×50%≒ 2. That

means the complex set com_same can be any set based
on the primary session S2 with any extra set in the
family of same(S2, Sj) (j = 1, 4, 5). Such complex sets
include com_same21 = { S2, same(S2, S1)}, com_same22
= { S2, same(S2, S4)}, and com_same23 = { S2, same(S2,
S5)}.

(3) Derive large itemsets from complex sets com_same
In com_same21 = { S2, same(S2, S1)}, sql 1, sql 3, and

same(S i, Sj) Codes of queries
same(S2, S1) { sql 1, sql 3, sql 4}
same(S2, S4) { sql 1, sql 3, sql 5}
same(S2, S5) { sql 4, sql 5}

Fig. 6(d) same(S2, Sj) for
MD(S2)| î=50%

Session Codes of queries made in each session
code

S1 (sql 1, sql 2, sql 3, sql 4, sql 5, sql 6, sql 7,
 sql 8, sql 9)

S2 (sql 1, sql 2, sql 3, sql 4, sql 5, sql 6, sql 7,
sql 8)

S3 (sql 1, sql 2, sql 4, sql 6, sql 7, sql 8)
S4 (sql 1, sql 2, sql 4, sql 5, sql 6, sql 8)
S5 (sql 1, sql 3, sql 4, sql 5, sql 6, sql 8)
S6 (sql 1, sql 3, sql 5, sql 6, sql 8, sql 10, sql 12)
S7 (sql 2, sql 6, sql 8, sql 10, sql 11)
S8 (sql 3, sql 5, sql 6, sql 7, sql 11, sql 13)
S9 (sql 4, sql 6, sql 8, sql 10, sql 12, sql 13)
S10 (sql 2, sql 3, sql 4, sql 5, sql 6)
S11 (sql 2, sql 3, sql 4, sql 5, sql 6)
S12 (sql 2, sql 3, sql 4, sql 5, sql 6)

Fig.6(a) Query sessions

same(S i, Sj) Codes of queries
same(S2, S1) { sql 1, sql 2, sql 3, sql 4, sql 5, sql 6, sql 7, sql 8}
same(S2, S3) { sql 1, sql 2, sql 4, sql 6, sql 7, sql 8}
same(S2, S4) { sql 1, sql 2, sql 4, sql 5, sql 6, sql 8}
same(S2, S5) { sql 1, sql 3, sql 4, sql 5, sql 6, sql 8}

Fig. 6(c) same(S2, Sj) for MD(S2)| î=60%

Fig. 6(b) MD(S2)| î=60%

Session code Codes of queries made in each session
S1 (sql 1, sql 2, sql 3, sql 4, sql 5, sql 6, sql 7, sql 8,

sql 9)
S2 (sql 1, sql 2, sql 3, sql 4, sql 5, sql 6, sql 7, sql 8)
S3 (sql 1, sql 2, sql 4, sql 6, sql 7, sql 8)
S4 (sql 1, sql 2, sql 4, sql 5, sql 6, sql 8)
S5 (sql 1, sql 3, sql 4, sql 5, sql 6, sql 8)

Note: S10, S11, and S12 are drawn out due to “Large.”

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

sql 4 are the query codes that appear twice and thus meet the requirement that the minimum model support

count is equal to 2. Therefore, we come to the first
association combination set { sql 1, sql 3, sql 4} here.
From the complex sets com_same ij (i =2, j = 2, 3)
derived just above, we can deduce two association
combination sets { sql 1, sql 3, sql 5} and { sql 4, sql 5}.
In this place, to get the same association combination
sets, our Apriori_Model only needs 3 model support
calculations on com_same ij (i = 2, j = 1, 2, 3), while
Aprioriall [1] has to do 16 itemset model support
calculations.

Step 5 Establishing cause-and-effect association rules by
LISREL
Figure 7 is the flowchart of the procedure to establish
causality rules by the linear structure relation mode. First,
the decision models built up in Step 1 are to be entered up.
If there are no decision models not yet processed, then we
come to an end here (see parts 1 and 2 of Figure 7). Then,
we access the association combination sets not yet
processed in the same decision model (see parts 3 and 4 of
Figure 7). In Step 4, Example 2, we deal with association
combinations by means of Apriori-Model, and three
association combination sets are generated from MD(S2)|

î=50%, where one of the association combination sets is {sql
1, sql 3, sql 5}. In this very association combination set, if
sql 1 stands for the query code for “salary imbalance
index,” sql 3 stands for the query code for the “ income
imbalance index,” and sql 5 stands for the query code for
the “average number of crimes committed,” then we can
learn from part 5 of Figure 7 that, when deriving
association rules of causal relationships, we need to pick
out every element in the rules as the effect and the other
elements as causes to discuss the appropriateness of the
cause-effect model. For example, if we pick out sql 3 as
the effect, then we can come to the sub-rule sql 1, sql
5->sql 3. The linear structure relation model can be
applied as Figure 8 (or parts 6 and 7 of Figure 7) shows.
The test values concerned are listed in Figure 9. According
to the test result, the GFI value is 0.702, which is greater
than the preset GFI threshold (supposedly 0.6). In addition,
the p-value for every element is less than 0.05, and the
regression coefficients are respectively 1 and 0.657. As a
result, we get one association sub-rule of causality sql 1,
sql 5->sql 3. Of course, the remaining sub-rules sql 1, sql
3->sql 5 and sql 3, sql 5->sql 1 should be further processed
(by repeating parts 5, 6, and 7 of Figure 7). When this

Statistic Value P-value

Chi-square 56.6461 0.01
GFI 0.702
AGFI 0.504
RMR 0.15

Overall Model Fit

Parameter Estimate P-value
Y1 1*
X1 1*
X2 0.659 0.000

Measurement Model Result

Notes:
1. X1: salary imbalance index, X2: income imbalance index,

and Y1: average number of crimes committed.
2. The symbol * means the value is kept constant for other

variables to compare with.
Fig. 9 Test values of relation models

Retrieve data about
independent/dependent

variables in databases.
Our example data here are the
salary imbalance indices, income
imbalance indices, and average
numbers of crimes committed
adopted from the twenty-one
county/municipal governments,
Taiwan, 1997.

Analyze data using
statistical software.

LISREL model of
Statistical software
applied here.

Test for GFI values to decide
appropriateness of cause-effect
relationship. If a sub-rule is not
appropriate, remove it..

The GFI threshold is set as 60%
here. The testing reveals that the
example has an appropriate
cause-effect relationship.

Examine p-values of causes.
Remove the causes whose
p-values are greater than 0.05.

The p-values of all the cause
items are less then 0.05.

Arrange the cause items according
to their regression coefficients
(from big to small).

The cause items are arranged in the order:
1.Salary imbalance index
2.Income imbalance index

Establish appropriate
sub-rules.

(sql 1,sql 5)->sql 3 Fig. 8 The linear structure relation model

Fig. 7 Procedure of building up rules of cause-effect relationships by LISREL

Enter the association
combination sets
derived from the same
decision model

Whether there are
association combination
sets not yet processed in
the decision model ?

Generate subsets from
the combination set
where any item is the
effect and all the others
are the causes

Derive the GFI value

and λ value by
LISREL

Pick out subsets that satisfy GFI >β
(preset by the user) to form sub-rules
of causality. Arrange the sub-rules in
such order that causes come first
followed by effects. For the causes, the
ones with bigger λ values come first

Whether there are
elements not yet
taken for the
effect in the set ?

3 4 5

6 7
8

Whether there are
decision models
not yet
processed ?

Yes

Enter
decision
models

For one association
combination set, pick out
the one sub-rule with the
biggest GFI value to be
the sub-rule of this set.

From the combination sets in a same decision
model, pick out the sub-rule with the biggest
GFI value as the primary rule, and the others as
secondary rules

No

End

1 2

11 10

9

No

Yes Yes

No

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

association combination set is done and yet there are still
other association combination sets unprocessed in the
same model such as {sql 1, sql 3, sql 4} and {sql 4, sql 5},
we must also repeat the steps in parts 3 through 7 of Figure
7 on them.
Please note here that there may be more than one
association combination in a decision model. For example,
in MD(S2)| î=50%, there are as many as three association
combination sets {sql 1, sql 3, sql 4}, {sql 1, sql 3, sql 5},
and {sql 4, sql 5}. Because there is only one single
objective to one decision model, from MD(S2)| î=50%, no
matter how many association sub-rules of causality we can
derive via the linear structure relation model, only the
sub-rule with the highest GFI value is chosen. The reason
is that, among the sub-rules derived from one model, the
one with the highest GFI value is the one with the
strongest cause-effect relationship and thus is the one we
need.
The association rules are picked out the way as follows. In
{sql 1, sql 3, sql 5} from MD(S2)| î=50%, we get the
following two association sub-rules of causality sql 1, sql
5->sql 3 (GFI=0.702) and sql 3, sql 5->sql 1 (GFI=0.601).
Out of the two, the sub-rule sql 1, sql 5->sql 3 has a bigger
GFI value, which means the cause-effect relationship
indicated by this sub-rule is stronger; therefore, we take it
(see part 9 of Figure 7). On the other hand, MD(S2)| î=50%
still has one other association combination set {sql 1, sql 3,
sql 4}, from which we get three association sub-rules of
causality sql 1, sql 4->sql 3 (GFI=0.500), sql 3, sql 1->sql
4 (GFI=0.503), as well as sql 3, sql 4->sql 1 (GFI=0.402).
Out of the three, sql 3, sql 1->sql 4 has the biggest GFI
value, so the cause-effect relationship it indicates must be
the strongest. Therefore, we take sql 3, sql 1->sql 4. After
we have gone through all the association combination sets,
we compare the GFI values of the sub-rules picked out.
Among them, the sub-rule with the biggest GFI value
(such as sql 1, sql 5->sql 3 in our example) is taken for the
primary rule, and the others (such as sql 3, sql 1->sql 4)
will serve as secondary rules (refer to part 10 of Figure 7).
Since the GFI value indicates the probability of the
existence of a cause-effect relationship, we should of
course reserve rules with high GFI values for later use in
the pre-fetching of materialized views as well as the
intelligent query paths.

5. EVALUATIONA OF IMVIP MECHANISM

The raw data we adopt in this paper for the empirical
analysis of our new method are the queries made in Taiwan
government database warehouse within a certain period
of time. Based on the raw data, we derive six association
rules of causality as shown in part 2.1 of Figure 10, which
will help us make it through the inferences in the rest of
this section. Figure 10 below illustrates how our IMVIP
mechanism works. When a decision maker proceeds with
queries for data, the cause-and-effect association rules can
help with the data warehouse operation in the following
steps:
Step 1. The data warehouse (see part 3 of Figure 10) can
fetch and organize the associated data in advance that are
originally shattered in different databases (see part 1 of
Figure 10). However, if there should be a big gap between
the pre-fetched data and the data really practically needed,
the resources put into the construction of the data
warehouse would be a waste. In this paper, the
cause-and-effect association rules derived to build up the
materialized views (see part 2 of Figure 10) are directed at
the needs of the decision makers (see part 2.1 of Figure 10)
in order to enhance the efficiency of the data warehouse.
Step 2. When offering data in the data warehouse for use,
we can fetch the data within the association rules whose
numbers of queries made by the decision maker are higher
(for examp le, in rule 2 of part 2.1 in Figure 10, higher
numbers of queries are made for “number of couples
married,” “population,” “sex ratio,” “income distribution,”
and “population growth”) as well as the data that show up
more often in the derived rules (such as “population,”
which appears three times in the six rules) and store them in
memory in advance when the data warehouse is being setup
(see parts 4 and 4.1 in Figure 10). This way, we can save
the time that would otherwise be wasted on storing media
and searching for data in the hard disk. Of course, the
threshold here needs to be adjusted according to the size of
the computer memory used as well as the sizes of the
databases.
Step 3. When searching for data (part 7 of Figure 10), if the
decision maker offers the objective (for example, to infer
the population growth ratio), then the system can draw out
the associated data (namely the “number of couples
married,” “population,” “sex ratio,” “income distribution,”
and “population growth”) (see part 5 of Figure 10)
according to rule 2 in part 2.1 of Figure 10. However, if the
decision maker does not reveal the objective, then thing
will go another way. Suppose the first query the decision

Rule No. Rule description
1 salary imbalance index, income imbalance index à number of crimes committed
2 number of couples married, population, sex ratio, income distribution à population growth
3 number of companies, number of lands traded, population, unemployment rate à growth of local tax
4 degree of urbanization, education, age group, population, sex ratio à number of social worker needed
5 education, degree of urbanization, income distribution, street length, growth of motor vehicles à number of traffic accidents
6 number of cars increased, growth of public transportation, income distribution, population à number of parking spaces needed

Fig. 10 Illustration of the IMVIP mechanism

2.1

Materialized
views

Data
warehouse

Data
pre-fetched to
memory

Queries
made by
the
decision
maker

1.Queried more often
2.Occurring more often

Fetch data
according to
association rules

Access data for
decision -making

Objective offered

Objective not
offered

Data source 1

Data source 2

… … …

1

2 3

4 4.1 5

6

7

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

 maker makes is for population. Then, the system will
show the data associated with population (for example,
“number of couples married,” “sex ratio,” “income
distribution,” and “population growth” in rule 2; “number
of companies,” “number of lands traded,” “unemployment
rate,” and “growth of local tax” in rule 3; “degree of
urbanization,” “education,” “age group,” “sex ratio,” and
“number of social workers needed” in rule 4; as well as
“number of cars increased,” “growth of public
transportation,” “income distribution,” and “number of
parking spaces needed” in rule 6) for the decision maker to
choose from for further queries. Then, if the decision maker
makes a second query for sex ratio, the range of associated
data will be narrowed down to rules 2 and 4. After that, if
the decision maker makes a third query for number of
couples married, then the decision maker’s objective is
predicted to be pointing at rule 2, and the system will offer
related data as such (see part 6 in Figure 10). Thus, the
system can provide the decision maker with intelligent data
pre-fetching along the decision-making path, which will
dramatically enhance the efficiency for the decision-making
process.
Assumptions are made for the six association rules in part
2.1 of Figure 10 : (1) The total number of the items is 22
(where items that different rules have in common, such as
“population” that appears in rules 2, 3, 4, and 6, are counted
only once). (2) 11 queries are applied to rules 1, 2, and 3,
individually. (taking up 10.18% of the total number of
queries) 25 queries are applied to rules 4, 5, and 6,
individually. (taking up 23.15% of the total number of
queries).
Table 1 is a list of six different methods of data warehouse
construction codenamed A through F. Among them, none
of methods A through D uses the system proposed in this
paper. On the contrary, both methods E and F are followers
of our IMVIP mechanism. On the other hand, rows a
through f are for evaluation items for those data warehouse
construction methods to examine the working efficiency
performances as to queries for decision-making. For
example, “a: number of data items fetched from data

sources (4)” is to put down the number of data items
queried that cannot but be fetched from their very sources
outside the data warehouse, and the number 4 inside the
parentheses indicates the time complexity for fetching one
data item. If the query a certain decision maker makes is for
rules 3 and 4 in part 2.1 in Figure 10, then Cell A-a will
show 50%, indicating that only half of the data needed can
be found in the data warehouse with the other half outside
in their individual sources. There are totally 10 data items
in rules 3 and 4, and therefore there are still 5 other data
items to be fetched outside the data warehouse. Cell A-b is
for the summary data acquired by calculating and
organizing other data. In rules 3 and 4, such data include
“degree of urbanization,” “age group,” and “sex ratio.”
Cells A-c and A-d suggest that the data warehouse offers
no intelligent decision-making path, and thus the number of
data items shown on the screen is 22, whether or not the
objective has been provided. Cell A-e reveals that 10 data
items must be drawn out from the hard disk. Finally, the
number (113=4×5+3×3+1×22+1×22+4×10) in Cell A-f is
figured out by multiplying all the time complexity indices
in the cells above. It is used to indicate the time complexity
of the particular data warehouse construction method. By
the same token, we can get the corresponding information
as to different data warehouse construction methods in
Columns B through D in Table 1.
 As for data warehouse construction methods E and F,
because IMVIP mechanism is employed, there is already
no need to search individual databases for data, nor is there
any need for data calculation and integration. Therefore,
Cells E-a, E-b, F-a, and F-b are all 0’s. Cells E-c and F-c
show that the decision maker faces the 10 data items in
rules 3 and 4 when she/he has revealed the objective. Then,
Cells E-d and F-d indicate that it takes two steps for our
new mechanism to reach the data in rules 3 and 4 when the
decision maker’s objective remains unknown. Here, the
first step is to fetch the data in rule 3. If the decision maker
chooses population, then she/he is going to face the 17 data
items in rules 2, 3, 4, and 6 (excluding population of
course). If the second choice is unemployment rate, then

Proposed mechanism not employed Proposed mechanism employed
A: 50% of the
data needed
can be found
in the data
warehouse.
summary data
not processed

B: 50% of the
data needed
can be found
in the data
warehouse.
summary data
processed

C : 90% of the
data needed
can be found
in the data
warehouse.
summary data
not processed

D: 90% of the
data needed
can be found
in the data
warehouse.
summary data
processed

E: 100% of the data
needed can be found in
the data warehouse.
Summary data processed.
Data items put in memory
whose query is applied
more than 20% of the
total number of queries

F: 100% of the data
needed can be found in
the data warehouse.
Summary data processed.
Data items put in memory
whose query is applied
more than 10% of the
total number of queries

a: number of data
items fetched from
data sources (4)

5 5 1 1 0 0

b: number of
summary data items
processed (3)

3 0 3 0 0 0

c: number of data
items offered when
user has revealed
the objective (1)

22 22 22 22 10 10

d: number of data
items offered when
user has not
revealed the
objective (1)

22 22 22 22 17 17

e : number of data
items to be drawn
out from hard disk
when queried (4)

10 10 10 10 4 0

f: total time
complexity 113 104 97 88 43 27

Table 1. Evaluation of data warehouse construction methods

Methods of data
warehouse
construction

Evaluation
items

Chin-Feng Lee and Main-Che Tsai

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001.

the decision maker is going to face the remaining 3 data
items in rule 3. Now, here comes the second step, which is
for the access of the data in rule 4. If the decision maker’s
first choice is population, then, again, she/he is going to
face the 17 data items in rules 2, 3, 4, and 6 except for
population itself. After that, if the second choice is
education, then she/he will face the 4 remaining items in
rule 4. This way, although the number of data items faced
varies from choice to choice, the total number is always 17.
As for Cell E-e, because the data whose query is applied
more than 20% of the total number of queries have already
been put in memory, we have got all the items in rule 4
readily available with the four items “number of
companies,” “number of lands traded,” “unemployment
rate,” and “growth of local tax” not yet loaded in. Then, as
Cell F-e reveals, when the data whose query is applied
more than 10% of the total number of queries have already
been put in memory, we have got all the items in rules 3
and 4 ready for query in memory. Finally, the time
complexity indices in Cells E-f and F-f can also be figured
out according to the above cells. According to the total time
complexity in Cells E-f and F-f, we can find that the
performance is always better if the IMVIP mechanism is
employed.
From the evaluation above, we find out there are three key
factors that affect the efficiency of data warehouse
operations, and they are: whether or not the data items
stored can meet the need for decision-making, whether or
not the system can offer intelligent query paths, as well as
whether or not the data items needed can be pre-fetched
and kept in memory. The time complexity indices for
methods of data warehouse construction in Table 1 have
demonstrated that our intelligent materialized views
pre-fetching mechanism, performing quite well in all the
three key factors above, can offer appropriate
problem-solving plans and will be empirically helpful for
data warehouse construction.

6. CONCLUSIONS

The database components of a data warehouse keep in store
the basic information that decision makers need when they
have to make decisions of all kinds. Since the data sources
usually locate separately in a wide variety of application
systems, where even the working platforms are very
probably heterogeneous, if we can build up definitions for
materialized views that are able to live up to the needs of
decision makers, then we can be successful in lowering the
probability of cases where the data needed have to be
searched for outside of the data warehouse. As a result, we
will be able to not only reduce the load on computer
resources but also enhance the efficiency in
decision-making.
To satisfy the requirement above, in this paper, we have
proposed an IMVIP mechanism to derive materialized
views fitting various decision makers’ needs from the
Apriori-Model and the linear structure relation model.
Exploring every single query that each decision maker
makes for a certain data item, this intelligent system can
derive the association rules as to the most-often-queried
data items for every possible query objective. Through the
inference of the association rules among queries, in the data
management system, the data about to be queried by the

decision maker can thus be pre-fetched. As a result, the
data access time can be shortened, and the decision-making
efficiency improved. In addition, by means of the linear
structure relation model, the system can determine the
cause-effect relationships among the queried data items in
the association rules. These cause-and-effect association
rules can further serve as more-pertinently-to-the-point
references for decision makers. As a result, such rules will
be great help with the construction and performance of data
warehouses.

REFERENCES

[1] Agrawal, Rakesh & Srikant, Ramakrishnan, “Mining
Sequential Patterns,” Data Engineering , 1995, 3-14.
[2] Benamati, John & Lederer, Albert L., “An Empirical
Study IT Management and Rapid IT Change,” Proceedings
of the 1999 ACM SIGCPR Conference on Computer
Personnel Research, 1999, 144-153.
[3] Berson, Alex & Smith, Stephen J., Data Warehousing,
Data Mining, & OLAP, McGraw-Hill Companies, 1997.
[4] Cai, C. H., Fu, Ada W. C., Cheng, C. H. & Kwong, W.
W., “Mining Association Rules with Weighted Items,”
Proceedings of Database Engineering and Applications
Symposium, 1998, 68-79.
[5] Han, Jiawei & Fu, Yongjian, “Mining Multiple -Level
Association Rules in Large Databases,” IEEE Transactions
on Knowledge and Data Engineering , 1999,11(5), 798-805.
[6] Hoel, Paul G., Port, Sidney C. & Stone, Charles J.,
Introduction to Probability Theory, Houghton Mifflin
Company, 1985.
[7] Johnson, Dallas E., Applied Multivariate Methods for
Data Analysts, Brooks/Cole Publishing Company, 1998.
[8] Kawano, Hiroyuki & Hasegawa, Toshiharu, “Mondou:
Interface with Text Data Mining for Web Search Engine,
”Proceedings of 31th Annual Hawaii International
Conference on System Sciences, 1998, 275-283.
[9] Krippendorf, Micheal & Song, Il-Yeol, “The
Translation of STAR Schema into Entity-Relationship
Diagrams,” Database and Expert Systems Applications,
1997, 390-395.
[10] Liang, Weifa, Li, Hui, Wang, Hui & Orlowska, Maria
E., “Making Multiple Views Self-Maintainable in a Data
Warehouse,” Data & Knowledge Engineering, 1999,30,
121-134.
[11] Ragel, A. & Cremilleux, B., “MVC - A Preprocessing
Method to Deal With Missing Values,” Knowledge-Based
Systems, 1999,12, 285-291.
[12] Samtani, S. & Kumar, V., “Maintaining Consistency in
Partially Self-Maintainable Views at the Data Warehouse,”
Database and Expert System Applications, 1998, 206-211.
[13] Theodoratos, Dimitri & Sellis, Timos, “Designing
Data Warehouses,” Data & Knowledge Engineering,
1999,31, 279-301.

	A Design of Intelligent Pre-fetching Materialized Views Mechanism for Enhancing Summary Queries on Data Warehouses
	346.doc

