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ABSTRACT 

Every commercial transaction generates large amounts of 
data on consumers for use by organizations. Data from e-
business is typified by its complexity, quantity, and 
noisiness. Neural networks are ideally suited for these 
problem characteristics. Furthermore, the fact that neural 
networks can estimate the posterior probabilities 
associated with the group membership of objects of 
interest, makes them a powerful tool of great potential for 
e-business applications.  
 
As with all classification approaches, though, the neural 
network’s utility is based upon its generalization 
performance on new data. In this paper, we propose a 
principled approach to building and evaluation neural 
network models for e-business applications.  First, the 
usefulness of neural networks for e-commerce applications 
and Bayesian classification is discussed. Next, the theory 
concerning model accuracy and generalization is presented. 
Then the principled approach is described including 
illustrative examples. 
 

INTRODUCTION 
Every commercial transaction generates large amounts of 
data on consumers for use by organizations in creating and 
improving organizational processes and customized 
marketing programs. Web-related retailers can link 
customer credit card purchases to their site’s search and 
browsing records, and even to external databases, to 
develop more sophisticated and accurate customer profiles. 
This information can then be used to develop 
individualized advertising schemes, email distributions, 
and suggested add-on purchase items, in addition to any 
number of sophisticated programs and processes. These 
repositories of data must be properly managed to ensure 
the highest return on an organization’s investment. Data 
architectures and algorithms are evolving to more 
efficiently store and retrieve data and to effectively 
transform it into the information and knowledge necessary 
to provide superior economic returns and increased 
customer satisfaction.  
 
Decision support systems and data mining approaches 
have been dominant approaches for improving data 
utilization. Decision support systems have enjoyed years 
of success in manufacturing and organizational 
management. Their track record, ease of use, and 
numerous vendor offerings make them a natural choice in 
this process. More recently, data mining approaches have 
gained in popularity as commercial offerings have entered 
mainstream use. Utilizing sophisticated statistical 
correlation procedures, organizations can find and exploit 

relationships behind customer behaviors and 
characteristics that are seemingly unrelated.  

 
Another approach, though much less commonly utilized 
for e-business applications, lies in (artificial) neural 
networks.  Neural networks possess many characteristics 
that make them appealing for e-business applications as 
discussed next.  

 
Neural networks simulate the tabula rasa, or clean slate, 
learning processes of biological systems including the 
human brain. Unlike traditional statistical methods such as 
discriminant analysis or regression methods, tabula rasa 
learning is appealing because it makes no prior 
assumptions on the form of a solution. Neural networks 
allow the data itself to determine the appropriate model 
form. Considering that e-business applications can 
generate dozens of variables on individual customers with 
each transaction, and that each system may contain 
thousands of customers with transactions from multiple 
sources, the limitations of traditional fixed-form models is 
readily apparent.  

 
A second desirable property of neural networks is the fact 
that they are consistent estimators. A consistent estimator 
is one that converges to the object of estimation (e.g., a 
multivariate function) asymptotically for large sample 
sizes. It has been shown by several authors 
[1][2][3][4][5][6] that neural networks can indeed 
approximate any function to desired accuracy. Richard and 
Lippmann [7] and Hung, Hu, Patuwo and Shanker [8], 
meanwhile, show that neural networks are capable of 
estimating posterior probability distributions. Given the 
large amounts of data with complex relationships 
generated in e-business settings, the usefulness of neural 
network applications in this area is promising. 

 
Another strength of neural networks for e-business settings 
is the fact that they can handle “noisy” data that might 
cause errors in traditional computer programming 
approaches. In addition, they can provide output for 
decision-making when clear choices of right and wrong 
may not exist. Given the variability inherent in human 
choice and actions, noisy data is the rule rather than the 
exception. Furthermore, the output from neural network 
for a classification problem represents a posterior 
probability of group membership that can be used to 
determine appropriate company actions. For example, 
based upon input factors, a customer might be identified as 
having a low probability of making additional purchases in 
the near term. This information could be used to quickly 
generate a short-term buying incentive tailored toward 
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highly profitable related items. Furthermore, sensitivity 
analysis can be performed to determine what effect 
changes on the customer’s input characteristics might have 
on purchase behavior. Opportunities then could be crafted 
to appropriately entice the customer into becoming a more 
regular purchaser. 

 
The above points show that neural networks are useful in 
e-business applications and they should make neural 
networks a valuable, though currently under utilized, 
addition to the decision maker’s tool chest. In many cases, 
neural networks might not be used simply because they are 
perceived as a “black box” that is not fully understood. In 
other cases, one might point to instances in which neural 
networks performed well during model building and even 
testing but then failed to live up to expectations during 
actual use. Indeed, it is the very advantages of neural 
networks — in particular, their reliance on the data itself to 
determine appropriate model form and their universal 
approximation capabilities — that can sometimes limit their 
usefulness in practice. Hence, one must be concerned not 
only with the ability of neural networks to learn presented 
data accurately but to generalize well to unseen future data 
as well.  

 
The purpose of this paper is to present an approach to 
building and evaluating neural network models for e-
business decision-making. To achieve this goal, issues 
related to Bayesian classifiers, model estimation error, 
model bias and model variance are reviewed first. Then a 
principled approach to building and evaluating neural 
network models is discussed. Examples will be presented 
to illustrate the approach. 
 

BAYESIAN CLASSIFICATION AND POSTERIOR 
PROBABILITIES  

In a classification problem setting, the underlying 
population generating process characterizes the 
relationship between the input attributes x and the output 
classes ω. This relationship defines the posterior 
probability distribution. At this point, simply note that the 
posterior probability ) | P( j xω  is the probability that an 

object belongs to a specified group  jω after we have 

observed information x related to the object.  
 

Posterior probability forms the basis for the well-known 
Bayesian classification theory [9]. According to Bayes rule, 
if we obtain an observation x , the prior probability of 
belonging to group j, )( jP ω , will be modified into the 

posterior probability, ) | P( j xω , that object x  belongs to 

group j by the following equation: 
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Bayes rule shows how observing the value of x  changes 
the prior probability )( jP ω  to the posterior 

probability ) | P( j xω  upon which the classification 

decision is based. For example, consider an e-mailed based 
mass marketing campaign that might generate a two 
percent response rate (i.e., prior probability )( jP ω  of 

response). Upon learning demographic and psycho graphic 
information on individuals (i.e., object attributes x ) the 
probability of response can be modified up or down from 

)( jP ω to ) | P( j xω  to reflect this new information.  

 
Furthermore, suppose that a particular x  is observed and 
is to be assigned to a group. Let λij( x ) be the cost of 
misclassifying x  to group i when it actually belongs to 
group j. Since ) | P( j xω  is the probability that the object 

belongs to group j given x, the expected loss associated 
with assigning x  to group i can be minimized by 
following the Bayesian decision rule for classification, 
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Assuming equal misclassification costs, then the Bayesian 
decision rule is to assign an object to the group associated 
with the maximum posterior probability: 
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This decision rule yields a minimum expected 
misclassification rate or, in other words, the maximum 
overall number of correct classifications in the long run.  

 
The above discussion clearly shows the important role of 
posterior probabilities in the Bayesian classification decision. 
The theoretical relationship linking estimation of Bayesian 
posterior probabilities to minimizing squared error cost 
functions has long been known. Papoulis [10] shows that the 
mapping function F: x → y, which minimizes the expected 
squared error is the conditional expectation ]|[ xyE . Since 

in a classification problem the output y is a vector of binary 
values, it can be easily shown (see, for example, [8]) that 

]|[ xyE  = )|( xωP . Since neural networks can approximate 

any function F arbitrarily closely (universal approximators), 
then neural network outputs are indeed good estimators of 
the posterior probabilities )|( xωP . 

 
Many recent papers have provided linkage between neural 
networks and posterior probabilities [7][8][11][12][13] 
[14][15] for squared error functions and on the cross-
entropy [16] error function . It should be noted most of 
these articles assume infinite sample sizes. It is Hung et al. 
[8] and Richard and Lippmann [7] who show that neural 
networks minimizing squared-error and cross-entropy cost 
functions are capable estimating posterior probabilities for 
finite sample sizes. The fact that neural networks can 
estimate posterior probabilities makes them powerful 
classification tools. It helps to explain their many reported 
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successes and is a major reason for the high level of 
research activity.  

 
We desire to use neural networks to approximate 
accurately the Bayesian posterior probabilities in order to 
make good classification decisions. We see from (1) that 
computing the posterior probabilities requires specification 
or estimation of prior probabilities )( jP ω  and conditional 

likelihood functions ) | f( jωx . While )( jP ω can be 

directly estimated from observed data, the strength of a 
neural network approach is that neural network directly 
estimates the posterior probability )|(  P j xω  based upon 

the data presented.  
 

An object’s posterior probability of belonging to a specific 
group is of great interest, since it allows us to make optimal 
decisions regarding the class membership of new data. For 
neural network classification problems, accurately modeling 
the underlying generating process is analogous to closely 
fitting the posterior probability distribution, which in turn, is 
key to maximizing expected classifications. Therefore, from 
a perspective of statistical classification generalization, we 
are concerned with mo del estimation error relative to the 
posterior probability distribution as this directly impacts the 
ability to generalize results. In e-commerce applications, this 
means for example, we might be utilizing a transactional 
database of customer segments jω  and their attributes x  to 

forecast the behavior of a new customer, which is based 
upon )|(  P j xω . Maximum expected classification rates are 

achieved when the neural network model accurately 
estimates the posterior probabilities of group membership, 
which results in not only minimized marketing costs but also 
in maximizing benefits as well. 

 
MODEL ESTIMATION ERROR: MODEL BIAS AND 

MODEL VARIANCE 
As noted above, neural networks are intimately dependent 
upon the data used for model building. Variations in 
training set composition can have significant impact on 
neural network performance for unseen objects. Therefore, 
for each problem domain, we must be concerned with the 
fact that a large number of data sets are possible and that 
our current database represents but one particular 
realization. To acknowledge this fact, the network model’s 
estimation error in the context of multiple data sets can be 
written as [17] 

]])|[);([( 2xyx EDfED − .     (2) 

ED represents the expectation with respect to all training 
sets, D. In other words, it is the average over all possible 
training sets with fixed sample size N. The term 

),( Df x represents the neural network estimate of the true 

function y given inputs x . The term ]|[ xyE  = 

)|( xωP represents the best possible estimate, which for a 

neural network classification problem setting, is the 
posterior probabilities upon which the classification 
decision will be made. Interested readers are directed to 
Duda and Hart [1973] for detailed coverage of Bayesian 
classification theory.  

 

Therefore, (2) represents the expected model estimation 
error of the neural network classifiers over all possible 
data sets that could be used in network training. 
Decomposing the model estimation error from (2) into 
components to measure the average performance of a 
model and performance variation resulting from different 
data sets gives  

 

[ ]2])|[);(( xyx EDfED −  =                                             (3) 

])]);([);([(])|[)];([( 22 DfEDfEEDfE DDD xxxyx −+−  
       “Model Bias”             +       “Model Variance”. 

 
As can be seen, the total mean-squared estimation error for 
a classifier can be thought of as consisting of two 
components, model bias (squared) and model variance. 
The model bias measures the extent to which the average 
of the network function )];([ DfED x  differs from the best 

possible function ]|[ xyE . In other words, model bias 

directly considers the neural network’s ability to learn the 
underlying generating process. Model variance, meanwhile, 
measures how sensitive the network estimates );( Df x  are 

to specific data sets. High model variance is indicated 
when model performance changes greatly based upon data 
set changes. Generalization performance of a classifier can 
suffer if one or both of these components are large.  

 
Often a tradeoff exists between the bias and variance 
contributions to the model estimation error which Geman, 
et al. [17] called the bias/variance dilemma . Many 
methods have been proposed in dealing with the issue of 
balancing the bias and variance components. Often, these 
efforts attempt to “smooth” network outputs thereby 
reducing the variance component. The price to pay is 
typically an increase in bias. Therefore, the effect on total 
model estimation error can be ambiguous. It bears 
repeating that this issue is especially important for neural 
network modeling, which relies heavily on the data set in 
determining the appropriate model form.  

 
With specific reference to neural network classifiers, these 
efforts seek to improve generalization capabilities for 
unseen objects. The fact that both model bias and model 
variance contribute to model estimation error — and hence 
the generalization performance of neural networks —
suggests that an approach utilizing multiple training data 
sets is necessary to fully evaluate the performance of 
proposed models. Next we will discuss how data available 
in e-business environments can be utilized in a principled 
approach to building neural networks for specific 
application and in more fully predicting the performance 
level expected in practice.  

 
A PRINCIPLED APPROACH 

Determining the model bias and the model variance in (3) 
requires estimating ]|[ xyE  = )|( xωP , the posterior 

probabilities. The existence of substantive amount of data 
typically available in e-business application presents an 
opportunity to construct the group likelihood function 

) | f( jωx and to compute the posterior probabilities 

directly from (1). This is indeed a potentially valuable fact 



Berardi V.L., Patuwo E.B., and M.Y. Hu 

The First International Conference on Electronic Business, Hong Kong, December 19-21, 2001 

that should be fully exploited and to which neural 
networks are particularly well-suited. 

 
Let x = [ x1, x2 , …, xp ] be customer attributes associated with 
an identified class jω , such as customer segments, that are 

contained in an e-commerce database. Commercially 
available distribution fitting procedures, such as ExpertFit 
[18] can be used to determine the marginal distributions of  
x1, x2,  … ,  xp . Assuming independence, the likelihood 
function can be computed as 
follows: )| xf)| xf)| xf) | f( jpjjj ωωωω (...(( 21=x . If the 

marginal random variables are believed to be correlated, we 
first break up x into its independent components x = [x1, 
x2,  … ,  xk].  After determining the joint densities of the 
individual components, we can compute the likelihood 

function from )| f)| f)| f) | f( j
k

jjj ωωωω xxxx (...(( 21= . 

This information, combined with the prior probabilities 
)( jP ω of each group in the database, is all that is needed to 

calculate the object level posterior probabilities of group 
membership )|(  P j xω . Knowing the group likelihood 

function ) | f( jωx gives us the ability to generate data from 

the fitted distributions. This also allows us to generate 
multiple data sets of the same size as the original set. 
Otherwise, by splitting up the original data, one is only able 
to provide conservative estimates of expected model errors.  

 
The ability to determine the object level posterior 
probabilities represents an outstanding potential use for 
neural networks in e-business applications. In this context, 
decision makers can estimate not only how well a neural 
network model will perform with given data but also in the 
context of long-term, continuous use. Model performance 
can be thoroughly investigated while minimizing the 
common problem of overestimating the model’s true 
utility. To realize this advantage, though, multiple data sets 
are necessary to estimate total model error, model bias, 
and model variance and will be used within the proposed 
approach as described next. 

 
The Monte Carlo procedure used to evaluate the bias, 
variance, and total estimation error is adopted from Geman 
et al. [1992] and is described now. Recall from equation (3) 
that   

   Model Bias = 2])|[)];([( xyx EDfED −  ,    (4) 

and that the variance is  

Model Variance = ])]);([);([( 2DfEDfE DD xx −  ,   (5) 

where );( Df x  is the neural network estimator for any 

given training set D and ]|[ xyE  is the true function — the 

posterior probabilities, which are computed from (1).  
 

The model bias and variance components are estimated by 
generating S independent random training sets 

SDDD ,,, 21 K  used for training S neural network 

estimators ),;( 1Df x  );(,),;( 2 SDfDf xx K . The 

expected response of the neural networks over all data sets, 

)];([ DfED x  is denoted by )(xf , the average response at 

x , and is calculated as 
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The model bias and model variance components of an 
object x are estimated using: 
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     Total Estimated Model Error ( x ) = 

     Model Bias ( x ) + Model Variance ( x )     (9) 
 
An approach equivalent to the hold-out method of train 
and test typically employed for real data sets is utilized in 
this framework. The hold-out method typically is used to 
deal with the bias-variance tradeoff. In most practical 
problems, the neural network is trained on the majority of 
the data while a small hold-out sample is used to test 
model performance. Sometimes a second hold-out sample, 
called a validation set, is also used. This additional 
procedure stems from concerns that the small test set may 
not adequately cover the generating process input-output 
space and hence may itself contribute to bias and variance 
problems.  

 
Note that bias and variance in the test set can be mitigated 
having a large test set to provide adequate coverage of the 
input-output space. Therefore, training on S independent 
data sets generates the neural network models.  These 
trained models are then presented with each of the test set 
object attributes x . The neural network estimated outputs 

);( SDf x  are compared to ]|[ xyE  and the model bias 

and model variance components of total estimated model 
error are computed using (6) to (9). 

 
While the error measures just described provide insights 
into the estimation performance of neural network models, 
results based upon classification rates provide a link to a 
more traditional evaluation basis. The observed 
classification rate is probably the most commonly reported 
measure. Dividing the correct classifications by the total 
number of observations yields the observed classification 
rate. Usually only the observed classification rate is 
reported because a single set of real data is available but it 
may be misleading as a performance metric as discussed 
below. However, for a data set with known posterior 
probabilities, it is possible to determine the expected 
classification rate using the Bayesian decision rule. This 
Bayesian classification rate represents the optimal long-
run classification rate one can expect to achieve using the 
theoretical object posterior probabilities for classification. 
Taking the ratio of these classification rate measures —
observed to Bayesian —yields the Bayesian classification 
efficiency (BCE).  
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The classification efficiency provides a clearer picture of the 
actual classification performance of the neural network 
model than does the observed classification rate because it 
puts the performance in context of problem difficulty. For 
example, consider a two-group problem that results in an 
observed classification rate of only 60 percent. If the 
problem has an expected Bayesian classification rate of 66 
percent, it is seen that the Bayesian classification efficiency 
is nearly 91 percent — a much better model classification 
performance than first appears. 

 
Below we summarize a principled approach to building 
and evaluating neural network models. 
1. Compute the posterior probabilities directly from (1) 

as described earlier. 
2. Divide the data set into S train ing sets and one large 

test set. Or generate a data set of the desired size from 
the fitted distributions, and divide it into S training 
sets. Then use the original data set as the test set. 

3. Train the neural networks on the S training sets to get 

neural network estimators ),;( 1Df x  

);(,),;( 2 SDfDf xx K .  

4. Using the test set, compute model bias, model 
variance and total estimated model error as in (6) to 
(9).  

5. Decide on the best neural network structure based on 
the error measures in step 4. 

6. Evaluate the performance of the neural network model 
using the Bayesian Classification Efficiency. 

 
ILLUSTRATIVE EXAMPLES  

For illustration purposes, in this paper we use simulated 
data sets generated with eight input variables which are 
grouped into five independent components x = [x1, x2,  … ,  
x5]. Here, 

x1 = [x1, x2 , x3 ] Correlated trivariate normal random 
variables 

x2 = [x4, x5 ] Correlated bivariate Bernoulli 
random variables 

x3 = [x6] Weibull random variable with 
concave density function 

x4 = [x7] Weibull random variable with 
convex density function 

x5 = [x8] Binomial random variable with state 
space {0, 1, 2, …, 10}. 

 
These random variables are chosen to represent those 
likely to be encountered in e-business applications. The 
normal distribution is widely applicable to many problems 
while correlation between the three normally distributed 
input variables yields additional modeling realism and 
flexibility. Bernoulli variables model yes/no and true/false 
features of a transaction, while the binomial component 
represents a countable characteristic. The Weibull 
components are highly flexible as parametric choices 
change the distribution from convex to concave. Choices 
leading to convex shapes model features distributed in 
exponential fashion such as seen in many service 
situations. A concave Weibull distribution is appropriate in 
features where rates of occurrence increase over time. 

 

The illustrative problems contain two- and three-group 
settings. The two-group example represents a special case 
problem from a neural network and classification 
standpoint and may be appropriate for an e-business 
situation where one might be trying to decide the 
probability of a subsequent customer purchase (yes or no) 
so that appropriate enticements can be offered. A three-
group problem sufficiently represents the general case 
classification problem for neural network modeling and 
might be appropriate in more complex customer 
segmentations. 

  
In the example problems, training data set sizes of 180 and 
540 objects were used to train the neural networks 

);( SDf x where S = 30 training set replications are used. 

The hold-out test set contains 2400 objects and is the basis 
for all reported results. Sample sizes are chosen merely to 
facilitate investigation of the bias and variance 
components of estimation error in this illustrative problem 
setting and can be any size for specified problems of 
interest. For e-business applications, though, smaller 
customer databases would be expected early in the new 
product development cycle and where reliable corporate 
intelligence could have the most economic and strategic 
value. 

 
A model order selection procedure commonly used in 
neural network applications is used. This is achieved by 
varying the model architectures from zero to five hidden 
nodes. In typical fashion, the number of hidden nodes 
resulting in the lowest total estimated model error is 
retained and is used in the reporting of classification 
results.  
 

RESULTS 
The performance of the neural network models in 
estimating posterior probabilities and classification 
performance will be analyzed in the following manner. 
First, the total estimation error and the model bias and 
variance components will be discussed. In particular, the 
impact of altering the model complexity via hidden node 
changes will be investigated. Next, the effect of the 
commonly employed model order selection procedure on 
expected performance will be covered. It is seen that the 
process of selecting the “best” number of hidden nodes can 
lead to variable network performance in actual use, a fact 
not obvious from using a single data set only. Finally, the 
network classification performance from observed (neural 
networks) and Bayesian classification rate perspectives 
will be presented and it will be seen that the models do a 
more efficient job at correctly classifying objects than the 
observed classification rate initially indicates. 
 
Model Estimation Error 
Figure 1 contains the total estimation error, the model bias, 
and model variance performance of the neural network 
models across the hidden nodes. The top panel contains 
results of the two-group problem, while the bottom panel 
presents those of the three-group problem. The scale has 
been set to facilitate visualizing the error components.  
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In Panel A for the two-group problem with a training 
sample size of 180 objects, total estimation error rises 
steadily as the hidden nodes increase. It is seen that this 
increase in estimation error results almost entirely from the 
variance component as the bias remains essentially 
unchanged. For a smaller sample size, it is seen that small 

models adequately approximate the generating process as 
it is represented via the training data. Insufficient 
information exists in the data to reduce model bias through 
more complex models and mere ly leads to large increases 
in model variance. 

 
FIGURE 1 

Total model estimation error and bias and variance components across hidden nodes. 
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Panel A. Two group problem with 180 and 540 objects in training sample sets. 
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Panel B. Three group problem with 180 and 540 objects in training sample sets. 
 
As the training set size is increased to 540 objects, more 
information concerning the generating process is presented 
to the neural networks and more complex models can be 
utilized. The total model estimation error remains flat as 
the number of hidden nodes increases from zero to two, 
then they exhibit a rise in error as hidden nodes increase 
from three through five. From zero to two hidden nodes, it 
is seen that decreases in model bias are cancelled by 
increases in the variance component. Beyond two hidden 
nodes, the variance component dominates any changes in 
bias, resulting in overall estimation error increases. It 
should also be noted that the impact of changing the model 
order in the 540 training sample size case is approximately 
one-half of what is seen in the 180 training sample size 
case. Furthermore, the minimum total error in the 180 
training set size case at zero hidden nodes is nearly 45 
percent greater than that achieved with 540 objects in 
training at two hidden nodes. 

 
Given this available information, model builders could 
trade off costs associated with obtaining more data for 

training against the posterior probability estimation 
performance gains expected. In addition, with 540 objects 
in training, modelers could make informed decisions 
concerning the impact of selecting the more parsimonious 
zero hidden node model as opposed to the two hidden 
node model. Decisions could be made as to whether the 
slight (approximately 2 percent) improvement in overall 
estimation performance, and the concurrent decrease in 
model bias at two hidden nodes, is more important than the 
increase in prediction variability expected. 

 
The three-group case in Panel B exhibits similar patterns, 
particularly for the smaller training sample size. It is 
interesting to note, as more information on the generating 
process is presented via the larger training sample size, 
higher-order models are preferred. From two to three 
hidden nodes a large impact on the bias and variance 
components is observed even though from zero to two 
hidden nodes both components are only moderately 
impacted. The three-group problem is more complex for 
the network to approximate than the two-group structure is. 
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However, while models built on a single data set might not 
observe large changes in overall estimation performance, 
the dynamics of the individual components are apparent 
and brought to the forefront via the proposed approach. 
 
Hidden Node Distribution 
The impact of the error dynamics discussed above 
becomes even more important for practitioners when one 
considers it in the context of the commonly applied model 
order selection procedure. Recall that neural network 
modelers often train networks of various hidden nodes and 
use a hold-out sample to select the “best” number of 
hidden nodes. This model would then be used in practice. 

 
Figure 2 contains a count of the number of data sets that 
yielded each hidden node as “best” for each problem type. 
For example, in the two-group case when trained on 180 
objects, all 30 data set replications yielded zero hidden nodes 
as the “best” choice in the model order selection process. 
The same is true in the three-group case when the training set 
size is 180 objects. However, when the training sample size 
is increased to 540 objects, the selection process varies from 
zero to four hidden nodes —which exhibits even greater 
variability in the more complex three-group case.  

 
FIGURE 2  

Number of replications (S = 30) at each number of 
hidden nodes (0, 2, 3, 4, 5) resulting in the lowest 
estimation error. 
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If, for the two-group problem with 540 training sample 
size, we happen to train the neural network using the one 
data set which yields four hidden nodes instead of two as 
the best, an increase of  about 100 percent can be expected 
in the total model estimation error (see Figure 1). The 
implications for practical applications are significant when 
one considers the complexity of the underlying generating 
process the neural networks are approximating in e-
business situations and the large number of training data 
likely to be employed. It would not be surprising to find 
large variations in the number of hidden nodes being 
chosen merely because of data set variations and that this 
could have significant practical performance consequences 
in terms of cost and efficacy. Without utilizing multiple 
data sets this would not be apparent and related 
performance anomalies, therefore, would go unexplained. 
 
Classification Performance Evaluation 
In evaluating the classification performance of neural 
network classifiers, the observed classification rate is the 
most commonly reported measure. Within the proposed 

framework, classification performance is expanded to 
include consideration of the best-expected classification 
performance, the Bayesian classification rate, as object 
posterior probabilities are known. Considering the 
observed rate in relation to the Bayes rate gives a much 
more accurate picture of the true classification 
performance of the models employed and is called 
Bayesian classification efficiency. Figure 3 presents the 
classification performance results for the example problem. 

 
The observed classification rate for the two- and three-
group problems is in the 70 percent to 75 percent range. 
Increasing training sample size yields an intuitively 
expected increase in correct classifications, while the more 
complex three-group problem achieves a slightly lower 
classification performance than the two-group problem. 
While individual decision makers would need to decide if 
these rates are sufficient for their specific application, it 
can be seen that when the long-run classification rates to 
be expected are factored in — which is Bayesian 
classification rate and is 78.375 percent in the two-group 
problem and 80.417 percent in the three-group case— the 
classification efficiency is seen to be much higher. 
Efficiency runs from 92.1 percent in the small training 
sample two-group problem to over 95 percent when the 
training size is increased. In the three-group case, the 
classification efficiency is 87.2 percent in the small 
training sample example to 90.6 percent for the larger 
training sample size. The neural network model 
performance in relation to problem classification difficulty 
can be used to decide if more observations are cost 
effective, if addit ional input attributes should be collected 
to effect problem difficulty, or some combination of the 
two is indicated.  
 

FIGURE 3 
Classification performance evaluation. 
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CONCLUSION 
The neural network is a promising modeling tool for e-
business applications. Data from e-business is typified by 
its complexity, quantity, and noisiness. Neural networks 
are ideally suited for these problem characteristics. It has 
been pointed out in this paper that neural network 
modeling is not a trivial task, though. The total model 
estimation error (model bias plus model variance) 
approach provides a sound conceptual framework for 
using neural networks for the estimation of posterior 
probabilities in classification.  

 
In this paper, we have presented a principled approach to 
building and evaluating neural network models for e-
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business classification settings. The aim is to facilitate 
practical construction of models with better generalization 
capability. The approach is then illustrated with simulated 
data sets for a two-group problem and a three-group 
problem. The total model estimation error is used in the 
model order selection to determine the number of hidden 
nodes.  

 
Results from this study show that a larger training sample 
size will inevitably lead to more complex neural networks 
and in turn yield a reduction in the total model estimation 
error. We have also proposed the use of Bayesian 
classification efficiency for the evaluations of neural 
network classification models. Based on the output 
measures, our proposed procedure for building neural 
network models seems to be conceptually sound and is an 
integrated approach with definite promising benefits. 
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