

ISSN 1536-9323

Journal of the Association for Information Systems (2020) 21(3), 664-694

doi: 10.17705/1jais.00616

RESEARCH ARTICLE

664

Monitoring the Complexity of IT Architectures:

Design Principles and an IT Artifact

Thomas Widjaja1, Robert Wayne Gregory2
1University of Passau, Germany, thomas.widjaja@uni-passau.de

2University of Virginia, USA, rg7cv@comm.virginia.edu

Abstract

Monitoring the complexity of a firm’s IT architecture is imperative to ensure a stable and flexible

platform foundation for competing in the era of digital business strategy. However, IT architects lack

IT support for dealing with this important problem. We engaged with five companies in a significant

design science research (DSR) program and drew on the heuristic theorizing framework both to solve

this problem through evolving IT artifacts and to accumulate nascent design knowledge. We base

the design knowledge development on a conceptual framework involving three essential concepts

for understanding and solving this problem: structural complexity, dynamic complexity, and

problem-solving complexity. Drawing on this foundation, we address the research question: How

can IT support be provided for reducing the problem-solving complexity of monitoring the structural

and dynamic complexity of IT architectures in the context of a digital business strategy? To answer

this question, we present a set of design principles that we derived from our iterative process of IT

artifact construction and evaluation activities with five companies. Our nascent design knowledge

contributes to the research on IT architecture management in the context of digital business strategy.

In addition, we also contribute to the understanding of how, through the use and illustration of the

heuristic theorizing framework, design knowledge can be accumulated systematically on the basis

of generalization from IT artifact construction and evaluation outcomes generated across multiple

contexts and companies.

Keywords: IT Architecture Complexity, Monitoring Complex Systems, Digital Business Strategy,

Design Science Research, Heuristic Theorizing

Robert Winter was the accepting senior editor. This research article was submitted on November 30, 2017, and

underwent three revisions.

1 Introduction

In today’s digital era, firms must adapt continuously to

quickly changing customer demands and often pursue

digital business strategies, which are defined as

organizational strategies formulated and executed by

leveraging digital resources to create differential value

(Bharadwaj et al., 2013). However, the historically

developed complexity of established firms’ IT

architectures represents a significant cause of inertia

for such digital transformations (e.g., Boh & Yellin,

2006; Boyle, Keywood, & Roberts, 2012; Guillemette

& Paré, 2012). Monitoring this architectural

complexity is critical for the success of digital platform

initiatives that involve the construction of a stable core

that enables efficient yet flexible solutions at the

periphery (de Reuver, Sørensen, & Basole, 2018;

Gregory et al., 2015). The problem domain focus of

our design science work is monitoring the complexity

of IT architectures in firms; the solution domain focus

is IT support for IT architects in this respect. At a more

general level, the focus of this study is the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326833882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Monitoring the Complexity of IT Architectures

665

accumulation of design knowledge about monitoring

complex systems.

Monitoring architectural systems complexity is

particularly relevant in today’s era of digital business

strategy, in which building a digital platform has

become a primary concern for the top leadership of

firms. Research related to building digital platforms

has begun to distinguish between heavyweight and

lightweight IT (Bygstad, 2017), infrastructural

stability and change (Tilson, Lyytinen, & Sørensen,

2010), and a platform core and peripheral ecosystem

(Wareham, Fox, & Cano Giner, 2014). A related

distinction in the literature on the complexity of IT

architectures (and other instances of systems of

systems) is between structural and dynamic

complexity (Henneman & Rouse, 1986; Schneberger

& McLean, 2003; Xia & Lee, 2005). Structural

complexity concerns the relatively stable form and

function of the IT architecture and, thus, needs to be

monitored to ensure the stability of the heavyweight IT

and platform core. Dynamic complexity, in contrast,

refers to the uncertain, unpredictable, and often

ambiguous nature and rate of change of the IT

architecture, and should be monitored to enable change

in the lightweight IT within the surrounding platform

ecosystem.

Monitoring the structural and dynamic complexity of

the firm’s IT architecture is important because key

digitized products, services, and processes are

symbolically represented in the firm’s IT architecture,

and changes in one have a direct impact on the other.

However, monitoring architectural complexity has also

become an extremely difficult problem to solve. We

suggest that an important issue that has been

overlooked in the prior literature on IT architectures

(Beese et al., 2016; Richardson, Jackson, & Dickson,

1990; Ross et al., 2006; Schilling et al., 2017; Tilson et

al., 2010; Tiwana & Konsynski, 2010) is problem-

solving complexity, which concerns human reasoning,

attentional resources, skills, and the overall ability to

cope with structural and dynamic complexity in the

search for a satisficing problem solution (Endsley,

1995; Henneman & Rouse, 1986; Lerch & Harter,

2001; Simon, 1996). In fact, one reason scholars have

called for reducing the structural and dynamic

complexity of IT architectures is its direct effect on

problem-solving complexity (Schneberger & McLean,

2003). This line of reasoning, however, with its focus

on the reduction of complexity, overlooks the value

offered by IT artifacts (i.e., tools) in providing

cognitive support for the monitoring of systems

complexity (Lerch and Harter 2001), thereby reducing

problem-solving complexity.

We address the following research question: How can

IT support be provided for reducing the problem-

solving complexity of monitoring the structural and

dynamic complexity of IT architectures in the context

of a digital business strategy? Addressing this question

is both novel and important because the answer will

contribute to our understanding of how to reduce the

problem-solving complexity IT architects face in

contemporary digital business strategy execution and

transformation initiatives. Pursuing a digital business

strategy and creating differential value “requires

effective sensemaking and the ability to cope with

complexity and uncertainty” (Woodard et al., 2013, p.

558).

In addition to this strong motivation for further work

in the problem domain of this paper, we also identified

a significant gap in the solution domain. While

previous work has attempted to solve the problem of

cognitive IT support (Lerch and Harter 2001), the

focus has been on a different problem class, and the

experimental study design did not involve IT artifact

construction. Our work addresses the identified gaps in

the problem and solution spaces by focusing on the

evolution and accumulation of design knowledge,

which, in our case, has matured through iterative

projection and concurrent evaluation across multiple

contexts and companies.

We engaged with five companies for IT artifact

construction and evaluation activities over an eight-

year period. Our work is guided by heuristic theorizing

(Gregory & Muntermann, 2014), a framework for

theorizing in the problem-driven DSR tradition (Iivari,

2015; Sein et al., 2011) that draws on the sciences of

the artificial (Simon, 1996) and Hevner et al.’s (2004)

description of “design as a search process.” In our DSR

program, we solved instantiations of a general problem

class we refer to as the “monitoring the complexity of

IT architectures” (MCITA) problem class. In

particular, this involved constructing and concurrently

evaluating the five expository artifacts of our emergent

set of four design principles. To build the MCITA

design principles during the heuristic theorizing

process, we fundamentally revisited and reformulated

our understanding of the problem at hand, which

resulted in three heuristic theorizing cycles focusing on

nested problem understandings: the problems of (1)

making “optimal” IT standardization decisions, (2)

assessing the “desirable” degree of IT heterogeneity,

and (3) monitoring the complexity of IT architectures

(MCITA).

We contribute to the research on IT architectures

(Beese et al., 2016; Richardson et al., 1990; Ross et al.,

2006; Schilling et al., 2017; Tilson et al., 2010; Tiwana

& Konsynski, 2010) with a set of design principles

that, in the context of digital business strategy

(Bharadwaj et al., 2013; Drnevich & Croson, 2013;

Keen & Williams, 2013; Woodard et al., 2013),

address the class of problems we refer to as MCITA.

We add this class and solution to the general body of

design knowledge on monitoring complex systems

(Becz et al., 2010; Domerçant & Mavris, 2011;

Journal of the Association for Information Systems

666

Henneman & Rouse, 1986; Maier, 1998; Natu et al.,

2016; Psiuk & Zielinski, 2015). The distinctions

between structural, dynamic, and problem-solving

complexities are an important extension of the

literature since it is clear that reducing problem-

solving complexity is desirable, whereas structural and

dynamic complexity may have to be embraced, for

example, even to allow for a sufficient variety of IT

functionalities in the context of a digital business

strategy to respond to changes in customer demands

through new product development.

2 Conceptual Background

2.1 IT Architecture in the Context of a

Digital Business Strategy

An IT architecture is defined as the “organizing logic

for applications, data, and infrastructure technologies”

(Ross, 2003, p. 32).1 Prior research on the contribution

of IT in organizations often suggests that the structural

and dynamic complexity of IT architectures should be

reduced (e.g., Ahlemann et al., 2012; Guillemette &

Paré, 2012; Tamm et al., 2011). According to prior IT

architecture management research, a key challenge is

to create an overall design and architectural blueprint

for structuring the firm’s collectivity of IT systems.

Studies pursuing this line of thought have suggested

various means to tame IT architectural complexity. For

example, sorting IT components into different

architectural layers has been recommended, resulting

in the concept of a multilayered architecture

(Richardson et al., 1990; Winter & Fischer, 2007).

Prior research has also proposed drawing on the

analogy of city planning (Schmidt & Buxmann, 2011)

to improve the architectural planning, mapping, and

designing of the blueprint that is the guide and standard

for any type of IT implementation in the firm (Boh &

Yellin, 2006). Overall, a key recurring theme in IT

architecture management research is the need to limit

IT complexity to achieve organizational benefits such

as IT efficiency and IT agility (Guillemette & Paré,

2012; Tamm et al., 2011). We argue that in view of the

increase in environmental dynamism and complexity

associated with the rise of digital business strategies

(Bharadwaj et al., 2013; El Sawy et al., 2010;

Tanriverdi, Rai, & Venkatraman, 2010; Woodard et

al., 2013), the sole focus on limiting complexity should

be revisited.

1 The literature distinguishes between the concepts IT

architecture, enterprise architecture, and solution

architecture. In this paper, we focus on IT architecture, which

is a subsystem of an enterprise architecture; the latter is

defined as “organizing logic for business processes and IT

infrastructure reflecting the integration and standardization

requirements of the company’s operating model” (Ross et al.,

The contribution of IT architectures in organizations

has evolved fundamentally with the rise of the digital

business strategy, defined as a business strategy

formulated and executed by leveraging IT to create

differential value (Bharadwaj et al., 2013; Drnevich &

Croson, 2013; Woodard et al., 2013). In this new

context, a firm’s IT architecture provides the platform

for its digital business strategy (de Reuver et al., 2018)

by, for instance, defining technical interfaces for

customers, partners, and suppliers and by setting

standards that determine degrees of freedom for digital

business moves (Keen & Williams, 2013). As an

increasingly heterogeneous and distributed set of

actors draws on these IT architectures, the

architectures also continuously evolve (Tanriverdi et

al., 2010; Woodard et al., 2013; Yoo et al., 2012).

Furthermore, the shift toward more distributed control

and greater autonomy of internal and external actors

suggests that IT architectures in firms pursuing digital

business strategies resemble digital infrastructures

(Hanseth & Lyytinen, 2010; Tilson et al., 2010), which

are instances of complex systems of systems (Amaral

& Uzzi, 2007). An IT system consists of IT

components and the relationships among those IT

components (Hall & Fagen, 1969), and a “system of IT

systems” consists of interconnected IT systems

(Simon, 1962). We thus define IT architecture in the

context of digital business strategy as a distributed,

evolutionary, and emergent system of IT systems

(Maier, 1998; Sommerville et al., 2012).

2.2 Structural, Dynamic, and Problem-

Solving Complexity

In the preceding section, we highlighted that IT

architectures share key characteristics with digital

infrastructures (Henfridsson & Bygstad, 2013; Tilson

et al., 2010). Although their degree of openness is

certainly not comparable to, for example, the internet

(Hanseth & Lyytinen, 2010), the IT architectures of

firms pursuing a digital business strategy do evolve at

a rapid rate of change through a heterogeneous set of

participating internal and external actors. At the same

time, however, the IT architectures of firms must also

provide a stable foundation for organizational

integration and control (Berente et al., 2016). The

result is that firms’ IT architectures exhibit forms of

emergent behavior that are known from complex

systems (Amaral & Uzzi, 2007), highlighting

2006, p. 47). Whereas both enterprise architecture and IT

architecture consider the organization as a whole, a solution

architecture focuses on a single project or subsystem and the

“fundamental decisions in the design of a specific solution”

(Greefhorst & Proper, 2011, p. 25).

Monitoring the Complexity of IT Architectures

667

complexity as an overarching characteristic of the IT

architectures.

Our definition of IT architecture in Section 2.1 is based

on the systems-of-systems perspective (DeLaurentis &

Callaway, 2004). The information systems literature

on systems of systems distinguishes between structural

complexity and dynamic complexity (Schneberger &

McLean, 2003; Xia & Lee, 2005). However, the

literature on monitoring the structural and dynamic

complexity of systems emphasizes the concept of

problem-solving complexity (Henneman & Rouse,

1986). We propose the use of an IT artifact (i.e., a

monitoring tool) to reduce problem-solving

complexity (i.e., the complexity in the cognitive realm)

and enable companies to embrace structural and

dynamic complexity (i.e., complexity in the material

realm) resulting from heterogeneous and distributed

actors continually enlarging, reducing, or modifying

the IT architectures in the context of digital business

strategies (see Figure 1).

Structural complexity. The relatively stable form and

function of an IT architecture is captured by the

concept of structural complexity, which is typically

conceptualized and measured in terms of the number

and variety of system components and relations

involved (Henneman & Rouse, 1986; Ribbers &

Schoo, 2002; Schneberger & McLean, 2003; Xia &

Lee, 2005). This understanding of structural

complexity is rooted in studies of complex systems.

Herbert A. Simon defined a complex system as one

composed of a large number of subsystems that

interact in a “nonsimple way” (Simon, 1962). This

view of structural complexity highlights that

complexity, in large part, stems from the nature of the

interactions between different parts of a system.

Modular systems theory focuses precisely on the

nature of the interactions between the parts of a

complex system and uses the concept of modularity to

describe the degree to which a system’s subsystems

can be separated, changed, or recombined through

standardized interfaces (Ethiraj & Levinthal, 2004;

Sanchez & Mahoney, 1996; Schilling, 2000). Modular

systems design is based on the idea of creating highly

integrated, mutually responsive, and tightly coupled

subsystems that preserve a stable form and function,

while simultaneously enabling flexibility for their use

and recombination based on loose couplings and

standardized interfaces between different modules

(Baldwin & Clark, 2000). Modularity has been

identified in the literature as a key facet of an IT

architecture’s form and state (Tiwana & Konsynski,

2010) and is important for understanding structural

complexity. It is also important to the concept of

dynamic complexity.

Dynamic complexity. The concept of dynamic

complexity captures the continuous evolution,

elaboration, and change of an IT architecture’s form

and function. Dynamic complexity concerns the

uncertain, unpredictable, and often ambiguous nature

and rate of change in the number and variety of

components and the relationships among them over

time (Henneman & Rouse, 1986; Ribbers & Schoo,

2002; Schneberger & McLean, 2003; Xia & Lee,

2005). This conceptualization and measurement of

dynamic complexity highlight the interrelationship

with the concept of structural complexity. In particular,

dynamic complexity focuses on changes from one state

of structural complexity in Time 1 to a new state of

structural complexity in Time 2.

Figure 1. Conceptual Model

Material realm

Complexity inherent to the IT architecture

as a material representation of a firm’s

products, services, and processes

Cognitive realm

Complexity perceived by the IT

architect (human problem

solver) when building a digital

platform in an established firm

Application layer

Data layer

Infrastructure layer

Structural Complexity
Stems from the number and variety of IT
components and relationships on three

architectural layers

Dynamic Complexity
Stems from the uncertain nature and rate of

change of structural complexity

Problem-solving Complexity
Ability to cope with structural and dynamic
complexity when solving a specific problem

Monitoring

tool
to reduce

problem-solving

complexity

Change
over time

IT architect

Journal of the Association for Information Systems

668

Problem-solving complexity. The literature on

monitoring complex systems distinguishes between

structural and dynamic complexity on the one hand and

problem-solving complexity on the other hand

(Henneman & Rouse, 1986). Problem-solving

complexity concerns human reasoning, attentional

resources, skills, and the overall ability to cope with

structural and dynamic complexity in the search for a

satisficing problem solution (Endsley, 1995; Henneman

& Rouse, 1986; Lerch & Harter, 2001; Simon, 1996).

As illustrated by a neurophysiologist’s perspective on a

sheep’s brain compared to a butcher’s (Ashby, 1960),

the needs for monitoring and capacities for

understanding structural and dynamic complexity differ

based on the perspective as well as the ability to

decompose a system into modular subsystems. Thus,

although a system itself may be inherently complex in

terms of its compositional structure and evolution over

time, this does not necessarily mean that solving a

particular problem for that system is perceived to be

difficult. As Schneberger and McLean (2003) noted, we

are to a considerable extent interested in understanding

structural and dynamic complexity because the

“incredible capabilities and opportunities computing

offers us” may be “destined to become so complex as to

overwhelm human ability to cope with it” (p. 216). This

means that the problem-solving complexity of a given

problem can be reduced either by reducing the structural

and dynamic complexity or by tool support.

2.3 Problem Requirements of

Monitoring Complex Systems

To derive specific problem requirements that guide our

design and tool construction work, we reviewed a

variety of instances of the general problem class of

monitoring complex systems. In addition to IT

architectures, other instances we identified in the

literature include large-scale networked IT systems such

as communication infrastructures, hybrid clouds, self-

adaptive software, and peer-to-peer networks

(Henneman & Rouse, 1986; Murray & Liu, 1997;

Murray & Yili, 1994; Natu et al., 2016; Psiuk &

Zielinski, 2015; Vierhauser, Rabiser, & Grünbacher,

2016; Zinser & Henneman, 1989); military systems

such as air defense networks and military aircraft fleets

(Becz et al., 2010; Domerçant & Mavris, 2011; Maier,

1998; Tamaskar, Neema, & DeLaurentis, 2014); and

national transportation systems (DeLaurentis &

Callaway, 2004). Appendix Table A1 provides an

overview of selected design and tool construction work.

What we learned from this review of design knowledge

is that the distinction between tracking and

comprehending is useful for our understanding of the

MCITA problem class that this paper addresses.

Tracking (Type 1 monitoring). At the elementary level

of identifying, screening, describing, detecting, and

tracing the complexity of IT architectures, IT support for

Type 1 monitoring must address the requirement of

tracking key variables associated with structural

complexity (including the number and variety of system

components and relationships among them). To monitor

the dynamic complexity, these variables related to

structural complexity must be traced and tracked over

time.

Comprehending (Type 2 monitoring). To reduce

problem-solving complexity and provide a useful

cognitive aid, IT support for monitoring complex

systems must go beyond tracking (Type 1 monitoring)

to also support the comprehension (Type 2 monitoring)

of structural and dynamic complexity. Type 2

monitoring builds on information yielded through Type

1 monitoring and focuses on higher-order complexity

monitoring processes, including diagnosing, simulating,

understanding, and giving meaning to the complexity of

IT architectures as an input to decision-making.

3 Research Design

We conducted design science research, defined here as

a problem-solving process involving a heuristic search

to identify a relevant problem class and generate

prescriptive knowledge (e.g., a set of design principles)

for the design of artifacts (Gregor & Hevner, 2013;

Hevner et al., 2004; Peffers et al., 2007) that addresses

the metarequirements of the identified problem class.

Hevner et al. (2004) describe artifacts as “innovations

that define the ideas, practices, technical capabilities,

and products through which the analysis, design,

implementation, and use of information systems can be

effectively and efficiently accomplished” (p. 83).

Artifacts exist on different levels of abstraction,

including the level of artifact instantiations, design

principles that provide prescriptive guidance in the

construction of artifacts, and the most abstract level of

design theories (Gregor & Hevner, 2013; Gregor &

Jones, 2007).

In this paper, we focus on the process of evolution and

accumulation of design knowledge at the midrange level

of design principles. Our process involved identifying

the problem class and generating abstracted design

principles through iterative projection and concurrent

evaluation of instantiated IT artifacts (software

prototypes) across multiple contexts and companies. In

the typology of Iivari (2015) for DSR strategies, our

research project corresponds to “DSR Strategy 2” and is

based on close researcher-practitioner relationships and

teams with mutual involvement, engagement, and

exchange of DSR teams (see also Sein et al., 2011). We

engaged five large companies in our DSR program,

resulting in eight years of intense practitioner interaction

over the entire program lifetime. Table 1 provides

details about the participating companies and the

specific design activities conducted in collaboration

with them.

Monitoring the Complexity of IT Architectures

669

Table 1. Companies Engaged and Problem-Solving Activities

Company

and Time

period

Problem Context Problem Solving Activities and Collected Evidence

Heuristic Theorizing Cycle 1

Company 1

04/2008-

01/2009

Trading company

(>15,000 employees) that

confronted a major

redesign and

transformation of its IT

systems environment.

Cooperation with the

chief IT architect and a

consulting company

• Development of Tool A (with a team of four developers)

• Two interviews with a consultant contracted by this firm to support the IT

transformation (~ 60 min.)

• Workshop with chief IT architect and consultant to apply the prototype and gather

input parameters (~ 120 min.)

• Informal feedback from the CIO on the organizational need and value of Tool A

• Telephone interview with IT architect to assess the usefulness of Tool A (~ 30 min.)

• Secondary data: Access to architectural domain model as well as cost and interface

data for selected IT components on the application layer

Heuristic Theorizing Cycle 2

Company 2

08/2009-

02/2013

Large-scale enterprise

(>40,000 employees) that

implemented a new

sourcing strategy during

IT transformation.

Cooperation with the

CIO and an IT architect

• Two meetings with the principal IT architect to understand the scope and define the

problem (~ 90 min.)

• Feedback from presenting the application of Tool B (developed with Company 3) to

the CIO and an IT architect as well as two further results presentations to user

groups within the company (~ 60 min.)

• Secondary data: Access to data about 147 software components and the

architectural domain model

Company 3

02/2010-

08/2015

Government organization

(>100,000 employees)

that was redesigning its

corporate digital

infrastructure.

Cooperation with the

CIO, different line

managers, and the chief

IT architect

• Development of Tool B (with a team of three developers)

• Feedback from three workshops with IT architects and line managers to improve

our joint understanding of the problem to solve (~ 60 min.)

• Feedback from one presentation about applications of Tool B to the CIO and the

chief IT architect (~ 60 min.)

• Secondary data: Team member of project “strategic management of heterogeneous

IT landscapes” with the task to analyze cost and benefits of heterogeneous IT

systems; granted access to complete project documentation; access and analysis of

detailed profiles of >206 IT components on the application layer; access and

analysis of data of 752 IT components on the infrastructure layer

Heuristic Theorizing Cycle 3

Company 4

06/2012-

10/2016

International bank

(>50,000 employees)

currently implementing

company-wide

complexity management

to guide IT

transformation.

Cooperation with two

leading IT architects and

the department head of

the IT architecture

management

• Development of Tool C (with a team of seven developers and involving three

iterations of software development)

• Seven meetings with the development team of Tool C (~ 90 min.)

• Two interviews (~ 90 min.) and notes from two workshops (120 min.) with IT

architects during the development of Tool C

• One interview with a lead user after presentation of Tool C (~ 60 min.)

• Development of Tool E (with a team of two developers and involving two iterations

of software development)

• Final workshop with two leading IT architects and department head (~ 60 min.)

• Two interviews after presenting Tool E to the two leading architects (~ 60 min.)

• Secondary data: access to internal presentations, architectural domain model,

historical information on > 4250 IT components, documentation of the complexity

management initiative

Company 5

01/2013-

08/2015

International bank

(>90,000 employees)

currently implementing a

new digitized platform.

Cooperation with the

senior IT transformation

manager, users of the

tool, and two specialized

IT architects

• Development of Tool D (with a team of eight developers and involving two

iterations of software development)

• Six meetings with the development team of Tool D (~ 90 min.)

• Two interviews with a senior IT transformation manager (~ 60 min.)

• Notes from two meetings with the IT architects during the development of Tool D

(~ 60 min.)

• Three workshops to evaluate Tool D with IT architects and users (~ 60 min.)

• Secondary data: access to internal presentations, architectural domain model,

historical information on IT components on all layers of the IT architecture

Journal of the Association for Information Systems

670

Figure 2. Heuristic Theorizing Framework

We identified Gregory and Muntermann’s (2014)

framework for heuristic theorizing as a useful lens to

structure and explain our complex process of IT

artifact evolution and design knowledge accumulation.

By providing a simple structuring (see Figure 2) of

design science research activities across problem and

solution spaces, on the one hand, and different levels

of abstraction, on the other hand, this framework

helped us create a detailed yet accessible narrative that

provides transparency into our journey of design

knowledge evolution and accumulation (see

Section 5). During our design science research

journey, we conducted three heuristic theorizing

cycles.

4 Findings

4.1 Problem Space

In the problem space, our search process resulted in a

nested structure of problem classes (see Figure 3). We

focused on the standardization problem in the first

phase of our research (heuristic theorizing Cycle 1).

The second heuristic theorizing cycle concerned the

solution of the heterogeneity problem (which

encompasses the standardization problem), and the

third and final heuristic theorizing cycle focused on the

problem of reducing the problem-solving complexity

of monitoring the structural and dynamic complexity

of IT architectures (MCITA) (see theoretical

background section). More specifically, based on the

assumption of bounded rationality (Simon, 1991), our

study focuses on the design of cognitive IT support

(Lerch & Harter, 2001) to reduce problem-solving

complexity and aid decision makers in monitoring the

structural and dynamic complexity of IT architectures.

To reduce problem-solving complexity and provide a

cognitive aid, the design of IT support for MCITA

should address the two problem requirements (Walls,

Widmeyer, & El Sawy, 1992) of tracking and

comprehending structural and dynamic complexity

(see Section 2.3). Following the ensemble view of IT

(Gregor & Jones, 2007; Orlikowski & Iacono, 2001;

Sein et al., 2011), addressing the specific problem

requirements for IT design is not an end in itself, but

any such effort is embedded in a broader social and

organizational context. The context that we focus on in

this design study is the organizational contribution of

monitoring the complexity of IT architectures to

accommodate the competing concerns of stability

versus change in the context of digital business

strategy (Keen & Williams, 2013; Tilson et al., 2010).

4.2 Solution Space

In the solution space, our search involved the

construction of five prototypical IT artifacts that

instantiated the accumulated stock of design

knowledge. In addition to iterating back and forth

between the heuristic search in the problem and

solution spaces, we also iterated back and forth

between two levels: (1) IT artifact construction and

problem solving in cooperation with companies and

(2) abstracted design knowledge accumulation. This

corresponds to the distinction between heuristic search

and heuristic synthesis in Gregory and Muntermann’s

(2014) heuristic theorizing framework. Figure 4

Monitoring the Complexity of IT Architectures

671

provides a high-level overview of the accumulation of

design principles over time that resulted from this

iterative process.

Table 2 presents the four design principles as outcomes

of the heuristic theorizing process. It draws on the

following structuring of ideas. First, we introduce a

concise statement of the design principle. Second, we

present the underlying rationale of the design principle.

Third, we explain why and how this principle helps

address the two problem requirements of the MCITA

problem class. The description of our entire DSR

journey in Section 5 provides transparency to the

reader regarding how and why this particular set of

design principles emerged from our heuristic

theorizing work. While we describe our entire journey,

we place the greatest emphasis on our third cycle (e.g.,

more detailed empirical evidence of evaluation

outcomes), which is where our final results emerged

and stabilized.

Figure 3. Nested Structure of the Problem Class

Figure 4. Evolution of the Five IT Artifacts and Accumulation of Design Knowledge

Complexity problem (encompasses the heterogeneity problem)

What is the structural and dynamic complexity of the overall IT architecture and its constituting subsystems?

Heterogeneity problem (encompasses the standardization problem)

What is the heterogeneity of the overall IT architecture and its constituting sub-systems?

Standardization Problem

Which application interface should rely on which communication standard to minimize the
cost of information exchange?

Cumulative
stock of
design

knowledge
and IT

artifact
evolution

DP-NV-1

Tool-A

DP-NV-2

Tool-B

DP-D-1

DP-NV-3

Tool-C

DP-D-2

Tool-D

DP-TS-1

DP-C-1

Tool-E

DP-D-3

1. Heuristic
Theorizing Cycle:
Standardization

2. Heuristic
Theorizing Cycle:

Heterogeneity

3. Heuristic
Theorizing Cycle:

Complexity

DP-TS-2

Journal of the Association for Information Systems

672

Table 2. Final Set of Design Principles for Constructing a MCITA Tool

Design principle
Rationale derived from prior theory matched with problem-

solving experiences

Problem requirements

Number and variety

(DP-NV): The

artifact should

provide information

on the number and

variety of IT

components and

relations.

• In a digital business strategy, the IT architecture serves as a

platform for distributed, recombinant, and generative

innovation (de Reuver et al., 2018; Woodard et al., 2013; Yoo

et al., 2012).

• Following the law of requisite variety (Ashby, 1956), a certain

degree of variety within the IT architecture is needed to allow

a sufficiently large variety of actions that can be executed on

top of the IT architecture as responses to disturbances.

• Type 1 monitoring: Number and

variety are constituent facets of

structural complexity.

• Type 2 monitoring: Adaptable

measures and possibility of

comparing values for number

and variety across different

architectural domains.

Decomposability

(DP-D): The artifact

should facilitate an

understanding of

interactions among

elements of the IT

architecture within

and across

subsystems at

different levels of

abstraction.

• Complex systems are organized hierarchically and consist of

multiple layers spanning diverse levels of abstraction (Simon,

1962).

• Simon describes complex systems such as IT architectures as

nearly decomposable systems in which interactions among the

subsystems are weak yet not negligible.

• The efficient evolution of IT architectures is conditioned by

the appropriateness of the degree of decomposability.

• Modularity embodies the notion of creating highly integrated,

mutually responsive, and tightly coupled subsystems that

preserve a stable form and function while simultaneously

enabling flexibility in their use and recombination based on

the loose couplings and standardized interfaces among

different modular subsystems.

• Type 2 monitoring: To solve a

given problem the user is able to

focus on a specific level of the

IT architecture’s hierarchy. The

problem may appear unsolvable

at one level of abstraction, but

solvable after zooming in (divide

and conquer) or zooming out

(obtain a holistic view). DP-D

facilitates comprehension by

allowing assessment of the

appropriateness of the degree of

decomposability.

Trace and simulate

(DP-TS): The

artifact should allow

the user to trace and

simulate structural

complexity over

time.

• Monitoring structural complexity over time (retrospectively

and prospectively) allows for identifying changes made to an

IT architecture.

• The theory of dynamically adjusting routines (Berente et al.,

2016) suggests that organizations must ensure the proper

balance between stability and change (Tilson et al., 2010) in

the materiality of an organization (i.e., IT architecture).

• The prospective element of DP-TS helps to anticipate possible

future changes and may be useful in dealing with the high

levels of environmental uncertainty associated with

competition involving digital business strategy (El Sawy et

al., 2010).

• Type 1 monitoring: DP-TS

allows tracking of dynamic

complexity (snapshots of

structural complexity in time).

• Type 2 monitoring: Visualization

capabilities (i.e., plotting

measures of structural

complexity over time) facilitate

comprehension.

Configurability (DP-

C): The artifact

should allow the user

to select different

perspectives on

structural

complexity,

trajectories of

structural complexity

(dynamic

complexity), and

hierarchies of

partitions to facilitate

an understanding of

the specific problem

instance at hand.

• The specific perspective of the user of the MCITA tool

involves three key elements, each of which relates to one of

the three design principles DP-NV, DP-TS, and DP-D.

• As Ashby’s example of a sheep’s brain viewed differently

depending on perspective illustrates, it is critical to assume

the appropriate perspective for solving any complexity

problem.

• As digital business moves are carried out by a heterogeneous

set of actors, the configurability of the MCITA tool is of

strategic importance. Actors’ diverse views, such as on

technological limitations, architectural standards, and business

opportunities offered by an IT architecture, must be

coordinated and aligned in the context of digital business

strategy (Woodard et al., 2013).

• Type 2 monitoring: The user is

able to: (a) ascribe meaning to

abstract elements of the IT

architecture on its different

layers (Richardson et al., 1990;

Ross et al., 2006); (b) specify the

type of dynamic complexity with

regards to the time window, the

time intervals of interest, and the

different time series; and (c)

define, drill down, and roll up,

and compare a selected hierarchy

of partitions according to

specific criteria such as

ownership, product categories,

markets, and so on.

Monitoring the Complexity of IT Architectures

673

5 Design Science Research

Journey

In this section, we trace the evolution of the IT artifact

construction and evaluation over eight years (2008-

2016) and across five companies and contexts with the

goal of illuminating our journey of accumulating

generalizable design knowledge.2 We describe three

cycles of heuristic theorizing and the concurrent

evaluation results that triggered transitions from one

cycle to the other. In describing each cycle, we focus

on the heuristic search within the problem space and

solution space, as well as the key moments of heuristic

synthesis that allowed us to discover connections

between nascent chunks of design knowledge across

the two spaces. In two critical moments of our overall

search process, the evaluation results triggered

decisions to revise and reformulate the problem at hand

in fundamental ways, and, in turn, directed further

searching in the solution space, resulting in three

heuristic theorizing cycles (see Figure 5).

Figure 5. Overview of the Three Heuristic Theorizing Cycles

Figure 6. Overview of the First Heuristic Theorizing Cycle

2 Intermediate results and further details of this process are

documented in (Schütz, 2017; Schütz, Widjaja, & Gregory,

2013a; Schütz, Widjaja, & Kaiser, 2013b; Widjaja &

Buxmann, 2009; Widjaja & Gregory, 2012; Widjaja et al.,

2012).

Problem
Structuring

Artifact Design

Problem Class
Requirements

Design Principles

2. Problem
requirements

(standardization

problem)

4. New
DP-NV-1

1. Problem
formulation

3. Mathematical
modelling and

simulation

5. Prototyping
(Tool-A)

A
b
s
tr

a
c
t

A
rt

if
a
c
t

H
e
u
ri
s
ti
c

S
y
n
th

e
s
is

In
s
ta

n
ti
a
te

d

A
rt

if
a
c
t

Entry Exit
(Second

cycle)

Journal of the Association for Information Systems

674

5.1 First Heuristic Theorizing Cycle

(2008-2009): Optimizing IT

Standardization Decisions

The focus of the first heuristic theorizing cycle (from

2008 to 2009) and the entry into our DSR journey was

the problem of making optimal IT standardization

decisions of interfaces between applications

encountered in Company 1 and the subsequent problem

structuring (see Step 1 in Figure 6). During the research

process, we learned that this problem of making optimal

IT standardization decisions is encompassed in the

heterogeneity problem which is in turn is encompassed

by the complexity problem (see Figure 3). Therefore, the

design principles in this first heuristic theorizing cycle

address a subset of problem requirements of the final

MCITA problem class.

As part of the subsequent heuristic synthesis and

abstract problem requirements definition (Step 2), we

drew on the literature about IT standardization (e.g.,

Weitzel, Beimborn, & König, 2006) and conceived the

problem at Company 1 as an instance of the IT

standardization problem (see Figure 3): Which

application interfaces should rely on which

communication standard to minimize the cost of

information exchange? This resulted in the idea for a

tool that would provide the IT architect support for

optimizing the variety of communication standards

between applications. To address this key requirement

of the formulated IT standardization problem, our

heuristic search in the solution space included

mathematical modeling and simulation (artifact design

in Step 3). We developed a linear optimization model

that incorporates problem context-specific parameters to

assist IT architects in analyzing the cost-benefit

tradeoffs involved in making optimal IT standardization

decisions. We used this linear optimization model as the

foundation for extensive simulation studies (i.e.,

purposeful manipulation of the problem parameters),

yielding an understanding of the optimal solution

structure.

Heuristic synthesis (Step 4) yielded the conclusion that

IT standardization drives IT efficiency by eliminating

extra costs for information exchange between

applications that use different communication

standards. This resulted in the first version of the

“design principle number and variety” (abbreviated as

DP-NV-1; see Table 3), which we instantiated through

collaboration with Company 1 through prototyping

(artifact design in Step 5) a first tool (Tool A). Tool A

allows an IT architect to specify the parameters of an IT

standardization problem for application landscapes and

interpret the optimization results (see Figure 7).

5.2 Concurrent Evaluation and

Transition from Cycle 1 to Cycle 2

Company 1’s CIO confirmed the usefulness of our tool

but chose not to implement the “optimal” suggested

configuration. Instead, the CIO opted for the solution

proposed as second-best by the linear optimization

model, justifying his choice by highlighting that its

“second-best” configuration yielded a much lower

overall heterogeneity of vendors and that, according to

his experience, large IT application landscapes with a

low degree of vendor heterogeneity are much less

complex and more efficient to manage.

Based on these experiences, three key ideas triggered

our identification of a new problem class. First, the

standardization of interfaces between IT applications in

the interest of reducing information exchange costs

(classical IT standardization view) typically also affects

the degree of heterogeneity of the overall IT application

landscape because applications are usually tightly

coupled to a particular communication standard (e.g., an

application comes with different standard data formats

for information exchange). Thus, the implementation of

IT standardization decisions with a focus on

relationships between applications often results in a less

heterogeneous landscape of the applications themselves.

Second, in reflecting upon the CIO’s comments about

the importance of considering the IT vendor

constellation in making IT standardization decisions, we

realized that minimizing the costs of information

exchange between applications is only one facet of the

problem. We conceived various other advantages and

disadvantages related to making IT standardization

decisions and identified the need to explore this further.

Table 3. Design Knowledge after Heuristic Theorizing Cycle 1

 Set of design principles:

To support IT standardization

decision making, the artifact should ...

IT artifact instantiation (Tool A)

D
P

-N
V

-1

... provide information on the variety of

relationships between software

components (i.e., application layer).

• Graphical representation of the topology of relations between software

components.

• Features that allow structured input of parameters of the

standardization problem (information cost, standardization cost).

• Different types of parameter validations (e.g., no negative costs).

• Solver for the linear optimization problem and sensitivity analysis.

Monitoring the Complexity of IT Architectures

675

Figure 7. Screenshot of Tool A (Specification of the Network Topology of Software Components and Input of

Key Parameters for Standardization Decisions)

Third, we also reflected upon the multilayered

architecture of a firm’s IT, including application, data,

and infrastructure layers, and realized that

optimization decisions for an IT application landscape

are not isolated, standalone decisions. In fact, a

decision affecting the application layer in most cases

also affects other interdependent layers of the IT

architecture. We also observed that, in practice,

multiple IT vendors typically provide IT system

components and services across multiple

interdependent layers. As a result, we shifted our focus

from application landscapes to multilayered enterprise

IT architectures.

5.3 Second Heuristic Theorizing Cycle

(2009-2012): Monitoring IT

Heterogeneity

Triggered by the emergent outcomes of the concurrent

evaluation explained above, we again engaged in

problem reformulation and class identification (see

Figure 8: Step 6), marking the entry point to the second

heuristic theorizing cycle. In an attempt to generalize

beyond the context of Company 1 and identify the

abstract problem requirements, we began working with

Company 2 (problem reformulation in Figure 8: Step

6; see Table 1 for the purpose and scope of these

interactions). These interactions yielded the key

insight to structure the problem space: the idea of

viewing the IT standardization problem defined in the

previous cycle as a nested subproblem of determining

the desirable degree of IT heterogeneity of a

multilayered IT architecture, which requires tracking

and comprehending the variety of applications, data,

and infrastructure components and their interrelations

(see Figure 3). Our reasoning was as follows. First, the

information exchange costs between applications, the

primary focus of making IT standardization decisions

for interfaces on the application layer, is only one of

many different cost categories (e.g., maintenance,

licensing, and employee training) that need to be

monitored by the IT architect across different layers.

This broader set of aspects can be monitored by

expanding the focus from the standardization of

application interfaces to IT heterogeneity. Second, this

expanded problem understanding permitted a broader

managerial focus that goes beyond numbers and IT

efficiency, the typical focus of IT standardization, and

also considers strategic effects such as IT flexibility.

Synthesizing these insights into new general problem

requirements (Step 7), our newly defined focus was to

find a desirable degree of IT heterogeneity of a

multilayered IT architecture (in which the IT

application landscape, which was the focus of our first

heuristic theorizing cycle, represents only one layer in

addition to the other data and infrastructure layers).

Different types
of parameter

validations

Graphical
editing tools

Software
Components

Graphical
representation of the
topology of relations

between software
components

Structured input of
parameters of the

standardization
problem (information
cost, standardization

cost)

Journal of the Association for Information Systems

676

Figure 8. Overview of the Second Heuristic Theorizing Cycle

Based on our perception of again having a sufficiently

well-defined problem at hand, we transitioned to

artifact design. Drawing on analogical design and

mathematical modeling (Step 8) yielded the idea to

apply the theory of biological ecosystems (Peet, 1974).

Accordingly, systems variety can be conceptualized to

include two facets: evenness, or the parity of the

prevalence of a species, and richness, or the number of

species. We transferred the concept of entropy measure

as used in the fields of biology and economics

(Jacquemin & Berry, 1979) to measure IT

heterogeneity (see Appendix B for details of this

approach to measure IT heterogeneity).

Synthesizing (Step 9) the cumulative learning

outcomes described above and building upon the

insights from our first heuristic theorizing cycle, we

arrived at the conclusion that reducing the IT

heterogeneity of an IT architecture is associated with

potential cost and knowledge synergies (e.g.,

implementation and training costs are significantly

reduced for homogeneous software systems) that must

be considered within and across different layers (i.e.,

application, data, and infrastructure). Based on the

above, we refined design principle DP-NV-2 (see

Table 4). In working with Company 2, we also realized

the need for the IT architect to be able to drill down

and up, or zoom in and out, to assess the degree of IT

heterogeneity across different departments and

subdepartments or other types of partitions of the

overall system. Thus, the IT architect should be able to

identify sources of IT heterogeneity and take

appropriate corrective action in the identified part of

3 As the graphical user interface of Tool B is based on

standard spreadsheet technology, it is therefore not useful for

the organization. This resulted in the first version of

“design principle decomposability” (DP-D-1) (see

Table 4). Through prototyping (artifact design in Step

10) and drawing on standard spreadsheet technology,

we instantiated the accumulated stock of design

knowledge and constructed a new tool (Tool B).3 The

essence of the artifact is the underlying mathematical

model represented as a set of formulas (see Appendix

B for more details).

5.4 Concurrent Evaluation and

Transition from Cycle 2 to Cycle 3

We engaged Company 2 for the concurrent evaluation

of Tool B and the embedded stock of accumulated

design knowledge. We learned that it is relevant for an

IT architect to know whether the IT heterogeneity in a

given department and subpart of the organization

stems from various subparts of that department that are

themselves plagued by IT heterogeneity—suggesting

the need to zoom further in—or whether that IT

heterogeneity stems from various subparts of that

department that are themselves characterized by IT

homogeneity. With the goal of replication and

increasing the generalizability of our nascent design

knowledge, we expanded the concurrent evaluation

activities to Company 3. With the help of data we

obtained from Company 3’s IT department, we were

able to show that our Tool B enables IT architects to

identify those parts of the IT architecture that are a

significant source of IT heterogeneity (e.g.,

technologies and programming languages in use), a

constituent element of structural complexity.

demonstrating the instantiated design knowledge and we

omit presenting a screenshot.

Problem
Structuring

Artifact Design

Problem Class
Requirements

Design Principles

7. Problem
requirements (IT
heterogeneity)

9. Update of
DP-NV-2 and
new DP-D-1

6. Problem
reformulation

and class

identification

8. Analogical
design and

mathematical

modeling

10. Prototyping
(Tool-B)

A
b
s
tr

a
c
t

A
rt

if
a
c
t

H
e
u
ri
s
ti
c

S
y
n
th

e
s
is

In
s
ta

n
ti
a
te

d

A
rt

if
a
c
t

Entry
from

second

cycle

Exit
(Third
cycle)

Monitoring the Complexity of IT Architectures

677

Table 4. Design Knowledge after Heuristic Theorizing Cycle 2

 Set of design principles

To support IT standardization

decision making, the artifact should ...

IT artifact instantiation (Tool B)
D

P
-N

V
-2

... provide information on the

heterogeneity of relations and

components of a multilayered IT

architecture.

• The formulas of the mathematical model as part of the spreadsheet

prototype allow for calculating the entropy measure and the

Herfindahl Hirschman Index to quantify the IT heterogeneity (for the

basic idea of the entropy measure, see Appendix B).

D
P

-D
-1

... facilitate zooming in and zooming

out to different levels of abstraction of a

multilayered IT architecture.

• Tool B allows different subsystems of the IT architecture to be

defined. The decision maker is able to specify the architectural

domains in which he or she is interested.

In summary, the IT architects from Company 2 and

Company 3 both confirmed the usefulness of our

conceptualization and measurement of IT

heterogeneity (see Appendix B). However, similar to

our previous transition from the first to second

heuristic theorizing cycle, we obtained feedback that a

broader view of the problem was required. This

prompted, once again, a revision of the problem class

(Figure 9: Step 11) and thus a transition into the third

and final cycle of heuristic theorizing. In doing so, we

conceived the idea of drawing on a complex system

perspective, viewing IT standardization and IT

heterogeneity decisions as nested subproblems of

monitoring the structural and dynamic complexity of

an IT architecture (see Figure 3). This idea occurred to

us mainly because we learned that IT architects focus

on different types of IT heterogeneity: both the

heterogeneity of IT components (e.g., applications)

and the heterogeneity of the relationships between

those IT components (e.g., application interfaces).

Comparing this insight with the literature, we

repeatedly came across the notion of complexity

(Schneberger & McLean, 2003). Complexity can be

understood as a system state that results from the

number of its constituent components (Klir, 2001;

Flood & Carson, 1993) and relationships (Flood &

Carson, 1993). Furthermore, a complex system can be

characterized by the heterogeneity (i.e., variety) of

components and relationships that form part of the

overall system (Simon, 1962), highlighting the

interconnections between systems heterogeneity and

systems complexity.

5.5 Third Heuristic Theorizing Cycle

(2012-2016): Monitoring IT

Complexity

The concurrent evaluation activities with Company 2

and Company 3 explained above and the identification

of monitoring IT architectural complexity as the

relevant, general problem class triggered problem

reformulation (Step 11), which was the entry into the

third and final heuristic theorizing cycle (see Figure 9).

From the beginning of mid-2012, we focused on the

problem of monitoring the complexity of IT

architectures (see Figure 3 for the problem

description).

Figure 9. Overview of the Third Heuristic Theorizing Cycle

Problem
Structuring

Artifact Design

Problem Class
Requirements

Design Principles

12. Problem
requirements (IT

Complexity)

14. Update of
DP-NV-3, DP-D-

2 and new

DP-TS-1

11. Problem
reformulation

and class

identification

13. Analogical
design

(Computing

Complexity)

15. Prototyping
(Tool-C)

A
b
s
tr

a
c
t

A
rt

if
a
c
t

H
e
u
ri
s
ti
c

S
y
n
th

e
s
is

In
s
ta

n
ti
a
te

d

A
rt

if
a
c
t

Entry
from

second

cycle

Exit

16. Update of
DP-TS-2

17. Prototyping
(Tool D) and
playing with

kernel theory

18. Update of
DP-D-3 and new

DP-C-1

19. Prototyping
(Tool-E)

Journal of the Association for Information Systems

678

Figure 10. Conceptualization of the Structural Complexity of an IT Architecture

In this cycle, we began working with Company 4 and

Company 5, two large banks with legacy, historically

grown, and complex IT architectures that formed the

foundation for the execution of their digital business

strategies. This was a defining moment for our work, as

we identified digital business strategy and the associated

challenge of transforming a legacy IT architecture into a

digital platform as a highly relevant context for

monitoring architectural IT complexity.

In Step 12, we synthesized the shift of our problem

understanding from heterogeneity to complexity and

identified the new problem requirements associated

with the following question: What is the structural and

dynamic complexity of the overall IT architecture and

its constituting subsystems? This resulted in the nested

problem structure described in Figure 3—that is, that the

standardization problem class is part of the

heterogeneity problem class, which in turn is part of the

complexity problem class. In an effort to define the

boundaries of our nascent set of design principles, we

decided to maintain our focus on IT architecture (a

subset of an enterprise architecture).

Through analogical design (Step 13), we identified

connections between architectural IT complexity and

the concept of computing complexity (Schneberger &

McLean, 2003). Drawing on Schneberger and McLean

(2003) was the inception point in our DSR journey to

draw on a system-theoretic perspective on man-made IT

systems (ISO/IEC/IEEE 2011; Simon, 1962). A system

(i.e., IT architecture) is defined as a set of components

𝑐 ∈ 𝐶 (e.g., applications, data, and infrastructure) and

the relationships between them 𝑅 ∈ (𝐶 × 𝐶) (e.g.,

interfaces between applications) (Hall & Fagen, 1969).

The computing complexity is influenced by the number

and heterogeneity of IT components and relationships

(Schneberger & McLean, 2003). Combining these ideas

with our evolved understanding of multilayered IT

architectures, our conceptualization of the structural

complexity of IT architecture emerged: structural IT

architectural complexity stems from the number and

heterogeneity of components and relationships on the

three layers of an IT architecture (see Figure 10).

In a subsequent effort of heuristic synthesis (Step 14),

we adapted our nascent design knowledge (i.e., DP-NV

and DP-D) to the revised general problem requirements.

Feedback provided through workshops with IT

architects from Company 4 and a participating

consultancy firm yielded the refinement of our first

design principle as follows: DP-NV-3 concerned the

additional monitoring of the “number” of components

and relations (instead of the focus on variety in the first

version of this design principle). Accordingly, an artifact

for monitoring the IT architecture complexity should

provide information on the number and variety of IT

components of a multilayered architecture (see Table 5).

In addition to this structural perspective on IT

architectural complexity, the first version of “design

principle trace and simulate” (DP-TS-1) emerged. We

realized the need to track the history and evolution of the

structural complexity measures over time. The first

version of this design principle, therefore, focused on

incorporating and visualizing historical data on the

complexity measures.

Furthermore, DP-D-2 was extended to allow flexible

zooming in and out to different subsystems of the IT

architecture (in comparison to the previous “static”

zooming in on the spreadsheet prototype). Accordingly,

based on the basic definition of an IT system (see

Section 2.1), partitioning of the system is possible, as

follows: One partition is defined as the set of nonempty

subsets of C (i.e., the set of components) such that every

element is in exactly one of these subsets. Each subset

may be considered a system itself and therefore can also

be partitioned, resulting, overall, in a nested hierarchy of

partitions. Hierarchic thinking plays a crucial role in

understanding any complex system (Simon, 1962). To

illustrate, if the partitioning of applications is done

according to the dimension “organizational structure,” a

subset corresponds to the set of all applications owned

by one department. This results in a hierarchy of

partitions for the dimension “organizational structure.”

That is, the organization can be partitioned into

departments, which can be partitioned into

subdepartments.

Number

Heteroge-
neity

Number

Heteroge-
neity

D
a
ta

A
rc

h
ite

c
tu

re

A
p
p
lic

a
tio

n
A

rc
h
ite

c
tu

re

In
fr

a
s
tr

u
c
tu

re
A

rc
h
ite

c
tu

re

Monitoring the Complexity of IT Architectures

679

Figure 11. Screenshot of Tool C (Dashboard with Information on Number and Variety)

Typically, different dimensions to partition an IT

architecture exist. Examples include geographic

(world, country, and city), functional (overall system

and business functionality), and the organizational

dimension (overall organization, department, and

subdepartment) discussed earlier.

We engaged in prototyping activities (artifact design in

Step 15) to instantiate our current state of nascent

design knowledge and evaluated the resulting Tool C

with Company 4. Figure 11 shows a screenshot of the

dashboard in Tool C, where the user is able to drill

down to certain domains and the prototype presents the

“quantity” and “diversity” (Company 4’s terms for

“number” and “variety”) of the different components

and relations. Furthermore, Tool C allows for

synchronizing data concerning the current state of the

IT architecture with different repositories and includes

a “data warehouse” for information related to IT

complexity. Based on these data, it is possible to obtain

an overview of the historical data as a “time series”

(see Figure 12).

Concurrent evaluation feedback obtained through

interactions with Company 4 illustrated the usefulness

and utility of Tool C and the underlying

conceptualization of structural IT architectural

complexity (see Figure 10). The instantiated prototype

helped structure and improve the understanding of a

large range of IT architecture complexity measures

that Company 4 had developed. We were also able to

identify areas in which Company 4’s IT architecture

complexity had not been sufficiently monitored in the

past.

As the principal IT architect at Company 4 explained,

Of course, we first had to think about what

IT complexity really is, what kind of

complexity we want to look at and where to

find the objects in the company to pinpoint

the complexity. ... And here we focus on the

structural complexity of a system or cluster,

by which I mean multiple applications in a

functional domain, which results from the

number and diversity of components and the

number and diversity of relationships

between them. ... The next step was to think:

what do we really want to look at now?

Yeah, well, we’re architects, so let’s look at

the “layers of the architecture,” that is,

data, applications, and infrastructure.

In addition to providing feedback that our

conceptualization of the IT architectural complexity

aligned well with the view in practice, Company 4 also

began to use our tool for new IT investment decisions

and IT project prioritization activities that were part of

the company’s IT transformation planning.

Specifically, our prototype, fed with company-specific

data, helped IT decision makers conduct a so-called

“architecture check” during budget negotiations and

systematically assess the effect of a proposed IT

investment and change on the state of architectural IT

complexity.

Domain (anonymized)

Domain (anonymized)

Domain (anonymized)

Possibility to

drill down at

certain domains

”Quantity" and

"diversity" (i.e. jargon

of Company-4 for

"number" and

"variety") of the

different components

Journal of the Association for Information Systems

680

Figure 12. Screenshot of Tool C (Evolution of Complexity Indicators over Time)

The principal architect at Company 4 stated:

A colleague has been fighting for quite

some time now to get his “zoo” a bit

smaller—that is, to standardize—but he has

not made it over the years because of the

budget situation. Now he was able to see

from Tool C that standard compliance has

decreased even further over the last years.

... So, he said, “OK, if I have the

information now that it [the standard non-

compliance] is even higher, then maybe I

have a better argument for getting that

budget.”

The department head of architecture management of

Company 4 articulated how DP-D-2 helps to derive

action from the information provided by Tool C,

stating:

If I only have key metrics at the level of the

entire bank, then it does not help me. I have

to be able to break it down. Otherwise, I

cannot say where to start consolidating.

The principal architect at Company 4 added more

details and stated:

At the level of the entire application

landscape, the aggregated key metric is

nothing more than an indicator. You may

take decisions based on: “Here I have to do

something.” But what this “something” is,

you will only find out if you really hone in.

Because if you realize that standard

compliance in a certain domain is not good,

then you need to examine the root causes.

The domain may contain 50 application

systems, but which of these 50 systems is

ultimately nonstandard, you cannot tell

from the aggregate number. That’s why you

need the drill-down. This way, you are able

to track down the responsible manager and

then they have to investigate this further.

During workshops with Company 4, the principal

architect emphasized the usefulness of the time series

(DP-TS-1) for interpreting the measures of IT

complexity, stating:

I think that the rate of change in

architecture is meaningful only when

reflected in complexity indicators. ... In my

opinion, the rate of change of the

architecture alone is not relevant

information. More useful is the change of

the indicators over time, a time series of

indicators.

The feedback obtained about Tool C triggered a new

phase of heuristic synthesis (Step 16). Specifically,

feedback from Company 4 suggested the importance

of tracking the history as well as simulating the further

evolution of IT architecture complexity at hand—

leading to a refinement of the design principle “track

and simulate” to DP-TS-2. Our rationale for the

adjustment to DP-TS is twofold. First, tracing

historical changes of key facets of IT complexity over

time may be useful (this was already part of the

previous version of DP-TS). Second, examining the

potential effects of prospective future changes through

simulation may be useful because simulation enables

the IT decision maker to test different options for

action and investigate the effects of particular

techniques (e.g., IT standardization) on the overall IT

architecture. Thus, overall, the tool should allow the

user to observe the effectiveness of past and planned

applications of techniques (e.g., IT standardization) to

deal with IT complexity.

The satisfaction of Company 4 with the artifact and our

growing confidence regarding the usefulness of our

nascent design theory in the given context prompted us

to reflect upon the potential generalizability of our

design principles. Up to this stage of our research

program, we had developed DP-NV-3, DP-D-2, and

DP-TS-2 (see Figure 4). To explore the potential

generalizability of this set of design principles and

The user is able to
visualize the structural

complexity for different

subsystems

Monitoring the Complexity of IT Architectures

681

carry out further replication in a new context, we

undertook further prototyping activities to develop

Tool D in collaboration with a new company (Step 17).

In 2013, we engaged Company 5, which was at the

time in the middle of the largest IT transformation

program in its corporate history as part of its broader

digital strategy and transformation agenda. The

feedback confirmed the revised version of DP-TS, and

the added simulation abilities of Tool D (see Figure 13)

were highly appreciated by the practitioners. An IT

architect at Company 5 stated:

Simulation offers me the opportunity to

illustrate my planned projects and express

the underlying idea. I can express my idea,

I can document it, and I can present it: “We

have planned the following projects and

tried out the following alternatives in which

the complexity changes as follows.” For

me, that is the essential added value of

simulation.

From our engagement with Company 5, we learned

that monitoring the architectural IT complexity in the

context of digital business strategy and transformation

involved developing the digital platform capability to

enable the flexible recombination of sets of integrated

IT components (i.e., modules) according to

differentiated business needs. Therefore, during the

implementation of Tool D, we also worked with the

theory of modular systems (Ethiraj & Levinthal, 2004;

Simon, 1996) as kernel theory (Step 17 in Figure 9).

This helped us conceive the idea for an extended

conceptualization of IT complexity. Specifically,

modularity enables an efficient, flexible recombination

of sets of integrated IT components (so-called

modules).

Particularly in the context of digital platform design,

the notion of modularity is relevant for understanding

how to deal with IT complexity. Prior studies—for

example, that of Ethiraj and Levinthal (2004)—state

that the efficient and flexible recombination of

modules requires an “appropriate” degree of

modularity. According to this, stretching

modularization too far may result in the IT architecture

leaning strongly toward flexibility but at the expense

of efficiency; that is, the efforts of integrating and

testing evolved subsystems are significantly increased.

Conversely, giving modularity too little emphasis may

result in an insufficient range of possibilities for

flexible recombination, i.e., the efforts of separating,

changing, or recombining subsystems become

excessively high.

Synthesizing the insights (Step 18) from joint problem

solving with Company 4 and Company 5 and prior

kernel theory on modular systems yielded a further

refinement of the design principle “decomposability”

(DP-D3). Specifically, the lesson from Company 5

about “flexible recombination” pointed us toward the

concept of modularity. As a result, we extended our

prior conceptualization of IT complexity (see Figure 10)

by including this concept. Accordingly, the artifact for

monitoring IT complexity should also provide relevant

information for assessing the appropriateness of

modularity. In testing this idea in our engagement with

Company 5, we reasoned that an appropriate level of

modularity contributes to balancing IT efficiency with

IT flexibility.

Figure 13. Screenshot of Tool D (Simulation Dialogue)

Dialogue to specify
simulation parameters

Journal of the Association for Information Systems

682

In addition to the validation and refinement of existing

design principles, the concurrent evaluation of Tool D

and especially the satisfaction with the revised

conceptualization of IT architectural complexity

prompted us to develop (also in Step 18) the “design

principle configurability” (DP-C-1). The tool should

allow the user to choose the perspective on IT

architectural complexity needed to solve a specific

decision problem: IT decision makers must be able to

specify a “complexity configuration” and select (1) the

type of IT components (e.g., application components,

hardware components, etc.); (2) the type of relationship

between IT components (e.g., interfaces, physical

connections, etc.); (3) characteristics that differentiate

IT components from one another (e.g., vendor

heterogeneity, programming language used, etc.); and

(4) characteristics that differentiate the relationships

between IT components from one another (e.g., type of

interface, such as synchronous or asynchronous, etc.).

For additional replication of our revised stock of

cumulative design knowledge, we engaged once again

with Company 4 (artifact design in Step 19). For this

final prototyping and concurrent evaluation effort, we

included all of our nascent design principles in the

instantiated IT artifact (i.e., Tool E; see Figure 14),

which was constructed through cooperation with

Company 4. For our instantiation of the new version of

design principle DP-D-3, we followed Ethiraj and

Levinthal (2004, p. 162) and relied on four dimensions

of appropriateness of modularity: “the ‘appropriate’

number of modules, the ‘appropriate’ mapping of

design elements to the modules, the ‘appropriate’

interactions among the design elements within each

module, and the ‘appropriate’ interfaces or interactions

between modules.”

Figure 14 shows how the measures proposed by Ethiraj

and Levinthal (2004) were implemented in our MCITA

tool. The user interface is structured into one primary

and three secondary panes. By using the visualization of

modules and IT components in the primary pane, the

user can assess the appropriateness of mapping IT

components to modules. The same visualization in the

primary pane provides the information required for an

assessment of the appropriateness of the number of

modules. The upper two secondary panes on the right

side show the number of internal and external relations

among IT components, allowing the user to assess the

appropriateness of relations within and between

modules. The fourth pane in the lower right draws on

information from the upper two panes and provides

additional information on the proportion of relations

within and between modules.

The feedback we obtained from Company 4

representatives was positive and provided support for

our nascent set of design principles. Including measures

on the “appropriateness” of modularity on all levels of

abstraction was conceived as extremely helpful by the

companies we worked with. The IT architect of

Company 4 stated:

An incorrect assignment of components [to

modules] can have catastrophic

consequences for the flexibility of the overall

system. If, for example, dependencies are

distributed across all departments, this can

make it much more difficult to communicate

change. When responsibilities—or even

budget—for a single application is divided

among 15 different parties, you cannot

achieve anything.

The assessment of modularity seemed critical to

avoiding this situation. As the architect explained:

You will never get a completely clean,

disjoint 1:1 mapping. But cutting it in

pieces, in a way that the overhead stays low

or dependencies are generally concentrated

within a single unit, is the goal. This is loose

coupling: being as self-contained as

possible, and the interaction outside my

module should be as little as possible and as

planned as possible.

Figure 14. Screenshots of Tool E (Focus on the Appropriateness of Modularity)

6 Designprinzipien für ein Informationssystem zur Planung und Kontrolle von IT-Komplexität

	

192

Abbildung 56: Darstellung von Modularität in IT-COM_3

Der Nutzer hat die Möglichkeit, ein System (oder auch ein Subsystem) auszuwählen, dessen

Modularität er im Detail untersuchen möchte. Hier stehen ihm sowohl die Domänen als auch

die Subdomänen für eine Analyse zur Verfügung. Im linken Bereich der Abbildung 56 kann

anhand der Anzahl der Balken – die jeweils eine funktionale Einheit und somit ein Modul

repräsentieren – das erste Gütekriterium beurteilt werden, d. h. die Angemessenheit der

Anzahl der Module. Die Höhe der Balken des linken Diagramms zeigt die Anzahl der jeweils

zugeordneten Anwendungen auf und dient somit der Beurteilung des zweiten Gütekriteriums

bzgl. der Zuordnung der Designelemente zu den Modulen. Zur Beurteilung des dritten und

vierten Gütekriteriums sind die Balkendiagramme auf der rechten Seite aufgeführt. Dem

obersten Diagramm ist die Anzahl der Schnittstellen zwischen den Anwendungen innerhalb

der funktionalen Einheiten zu entnehmen, was dem dritten Gütekriterium entspricht. Im

mittleren Diagramm ist dementsprechend die Anzahl der Schnittstellen der funktionalen

Einheiten zu Anwendungen außerhalb der jeweiligen funktionalen Einheit angeführt. Um

optische Größeneffekte der beiden Diagramme zu relativieren, zeigt das unterste Diagramm

das Verhältnis zwischen der Anzahl interner und externer Schnittstellen der Module auf.

Diese Form der Darstellung ermöglicht es dem Nutzer, direkt auffällige funktionale Einheiten

zu identifizieren, die einer weiteren Betrachtung unterzogen werden sollten:

„Der Vorteil ist, dass ich sofort sehe, welche der funktionalen Einheiten ich mir näher

ansehen sollte.“ (Principal Architect)

Der Nutzer kann dabei definieren, welches die relevanten Designelemente sind und auf

Grundlage welcher Form der Interaktionen die Kommunikation zwischen den Design-

elementen festzumachen ist (z. B. anhand der technischen Schnittstellen zwischen den

Anwendungen oder anhand der Zuordnung des für die Anwendung verantwortlichen Mitar-

beiters). Dieser generische Ansatz ermöglicht dem Nutzer, unterschiedliche Perspektiven auf

die Modularität einzunehmen, ohne dass sich die zugrunde liegende Logik ändert.

Der Aspekt der Modularität manifestierte sich noch an einer weiteren Stelle von IT-COM_3,

wobei sich diese Darstellung auf das dritte und vierte Gütekriterium beschränkt. Mit

FE

1

FE

2

FE

3

FE

5

FE

4

FE

6

FE

7

FE

8

FE

9

FE

10

FE

13

FE

12

FE

11

FE

1

FE

2

FE

3

FE

4

FE

5

FE

6

FE

7

FE

8

FE

9

FE

10

FE

11

FE

12

FE

13

FE 6

FE

1

FE

2

FE

3

FE

4

FE

5

FE

6

FE

7

FE

8

FE

9

FE

10

FE

11

FE

12

FE

13

FE

1

FE

2

FE

3

FE

4

FE

5

FE

6

FE

7

FE

8

FE

9

FE

10

FE

11

FE

12

FE

13

Assessment of the
“appropriate” relations

among the IT

components within

each module

Assessment of the
“appropriate” relations

between modules

Assessment of the
“appropriate” number of

modules

Assessment of the
“appropriate” mapping

of IT components to the

modules

Monitoring the Complexity of IT Architectures

683

Figure 15. Screenshot Tool E (Selection of Complexity Type)

Table 5. Design Knowledge in the Solution Space after Heuristic Theorizing Cycle 3

 Set of design principles

To support IT standardization

decision-making, the artifact should ...

IT artifact instantiation (Tool C, D, E)

D
P

-N
V

-3

... provide information on the number

and variety of IT components and

relations.

• Tools C, D, and E contain dashboards with measures to quantify the

number and variety of selected IT components (see Figure 11).

• The prototypes use the entropy measure and the Herfindahl

Hirschman index to quantify the variety.

• The dashboards are enriched by visualizations of data quality

(highlighting missing values) to facilitate the interpretation.

D
P

-D
-3

 … facilitate an understanding of

interactions among elements of the IT

architecture within and across

subsystems on different levels of

abstraction.

• Tools C, D, and E allow the user to drill down into different domains

of the IT architecture.

• Tool E integrates measures to assess the “appropriateness” of

modularity at different levels of abstraction.

D
P

-T
S

-2

... allow the user to trace and simulate

structural complexity over time.

• Tools C, D, and E contain visualizations of complexity measures over

time (see Figure 12).

• Tools C, D, and E can import historical data from repositories.

• Tools D and E allow simulations of IT projects (e.g., consolidation

projects) on the measures of IT architectural complexity.

D
P

-C
-1

… allow the user to select different

perspectives on structural complexity,

trajectories of structural complexity

(dynamic complexity), and hierarchies

of partitions to facilitate an

understanding of the specific problem

instance at hand.

• Tool E enables the user to customize the perspective on complexity

depending on the problem at hand (see Figure 15).

The newly implemented version of DP-C increased the

generalizability of the application of Tool E. Figure 15

shows a dialogue in the prototype that exemplifies the

assistance provided to the tool user during the

configuration of different perspectives on structural

complexity. This involves the selection of IT

components (e.g., applications), a measure of the

variety of IT components (e.g., vendors), the relations

between the selected IT components (e.g., interfaces),

as well as a measure of the variety of relations (e.g.,

implementation of the interfaces). Similar dialogues

exist to configure the trajectories of structural

complexity (dynamic complexity) and hierarchies of

partitions. As the principal IT architect of Company 4

Dialogue to assist the user during
the configuration of different

perspectives on complexity

Journal of the Association for Information Systems

684

stated: “That’s the generic thing about the tool. You

can now use it as a toolbox for almost any question.”

A department head of Company 4 expanded on this

point:

The exciting thing here is that you can pick

individual questions from the huge

wallpaper of possibilities. I can only look at

programming languages or at database

systems and, and, and. ... Here, I can

investigate an isolated problem without

being overwhelmed by all details.

6 Discussion and Implications

Our main contributions are an increased understanding

of a novel problem class as well as a corresponding set

of design principles. We developed these contributions

by following an iterative approach with successive

refinements and integrating actual projections into

instantiated IT artifacts across multiple contexts and

companies. The design knowledge we accumulated

during this process contributes to our understanding of

both the problem and solution spaces introduced

earlier. In addition, from our rich description of the

design process itself, we derive implications for the

practice of conducting DSR.

6.1 Implications for Research on IT

Architecture Management in the

Context of Digital Business Strategy

This paper’s contribution to design knowledge is

twofold: in the problem space, we discovered and

conceptualized the problem class “monitoring the

complexity of IT architectures” (MCITA); in the

solution space, we built nascent design theory, drawing

on the kernel theory of complex systems (e.g., Amaral

and Uzzi, 2007; Ashby, 1960; Buckley, 1967;

Schneberger & McLean, 2003; Simon, 1962) as well

as our experiences and observations from iterative IT

artifact construction and concurrent evaluation across

multiple contexts and companies. This knowledge

contribution in the solution space takes the form of a

set of design principles that offer prescriptive guidance

for how to design IT support for addressing MCITA

problems. We discuss the contributions in the two

spaces and their respective implications in more detail

in the following.

In the problem space, we discovered a nested problem

structure in which the MCITA problem class

encompasses the heterogeneity problem, which in turn

encompasses the standardization problem (see

Figure 3). The MCITA problem class we discovered

by examining IT architecture management in the

context of digital business strategy is not entirely

novel; rather, it is an instance of the general class of

problems of monitoring complex systems (Henneman

& Rouse, 1986; Murray & Liu, 1997; Murray & Yili,

1994; Natu et al., 2016; Psiuk & Zielinski, 2015;

Vierhauser et al., 2016; Zinser & Henneman, 1989). To

the best of our knowledge, however, this study is the

first systematic attempt to establish a link between this

general problem class and the problem domain of IT

architecture.

This contribution in the problem space has

implications for research on IT architecture, as we

offer a change in perspective from the view of

“reducing IT architecture complexity” (Guillemette &

Paré, 2012; Ross et al., 2006) toward “monitoring the

complexity of IT architectures” (i.e., MCITA). The

former view is based on the assumption of the

separation of the IT function from business units,

whereas the latter view is based on the alternative

assumption, in line with the fusion view (El Sawy,

2003; El Sawy et al., 2010), that IT architectures are

symbolic representations and material manifestations

of the firm’s systems of digital offerings, processes,

and platforms (Keen & Williams, 2013; Woodard et

al., 2013). Based on this latter assumption and the

experiences gathered during our heuristic search, we

offer a definition of an IT architecture as a distributed,

evolutionary, and emergent system of IT systems that

enables the digital business strategy of one or more

partnering firms. Based on our insights derived from

heuristic theorizing, we suggest that IT architectures in

the context of digital business strategy exhibit

characteristics that resemble digital infrastructures

(Hanseth & Lyytinen, 2010; Henfridsson & Bygstad,

2013; Tilson et al., 2010) and that monitoring their

complexity is integral for business strategy and should

be viewed as an aspect of digital business strategy

execution. A key implication of these insights is that

reducing the structural and dynamic complexity of IT

architectures, which is the focus of the literature, is

often not feasible and is certainly not a sufficient

means to ensure the strategic business value

contribution of an IT architecture (Guillemette & Paré,

2012; Ross et al., 2006).

In the solution space, we developed a set of four design

principles for the MCITA problem class. This

accumulated design knowledge was actually projected

(Baskerville & Pries-Heje, 2014) into multiple

instantiated IT artifacts (i.e., software prototypes)

across different contexts and companies. Each of the

four design principles offers cumulative contributions

and extensions of the existing literature (see Table 6).

In particular, our IT artifact construction work

illustrated that features of existing system types (i.e.,

spreadsheet, metadata repository, and simulation) may

be enhanced by novel features (i.e., functions to

navigate the hierarchy of systems, complexity

measures, and tools to assess the appropriateness of

modularity) to address the class of problems we refer

to as MCITA.

Monitoring the Complexity of IT Architectures

685

Table 6. Summary of Contributions of our Design Principles to the Existing Literature

DP Cumulative contributions and extensions of the existing literature
N

u
m

b
er

 a
n

d

v
a

ri
et

y
 (

D
P

-N
V

) • We transferred the concept of structural complexity (Henneman & Rouse, 1986; Ribbers & Schoo, 2002; Schneberger

& McLean, 2003; Xia & Lee, 2005) to IT architecture management in the context of digital business strategy (Keen &

Williams, 2013).

• We transferred and illustrated the utility of the entropy measure and the Herfindahl Hirschman Index from the field of

economics (Jacquemin & Berry, 1979) to the MCITA problem.

• We extended the conceptualization and measurement of systems variety in the MCITA context by drawing on

knowledge from the field of biology that distinguishes between richness and evenness (Peet, 1974).

D
ec

o
m

p
o

sa
b

il
it

y

(D
P

-D
)

• Design knowledge about IT architecture management (e.g., Aier et al., 2009; Winter & Aier, 2011) and monitoring

complex systems (e.g., Maier, 1998) is extended by drawing on the notion of the “near decomposability” of a complex

system (Simon, 1962).

• The incorporated idea of hierarchic thinking for understanding a complex system extends the need, previously

identified in the literature, for a comprehensive system-wide view on monitoring complex systems (e.g., Natu et al.,

2016).

• We transferred and illustrated the utility of Ethiraj and Levinthal’s idea of “appropriateness of modularity” to facilitate

comprehension of the (near) decomposability (Simon, 1962) of a complex system or IT architecture (Ethiraj &

Levinthal, 2004).

• The idea of “drill-down” from the literature on monitoring complex systems (i.e., Psiuk & Zielinski, 2015) is extended

to the broader idea of decomposability.

T
ra

ce
 a

n
d

si
m

u
la

te
 (

D
P

-T
S

)

• The idea of monitoring the evolution, elaboration, and change of systems complexity over time is consistent with the

literature on the conceptualization of dynamic complexity (Henneman & Rouse, 1986; Ribbers & Schoo, 2002;

Schneberger & McLean, 2003; Xia & Lee, 2005).

• We extended our understanding of how a balance between stability and change can be ensured in the evolution of IT

architectures that resemble digital infrastructures (Tilson et al., 2010) and the materiality of organizations (Berente et

al., 2016) by monitoring structural complexity over time.

• The ability to trace and simulate changes in structural complexity over time helps in understanding how uncertainty

and risks (e.g., system failure) can be managed, which has been discussed in the literature on monitoring complex

systems (e.g., Domerçant & Mavris, 2011).

C
o

n
fi

g
u

ra
b

il
it

y

(D
P

-C
)

• The view embodied in the design principle to select a specific perspective on a given instance of MCITA problems is

in line with Ashby’s observation that a complex system (e.g., a sheep’s brain) is viewed differently depending on the

perspective taken (e.g., that of a butcher versus a neurophysiologist) (Ashby, 1960).

• The configurable conceptualization of IT architectural complexity (Figure 10) provides a universal language that

allows a diverse set of heterogeneous stakeholders across an organization to participate in solving MCITA problems

by contributing each of their unique perspectives depending on the given MCITA instance.

• The idea of configurability extends our understanding of how to deal with the diversity of different system types,

functions, and organizational units overlooking them, which has been identified as a key challenge in the literature on

monitoring complex systems (e.g., Domerçant & Mavris, 2011).

This design knowledge contribution in the solution

space offers implications for research on the complexity

of IT architectures (e.g., Beese et al., 2016; Schneberger

& McLean, 2003). In this research stream, the

predominant focus has been on structural complexity

and, to a lesser extent, on dynamic complexity (Ross et

al., 2006; Xia & Lee, 2005). Our insights derived from

heuristic theorizing complement this research and

suggest the need to pay closer attention to problem-

solving complexity and building IT support that serves

as a cognitive aid (Lerch & Harter, 2001). In contrast to

the concepts of structural and dynamic complexity,

problem-solving complexity concerns human

reasoning, attentional resources, skills, and the overall

ability to cope with structural and dynamic complexity

(Henneman & Rouse, 1986). Under the condition of

embracing complexity, for example, the ability to cope

with structural and dynamic complexity (i.e., problem-

solving complexity) shifts to the foreground of attention

by leveraging higher requisite variety in an IT

architecture to address the increasing heterogeneity of

requirements and demands through the identification of

new value-generation opportunities (Ashby, 1956;

Priem, Butler, & Li, 2013).

6.2 Implications for Generating Design

Knowledge

The DSR paradigm rooted in Herbert A. Simon’s

seminal work on the science of design (Simon, 1996)

has developed significantly (Hevner et al., 2004).

Despite these advancements, further guidance is

needed for DSR teams on the rigorous and systematic

generation of projectable design knowledge. The

development of specific methods and frameworks that

Journal of the Association for Information Systems

686

focus on the intertwined generation of design

knowledge and IT artifact construction/evaluation—

action design research (Sein et al., 2011) and heuristic

theorizing (Gregory & Muntermann, 2014) in

particular—offer a useful point of departure for

developing a genre of DSR that emphasizes the

accumulation of generalizable and tangible design

knowledge grounded in real-world problem solving

through iterative IT artifact construction and

concurrent evaluation (Peffers, Tuunanen, &

Niehaves, 2018). In this paper, we followed this

emergent genre of DSR and offer as an empirical

contribution “a rich description of the design process”

(Ågerfalk, 2014, p. 595). From this description, we

derive the following implications for generating design

knowledge that may contribute to the ongoing

methodological discourse on making DSR

contributions (Baskerville et al., 2018).

Our work offers insights into how to achieve

generalizability as projectability in DSR (Baskerville

& Pries-Heje, 2014). An accumulated stock of design

knowledge should be projectable. A projection is any

relevant instance that supports the accumulated design

knowledge (Baskerville & Pries-Heje, 2014). In our

case, observations about problem solving involving the

use of the instantiated artifact provided an impetus to

develop a revised problem-class definition that was

more general and projectable, as it encompassed the

previous problem class while also extending beyond it

(see Figure 3). In our DSR project, we increased the

projectability of our design knowledge in two ways:

(1) by adding actual projections of our current state of

design knowledge to increase confidence that the

prescriptive theory works; and (2) by increasing the

number of possible projections to enhance the theory’s

potential to solve a broader range of concrete

problems.

In the case of (1), we achieved greater projectability of

our developed design knowledge by actively and

deliberately switching between similar yet different

problem-solving contexts (i.e., different companies

experiencing different instances of the same problem

class) and actually projecting our accumulating stock

of design knowledge through new IT artifact

instantiation and evaluation activities across these

different contexts. Here, the evaluation feedback

results may indicate that the solution might work in the

old context but does not represent a satisficing solution

in the new context. In that process of sampling for

contexts to achieve greater projectability of our design

knowledge, we focused on contexts that represented a

balance between conformity and difference when

compared to previously focused contexts in analogy

with substantiation and extension strategies in

grounded theory (Gregory et al., 2015). Our reasoning

for seeking this balance was that our existing stock of

design knowledge needed to be projectable to the new

context (conformity) to increase its projectability,

while the new context also needed to involve new

problem-solving challenges (differences) to explore

and perhaps extend its boundaries.

In the case of (2), we sought to increase the potential

of our nascent design knowledge. This ocurred at two

critical moments in our design knowledge

development. In the transition between design cycles

(see Sections 5.2 and 5.4), we learned from the

evaluation of our instantiated artifact that it fully

addressed the requirements of the defined problem

class. At the same time, however, the feedback we

received suggested unresolved adjacent or

superordinate problems, which prompted us to

redefine and extend the problem class.

In addition to gaining these insights regarding the two

ways of achieving greater projectability of

accumulated design knowledge over the course of a

multi-context DSR project, we also reflected on the

stopping rule of this process (i.e., either putting a halt

to provoking opportunities to enhance projectability or

pursuing the emerging opportunities to enhance

projectability). In our DSR project, we decided as a

team at some critical point to stop sampling for

additional contexts for actually projecting our

accumulated design knowledge into new versions of IT

artifacts and carrying out concurrent evaluation

activities across the sample of contexts. Our reasoning

for “stopping” was our accumulated experience of

having achieved sufficient levels of utility, in the sense

of “value outside the development environment”

(Gregor & Hevner, 2013, p. 15), based on the

substantial positive feedback and evaluation results

obtained across the various contexts and companies.

Put a different way, we answered the question of

whether we had identified a satisficing artifact design

with a “tentative yes” (Gregory & Muntermann, 2014).

The answer to this important question can be tentative

only insofar as it relates to a concrete artifact design

addressing a concrete problem in a specific set of

contexts. Similar to doing grounded theory and

reaching “saturation” (Glaser, 1978), the degree to

which further iterations in IT artifact development and

design knowledge accumulation yielded novel insights

declined sharply, adding to our sense of having

achieved an adequate level of design knowledge

projectability under the given constraints. These

constraints included our own limited capacities as

designers ourselves in terms of design knowledge and

access to relevant contexts that fit and thus could be

used for further projecting activities (Baskerville, Kaul,

& Storey, 2011).

6.3 Implications for Practice

Based on the emergent problem understanding, the

developed solution components, and the results of the

concurrent evaluations, we inferred three practical

Monitoring the Complexity of IT Architectures

687

implications for IT architects. First, monitoring IT

architectural complexity has become a foundation for

managing complexity of digital businesses, as IT

architectures are symbolic representations of digitized

products, services, and processes. Second, IT

architects are able to contribute proactively to the

digital business strategy of their firms by transforming

their IT architectures into digital platforms. This

involves reducing sociotechnical inertia by

encapsulating IT architectural complexity. Third, we

observed that the role of the IT function in the context

of digital business strategy changes from a service

provider and architect reducing IT architectural

complexity toward a broker of platform services and

architect monitoring IT architectural complexity.

7 Future Research and

Limitations

In the course of our design science research study, we

identified IT architectures as an important class of IT

artifacts that are undergoing a metamorphosis in light

of the rise of digital business strategy, which offers a

wide array of possibilities for future research. In the

past, IT architecture has often been viewed as a stable

foundation upon which an enterprise can function,

embodying the organizing logic of business processes,

data, and IT capabilities reflecting the firm’s key

integration and standardization requirements (Ross,

Weill, & Robertson, 2006). What we witness today in

the digital business strategy context is competition

between diverse logics and requirements (Tilson et al.,

2010) associated with the fusion of IT within firms’

environments (Woodard et al., 2013) as well as the

fusion of business and IT strategy (El Sawy et al.,

2010). The changing nature of IT architectures is a

manifestation of this fundamental shift. IT

architectures are continually enlarged, reduced, or

modified (Tanriverdi et al., 2010) as they fuse with

shared, open, heterogeneous, generative, and

constantly evolving digital infrastructures (Hanseth &

Lyytinen, 2010) and as businesses increasingly

compete through their IT architectures—for example,

through exposure of IT systems to a heterogeneous set

of actors (i.e., customers, suppliers, business partners,

and IT developers). In our research, these and related

observations prompted us to draw on the complex

systems theory (e.g., Maier, 1998; Simon, 1962;

Sommerville et al., 2012), an idea that may also be

relevant for future studies in the digital business

strategy context.

A limitation of this study is that our theory

development and evaluation activities in the last cycle

focused on the banking industry because of the author

team’s particularly strong academic-industry

relationships in that particular sector. For future work,

we suggest drawing on our design, which we believe

can be used to address both MCITA and MCITA-like

problems (e.g., monitoring large-scale, networked IT,

military, and national transportation systems

complexities). In this vein, an interesting direction for

future research could be to extend the subject being

monitored from IT architecture to enterprise

architecture, that is, to the high-level logic for business

processes and IT capabilities (Ross et al., 2006, p. 48).

The present study focused on the perspective of

individual firms and on their need to monitor the

complexity of the IT architecture. We envision that our

set of design principles will also provide value during

the construction of IT artifacts for groups of firms as

well as institutions overseeing groups of firms or entire

markets. For example, regulators in the banking

context could use our set of design principles to build

a tool that is useful for assessing the complexity and

systemic risk of the international banking sector.

An underlying assumption of the design principle

development in this paper is bounded rationality

(Simon, 1991) and the resulting need for IT support

and a tool that enables human decision makers to

monitor the complexity of IT architectures. As shown

in related areas (e.g., monitoring the complexity of

large-scale networked IT systems), the task of

monitoring the complexity of IT architectures can,

under certain conditions, be automatized and carried

out by machines or “digital control systems” (Lee &

Berente, 2012). It remains to be seen and explored in

future studies whether, how, and under what

conditions we can relax the assumption of bounded

rationality and address (parts of) MCITA problems

through such digital controls. The suggested focus of

our theory to place problem-solving complexity as

opposed to structural and dynamic complexity into the

foreground may need to be revisited in the future as the

level of automation increases and thus reduces

problem-solving complexity.

Acknowledgments

We appreciate the contribution of the entire review

team in helping us to improve the manuscript. We are

thankful for the developmental review process and the

helpful guidance of the senior editors and the associate

editor. We thank the participating industry partners and

the design teams for their extraordinary commitment,

without which this research project would not have

been possible. We would like to express special

gratitude to Dr. Alexander Schütz for helping with data

collection, artifact design, and providing feedback on

prior versions of the paper. This study has received

financial support from the Agencia Estatal de

Investigación (AEI) of the Spanish Ministry of

Science, Innovation and Universities—ECO2017-

88576-R (MINECO/AEI/FEDER,UE) as well as

industry partners.

Journal of the Association for Information Systems

688

References

Ågerfalk, P. J. (2014). Insufficient theoretical

contribution: a conclusive rationale for

rejection? European Journal of Information

Systems, 23(6), 593-599.

Ahlemann, F., Stettiner, E., Messerschmidt, M., &

Legner, C. (eds.). (2012). Strategic Enterprise

architecture management: Challenges, best

practices, and future developments. Springer.

Aier, S., Kurpjuweit, S., Saat, J., & Winter, R. (2009).

Enterprise architecture design as an engineering

discipline. AIS Transactions on Enterprise

Systems, 1(1), 36-43.

Amaral, L. A. N., & Uzzi, B. (2007). Complex systems:

A new paradigm for the integrative study of

management, physical, and technological

systems. Management Science, 53(7), 1033-

1035.

Ashby, W. R. (1956). An introduction to cybernetics.

Chapman & Hall.

Ashby, W. R. (1960). Design for a brain. Wiley

Baldwin, C. Y., & Clark, K. B. (2000). Design rules:

The power of modularity. MIT Press.

Baskerville, R., Baiyere, A., Gergor, S., Hevner, A., &

Rossi, M. (2018). Design science research

contributions: Finding a balance between

artifact and theory. Journal of the Association

for Information Systems, 19(5), 358-376.

Baskerville, R., Kaul, M., & Storey, V. (2011).

Unpacking the duality of design science.

Proceedings of the Thirty-Second International

Conference on Information Systems.

Baskerville, R., & Pries-Heje, J. (2014). Design theory

projectability. Proceedings of Working

Conference on Information Systems and

Organizations.

Becz, S., Pinto, A., Zeidner, L., Banaszuk, A., Khire,

R., & Reeve, H. (2010). Design system for

managing complexity in aerospace systems.

Proceedings of 13th AIAA/ISSMO

Multidisciplinary Analysis and Optimization

Conference.

Beese, J., Aier, S., Haki, K., & Aleatrati Khosroshahi,

P. (2016). Drivers and effects of information

systems architecture complexity: A mixed-

methods study. Proceedings of the European

Conference on Information Systems.

Berente, N., Lyytinen, K., Yoo, Y., & King, J. L.

(2016). Routines as shock absorbers during

organizational transformation: Integration,

control, and NASA’s enterprise information

System. Organization Science, 27(3), 551-572.

Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., &

Venkatraman, N. (2013). Digital business

strategy: toward a next generation of insights.

MIS Quarterly, 37(2), 471-482.

Boh, W. F., & Yellin, D. (2006). Using enterprise

architecture standards in managing information

technology. Journal of Management

Information Systems, 23(3), 163-207.

Boyle, D., Keywood, M., & Roberts, J. (2012). IT

Complexity: The silent killer of business

performance. http://www.ey.com/Publication/

vwLUAssets/IT_complexity__the_silent_killer

_of_business_performance/$FILE/IT_complex

ity.pdf

Buckley, W. (1967). Sociology and modern systems

theory. Prentice-Hall.

Bygstad, B. (2017). Generative innovation: A

comparison of lightweight and heavyweight IT.

Journal of Information Technology, 32(2), 180-

193.

de Reuver, M., Sørensen, C., & Basole, R. C. (2018).

The digital platform: A research agenda.

Journal of Information Technology, 33(2), 124-

135.

DeLaurentis, D., & Callaway, R. K. (2004). A system‐

of‐systems perspective for public policy

decisions. Review of Policy Research, 21(6),

829-837.

Domerçant, J. C., & Mavris, D. N. (2011). Measuring

the architectural complexity of military

systems-of-systems. IEEE Aerospace

Conference Proceedings.

Drnevich, P. L., & Croson, D. C. (2013). Information

technology and business-level strategy: Toward

an integrated theoretical perspective. MIS

Quarterly, 37(2), 483-509.

El Sawy, O. A. (2003). The IS Core IX: The 3 faces of

is identity: Connection, immersion, and fusion.

Communications of the AIS, 12(1), 588-598.

El Sawy, O. A., Malhotra, A., Park, Y., & Pavlou, P.

A. (2010). Research commentary—Seeking the

configurations of digital ecodynamics: It takes

three to tango. Information Systems Research,

21(4), 835-848.

Endsley, M. R. (1995). Toward a theory of situation

awareness in dynamic systems. human factors.

The Journal of the Human Factors and

Ergonomics Society, 37(1),32-64.

Monitoring the Complexity of IT Architectures

689

Ethiraj, S. K., & Levinthal, D. (2004). Modularity and

innovation in complex systems. Management

Science, 50(2), 159-173.

Greefhorst, D., & Proper, E. (2011). Architecture

principles—The cornerstones of enterprise

architecture. Springer.

Gregor, S., & Hevner, A. (2013). Positioning and

presenting design science research for

maximum impact. MIS Quarterly, 37(2), 337-

355.

Gregor, S., & Jones, D. (2007). The anatomy of a

design theory. Journal of the Association for

Information Systems, 8(5), 312-335.

Gregory, R. W., Keil, M., Muntermann, J., & Mähring,

M. (2015). Paradoxes and the nature of

ambidexterity in IT transformation programs.

Information Systems Research, 26(1), 57-80.

Gregory, R. W., & Muntermann, J. (2014). Research

note—Heuristic theorizing: Proactively

generating design theories. Information

Systems Research, 25(3), 639-653.

Guillemette, M. G., & Paré, G. (2012). Toward a new

theory of the contribution of the IT function in

organizations. MIS Quarterly, 36(2), 529-551.

Hall, A. D., & Fagen, R. E. (1969). Definition of

system. In J.A. Litterer (Ed.), Organizations:

Systems, control and adaptation (pp. 31-43).

Wiley.

Hanseth, O., & Lyytinen, K. (2010). Design theory for

dynamic complexity in information

infrastructures: The case of building internet.

Journal of Information Technology, 25(1), 1-19.

Henfridsson, O., & Bygstad, B. (2013). The generative

mechanisms of digital infrastructure evolution.

MIS Quarterly, 37(3), 907-931.

Henneman, R. L., & Rouse, W. B. (1986). On

measuring the complexity of monitoring and

controlling large-scale systems. IEEE

Transactions on Systems, Man, and

Cybernetics, 16(2), 193-207.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004).

Design science in information systems research.

MIS Quarterly, 28(1), 75-105.

Iivari, J. (2015). Distinguishing and contrasting two

strategies for design science research.

European Journal of Information Systems,

24(1), 107-115.

ISO/IEC/IEEE. (2011). Systems and software

engineering: Architecture description.

(2011:ISO/IEC/IEEE 42010). https://www.

iso.org/standard/50508.html

Jacquemin, A. P., & Berry, C. H. (197 9). Entropy

measure of diversification and corporate

growth. The Journal of Industrial Economics,

27(4), 359-369.

Keen, P., & Williams, R. (2013). Value architectures

for digital business: Beyond the business model.

MIS Quarterly, 37(2), 643-647.

Lee, J., & Berente, N. (2012). Digital innovation and

the division of innovative labor: Digital

controls in the automotive industry.

Organization Science, 23(5), 1428-1447.

Lerch, F. J., & Harter, D. E. (2001). Cognitive support

for real-time dynamic decision making.

Information Systems Research, 12(1), 63-82.

Maier, M. W. (1998). Architecting principles for

systems-of-systems. Systems Engineering, 1(4),

267-284.

Murray, J., & Liu, Y. (1997). An experiment to assess

task complexity in the supervision of networked

systems. Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics.

Computational Cybernetics and Simulation.

Murray, J., & Yili, L. (1994). A software engineering

approach to assessing complexity in network

supervision tasks. Proceedings of the IEEE

Conference on Systems, Man, and Cybernetics:

Humans, Information and Technology.

Natu, M., Ghosh, R. K., Shyamsundar, R. K., & Ranjan,

R. (2016). Holistic performance monitoring of

hybrid clouds: Complexities and future

directions. IEEE Cloud Computing, 3(1), 72-81.

Orlikowski, W., & Iacono, C. S. (2001). Research

commentary: Desperately seeking the “IT” in

IT research: A call to theorizing the IT artifact.

Information Systems Research, 12(2), 121-134.

Peet, R. K. (1974). The measurement of species

Diversity. Annual Review of Ecology and

Systematics, 5(1), 285-307.

Peffers, K., Tuunanen, T., & Niehaves, B. (2018).

Design science research genres: Introduction to

the special issue on exemplars and criteria for

applicable design science research. European

Journal of Information Systems, 27(2), 129-139.

Peffers, K., Tuunanen, T., Rothenberger, M. A., &

Chatterjee, S. (2007). A design science research

methodology for information systems research.

Journal of Management Information Systems,

24(3), 45-77.

Priem, R. L., Butler, J. E., & Li, S. (2013). Toward

reimagining strategy research: retrospection

and prospection on the 2011 AMR decade

Journal of the Association for Information Systems

690

award article. Academy of Management Review,

38(4), 471-489.

Psiuk, M., & Zielinski, K. (2015). Goal-driven

adaptive monitoring of SOA systems. Journal

of Systems and Software, 110, 101-121.

Ribbers, P. M. A., & Schoo, K.-C. (2002). Program

management and complexity of ERP

Implementations. Engineering Management

Journal, 14(2), 45-52.

Richardson, G. L., Jackson, B. M., & Dickson, G. W.

(1990). A principles-based enterprise

architecture: Lessons from Texaco and Star

Enterprise. MIS Quarterly, 14(4),385-403.

Ross, J. W. (2003). Creating a strategic IT architecture

competency: Learning in stages. MIS Quarterly

Executive, 2(1),31-43.

Ross, J. W., Weill, P., & Robertson, D. (2006).

Enterprise architecture as strategy: Creating a

foundation for business execution. Harvard

Business Press.

Sanchez, R., & Mahoney, J. T. (1996). Modularity,

flexibility, and knowledge management in

product and organization design. Strategic

Management Journal, 17(S2), 63-76.

Schilling, M. A. (2000). Toward a general modular

systems theory and its application to interfirm

product modularity. The Academy of

Management Review, 25(2),312-334.

Schilling, R., Beese, J., Haki, K., Aier, S., & Winter,

R. (2017). Revisiting the impact of information

systems architecture complexity: A complex

adaptive systems perspective. Proceedings of

the International Conference on Information

Systems.

Schmidt, C., & Buxmann, P. (2011). Outcomes and

success factors of enterprise IT architecture

management: Empirical insight from the

international financial services industry.

European Journal of Information Systems,

20(2),168-185.

Schneberger, S. L., & McLean, E. (2003). The

complexity cross: Implications for practice.

Communications of the ACM, 46(9), 216-225.

Schütz, A. (2017). Komplexität von IT-Architekturen.

Wiesbaden: Springer Fachmedien.

Schütz, A., Widjaja, T., & Gregory, R. (2013a). Escape

from Winchester Mansion: Toward a set of

design principles to master complexity in IT

architectures. Proceedings of the International

Conference on Information Systems.

Schütz, A., Widjaja, T., & Kaiser, J. (2013b).

Complexity in enterprise architectures:

Conceptualization and introduction of a

measure from a system theoretic perspective.

Proceedings of the European Conference on

Information Systems.

Sein, M., Henfridsson, O., Purao, S., Rossi, M., &

Lindgren, R. (2011). Action design research.

MIS Quarterly, 35(1), 37-56.

Simon, H. A. (1962). The architecture of complexity.

Proceedings of the American philosophical

society, 106(6), 467-482.

Simon, H. A. (1991). Bounded rationality and

organizational learning. Organization Science,

2(1), 125-134.

Simon, H. A. (1996). The Sciences of the Artificial,

(3rd ed.). MIT Press.

Sommerville, I., Cliff, D., Calinescu, R., Keen, J.,

Kelly, T., Kwiatkowska, M., Mcdermid, J., &

Paige, R. (2012). Large-scale complex IT

systems. Communications of the ACM, 55(7),

71-77.

Tamaskar, S., Neema, K., & DeLaurentis, D. (2014).

Framework for measuring complexity of

aerospace systems. Research in Engineering

Design, 25(2), 125-137.

Tamm, T., Seddon, P. B., Shanks, G., & Reynolds, P.

(2011). How does enterprise architecture add

value to organisations? Communications of the

Association for Information Systems, 28(1),

141-168.

Tanriverdi, H., Rai, A., & Venkatraman, N. (2010).

Research commentary: Reframing the

dominant quests of information systems

strategy research for complex adaptive business

systems. Information Systems Research, 21(4),

822-834.

Tilson, D., Lyytinen, K., & Sørensen, C. (2010).

Research commentary—Digital infrastructures:

The missing IS research agenda. Information

Systems Research, 21(4), 748-759.

Tiwana, A., & Konsynski, B. (2010).

Complementarities between organizational IT

architecture and governance structure.

Information Systems Research, 21(2), 288-304.

Vierhauser, M., Rabiser, R., & Grünbacher, P. (2016).

Requirements monitoring frameworks: a

systematic review. Information and Software

Technology, 80, 89-109.

Walls, J. G., Widmeyer, G. R., & El Sawy, O. A.

(1992). Building an information system design

theory for vigilant EIS. Information Systems

Research, 3(1), 36-59.

Monitoring the Complexity of IT Architectures

691

Wareham, J., Fox, P. B., & Cano Giner, J. L. (2014).

Technology ecosystem governance.

Organization Science, 25(4), 1195-1215.

Weitzel, T., Beimborn, D., & König, W. (2006). A

unified economic model of standard diffusion:

the impact of standardization cost, network

effects, and network topology. MIS Quarterly,

30(1), 489-514.

Widjaja, T., & Buxmann, P. (2009). Service-oriented

architectures: Modeling the selection of

services and platforms. Proceedings of the 17th

European Conference on Information Systems.

Widjaja, T., & Gregory, R. W. (2012). Design

Principles for heterogeneity decisions in

enterprise architecture management.

Proceedings of the International Conference on

Information Systems.

Widjaja, T., Kaiser, J., Tepel, D., & Buxmann, P.

(2012). Heterogeneity in IT landscapes and

monopoly power of firms: A model to quantify

heterogeneity. Proceedings of International

Conference on Information Systems.

Winter, R., & Aier, S. (2011). How are enterprise

architecture design principles used?

Proceedings of 15th Enterprise Distributed

Object Computing Conference Workshops.

Winter, R., & Fischer, R. (2007). Essential layers,

artifacts, and dependencies of enterprise

architecture. Journal of Enterprise Architecture,

May, 1-12.

Woodard, C. J., Ramasubbu, N., Tschang, F., &

Sambamurthy, V. (2013). Design capital and

design moves: The logic of digital business

strategy. MIS Quarterly, 37(2), 537-564.

Xia, W., & Lee, G. (2005). Complexity of information

systems development projects: Conceptualization

and measurement development. Journal of

Management Information Systems, 22(1), 45-83.

Yoo, Y., Boland, J. R. J., Lyytinen, K., & Majchrzak,

A. (2012). Organizing for innovation in the

digitized world. Organization Science, 23(5),

1398-1408.

Zinser, K., & Henneman, R. L. (1989). A model-based

aid for monitoring and controlling a large-scale

system. IEEE Transactions on Systems, Man,

and Cybernetics, 19(4), 888-892.

Journal of the Association for Information Systems

692

Appendix A

Table A1. Selected Existing Design Knowledge about Monitoring Complex Systems

Source Problem space Solution space

Becz, S., Pinto,

A., Zeidner, L.,

Khire, R.,

Reeve, H., &

Banaszuk, A.

(2010)

Problem focus: Managing complexity in aerospace

systems to reduce cost and schedule overruns.

Problem understanding: Technical complexity of

the system is interrelated with complexity of system

requirements, development teams and

organizational partnerships, resulting in emergent

behavior of the system as a whole.

Artifact development: A newly proposed design process for

complex systems.

Artifact components: Four key elements of the design process,

including: (1) abstraction based design tools (that are able to

handle different levels of abstraction); (2) quantitative

complexity metrics; (3) advanced architecture synthesis

methods (allowing for evaluation of different feasible

architecture options); and (4) robust uncertainty management (to

manage key risks).

Domerçant, J.

C., & Mavris,

D. N. (2011)

Problem focus: Acquisition of a complex military

system of systems that provides a suppression of

enemy air defenses capability.

Problem understanding: Complexity is a key design

issue for a system-of-systems architecture, defined

as the structure of components, their relationships,

and the principles and guidelines governing their

design evolution over time.

Artifact development: Method to define and measure complexity

of a military system of systems.

Artifact components: Number of functionally and physically

distinct system types; number of functions performed by each

system; number of network interfaces used to transmit

data/information; interface complexity multiplier; cyclomatic

complexity (to understand interactions among systems and

coordination of diverse system functions).

Henneman, R.

L., & Rouse, W.

B. (1986)

Problem focus: Monitoring a communication

network to identify failures by human operators.

Problem understanding: Complexity of large-scale

systems is viewed as being a result of both the

structure of the system and the human operator’s

understanding of the system.

Artifact development: CAIN (contextually augmented integrated

network).

Artifact components: Measures of structural complexity of the

system, including the physical system and the human-system

interface, and measures of strategic complexity that capture

operator performance, including node failures and subject’s

paths through the network to resolve those failures.

Maier, M. W.

(1998)

Problem focus: Design of large-scale systems of

systems such as integrated air defense networks, the

internet, and enterprise information networks.

Problem understanding: System is defined as an

assemblage of components that produces behavior

or functionality not available from any component

individually. System of systems is proposed to be an

assemblage of components that individually may be

regarded as systems, and that possess two additional

properties, i.e., operational and managerial

independence of the components.

Artifact development: Four abstract design principles are

proposed to architect a system of systems.

Artifact components: (1) stable intermediate forms (so systems

are capable of operating and fulfilling useful purposes); (2)

policy triage (choosing very carefully what systems to control,

as overcontrol will fail for lack of authority and undercontrol will

eliminate the system nature of the integrated system); (3)

leverage at the interfaces (paying more attention to the interfaces

than the components of the system due to high interdependence

of components); (4) ensuring cooperation (taking a joint utility

approach and ensuring that each participant’s wellbeing is

partially dependent on the wellbeing of other participants).

Natu, M.,

Ghosh, R. K.,

Shyamsundar,

R. K., &

Ranjan, R.

(2016)

Problem focus: Performance monitoring of hybrid

clouds.

Problem understanding: Monitoring the continuous

evolution of enterprise systems, especially in hybrid

cloud computing environments, is a problem of

monitoring complexity, including the databases,

operating systems, and cloud-based storage and

network devices underlying applications that serve

business functions.

Artifact development: Conceptual ideas for an IT artifact and

solution.

Artifact components: Referred to as “insights” in the paper: (1)

need for a comprehensive system-wide solution (holistic view of

entire complexity of IT architecture); (2) need for solutions that

adapt to system changes (adaptive monitoring, adaptive

probing); (3) need for efficient ways to manage scale (invariant

detection, multiresolution analysis, noise reduction); and (4)

need to be proactive rather than reactive (through use of

analytics).

Psiuk, M., &

Zielinski, K.

(2015)

Problem focus: Monitoring of service-oriented

architecture (SOA).

Problem understanding: To tackle the problem of

increasing system complexity, adaptive monitoring

must occur across SOA layers on the basis of

monitoring goals defined by the user.

Artifact development: DAMON (Dynamic Adaptive

MONitoring).

Artifact components: Automated monitoring instrumentation

(during the startup process of the service container; monitoring

mechanisms (topology discovery, causality identification and

measurement acquisition); and realization of the monitoring

process (nominals identification, sentinels selection and adaptive

drill-down).

Monitoring the Complexity of IT Architectures

693

Appendix B

Application of the Entropy Measure to Quantify IT Heterogeneity

The foundational idea of Tool B is the transfer measures of heterogeneity from different contexts to the domain of IT

architecture. 4 The tool allows the incorporation of different measures of heterogeneity (e.g., the Herfindahl-

Hirschman-Index and the Entropy Measure discussed in Jacquemin & Berry, 1979) and supports the analysis of

different types of heterogeneity in IT architectures. In the following, we use the entropy measure to illustrate. A

classical use of the entropy measure in the field of economics involves quantifying market concentrations. Here, 𝑓𝑖

denotes the relative market share of firm 𝑖.

entropy measure = ∑ 𝑓𝑖 𝑙𝑛 (
1

𝑓𝑖
)𝑛

𝑖=1

A high index value denotes a low concentration. The entropy measure takes a minimum value of 0 in a “monopoly”

and reaches its maximum for values with an equal distribution. Applied to the MCITA problem, an example would

involve quantifying systems variety with respect to partnering firms in a platform-based business, where fi can be

interpreted as the relative share of solution components provided by firm i. A high entropy measure index value denotes

a high variety of solution components with respect to the firms that provide them. The entropy measure takes a

minimum value of 0 in a monopoly (single-partner scenario) and reaches its maximum for values with an equal

distribution (multi-partner scenario). The tool can be used to quantify heterogeneity for all kinds of elements of an IT

architecture, such as heterogeneity of semantics in databases, software vendors in application architectures, suppliers

of hardware, and performance of clients.

The entropy measure captures the both facets “evenness” and “richness” of the conceptualization of systems variety

described in the second heuristic theorizing cycle (Section 5.3). Accordingly, applied to the example above, the entropy

measure increases with a larger number of different partnering firms (richness) and with a higher parity of the

prevalence of partnering firms (evenness). To understand better which of the two facets of variety is the main driver

of the entropy measure, at least one of the two facets (richness or evenness) needs to be considered in addition to the

overall entropy measure (if one of the two facets is known, the other facet can be easily derived). Drawing on the

overall entropy measure in addition to at least one of the two facets (richness or evenness) offers the advantage of

combining an aggregated and detailed view of systems variety. This is illustrated in the following example: The

distributions 5%-5%-10%-80% (four partnering firms contributing to the ecosystem solutions portfolio with differing

intensity) and 50%-50% (two partnering firms contributing with the same intensity) lead to nearly the same value of

the entropy measure value (0.70 and 0.69, respectively). However, these two scenarios are very different. In the first

scenario, the observed variety stems primarily from the richness of the ecosystem. In the second scenario, the observed

variety stems primarily from evenness.

4 The underlying model is based on (Widjaja et al., 2012).

Journal of the Association for Information Systems

694

About the Authors

Thomas Widjaja is professor of business information systems at the School of Business, Economics and Information

Systems at the University of Passau, Germany. His research interests include digital services, data-driven business

models, and IT architecture management. His work has appeared in journals such as Information Systems Research,

Journal of Strategic Information Systems, OR Spectrum, and Journal of the Association for Information Systems.

Robert Wayne Gregory is associate professor of IT and entrepreneurship at the University of Virginia, McIntire

School of Commerce. His research focuses on strategic IT management and digital business. He received the AIS Early

Career Award in 2016. His research has been published in top-tier journals including MIS Quarterly and Information

Systems Research. Robert serves on the editorial review board of the Journal of the Association for Information

Systems.

Copyright © 2020 by the Association for Information Systems. Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for

components of this work owned by others than the Association for Information Systems must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior

specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta,

GA, 30301-2712 Attn: Reprints or via email from publications@aisnet.org.

