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Abstract 

Monitoring the complexity of a firm’s IT architecture is imperative to ensure a stable and flexible 

platform foundation for competing in the era of digital business strategy. However, IT architects lack 

IT support for dealing with this important problem. We engaged with five companies in a significant 

design science research (DSR) program and drew on the heuristic theorizing framework both to solve 

this problem through evolving IT artifacts and to accumulate nascent design knowledge. We base 

the design knowledge development on a conceptual framework involving three essential concepts 

for understanding and solving this problem: structural complexity, dynamic complexity, and 

problem-solving complexity. Drawing on this foundation, we address the research question: How 

can IT support be provided for reducing the problem-solving complexity of monitoring the structural 

and dynamic complexity of IT architectures in the context of a digital business strategy? To answer 

this question, we present a set of design principles that we derived from our iterative process of IT 

artifact construction and evaluation activities with five companies. Our nascent design knowledge 

contributes to the research on IT architecture management in the context of digital business strategy. 

In addition, we also contribute to the understanding of how, through the use and illustration of the 

heuristic theorizing framework, design knowledge can be accumulated systematically on the basis 

of generalization from IT artifact construction and evaluation outcomes generated across multiple 

contexts and companies. 

Keywords: IT Architecture Complexity, Monitoring Complex Systems, Digital Business Strategy, 

Design Science Research, Heuristic Theorizing 
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1 Introduction 

In today’s digital era, firms must adapt continuously to 

quickly changing customer demands and often pursue 

digital business strategies, which are defined as 

organizational strategies formulated and executed by 

leveraging digital resources to create differential value 

(Bharadwaj et al., 2013). However, the historically 

developed complexity of established firms’ IT 

architectures represents a significant cause of inertia 

for such digital transformations (e.g., Boh & Yellin, 

2006; Boyle, Keywood, & Roberts, 2012; Guillemette 

& Paré, 2012). Monitoring this architectural 

complexity is critical for the success of digital platform 

initiatives that involve the construction of a stable core 

that enables efficient yet flexible solutions at the 

periphery (de Reuver, Sørensen, & Basole, 2018; 

Gregory et al., 2015). The problem domain focus of 

our design science work is monitoring the complexity 

of IT architectures in firms; the solution domain focus 

is IT support for IT architects in this respect. At a more 

general level, the focus of this study is the 
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accumulation of design knowledge about monitoring 

complex systems. 

Monitoring architectural systems complexity is 

particularly relevant in today’s era of digital business 

strategy, in which building a digital platform has 

become a primary concern for the top leadership of 

firms. Research related to building digital platforms 

has begun to distinguish between heavyweight and 

lightweight IT (Bygstad, 2017), infrastructural 

stability and change (Tilson, Lyytinen, & Sørensen, 

2010), and a platform core and peripheral ecosystem 

(Wareham, Fox, & Cano Giner, 2014). A related 

distinction in the literature on the complexity of IT 

architectures (and other instances of systems of 

systems) is between structural and dynamic 

complexity (Henneman & Rouse, 1986; Schneberger 

& McLean, 2003; Xia & Lee, 2005). Structural 

complexity concerns the relatively stable form and 

function of the IT architecture and, thus, needs to be 

monitored to ensure the stability of the heavyweight IT 

and platform core. Dynamic complexity, in contrast, 

refers to the uncertain, unpredictable, and often 

ambiguous nature and rate of change of the IT 

architecture, and should be monitored to enable change 

in the lightweight IT within the surrounding platform 

ecosystem. 

Monitoring the structural and dynamic complexity of 

the firm’s IT architecture is important because key 

digitized products, services, and processes are 

symbolically represented in the firm’s IT architecture, 

and changes in one have a direct impact on the other. 

However, monitoring architectural complexity has also 

become an extremely difficult problem to solve. We 

suggest that an important issue that has been 

overlooked in the prior literature on IT architectures 

(Beese et al., 2016; Richardson, Jackson, & Dickson, 

1990; Ross et al., 2006; Schilling et al., 2017; Tilson et 

al., 2010; Tiwana & Konsynski, 2010) is problem-

solving complexity, which concerns human reasoning, 

attentional resources, skills, and the overall ability to 

cope with structural and dynamic complexity in the 

search for a satisficing problem solution (Endsley, 

1995; Henneman & Rouse, 1986; Lerch & Harter, 

2001; Simon, 1996). In fact, one reason scholars have 

called for reducing the structural and dynamic 

complexity of IT architectures is its direct effect on 

problem-solving complexity (Schneberger & McLean, 

2003). This line of reasoning, however, with its focus 

on the reduction of complexity, overlooks the value 

offered by IT artifacts (i.e., tools) in providing 

cognitive support for the monitoring of systems 

complexity (Lerch and Harter 2001), thereby reducing 

problem-solving complexity. 

We address the following research question: How can 

IT support be provided for reducing the problem-

solving complexity of monitoring the structural and 

dynamic complexity of IT architectures in the context 

of a digital business strategy? Addressing this question 

is both novel and important because the answer will 

contribute to our understanding of how to reduce the 

problem-solving complexity IT architects face in 

contemporary digital business strategy execution and 

transformation initiatives. Pursuing a digital business 

strategy and creating differential value “requires 

effective sensemaking and the ability to cope with 

complexity and uncertainty” (Woodard et al., 2013, p. 

558).  

In addition to this strong motivation for further work 

in the problem domain of this paper, we also identified 

a significant gap in the solution domain. While 

previous work has attempted to solve the problem of 

cognitive IT support (Lerch and Harter 2001), the 

focus has been on a different problem class, and the 

experimental study design did not involve IT artifact 

construction. Our work addresses the identified gaps in 

the problem and solution spaces by focusing on the 

evolution and accumulation of design knowledge, 

which, in our case, has matured through iterative 

projection and concurrent evaluation across multiple 

contexts and companies. 

We engaged with five companies for IT artifact 

construction and evaluation activities over an eight-

year period. Our work is guided by heuristic theorizing 

(Gregory & Muntermann, 2014), a framework for 

theorizing in the problem-driven DSR tradition (Iivari, 

2015; Sein et al., 2011) that draws on the sciences of 

the artificial (Simon, 1996) and Hevner et al.’s (2004) 

description of “design as a search process.” In our DSR 

program, we solved instantiations of a general problem 

class we refer to as the “monitoring the complexity of 

IT architectures” (MCITA) problem class. In 

particular, this involved constructing and concurrently 

evaluating the five expository artifacts of our emergent 

set of four design principles. To build the MCITA 

design principles during the heuristic theorizing 

process, we fundamentally revisited and reformulated 

our understanding of the problem at hand, which 

resulted in three heuristic theorizing cycles focusing on 

nested problem understandings: the problems of (1) 

making “optimal” IT standardization decisions, (2) 

assessing the “desirable” degree of IT heterogeneity, 

and (3) monitoring the complexity of IT architectures 

(MCITA).  

We contribute to the research on IT architectures 

(Beese et al., 2016; Richardson et al., 1990; Ross et al., 

2006; Schilling et al., 2017; Tilson et al., 2010; Tiwana 

& Konsynski, 2010) with a set of design principles 

that, in the context of digital business strategy 

(Bharadwaj et al., 2013; Drnevich & Croson, 2013; 

Keen & Williams, 2013; Woodard et al., 2013), 

address the class of problems we refer to as MCITA. 

We add this class and solution to the general body of 

design knowledge on monitoring complex systems 

(Becz et al., 2010; Domerçant & Mavris, 2011; 
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Henneman & Rouse, 1986; Maier, 1998; Natu et al., 

2016; Psiuk & Zielinski, 2015). The distinctions 

between structural, dynamic, and problem-solving 

complexities are an important extension of the 

literature since it is clear that reducing problem-

solving complexity is desirable, whereas structural and 

dynamic complexity may have to be embraced, for 

example, even to allow for a sufficient variety of IT 

functionalities in the context of a digital business 

strategy to respond to changes in customer demands 

through new product development. 

2 Conceptual Background 

2.1 IT Architecture in the Context of a 

Digital Business Strategy 

An IT architecture is defined as the “organizing logic 

for applications, data, and infrastructure technologies” 

(Ross, 2003, p. 32).1 Prior research on the contribution 

of IT in organizations often suggests that the structural 

and dynamic complexity of IT architectures should be 

reduced (e.g., Ahlemann et al., 2012; Guillemette & 

Paré, 2012; Tamm et al., 2011). According to prior IT 

architecture management research, a key challenge is 

to create an overall design and architectural blueprint 

for structuring the firm’s collectivity of IT systems. 

Studies pursuing this line of thought have suggested 

various means to tame IT architectural complexity. For 

example, sorting IT components into different 

architectural layers has been recommended, resulting 

in the concept of a multilayered architecture 

(Richardson et al., 1990; Winter & Fischer, 2007). 

Prior research has also proposed drawing on the 

analogy of city planning (Schmidt & Buxmann, 2011) 

to improve the architectural planning, mapping, and 

designing of the blueprint that is the guide and standard 

for any type of IT implementation in the firm (Boh & 

Yellin, 2006). Overall, a key recurring theme in IT 

architecture management research is the need to limit 

IT complexity to achieve organizational benefits such 

as IT efficiency and IT agility (Guillemette & Paré, 

2012; Tamm et al., 2011). We argue that in view of the 

increase in environmental dynamism and complexity 

associated with the rise of digital business strategies 

(Bharadwaj et al., 2013; El Sawy et al., 2010; 

Tanriverdi, Rai, & Venkatraman, 2010; Woodard et 

al., 2013), the sole focus on limiting complexity should 

be revisited. 

 
1  The literature distinguishes between the concepts IT 

architecture, enterprise architecture, and solution 

architecture. In this paper, we focus on IT architecture, which 

is a subsystem of an enterprise architecture; the latter is 

defined as “organizing logic for business processes and IT 

infrastructure reflecting the integration and standardization 

requirements of the company’s operating model” (Ross et al., 

The contribution of IT architectures in organizations 

has evolved fundamentally with the rise of the digital 

business strategy, defined as a business strategy 

formulated and executed by leveraging IT to create 

differential value (Bharadwaj et al., 2013; Drnevich & 

Croson, 2013; Woodard et al., 2013). In this new 

context, a firm’s IT architecture provides the platform 

for its digital business strategy (de Reuver et al., 2018) 

by, for instance, defining technical interfaces for 

customers, partners, and suppliers and by setting 

standards that determine degrees of freedom for digital 

business moves (Keen & Williams, 2013). As an 

increasingly heterogeneous and distributed set of 

actors draws on these IT architectures, the 

architectures also continuously evolve (Tanriverdi et 

al., 2010; Woodard et al., 2013; Yoo et al., 2012). 

Furthermore, the shift toward more distributed control 

and greater autonomy of internal and external actors 

suggests that IT architectures in firms pursuing digital 

business strategies resemble digital infrastructures 

(Hanseth & Lyytinen, 2010; Tilson et al., 2010), which 

are instances of complex systems of systems (Amaral 

& Uzzi, 2007). An IT system consists of IT 

components and the relationships among those IT 

components (Hall & Fagen, 1969), and a “system of IT 

systems” consists of interconnected IT systems 

(Simon, 1962). We thus define IT architecture in the 

context of digital business strategy as a distributed, 

evolutionary, and emergent system of IT systems 

(Maier, 1998; Sommerville et al., 2012). 

2.2 Structural, Dynamic, and Problem-

Solving Complexity 

In the preceding section, we highlighted that IT 

architectures share key characteristics with digital 

infrastructures (Henfridsson & Bygstad, 2013; Tilson 

et al., 2010). Although their degree of openness is 

certainly not comparable to, for example, the internet 

(Hanseth & Lyytinen, 2010), the IT architectures of 

firms pursuing a digital business strategy do evolve at 

a rapid rate of change through a heterogeneous set of 

participating internal and external actors. At the same 

time, however, the IT architectures of firms must also 

provide a stable foundation for organizational 

integration and control (Berente et al., 2016). The 

result is that firms’ IT architectures exhibit forms of 

emergent behavior that are known from complex 

systems (Amaral & Uzzi, 2007), highlighting 

2006, p. 47). Whereas both enterprise architecture and IT 

architecture consider the organization as a whole, a solution 

architecture focuses on a single project or subsystem and the 

“fundamental decisions in the design of a specific solution” 

(Greefhorst & Proper, 2011, p. 25). 
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complexity as an overarching characteristic of the IT 

architectures. 

Our definition of IT architecture in Section 2.1 is based 

on the systems-of-systems perspective (DeLaurentis & 

Callaway, 2004). The information systems literature 

on systems of systems distinguishes between structural 

complexity and dynamic complexity (Schneberger & 

McLean, 2003; Xia & Lee, 2005). However, the 

literature on monitoring the structural and dynamic 

complexity of systems emphasizes the concept of 

problem-solving complexity (Henneman & Rouse, 

1986). We propose the use of an IT artifact (i.e., a 

monitoring tool) to reduce problem-solving 

complexity (i.e., the complexity in the cognitive realm) 

and enable companies to embrace structural and 

dynamic complexity (i.e., complexity in the material 

realm) resulting from heterogeneous and distributed 

actors continually enlarging, reducing, or modifying 

the IT architectures in the context of digital business 

strategies (see Figure 1). 

Structural complexity. The relatively stable form and 

function of an IT architecture is captured by the 

concept of structural complexity, which is typically 

conceptualized and measured in terms of the number 

and variety of system components and relations 

involved (Henneman & Rouse, 1986; Ribbers & 

Schoo, 2002; Schneberger & McLean, 2003; Xia & 

Lee, 2005). This understanding of structural 

complexity is rooted in studies of complex systems. 

Herbert A. Simon defined a complex system as one 

composed of a large number of subsystems that 

interact in a “nonsimple way” (Simon, 1962). This 

view of structural complexity highlights that 

complexity, in large part, stems from the nature of the 

interactions between different parts of a system.  

Modular systems theory focuses precisely on the 

nature of the interactions between the parts of a 

complex system and uses the concept of modularity to 

describe the degree to which a system’s subsystems 

can be separated, changed, or recombined through 

standardized interfaces (Ethiraj & Levinthal, 2004; 

Sanchez & Mahoney, 1996; Schilling, 2000). Modular 

systems design is based on the idea of creating highly 

integrated, mutually responsive, and tightly coupled 

subsystems that preserve a stable form and function, 

while simultaneously enabling flexibility for their use 

and recombination based on loose couplings and 

standardized interfaces between different modules 

(Baldwin & Clark, 2000). Modularity has been 

identified in the literature as a key facet of an IT 

architecture’s form and state (Tiwana & Konsynski, 

2010) and is important for understanding structural 

complexity. It is also important to the concept of 

dynamic complexity. 

Dynamic complexity. The concept of dynamic 

complexity captures the continuous evolution, 

elaboration, and change of an IT architecture’s form 

and function. Dynamic complexity concerns the 

uncertain, unpredictable, and often ambiguous nature 

and rate of change in the number and variety of 

components and the relationships among them over 

time (Henneman & Rouse, 1986; Ribbers & Schoo, 

2002; Schneberger & McLean, 2003; Xia & Lee, 

2005). This conceptualization and measurement of 

dynamic complexity highlight the interrelationship 

with the concept of structural complexity. In particular, 

dynamic complexity focuses on changes from one state 

of structural complexity in Time 1 to a new state of 

structural complexity in Time 2.  

 

 

Figure 1. Conceptual Model 

Material realm

Complexity inherent to the IT architecture 

as a material representation of a firm’s 

products, services, and processes

Cognitive realm

Complexity perceived by the IT 

architect (human problem 

solver) when building a digital 

platform in an established firm

Application layer

Data layer

Infrastructure layer

Structural Complexity
Stems from the number and variety of IT 
components and relationships on three 

architectural layers

Dynamic Complexity
Stems from the uncertain nature and rate of 

change of structural complexity

Problem-solving Complexity
Ability to cope with structural and dynamic 
complexity when solving a specific problem

Monitoring 

tool
to reduce 

problem-solving 

complexity

Change 
over time

IT architect
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Problem-solving complexity. The literature on 

monitoring complex systems distinguishes between 

structural and dynamic complexity on the one hand and 

problem-solving complexity on the other hand 

(Henneman & Rouse, 1986). Problem-solving 

complexity concerns human reasoning, attentional 

resources, skills, and the overall ability to cope with 

structural and dynamic complexity in the search for a 

satisficing problem solution (Endsley, 1995; Henneman 

& Rouse, 1986; Lerch & Harter, 2001; Simon, 1996).  

As illustrated by a neurophysiologist’s perspective on a 

sheep’s brain compared to a butcher’s (Ashby, 1960), 

the needs for monitoring and capacities for 

understanding structural and dynamic complexity differ 

based on the perspective as well as the ability to 

decompose a system into modular subsystems. Thus, 

although a system itself may be inherently complex in 

terms of its compositional structure and evolution over 

time, this does not necessarily mean that solving a 

particular problem for that system is perceived to be 

difficult. As Schneberger and McLean (2003) noted, we 

are to a considerable extent interested in understanding 

structural and dynamic complexity because the 

“incredible capabilities and opportunities computing 

offers us” may be “destined to become so complex as to 

overwhelm human ability to cope with it” (p. 216). This 

means that the problem-solving complexity of a given 

problem can be reduced either by reducing the structural 

and dynamic complexity or by tool support. 

2.3 Problem Requirements of 

Monitoring Complex Systems 

To derive specific problem requirements that guide our 

design and tool construction work, we reviewed a 

variety of instances of the general problem class of 

monitoring complex systems. In addition to IT 

architectures, other instances we identified in the 

literature include large-scale networked IT systems such 

as communication infrastructures, hybrid clouds, self-

adaptive software, and peer-to-peer networks 

(Henneman & Rouse, 1986; Murray & Liu, 1997; 

Murray & Yili, 1994; Natu et al., 2016; Psiuk & 

Zielinski, 2015; Vierhauser, Rabiser, & Grünbacher, 

2016; Zinser & Henneman, 1989); military systems 

such as air defense networks and military aircraft fleets 

(Becz et al., 2010; Domerçant & Mavris, 2011; Maier, 

1998; Tamaskar, Neema, & DeLaurentis, 2014); and 

national transportation systems (DeLaurentis & 

Callaway, 2004). Appendix Table A1 provides an 

overview of selected design and tool construction work. 

What we learned from this review of design knowledge 

is that the distinction between tracking and 

comprehending is useful for our understanding of the 

MCITA problem class that this paper addresses. 

Tracking (Type 1 monitoring). At the elementary level 

of identifying, screening, describing, detecting, and 

tracing the complexity of IT architectures, IT support for 

Type 1 monitoring must address the requirement of 

tracking key variables associated with structural 

complexity (including the number and variety of system 

components and relationships among them). To monitor 

the dynamic complexity, these variables related to 

structural complexity must be traced and tracked over 

time.  

Comprehending (Type 2 monitoring). To reduce 

problem-solving complexity and provide a useful 

cognitive aid, IT support for monitoring complex 

systems must go beyond tracking (Type 1 monitoring) 

to also support the comprehension (Type 2 monitoring) 

of structural and dynamic complexity. Type 2 

monitoring builds on information yielded through Type 

1 monitoring and focuses on higher-order complexity 

monitoring processes, including diagnosing, simulating, 

understanding, and giving meaning to the complexity of 

IT architectures as an input to decision-making. 

3 Research Design 

We conducted design science research, defined here as 

a problem-solving process involving a heuristic search 

to identify a relevant problem class and generate 

prescriptive knowledge (e.g., a set of design principles) 

for the design of artifacts (Gregor & Hevner, 2013; 

Hevner et al., 2004; Peffers et al., 2007) that addresses 

the metarequirements of the identified problem class. 

Hevner et al. (2004) describe artifacts as “innovations 

that define the ideas, practices, technical capabilities, 

and products through which the analysis, design, 

implementation, and use of information systems can be 

effectively and efficiently accomplished” (p. 83). 

Artifacts exist on different levels of abstraction, 

including the level of artifact instantiations, design 

principles that provide prescriptive guidance in the 

construction of artifacts, and the most abstract level of 

design theories (Gregor & Hevner, 2013; Gregor & 

Jones, 2007). 

In this paper, we focus on the process of evolution and 

accumulation of design knowledge at the midrange level 

of design principles. Our process involved identifying 

the problem class and generating abstracted design 

principles through iterative projection and concurrent 

evaluation of instantiated IT artifacts (software 

prototypes) across multiple contexts and companies. In 

the typology of Iivari (2015) for DSR strategies, our 

research project corresponds to “DSR Strategy 2” and is 

based on close researcher-practitioner relationships and 

teams with mutual involvement, engagement, and 

exchange of DSR teams (see also Sein et al., 2011). We 

engaged five large companies in our DSR program, 

resulting in eight years of intense practitioner interaction 

over the entire program lifetime. Table 1 provides 

details about the participating companies and the 

specific design activities conducted in collaboration 

with them. 
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Table 1. Companies Engaged and Problem-Solving Activities 

Company 

and Time 

period 

Problem Context Problem Solving Activities and Collected Evidence 

Heuristic Theorizing Cycle 1 

Company 1 

04/2008- 

01/2009 

Trading company 

(>15,000 employees) that 

confronted a major 

redesign and 

transformation of its IT 

systems environment. 

Cooperation with the 

chief IT architect and a 

consulting company 

• Development of Tool A (with a team of four developers) 

• Two interviews with a consultant contracted by this firm to support the IT 

transformation (~ 60 min.) 

• Workshop with chief IT architect and consultant to apply the prototype and gather 

input parameters (~ 120 min.) 

• Informal feedback from the CIO on the organizational need and value of Tool A 

• Telephone interview with IT architect to assess the usefulness of Tool A (~ 30 min.) 

• Secondary data: Access to architectural domain model as well as cost and interface 

data for selected IT components on the application layer 

Heuristic Theorizing Cycle 2 

Company 2 

08/2009- 

02/2013 

Large-scale enterprise 

(>40,000 employees) that 

implemented a new 

sourcing strategy during 

IT transformation. 

Cooperation with the 

CIO and an IT architect 

• Two meetings with the principal IT architect to understand the scope and define the 

problem (~ 90 min.) 

• Feedback from presenting the application of Tool B (developed with Company 3) to 

the CIO and an IT architect as well as two further results presentations to user 

groups within the company (~ 60 min.) 

• Secondary data: Access to data about 147 software components and the 

architectural domain model 

Company 3 

02/2010- 

08/2015 

Government organization 

(>100,000 employees) 

that was redesigning its 

corporate digital 

infrastructure. 

Cooperation with the 

CIO, different line 

managers, and the chief 

IT architect 

• Development of Tool B (with a team of three developers) 

• Feedback from three workshops with IT architects and line managers to improve 

our joint understanding of the problem to solve (~ 60 min.) 

• Feedback from one presentation about applications of Tool B to the CIO and the 

chief IT architect (~ 60 min.) 

• Secondary data: Team member of project “strategic management of heterogeneous 

IT landscapes” with the task to analyze cost and benefits of heterogeneous IT 

systems; granted access to complete project documentation; access and analysis of 

detailed profiles of  >206 IT components on the application layer; access and 

analysis of data of 752 IT components on the infrastructure layer 

Heuristic Theorizing Cycle 3 

Company 4 

06/2012- 

10/2016 

International bank 

(>50,000 employees) 

currently implementing 

company-wide 

complexity management 

to guide IT 

transformation. 

Cooperation with two 

leading IT architects and 

the department head of 

the IT architecture 

management 

• Development of Tool C (with a team of seven developers and involving three 

iterations of software development) 

• Seven meetings with the development team of Tool C (~ 90 min.) 

• Two interviews (~ 90 min.) and notes from two workshops (120 min.) with IT 

architects during the development of Tool C 

• One interview with a lead user after presentation of Tool C (~ 60 min.) 

• Development of Tool E (with a team of two developers and involving two iterations 

of software development) 

• Final workshop with two leading IT architects and department head (~ 60 min.) 

• Two interviews after presenting Tool E to the two leading architects (~ 60 min.) 

• Secondary data: access to internal presentations, architectural domain model, 

historical information on > 4250 IT components, documentation of the complexity 

management initiative 

Company 5 

01/2013- 

08/2015 

International bank 

(>90,000 employees) 

currently implementing a 

new digitized platform. 

Cooperation with the 

senior IT transformation 

manager, users of the 

tool, and two specialized 

IT architects 

• Development of Tool D (with a team of eight developers and involving two 

iterations of software development) 

• Six meetings with the development team of Tool D (~ 90 min.) 

• Two interviews with a senior IT transformation manager (~ 60 min.) 

• Notes from two meetings with the IT architects during the development of Tool D 

(~ 60 min.) 

• Three workshops to evaluate Tool D with IT architects and users (~ 60 min.) 

• Secondary data: access to internal presentations, architectural domain model, 

historical information on IT components on all layers of the IT architecture 
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Figure 2. Heuristic Theorizing Framework 

We identified Gregory and Muntermann’s (2014) 

framework for heuristic theorizing as a useful lens to 

structure and explain our complex process of IT 

artifact evolution and design knowledge accumulation. 

By providing a simple structuring (see Figure 2) of 

design science research activities across problem and 

solution spaces, on the one hand, and different levels 

of abstraction, on the other hand, this framework 

helped us create a detailed yet accessible narrative that 

provides transparency into our journey of design 

knowledge evolution and accumulation (see 

Section 5). During our design science research 

journey, we conducted three heuristic theorizing 

cycles. 

4 Findings 

4.1 Problem Space 

In the problem space, our search process resulted in a 

nested structure of problem classes (see Figure 3). We 

focused on the standardization problem in the first 

phase of our research (heuristic theorizing Cycle 1). 

The second heuristic theorizing cycle concerned the 

solution of the heterogeneity problem (which 

encompasses the standardization problem), and the 

third and final heuristic theorizing cycle focused on the 

problem of reducing the problem-solving complexity 

of monitoring the structural and dynamic complexity 

of IT architectures (MCITA) (see theoretical 

background section). More specifically, based on the 

assumption of bounded rationality (Simon, 1991), our 

study focuses on the design of cognitive IT support 

(Lerch & Harter, 2001) to reduce problem-solving 

complexity and aid decision makers in monitoring the 

structural and dynamic complexity of IT architectures. 

To reduce problem-solving complexity and provide a 

cognitive aid, the design of IT support for MCITA 

should address the two problem requirements (Walls, 

Widmeyer, & El Sawy, 1992) of tracking and 

comprehending structural and dynamic complexity 

(see Section 2.3). Following the ensemble view of IT 

(Gregor & Jones, 2007; Orlikowski & Iacono, 2001; 

Sein et al., 2011), addressing the specific problem 

requirements for IT design is not an end in itself, but 

any such effort is embedded in a broader social and 

organizational context. The context that we focus on in 

this design study is the organizational contribution of 

monitoring the complexity of IT architectures to 

accommodate the competing concerns of stability 

versus change in the context of digital business 

strategy (Keen & Williams, 2013; Tilson et al., 2010).  

4.2 Solution Space 

In the solution space, our search involved the 

construction of five prototypical IT artifacts that 

instantiated the accumulated stock of design 

knowledge. In addition to iterating back and forth 

between the heuristic search in the problem and 

solution spaces, we also iterated back and forth 

between two levels: (1) IT artifact construction and 

problem solving in cooperation with companies and 

(2) abstracted design knowledge accumulation. This 

corresponds to the distinction between heuristic search 

and heuristic synthesis in Gregory and Muntermann’s 

(2014) heuristic theorizing framework. Figure 4 
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provides a high-level overview of the accumulation of 

design principles over time that resulted from this 

iterative process. 

Table 2 presents the four design principles as outcomes 

of the heuristic theorizing process. It draws on the 

following structuring of ideas. First, we introduce a 

concise statement of the design principle. Second, we 

present the underlying rationale of the design principle. 

Third, we explain why and how this principle helps 

address the two problem requirements of the MCITA 

problem class. The description of our entire DSR 

journey in Section 5 provides transparency to the 

reader regarding how and why this particular set of 

design principles emerged from our heuristic 

theorizing work. While we describe our entire journey, 

we place the greatest emphasis on our third cycle (e.g., 

more detailed empirical evidence of evaluation 

outcomes), which is where our final results emerged 

and stabilized.

 

 

Figure 3. Nested Structure of the Problem Class 

 

 

 

 

 

 

Figure 4. Evolution of the Five IT Artifacts and Accumulation of Design Knowledge 

 

 

Complexity problem (encompasses the heterogeneity problem)

What is the structural and dynamic complexity of the overall IT architecture and its constituting subsystems?

Heterogeneity problem (encompasses the standardization problem)

What is the heterogeneity of the overall IT architecture and its constituting sub-systems?

Standardization Problem

Which application interface should rely on which communication standard to minimize the 
cost of information exchange?
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Table 2. Final Set of Design Principles for Constructing a MCITA Tool 

Design principle  
Rationale derived from prior theory matched with problem-

solving experiences 

Problem requirements 

Number and variety 

(DP-NV): The 

artifact should 

provide information 

on the number and 

variety of IT 

components and 

relations. 

• In a digital business strategy, the IT architecture serves as a 

platform for distributed, recombinant, and generative 

innovation (de Reuver et al., 2018; Woodard et al., 2013; Yoo 

et al., 2012). 

• Following the law of requisite variety (Ashby, 1956), a certain 

degree of variety within the IT architecture is needed to allow 

a sufficiently large variety of actions that can be executed on 

top of the IT architecture as responses to disturbances. 

• Type 1 monitoring: Number and 

variety are constituent facets of 

structural complexity. 

• Type 2 monitoring: Adaptable 

measures and possibility of 

comparing values for number 

and variety across different 

architectural domains. 

Decomposability 

(DP-D): The artifact 

should facilitate an 

understanding of 

interactions among 

elements of the IT 

architecture within 

and across 

subsystems at 

different levels of 

abstraction. 

• Complex systems are organized hierarchically and consist of 

multiple layers spanning diverse levels of abstraction (Simon, 

1962).  

• Simon describes complex systems such as IT architectures as 

nearly decomposable systems in which interactions among the 

subsystems are weak yet not negligible.  

• The efficient evolution of IT architectures is conditioned by 

the appropriateness of the degree of decomposability.  

• Modularity embodies the notion of creating highly integrated, 

mutually responsive, and tightly coupled subsystems that 

preserve a stable form and function while simultaneously 

enabling flexibility in their use and recombination based on 

the loose couplings and standardized interfaces among 

different modular subsystems.  

• Type 2 monitoring: To solve a 

given problem the user is able to 

focus on a specific level of the 

IT architecture’s hierarchy. The 

problem may appear unsolvable 

at one level of abstraction, but 

solvable after zooming in (divide 

and conquer) or zooming out 

(obtain a holistic view). DP-D 

facilitates comprehension by 

allowing assessment of the 

appropriateness of the degree of 

decomposability. 

Trace and simulate 

(DP-TS): The 

artifact should allow 

the user to trace and 

simulate structural 

complexity over 

time. 

• Monitoring structural complexity over time (retrospectively 

and prospectively) allows for identifying changes made to an 

IT architecture.  

• The theory of dynamically adjusting routines (Berente et al., 

2016) suggests that organizations must ensure the proper 

balance between stability and change (Tilson et al., 2010) in 

the materiality of an organization (i.e., IT architecture).  

• The prospective element of DP-TS helps to anticipate possible 

future changes and may be useful in dealing with the high 

levels of environmental uncertainty associated with 

competition involving digital business strategy (El Sawy et 

al., 2010). 

• Type 1 monitoring: DP-TS 

allows tracking of dynamic 

complexity (snapshots of 

structural complexity in time).  

• Type 2 monitoring: Visualization 

capabilities (i.e., plotting 

measures of structural 

complexity over time) facilitate 

comprehension. 

Configurability (DP-

C): The artifact 

should allow the user 

to select different 

perspectives on 

structural 

complexity, 

trajectories of 

structural complexity 

(dynamic 

complexity), and 

hierarchies of 

partitions to facilitate 

an understanding of 

the specific problem 

instance at hand. 

• The specific perspective of the user of the MCITA tool 

involves three key elements, each of which relates to one of 

the three design principles DP-NV, DP-TS, and DP-D. 

• As Ashby’s example of a sheep’s brain viewed differently 

depending on perspective illustrates, it is critical to assume 

the appropriate perspective for solving any complexity 

problem.  

• As digital business moves are carried out by a heterogeneous 

set of actors, the configurability of the MCITA tool is of 

strategic importance. Actors’ diverse views, such as on 

technological limitations, architectural standards, and business 

opportunities offered by an IT architecture, must be 

coordinated and aligned in the context of digital business 

strategy (Woodard et al., 2013). 

• Type 2 monitoring: The user is 

able to: (a) ascribe meaning to 

abstract elements of the IT 

architecture on its different 

layers (Richardson et al., 1990; 

Ross et al., 2006); (b) specify the 

type of dynamic complexity with 

regards to the time window, the 

time intervals of interest, and the 

different time series; and (c) 

define, drill down, and roll up, 

and compare a selected hierarchy 

of partitions according to 

specific criteria such as 

ownership, product categories, 

markets, and so on. 
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5 Design Science Research 

Journey 

In this section, we trace the evolution of the IT artifact 

construction and evaluation over eight years (2008-

2016) and across five companies and contexts with the 

goal of illuminating our journey of accumulating 

generalizable design knowledge.2 We describe three 

cycles of heuristic theorizing and the concurrent 

evaluation results that triggered transitions from one 

cycle to the other. In describing each cycle, we focus 

on the heuristic search within the problem space and 

solution space, as well as the key moments of heuristic 

synthesis that allowed us to discover connections 

between nascent chunks of design knowledge across 

the two spaces. In two critical moments of our overall 

search process, the evaluation results triggered 

decisions to revise and reformulate the problem at hand 

in fundamental ways, and, in turn, directed further 

searching in the solution space, resulting in three 

heuristic theorizing cycles (see Figure 5). 

 

Figure 5. Overview of the Three Heuristic Theorizing Cycles 

 

 

Figure 6. Overview of the First Heuristic Theorizing Cycle 

 
2 Intermediate results and further details of this process are 

documented in (Schütz, 2017; Schütz, Widjaja, & Gregory, 

2013a; Schütz, Widjaja, & Kaiser, 2013b; Widjaja & 

Buxmann, 2009; Widjaja & Gregory, 2012; Widjaja et al., 

2012). 
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5.1 First Heuristic Theorizing Cycle 

(2008-2009): Optimizing IT 

Standardization Decisions 

The focus of the first heuristic theorizing cycle (from 

2008 to 2009) and the entry into our DSR journey was 

the problem of making optimal IT standardization 

decisions of interfaces between applications 

encountered in Company 1 and the subsequent problem 

structuring (see Step 1 in Figure 6). During the research 

process, we learned that this problem of making optimal 

IT standardization decisions is encompassed in the 

heterogeneity problem which is in turn is encompassed 

by the complexity problem (see Figure 3). Therefore, the 

design principles in this first heuristic theorizing cycle 

address a subset of problem requirements of the final 

MCITA problem class. 

As part of the subsequent heuristic synthesis and 

abstract problem requirements definition (Step 2), we 

drew on the literature about IT standardization (e.g., 

Weitzel, Beimborn, & König, 2006) and conceived the 

problem at Company 1 as an instance of the IT 

standardization problem (see Figure 3): Which 

application interfaces should rely on which 

communication standard to minimize the cost of 

information exchange? This resulted in the idea for a 

tool that would provide the IT architect support for 

optimizing the variety of communication standards 

between applications. To address this key requirement 

of the formulated IT standardization problem, our 

heuristic search in the solution space included 

mathematical modeling and simulation (artifact design 

in Step 3). We developed a linear optimization model 

that incorporates problem context-specific parameters to 

assist IT architects in analyzing the cost-benefit 

tradeoffs involved in making optimal IT standardization 

decisions. We used this linear optimization model as the 

foundation for extensive simulation studies (i.e., 

purposeful manipulation of the problem parameters), 

yielding an understanding of the optimal solution 

structure.  

Heuristic synthesis (Step 4) yielded the conclusion that 

IT standardization drives IT efficiency by eliminating 

extra costs for information exchange between 

applications that use different communication 

standards. This resulted in the first version of the 

“design principle number and variety” (abbreviated as 

DP-NV-1; see Table 3), which we instantiated through 

collaboration with Company 1 through prototyping 

(artifact design in Step 5) a first tool (Tool A). Tool A 

allows an IT architect to specify the parameters of an IT 

standardization problem for application landscapes and 

interpret the optimization results (see Figure 7). 

5.2 Concurrent Evaluation and 

Transition from Cycle 1 to Cycle 2 

Company 1’s CIO confirmed the usefulness of our tool 

but chose not to implement the “optimal” suggested 

configuration. Instead, the CIO opted for the solution 

proposed as second-best by the linear optimization 

model, justifying his choice by highlighting that its 

“second-best” configuration yielded a much lower 

overall heterogeneity of vendors and that, according to 

his experience, large IT application landscapes with a 

low degree of vendor heterogeneity are much less 

complex and more efficient to manage. 

Based on these experiences, three key ideas triggered 

our identification of a new problem class. First, the 

standardization of interfaces between IT applications in 

the interest of reducing information exchange costs 

(classical IT standardization view) typically also affects 

the degree of heterogeneity of the overall IT application 

landscape because applications are usually tightly 

coupled to a particular communication standard (e.g., an 

application comes with different standard data formats 

for information exchange). Thus, the implementation of 

IT standardization decisions with a focus on 

relationships between applications often results in a less 

heterogeneous landscape of the applications themselves. 

Second, in reflecting upon the CIO’s comments about 

the importance of considering the IT vendor 

constellation in making IT standardization decisions, we 

realized that minimizing the costs of information 

exchange between applications is only one facet of the 

problem. We conceived various other advantages and 

disadvantages related to making IT standardization 

decisions and identified the need to explore this further. 

Table 3. Design Knowledge after Heuristic Theorizing Cycle 1 

 Set of design principles: 

To support IT standardization 

decision making, the artifact should ... 

IT artifact instantiation (Tool A) 

D
P

-N
V

-1
 

... provide information on the variety of 

relationships between software 

components (i.e., application layer).  

• Graphical representation of the topology of relations between software 

components. 

• Features that allow structured input of parameters of the 

standardization problem (information cost, standardization cost). 

• Different types of parameter validations (e.g., no negative costs). 

• Solver for the linear optimization problem and sensitivity analysis. 
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Figure 7. Screenshot of Tool A (Specification of the Network Topology of Software Components and Input of 

Key Parameters for Standardization Decisions) 

Third, we also reflected upon the multilayered 

architecture of a firm’s IT, including application, data, 

and infrastructure layers, and realized that 

optimization decisions for an IT application landscape 

are not isolated, standalone decisions. In fact, a 

decision affecting the application layer in most cases 

also affects other interdependent layers of the IT 

architecture. We also observed that, in practice, 

multiple IT vendors typically provide IT system 

components and services across multiple 

interdependent layers. As a result, we shifted our focus 

from application landscapes to multilayered enterprise 

IT architectures. 

5.3 Second Heuristic Theorizing Cycle 

(2009-2012): Monitoring IT 

Heterogeneity 

Triggered by the emergent outcomes of the concurrent 

evaluation explained above, we again engaged in 

problem reformulation and class identification (see 

Figure 8: Step 6), marking the entry point to the second 

heuristic theorizing cycle. In an attempt to generalize 

beyond the context of Company 1 and identify the 

abstract problem requirements, we began working with 

Company 2 (problem reformulation in Figure 8: Step 

6; see Table 1 for the purpose and scope of these 

interactions). These interactions yielded the key 

insight to structure the problem space: the idea of 

viewing the IT standardization problem defined in the 

previous cycle as a nested subproblem of determining 

the desirable degree of IT heterogeneity of a 

multilayered IT architecture, which requires tracking 

and comprehending the variety of applications, data, 

and infrastructure components and their interrelations 

(see Figure 3). Our reasoning was as follows. First, the 

information exchange costs between applications, the 

primary focus of making IT standardization decisions 

for interfaces on the application layer, is only one of 

many different cost categories (e.g., maintenance, 

licensing, and employee training) that need to be 

monitored by the IT architect across different layers. 

This broader set of aspects can be monitored by 

expanding the focus from the standardization of 

application interfaces to IT heterogeneity. Second, this 

expanded problem understanding permitted a broader 

managerial focus that goes beyond numbers and IT 

efficiency, the typical focus of IT standardization, and 

also considers strategic effects such as IT flexibility. 

Synthesizing these insights into new general problem 

requirements (Step 7), our newly defined focus was to 

find a desirable degree of IT heterogeneity of a 

multilayered IT architecture (in which the IT 

application landscape, which was the focus of our first 

heuristic theorizing cycle, represents only one layer in 

addition to the other data and infrastructure layers). 
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Figure 8. Overview of the Second Heuristic Theorizing Cycle 

Based on our perception of again having a sufficiently 

well-defined problem at hand, we transitioned to 

artifact design. Drawing on analogical design and 

mathematical modeling (Step 8) yielded the idea to 

apply the theory of biological ecosystems (Peet, 1974). 

Accordingly, systems variety can be conceptualized to 

include two facets: evenness, or the parity of the 

prevalence of a species, and richness, or the number of 

species. We transferred the concept of entropy measure 

as used in the fields of biology and economics 

(Jacquemin & Berry, 1979) to measure IT 

heterogeneity (see Appendix B for details of this 

approach to measure IT heterogeneity). 

Synthesizing (Step 9) the cumulative learning 

outcomes described above and building upon the 

insights from our first heuristic theorizing cycle, we 

arrived at the conclusion that reducing the IT 

heterogeneity of an IT architecture is associated with 

potential cost and knowledge synergies (e.g., 

implementation and training costs are significantly 

reduced for homogeneous software systems) that must 

be considered within and across different layers (i.e., 

application, data, and infrastructure). Based on the 

above, we refined design principle DP-NV-2 (see 

Table 4). In working with Company 2, we also realized 

the need for the IT architect to be able to drill down 

and up, or zoom in and out, to assess the degree of IT 

heterogeneity across different departments and 

subdepartments or other types of partitions of the 

overall system. Thus, the IT architect should be able to 

identify sources of IT heterogeneity and take 

appropriate corrective action in the identified part of 

 
3  As the graphical user interface of Tool B is based on 

standard spreadsheet technology, it is therefore not useful for 

the organization. This resulted in the first version of 

“design principle decomposability” (DP-D-1) (see 

Table 4). Through prototyping (artifact design in Step 

10) and drawing on standard spreadsheet technology, 

we instantiated the accumulated stock of design 

knowledge and constructed a new tool (Tool B).3 The 

essence of the artifact is the underlying mathematical 

model represented as a set of formulas (see Appendix 

B for more details). 

5.4 Concurrent Evaluation and 

Transition from Cycle 2 to Cycle 3 

We engaged Company 2 for the concurrent evaluation 

of Tool B and the embedded stock of accumulated 

design knowledge. We learned that it is relevant for an 

IT architect to know whether the IT heterogeneity in a 

given department and subpart of the organization 

stems from various subparts of that department that are 

themselves plagued by IT heterogeneity—suggesting 

the need to zoom further in—or whether that IT 

heterogeneity stems from various subparts of that 

department that are themselves characterized by IT 

homogeneity. With the goal of replication and 

increasing the generalizability of our nascent design 

knowledge, we expanded the concurrent evaluation 

activities to Company 3. With the help of data we 

obtained from Company 3’s IT department, we were 

able to show that our Tool B enables IT architects to 

identify those parts of the IT architecture that are a 

significant source of IT heterogeneity (e.g., 

technologies and programming languages in use), a 

constituent element of structural complexity. 

demonstrating the instantiated design knowledge and we 

omit presenting a screenshot.  
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Table 4. Design Knowledge after Heuristic Theorizing Cycle 2 

 Set of design principles 

To support IT standardization 

decision making, the artifact should ... 

IT artifact instantiation (Tool B) 
D

P
-N

V
-2

 

... provide information on the 

heterogeneity of relations and 

components of a multilayered IT 

architecture. 

• The formulas of the mathematical model as part of the spreadsheet 

prototype allow for calculating the entropy measure and the 

Herfindahl Hirschman Index to quantify the IT heterogeneity (for the 

basic idea of the entropy measure, see Appendix B). 

D
P

-D
-1

 

... facilitate zooming in and zooming 

out to different levels of abstraction of a 

multilayered IT architecture.  

• Tool B allows different subsystems of the IT architecture to be 

defined. The decision maker is able to specify the architectural 

domains in which he or she is interested.  

In summary, the IT architects from Company 2 and 

Company 3 both confirmed the usefulness of our 

conceptualization and measurement of IT 

heterogeneity (see Appendix B). However, similar to 

our previous transition from the first to second 

heuristic theorizing cycle, we obtained feedback that a 

broader view of the problem was required. This 

prompted, once again, a revision of the problem class 

(Figure 9: Step 11) and thus a transition into the third 

and final cycle of heuristic theorizing. In doing so, we 

conceived the idea of drawing on a complex system 

perspective, viewing IT standardization and IT 

heterogeneity decisions as nested subproblems of 

monitoring the structural and dynamic complexity of 

an IT architecture (see Figure 3). This idea occurred to 

us mainly because we learned that IT architects focus 

on different types of IT heterogeneity: both the 

heterogeneity of IT components (e.g., applications) 

and the heterogeneity of the relationships between 

those IT components (e.g., application interfaces). 

Comparing this insight with the literature, we 

repeatedly came across the notion of complexity 

(Schneberger & McLean, 2003). Complexity can be 

understood as a system state that results from the 

number of its constituent components (Klir, 2001; 

Flood & Carson, 1993) and relationships (Flood & 

Carson, 1993). Furthermore, a complex system can be 

characterized by the heterogeneity (i.e., variety) of 

components and relationships that form part of the 

overall system (Simon, 1962), highlighting the 

interconnections between systems heterogeneity and 

systems complexity. 

5.5 Third Heuristic Theorizing Cycle 

(2012-2016): Monitoring IT 

Complexity  

The concurrent evaluation activities with Company 2 

and Company 3 explained above and the identification 

of monitoring IT architectural complexity as the 

relevant, general problem class triggered problem 

reformulation (Step 11), which was the entry into the 

third and final heuristic theorizing cycle (see Figure 9). 

From the beginning of mid-2012, we focused on the 

problem of monitoring the complexity of IT 

architectures (see Figure 3 for the problem 

description).

 

 

Figure 9. Overview of the Third Heuristic Theorizing Cycle 
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Figure 10. Conceptualization of the Structural Complexity of an IT Architecture 

In this cycle, we began working with Company 4 and 

Company 5, two large banks with legacy, historically 

grown, and complex IT architectures that formed the 

foundation for the execution of their digital business 

strategies. This was a defining moment for our work, as 

we identified digital business strategy and the associated 

challenge of transforming a legacy IT architecture into a 

digital platform as a highly relevant context for 

monitoring architectural IT complexity. 

In Step 12, we synthesized the shift of our problem 

understanding from heterogeneity to complexity and 

identified the new problem requirements associated 

with the following question: What is the structural and 

dynamic complexity of the overall IT architecture and 

its constituting subsystems? This resulted in the nested 

problem structure described in Figure 3—that is, that the 

standardization problem class is part of the 

heterogeneity problem class, which in turn is part of the 

complexity problem class. In an effort to define the 

boundaries of our nascent set of design principles, we 

decided to maintain our focus on IT architecture (a 

subset of an enterprise architecture). 

Through analogical design (Step 13), we identified 

connections between architectural IT complexity and 

the concept of computing complexity (Schneberger & 

McLean, 2003). Drawing on Schneberger and McLean 

(2003) was the inception point in our DSR journey to 

draw on a system-theoretic perspective on man-made IT 

systems (ISO/IEC/IEEE 2011; Simon, 1962). A system 

(i.e., IT architecture) is defined as a set of components 

𝑐 ∈ 𝐶  (e.g., applications, data, and infrastructure) and 

the relationships between them 𝑅 ∈ (𝐶 × 𝐶)  (e.g., 

interfaces between applications) (Hall & Fagen, 1969). 

The computing complexity is influenced by the number 

and heterogeneity of IT components and relationships 

(Schneberger & McLean, 2003). Combining these ideas 

with our evolved understanding of multilayered IT 

architectures, our conceptualization of the structural 

complexity of IT architecture emerged: structural IT 

architectural complexity stems from the number and 

heterogeneity of components and relationships on the 

three layers of an IT architecture (see Figure 10). 

In a subsequent effort of heuristic synthesis (Step 14), 

we adapted our nascent design knowledge (i.e., DP-NV 

and DP-D) to the revised general problem requirements. 

Feedback provided through workshops with IT 

architects from Company 4 and a participating 

consultancy firm yielded the refinement of our first 

design principle as follows: DP-NV-3 concerned the 

additional monitoring of the “number” of components 

and relations (instead of the focus on variety in the first 

version of this design principle). Accordingly, an artifact 

for monitoring the IT architecture complexity should 

provide information on the number and variety of IT 

components of a multilayered architecture (see Table 5). 

In addition to this structural perspective on IT 

architectural complexity, the first version of “design 

principle trace and simulate” (DP-TS-1) emerged. We 

realized the need to track the history and evolution of the 

structural complexity measures over time. The first 

version of this design principle, therefore, focused on 

incorporating and visualizing historical data on the 

complexity measures. 

Furthermore, DP-D-2 was extended to allow flexible 

zooming in and out to different subsystems of the IT 

architecture (in comparison to the previous “static” 

zooming in on the spreadsheet prototype). Accordingly, 

based on the basic definition of an IT system (see 

Section 2.1), partitioning of the system is possible, as 

follows: One partition is defined as the set of nonempty 

subsets of C (i.e., the set of components) such that every 

element is in exactly one of these subsets. Each subset 

may be considered a system itself and therefore can also 

be partitioned, resulting, overall, in a nested hierarchy of 

partitions. Hierarchic thinking plays a crucial role in 

understanding any complex system (Simon, 1962). To 

illustrate, if the partitioning of applications is done 

according to the dimension “organizational structure,” a 

subset corresponds to the set of all applications owned 

by one department. This results in a hierarchy of 

partitions for the dimension “organizational structure.” 

That is, the organization can be partitioned into 

departments, which can be partitioned into 

subdepartments.  
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Figure 11. Screenshot of Tool C (Dashboard with Information on Number and Variety) 

Typically, different dimensions to partition an IT 

architecture exist. Examples include geographic 

(world, country, and city), functional (overall system 

and business functionality), and the organizational 

dimension (overall organization, department, and 

subdepartment) discussed earlier. 

We engaged in prototyping activities (artifact design in 

Step 15) to instantiate our current state of nascent 

design knowledge and evaluated the resulting Tool C 

with Company 4. Figure 11 shows a screenshot of the 

dashboard in Tool C, where the user is able to drill 

down to certain domains and the prototype presents the 

“quantity” and “diversity” (Company 4’s terms for 

“number” and “variety”) of the different components 

and relations. Furthermore, Tool C allows for 

synchronizing data concerning the current state of the 

IT architecture with different repositories and includes 

a “data warehouse” for information related to IT 

complexity. Based on these data, it is possible to obtain 

an overview of the historical data as a “time series” 

(see Figure 12). 

Concurrent evaluation feedback obtained through 

interactions with Company 4 illustrated the usefulness 

and utility of Tool C and the underlying 

conceptualization of structural IT architectural 

complexity (see Figure 10). The instantiated prototype 

helped structure and improve the understanding of a 

large range of IT architecture complexity measures 

that Company 4 had developed. We were also able to 

identify areas in which Company 4’s IT architecture 

complexity had not been sufficiently monitored in the 

past. 

As the principal IT architect at Company 4 explained,  

Of course, we first had to think about what 

IT complexity really is, what kind of 

complexity we want to look at and where to 

find the objects in the company to pinpoint 

the complexity. ... And here we focus on the 

structural complexity of a system or cluster, 

by which I mean multiple applications in a 

functional domain, which results from the 

number and diversity of components and the 

number and diversity of relationships 

between them. ... The next step was to think: 

what do we really want to look at now? 

Yeah, well, we’re architects, so let’s look at 

the “layers of the architecture,” that is, 

data, applications, and infrastructure. 

In addition to providing feedback that our 

conceptualization of the IT architectural complexity 

aligned well with the view in practice, Company 4 also 

began to use our tool for new IT investment decisions 

and IT project prioritization activities that were part of 

the company’s IT transformation planning. 

Specifically, our prototype, fed with company-specific 

data, helped IT decision makers conduct a so-called 

“architecture check” during budget negotiations and 

systematically assess the effect of a proposed IT 

investment and change on the state of architectural IT 

complexity.  

Domain (anonymized)

Domain (anonymized)

Domain (anonymized)

Possibility to 

drill down at 

certain domains

”Quantity" and 

"diversity" (i.e. jargon 

of Company-4 for 

"number" and 

"variety") of the 

different components 
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Figure 12. Screenshot of Tool C (Evolution of Complexity Indicators over Time) 

The principal architect at Company 4 stated:  

A colleague has been fighting for quite 

some time now to get his “zoo” a bit 

smaller—that is, to standardize—but he has 

not made it over the years because of the 

budget situation. Now he was able to see 

from Tool C that standard compliance has 

decreased even further over the last years. 

... So, he said, “OK, if I have the 

information now that it [the standard non-

compliance] is even higher, then maybe I 

have a better argument for getting that 

budget.” 

The department head of architecture management of 

Company 4 articulated how DP-D-2 helps to derive 

action from the information provided by Tool C, 

stating:  

If I only have key metrics at the level of the 

entire bank, then it does not help me. I have 

to be able to break it down. Otherwise, I 

cannot say where to start consolidating. 

The principal architect at Company 4 added more 

details and stated:  

At the level of the entire application 

landscape, the aggregated key metric is 

nothing more than an indicator. You may 

take decisions based on: “Here I have to do 

something.” But what this “something” is, 

you will only find out if you really hone in. 

Because if you realize that standard 

compliance in a certain domain is not good, 

then you need to examine the root causes. 

The domain may contain 50 application 

systems, but which of these 50 systems is 

ultimately nonstandard, you cannot tell 

from the aggregate number. That’s why you 

need the drill-down. This way, you are able 

to track down the responsible manager and 

then they have to investigate this further. 

During workshops with Company 4, the principal 

architect emphasized the usefulness of the time series 

(DP-TS-1) for interpreting the measures of IT 

complexity, stating:  

I think that the rate of change in 

architecture is meaningful only when 

reflected in complexity indicators. ... In my 

opinion, the rate of change of the 

architecture alone is not relevant 

information. More useful is the change of 

the indicators over time, a time series of 

indicators. 

The feedback obtained about Tool C triggered a new 

phase of heuristic synthesis (Step 16). Specifically, 

feedback from Company 4 suggested the importance 

of tracking the history as well as simulating the further 

evolution of IT architecture complexity at hand—

leading to a refinement of the design principle “track 

and simulate” to DP-TS-2. Our rationale for the 

adjustment to DP-TS is twofold. First, tracing 

historical changes of key facets of IT complexity over 

time may be useful (this was already part of the 

previous version of DP-TS). Second, examining the 

potential effects of prospective future changes through 

simulation may be useful because simulation enables 

the IT decision maker to test different options for 

action and investigate the effects of particular 

techniques (e.g., IT standardization) on the overall IT 

architecture. Thus, overall, the tool should allow the 

user to observe the effectiveness of past and planned 

applications of techniques (e.g., IT standardization) to 

deal with IT complexity. 

The satisfaction of Company 4 with the artifact and our 

growing confidence regarding the usefulness of our 

nascent design theory in the given context prompted us 

to reflect upon the potential generalizability of our 

design principles. Up to this stage of our research 

program, we had developed DP-NV-3, DP-D-2, and 

DP-TS-2 (see Figure 4). To explore the potential 

generalizability of this set of design principles and 

The user is able to 
visualize the structural 

complexity for different 

subsystems
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carry out further replication in a new context, we 

undertook further prototyping activities to develop 

Tool D in collaboration with a new company (Step 17). 

In 2013, we engaged Company 5, which was at the 

time in the middle of the largest IT transformation 

program in its corporate history as part of its broader 

digital strategy and transformation agenda. The 

feedback confirmed the revised version of DP-TS, and 

the added simulation abilities of Tool D (see Figure 13) 

were highly appreciated by the practitioners. An IT 

architect at Company 5 stated: 

Simulation offers me the opportunity to 

illustrate my planned projects and express 

the underlying idea. I can express my idea, 

I can document it, and I can present it: “We 

have planned the following projects and 

tried out the following alternatives in which 

the complexity changes as follows.” For 

me, that is the essential added value of 

simulation. 

From our engagement with Company 5, we learned 

that monitoring the architectural IT complexity in the 

context of digital business strategy and transformation 

involved developing the digital platform capability to 

enable the flexible recombination of sets of integrated 

IT components (i.e., modules) according to 

differentiated business needs. Therefore, during the 

implementation of Tool D, we also worked with the 

theory of modular systems (Ethiraj & Levinthal, 2004; 

Simon, 1996) as kernel theory (Step 17 in Figure 9). 

This helped us conceive the idea for an extended 

conceptualization of IT complexity. Specifically, 

modularity enables an efficient, flexible recombination 

of sets of integrated IT components (so-called 

modules). 

Particularly in the context of digital platform design, 

the notion of modularity is relevant for understanding 

how to deal with IT complexity. Prior studies—for 

example, that of Ethiraj and Levinthal (2004)—state 

that the efficient and flexible recombination of 

modules requires an “appropriate” degree of 

modularity. According to this, stretching 

modularization too far may result in the IT architecture 

leaning strongly toward flexibility but at the expense 

of efficiency; that is, the efforts of integrating and 

testing evolved subsystems are significantly increased. 

Conversely, giving modularity too little emphasis may 

result in an insufficient range of possibilities for 

flexible recombination, i.e., the efforts of separating, 

changing, or recombining subsystems become 

excessively high. 

Synthesizing the insights (Step 18) from joint problem 

solving with Company 4 and Company 5 and prior 

kernel theory on modular systems yielded a further 

refinement of the design principle “decomposability” 

(DP-D3). Specifically, the lesson from Company 5 

about “flexible recombination” pointed us toward the 

concept of modularity. As a result, we extended our 

prior conceptualization of IT complexity (see Figure 10) 

by including this concept. Accordingly, the artifact for 

monitoring IT complexity should also provide relevant 

information for assessing the appropriateness of 

modularity. In testing this idea in our engagement with 

Company 5, we reasoned that an appropriate level of 

modularity contributes to balancing IT efficiency with 

IT flexibility. 

 

Figure 13. Screenshot of Tool D (Simulation Dialogue) 

Dialogue to specify 
simulation parameters
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In addition to the validation and refinement of existing 

design principles, the concurrent evaluation of Tool D 

and especially the satisfaction with the revised 

conceptualization of IT architectural complexity 

prompted us to develop (also in Step 18) the “design 

principle configurability” (DP-C-1). The tool should 

allow the user to choose the perspective on IT 

architectural complexity needed to solve a specific 

decision problem: IT decision makers must be able to 

specify a “complexity configuration” and select (1) the 

type of IT components (e.g., application components, 

hardware components, etc.); (2) the type of relationship 

between IT components (e.g., interfaces, physical 

connections, etc.); (3) characteristics that differentiate 

IT components from one another (e.g., vendor 

heterogeneity, programming language used, etc.); and 

(4) characteristics that differentiate the relationships 

between IT components from one another (e.g., type of 

interface, such as synchronous or asynchronous, etc.). 

For additional replication of our revised stock of 

cumulative design knowledge, we engaged once again 

with Company 4 (artifact design in Step 19). For this 

final prototyping and concurrent evaluation effort, we 

included all of our nascent design principles in the 

instantiated IT artifact (i.e., Tool E; see Figure 14), 

which was constructed through cooperation with 

Company 4. For our instantiation of the new version of 

design principle DP-D-3, we followed Ethiraj and 

Levinthal (2004, p. 162) and relied on four dimensions 

of appropriateness of modularity: “the ‘appropriate’ 

number of modules, the ‘appropriate’ mapping of 

design elements to the modules, the ‘appropriate’ 

interactions among the design elements within each 

module, and the ‘appropriate’ interfaces or interactions 

between modules.”  

Figure 14 shows how the measures proposed by Ethiraj 

and Levinthal (2004) were implemented in our MCITA 

tool. The user interface is structured into one primary 

and three secondary panes. By using the visualization of 

modules and IT components in the primary pane, the 

user can assess the appropriateness of mapping IT 

components to modules. The same visualization in the 

primary pane provides the information required for an 

assessment of the appropriateness of the number of 

modules. The upper two secondary panes on the right 

side show the number of internal and external relations 

among IT components, allowing the user to assess the 

appropriateness of relations within and between 

modules. The fourth pane in the lower right draws on 

information from the upper two panes and provides 

additional information on the proportion of relations 

within and between modules. 

The feedback we obtained from Company 4 

representatives was positive and provided support for 

our nascent set of design principles. Including measures 

on the “appropriateness” of modularity on all levels of 

abstraction was conceived as extremely helpful by the 

companies we worked with. The IT architect of 

Company 4 stated:  

An incorrect assignment of components [to 

modules] can have catastrophic 

consequences for the flexibility of the overall 

system. If, for example, dependencies are 

distributed across all departments, this can 

make it much more difficult to communicate 

change. When responsibilities—or even 

budget—for a single application is divided 

among 15 different parties, you cannot 

achieve anything. 

The assessment of modularity seemed critical to 

avoiding this situation. As the architect explained: 

You will never get a completely clean, 

disjoint 1:1 mapping. But cutting it in 

pieces, in a way that the overhead stays low 

or dependencies are generally concentrated 

within a single unit, is the goal. This is loose 

coupling: being as self-contained as 

possible, and the interaction outside my 

module should be as little as possible and as 

planned as possible.

 

 

Figure 14. Screenshots of Tool E (Focus on the Appropriateness of Modularity) 

6 Designprinzipien für ein Informationssystem zur Planung und Kontrolle von IT-Komplexität 

	

192 

 

Abbildung 56: Darstellung von Modularität in IT-COM_3 

Der Nutzer hat die Möglichkeit, ein System (oder auch ein Subsystem) auszuwählen, dessen 

Modularität er im Detail untersuchen möchte. Hier stehen ihm sowohl die Domänen als auch 

die Subdomänen für eine Analyse zur Verfügung. Im linken Bereich der Abbildung 56 kann 

anhand der Anzahl der Balken – die jeweils eine funktionale Einheit und somit ein Modul 

repräsentieren – das erste Gütekriterium beurteilt werden, d. h. die Angemessenheit der 

Anzahl der Module. Die Höhe der Balken des linken Diagramms zeigt die Anzahl der jeweils 

zugeordneten Anwendungen auf und dient somit der Beurteilung des zweiten Gütekriteriums 

bzgl. der Zuordnung der Designelemente zu den Modulen. Zur Beurteilung des dritten und 

vierten Gütekriteriums sind die Balkendiagramme auf der rechten Seite aufgeführt. Dem 

obersten Diagramm ist die Anzahl der Schnittstellen zwischen den Anwendungen innerhalb 

der funktionalen Einheiten zu entnehmen, was dem dritten Gütekriterium entspricht. Im 

mittleren Diagramm ist dementsprechend die Anzahl der Schnittstellen der funktionalen 

Einheiten zu Anwendungen außerhalb der jeweiligen funktionalen Einheit angeführt. Um 

optische Größeneffekte der beiden Diagramme zu relativieren, zeigt das unterste Diagramm 

das Verhältnis zwischen der Anzahl interner und externer Schnittstellen der Module auf. 

Diese Form der Darstellung ermöglicht es dem Nutzer, direkt auffällige funktionale Einheiten 

zu identifizieren, die einer weiteren Betrachtung unterzogen werden sollten: 

„Der Vorteil ist, dass ich sofort sehe, welche der funktionalen Einheiten ich mir näher 

ansehen sollte.“ (Principal Architect) 

Der Nutzer kann dabei definieren, welches die relevanten Designelemente sind und auf 

Grundlage welcher Form der Interaktionen die Kommunikation zwischen den Design-

elementen festzumachen ist (z. B. anhand der technischen Schnittstellen zwischen den 

Anwendungen oder anhand der Zuordnung des für die Anwendung verantwortlichen Mitar-

beiters). Dieser generische Ansatz ermöglicht dem Nutzer, unterschiedliche Perspektiven auf 

die Modularität einzunehmen, ohne dass sich die zugrunde liegende Logik ändert. 

Der Aspekt der Modularität manifestierte sich noch an einer weiteren Stelle von IT-COM_3, 

wobei sich diese Darstellung auf das dritte und vierte Gütekriterium beschränkt. Mit 

FE

1

FE

2

FE

3

FE

5

FE

4

FE

6

FE

7

FE

8

FE

9

FE

10

FE

13

FE

12

FE

11

FE

1

FE

2

FE

3

FE

4

FE

5

FE

6

FE

7

FE

8

FE

9

FE

10

FE

11

FE

12

FE

13

FE 6

FE

1

FE

2

FE

3

FE

4

FE

5

FE

6

FE

7

FE

8

FE

9

FE

10

FE

11

FE

12

FE

13

FE

1

FE

2

FE

3

FE

4

FE

5

FE

6

FE

7

FE

8

FE

9

FE

10

FE

11

FE

12

FE

13

Assessment of the 
“appropriate” relations 

among the IT 

components within 

each module

Assessment of the 
“appropriate” relations 

between modules

Assessment of the 
“appropriate” number of 

modules

Assessment of the 
“appropriate” mapping 

of IT components to the 

modules



Monitoring the Complexity of IT Architectures 

 

683 

 

 

Figure 15. Screenshot Tool E (Selection of Complexity Type) 

Table 5. Design Knowledge in the Solution Space after Heuristic Theorizing Cycle 3 

 Set of design principles 

To support IT standardization 

decision-making, the artifact should ... 

IT artifact instantiation (Tool C, D, E) 

D
P

-N
V

-3
 

... provide information on the number 

and variety of IT components and 

relations.  

• Tools C, D, and E contain dashboards with measures to quantify the 

number and variety of selected IT components (see Figure 11). 

• The prototypes use the entropy measure and the Herfindahl 

Hirschman index to quantify the variety. 

• The dashboards are enriched by visualizations of data quality 

(highlighting missing values) to facilitate the interpretation. 

D
P

-D
-3

 … facilitate an understanding of 

interactions among elements of the IT 

architecture within and across 

subsystems on different levels of 

abstraction.  

• Tools C, D, and E allow the user to drill down into different domains 

of the IT architecture. 

• Tool E integrates measures to assess the “appropriateness” of 

modularity at different levels of abstraction. 

D
P

-T
S

-2
 

... allow the user to trace and simulate 

structural complexity over time.  

• Tools C, D, and E contain visualizations of complexity measures over 

time (see Figure 12). 

• Tools C, D, and E can import historical data from repositories. 

• Tools D and E allow simulations of IT projects (e.g., consolidation 

projects) on the measures of IT architectural complexity. 

D
P

-C
-1

 

… allow the user to select different 

perspectives on structural complexity, 

trajectories of structural complexity 

(dynamic complexity), and hierarchies 

of partitions to facilitate an 

understanding of the specific problem 

instance at hand. 

• Tool E enables the user to customize the perspective on complexity 

depending on the problem at hand (see Figure 15). 

 

The newly implemented version of DP-C increased the 

generalizability of the application of Tool E. Figure 15 

shows a dialogue in the prototype that exemplifies the 

assistance provided to the tool user during the 

configuration of different perspectives on structural 

complexity. This involves the selection of IT 

components (e.g., applications), a measure of the 

variety of IT components (e.g., vendors), the relations 

between the selected IT components (e.g., interfaces), 

as well as a measure of the variety of relations (e.g., 

implementation of the interfaces). Similar dialogues 

exist to configure the trajectories of structural 

complexity (dynamic complexity) and hierarchies of 

partitions. As the principal IT architect of Company 4 

Dialogue to assist the user during 
the configuration of different 

perspectives on complexity
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stated: “That’s the generic thing about the tool. You 

can now use it as a toolbox for almost any question.” 

A department head of Company 4 expanded on this 

point:  

The exciting thing here is that you can pick 

individual questions from the huge 

wallpaper of possibilities. I can only look at 

programming languages or at database 

systems and, and, and. ... Here, I can 

investigate an isolated problem without 

being overwhelmed by all details. 

6 Discussion and Implications 

Our main contributions are an increased understanding 

of a novel problem class as well as a corresponding set 

of design principles. We developed these contributions 

by following an iterative approach with successive 

refinements and integrating actual projections into 

instantiated IT artifacts across multiple contexts and 

companies. The design knowledge we accumulated 

during this process contributes to our understanding of 

both the problem and solution spaces introduced 

earlier. In addition, from our rich description of the 

design process itself, we derive implications for the 

practice of conducting DSR.  

6.1 Implications for Research on IT 

Architecture Management in the 

Context of Digital Business Strategy  

This paper’s contribution to design knowledge is 

twofold: in the problem space, we discovered and 

conceptualized the problem class “monitoring the 

complexity of IT architectures” (MCITA); in the 

solution space, we built nascent design theory, drawing 

on the kernel theory of complex systems (e.g., Amaral 

and Uzzi, 2007; Ashby, 1960; Buckley, 1967; 

Schneberger & McLean, 2003; Simon, 1962) as well 

as our experiences and observations from iterative IT 

artifact construction and concurrent evaluation across 

multiple contexts and companies. This knowledge 

contribution in the solution space takes the form of a 

set of design principles that offer prescriptive guidance 

for how to design IT support for addressing MCITA 

problems. We discuss the contributions in the two 

spaces and their respective implications in more detail 

in the following. 

In the problem space, we discovered a nested problem 

structure in which the MCITA problem class 

encompasses the heterogeneity problem, which in turn 

encompasses the standardization problem (see 

Figure 3). The MCITA problem class we discovered 

by examining IT architecture management in the 

context of digital business strategy is not entirely 

novel; rather, it is an instance of the general class of 

problems of monitoring complex systems (Henneman 

& Rouse, 1986; Murray & Liu, 1997; Murray & Yili, 

1994; Natu et al., 2016; Psiuk & Zielinski, 2015; 

Vierhauser et al., 2016; Zinser & Henneman, 1989). To 

the best of our knowledge, however, this study is the 

first systematic attempt to establish a link between this 

general problem class and the problem domain of IT 

architecture. 

This contribution in the problem space has 

implications for research on IT architecture, as we 

offer a change in perspective from the view of 

“reducing IT architecture complexity” (Guillemette & 

Paré, 2012; Ross et al., 2006) toward “monitoring the 

complexity of IT architectures” (i.e., MCITA). The 

former view is based on the assumption of the 

separation of the IT function from business units, 

whereas the latter view is based on the alternative 

assumption, in line with the fusion view (El Sawy, 

2003; El Sawy et al., 2010), that IT architectures are 

symbolic representations and material manifestations 

of the firm’s systems of digital offerings, processes, 

and platforms (Keen & Williams, 2013; Woodard et 

al., 2013). Based on this latter assumption and the 

experiences gathered during our heuristic search, we 

offer a definition of an IT architecture as a distributed, 

evolutionary, and emergent system of IT systems that 

enables the digital business strategy of one or more 

partnering firms. Based on our insights derived from 

heuristic theorizing, we suggest that IT architectures in 

the context of digital business strategy exhibit 

characteristics that resemble digital infrastructures 

(Hanseth & Lyytinen, 2010; Henfridsson & Bygstad, 

2013; Tilson et al., 2010) and that monitoring their 

complexity is integral for business strategy and should 

be viewed as an aspect of digital business strategy 

execution. A key implication of these insights is that 

reducing the structural and dynamic complexity of IT 

architectures, which is the focus of the literature, is 

often not feasible and is certainly not a sufficient 

means to ensure the strategic business value 

contribution of an IT architecture (Guillemette & Paré, 

2012; Ross et al., 2006). 

In the solution space, we developed a set of four design 

principles for the MCITA problem class. This 

accumulated design knowledge was actually projected 

(Baskerville & Pries-Heje, 2014) into multiple 

instantiated IT artifacts (i.e., software prototypes) 

across different contexts and companies. Each of the 

four design principles offers cumulative contributions 

and extensions of the existing literature (see Table 6). 

In particular, our IT artifact construction work 

illustrated that features of existing system types (i.e., 

spreadsheet, metadata repository, and simulation) may 

be enhanced by novel features (i.e., functions to 

navigate the hierarchy of systems, complexity 

measures, and tools to assess the appropriateness of 

modularity) to address the class of problems we refer 

to as MCITA. 
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Table 6. Summary of Contributions of our Design Principles to the Existing Literature 

DP Cumulative contributions and extensions of the existing literature 
N

u
m

b
er

 a
n

d
  

v
a

ri
et

y
 (

D
P

-N
V

) • We transferred the concept of structural complexity (Henneman & Rouse, 1986; Ribbers & Schoo, 2002; Schneberger 

& McLean, 2003; Xia & Lee, 2005) to IT architecture management in the context of digital business strategy (Keen & 

Williams, 2013). 

• We transferred and illustrated the utility of the entropy measure and the Herfindahl Hirschman Index from the field of 

economics (Jacquemin & Berry, 1979) to the MCITA problem. 

• We extended the conceptualization and measurement of systems variety in the MCITA context by drawing on 

knowledge from the field of biology that distinguishes between richness and evenness (Peet, 1974). 

D
ec

o
m

p
o

sa
b

il
it

y
 

(D
P

-D
) 

• Design knowledge about IT architecture management (e.g., Aier et al., 2009; Winter & Aier, 2011) and monitoring 

complex systems (e.g., Maier, 1998) is extended by drawing on the notion of the “near decomposability” of a complex 

system (Simon, 1962). 

• The incorporated idea of hierarchic thinking for understanding a complex system extends the need, previously 

identified in the literature, for a comprehensive system-wide view on monitoring complex systems (e.g., Natu et al., 

2016). 

• We transferred and illustrated the utility of Ethiraj and Levinthal’s idea of “appropriateness of modularity” to facilitate 

comprehension of the (near) decomposability (Simon, 1962) of a complex system or IT architecture (Ethiraj & 

Levinthal, 2004). 

• The idea of “drill-down” from the literature on monitoring complex systems (i.e., Psiuk & Zielinski, 2015) is extended 

to the broader idea of decomposability.  

T
ra

ce
 a

n
d

  

si
m

u
la

te
 (

D
P

-T
S

) 

• The idea of monitoring the evolution, elaboration, and change of systems complexity over time is consistent with the 

literature on the conceptualization of dynamic complexity (Henneman & Rouse, 1986; Ribbers & Schoo, 2002; 

Schneberger & McLean, 2003; Xia & Lee, 2005). 

• We extended our understanding of how a balance between stability and change can be ensured in the evolution of IT 

architectures that resemble digital infrastructures (Tilson et al., 2010) and the materiality of organizations (Berente et 

al., 2016) by monitoring structural complexity over time. 

• The ability to trace and simulate changes in structural complexity over time helps in understanding how uncertainty 

and risks (e.g., system failure) can be managed, which has been discussed in the literature on monitoring complex 

systems (e.g., Domerçant & Mavris, 2011). 

C
o

n
fi

g
u

ra
b

il
it

y
  

(D
P

-C
) 

• The view embodied in the design principle to select a specific perspective on a given instance of MCITA problems is 

in line with Ashby’s observation that a complex system (e.g., a sheep’s brain) is viewed differently depending on the 

perspective taken (e.g., that of a butcher versus a neurophysiologist) (Ashby, 1960).  

• The configurable conceptualization of IT architectural complexity (Figure 10) provides a universal language that 

allows a diverse set of heterogeneous stakeholders across an organization to participate in solving MCITA problems 

by contributing each of their unique perspectives depending on the given MCITA instance.  

• The idea of configurability extends our understanding of how to deal with the diversity of different system types, 

functions, and organizational units overlooking them, which has been identified as a key challenge in the literature on 

monitoring complex systems (e.g., Domerçant & Mavris, 2011). 

 

This design knowledge contribution in the solution 

space offers implications for research on the complexity 

of IT architectures (e.g., Beese et al., 2016; Schneberger 

& McLean, 2003). In this research stream, the 

predominant focus has been on structural complexity 

and, to a lesser extent, on dynamic complexity (Ross et 

al., 2006; Xia & Lee, 2005). Our insights derived from 

heuristic theorizing complement this research and 

suggest the need to pay closer attention to problem-

solving complexity and building IT support that serves 

as a cognitive aid (Lerch & Harter, 2001). In contrast to 

the concepts of structural and dynamic complexity, 

problem-solving complexity concerns human 

reasoning, attentional resources, skills, and the overall 

ability to cope with structural and dynamic complexity 

(Henneman & Rouse, 1986). Under the condition of 

embracing complexity, for example, the ability to cope 

with structural and dynamic complexity (i.e., problem-

solving complexity) shifts to the foreground of attention 

by leveraging higher requisite variety in an IT 

architecture to address the increasing heterogeneity of 

requirements and demands through the identification of 

new value-generation opportunities (Ashby, 1956; 

Priem, Butler, & Li, 2013). 

6.2 Implications for Generating Design 

Knowledge 

The DSR paradigm rooted in Herbert A. Simon’s 

seminal work on the science of design (Simon, 1996) 

has developed significantly (Hevner et al., 2004). 

Despite these advancements, further guidance is 

needed for DSR teams on the rigorous and systematic 

generation of projectable design knowledge. The 

development of specific methods and frameworks that 
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focus on the intertwined generation of design 

knowledge and IT artifact construction/evaluation—

action design research (Sein et al., 2011) and heuristic 

theorizing (Gregory & Muntermann, 2014) in 

particular—offer a useful point of departure for 

developing a genre of DSR that emphasizes the 

accumulation of generalizable and tangible design 

knowledge grounded in real-world problem solving 

through iterative IT artifact construction and 

concurrent evaluation (Peffers, Tuunanen, & 

Niehaves, 2018). In this paper, we followed this 

emergent genre of DSR and offer as an empirical 

contribution “a rich description of the design process” 

(Ågerfalk, 2014, p. 595). From this description, we 

derive the following implications for generating design 

knowledge that may contribute to the ongoing 

methodological discourse on making DSR 

contributions (Baskerville et al., 2018).  

Our work offers insights into how to achieve 

generalizability as projectability in DSR (Baskerville 

& Pries-Heje, 2014). An accumulated stock of design 

knowledge should be projectable. A projection is any 

relevant instance that supports the accumulated design 

knowledge (Baskerville & Pries-Heje, 2014). In our 

case, observations about problem solving involving the 

use of the instantiated artifact provided an impetus to 

develop a revised problem-class definition that was 

more general and projectable, as it encompassed the 

previous problem class while also extending beyond it 

(see Figure 3). In our DSR project, we increased the 

projectability of our design knowledge in two ways: 

(1) by adding actual projections of our current state of 

design knowledge to increase confidence that the 

prescriptive theory works; and (2) by increasing the 

number of possible projections to enhance the theory’s 

potential to solve a broader range of concrete 

problems. 

In the case of (1), we achieved greater projectability of 

our developed design knowledge by actively and 

deliberately switching between similar yet different 

problem-solving contexts (i.e., different companies 

experiencing different instances of the same problem 

class) and actually projecting our accumulating stock 

of design knowledge through new IT artifact 

instantiation and evaluation activities across these 

different contexts. Here, the evaluation feedback 

results may indicate that the solution might work in the 

old context but does not represent a satisficing solution 

in the new context. In that process of sampling for 

contexts to achieve greater projectability of our design 

knowledge, we focused on contexts that represented a 

balance between conformity and difference when 

compared to previously focused contexts in analogy 

with substantiation and extension strategies in 

grounded theory (Gregory et al., 2015). Our reasoning 

for seeking this balance was that our existing stock of 

design knowledge needed to be projectable to the new 

context (conformity) to increase its projectability, 

while the new context also needed to involve new 

problem-solving challenges (differences) to explore 

and perhaps extend its boundaries. 

In the case of (2), we sought to increase the potential 

of our nascent design knowledge. This ocurred at two 

critical moments in our design knowledge 

development. In the transition between design cycles 

(see Sections 5.2 and 5.4), we learned from the 

evaluation of our instantiated artifact that it fully 

addressed the requirements of the defined problem 

class. At the same time, however, the feedback we 

received suggested unresolved adjacent or 

superordinate problems, which prompted us to 

redefine and extend the problem class. 

In addition to gaining these insights regarding the two 

ways of achieving greater projectability of 

accumulated design knowledge over the course of a 

multi-context DSR project, we also reflected on the 

stopping rule of this process (i.e., either putting a halt 

to provoking opportunities to enhance projectability or 

pursuing the emerging opportunities to enhance 

projectability). In our DSR project, we decided as a 

team at some critical point to stop sampling for 

additional contexts for actually projecting our 

accumulated design knowledge into new versions of IT 

artifacts and carrying out concurrent evaluation 

activities across the sample of contexts. Our reasoning 

for “stopping” was our accumulated experience of 

having achieved sufficient levels of utility, in the sense 

of “value outside the development environment” 

(Gregor & Hevner, 2013, p. 15), based on the 

substantial positive feedback and evaluation results 

obtained across the various contexts and companies. 

Put a different way, we answered the question of 

whether we had identified a satisficing artifact design 

with a “tentative yes” (Gregory & Muntermann, 2014). 

The answer to this important question can be tentative 

only insofar as it relates to a concrete artifact design 

addressing a concrete problem in a specific set of 

contexts. Similar to doing grounded theory and 

reaching “saturation” (Glaser, 1978), the degree to 

which further iterations in IT artifact development and 

design knowledge accumulation yielded novel insights 

declined sharply, adding to our sense of having 

achieved an adequate level of design knowledge 

projectability under the given constraints. These 

constraints included our own limited capacities as 

designers ourselves in terms of design knowledge and 

access to relevant contexts that fit and thus could be 

used for further projecting activities (Baskerville, Kaul, 

& Storey, 2011). 

6.3 Implications for Practice 

Based on the emergent problem understanding, the 

developed solution components, and the results of the 

concurrent evaluations, we inferred three practical 
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implications for IT architects. First, monitoring IT 

architectural complexity has become a foundation for 

managing complexity of digital businesses, as IT 

architectures are symbolic representations of digitized 

products, services, and processes. Second, IT 

architects are able to contribute proactively to the 

digital business strategy of their firms by transforming 

their IT architectures into digital platforms. This 

involves reducing sociotechnical inertia by 

encapsulating IT architectural complexity. Third, we 

observed that the role of the IT function in the context 

of digital business strategy changes from a service 

provider and architect reducing IT architectural 

complexity toward a broker of platform services and 

architect monitoring IT architectural complexity. 

7 Future Research and 

Limitations 

In the course of our design science research study, we 

identified IT architectures as an important class of IT 

artifacts that are undergoing a metamorphosis in light 

of the rise of digital business strategy, which offers a 

wide array of possibilities for future research. In the 

past, IT architecture has often been viewed as a stable 

foundation upon which an enterprise can function, 

embodying the organizing logic of business processes, 

data, and IT capabilities reflecting the firm’s key 

integration and standardization requirements (Ross, 

Weill, & Robertson, 2006). What we witness today in 

the digital business strategy context is competition 

between diverse logics and requirements (Tilson et al., 

2010) associated with the fusion of IT within firms’ 

environments (Woodard et al., 2013) as well as the 

fusion of business and IT strategy (El Sawy et al., 

2010). The changing nature of IT architectures is a 

manifestation of this fundamental shift. IT 

architectures are continually enlarged, reduced, or 

modified (Tanriverdi et al., 2010) as they fuse with 

shared, open, heterogeneous, generative, and 

constantly evolving digital infrastructures (Hanseth & 

Lyytinen, 2010) and as businesses increasingly 

compete through their IT architectures—for example, 

through exposure of IT systems to a heterogeneous set 

of actors (i.e., customers, suppliers, business partners, 

and IT developers). In our research, these and related 

observations prompted us to draw on the complex 

systems theory (e.g., Maier, 1998; Simon, 1962; 

Sommerville et al., 2012), an idea that may also be 

relevant for future studies in the digital business 

strategy context. 

A limitation of this study is that our theory 

development and evaluation activities in the last cycle 

focused on the banking industry because of the author 

team’s particularly strong academic-industry 

relationships in that particular sector. For future work, 

we suggest drawing on our design, which we believe 

can be used to address both MCITA and MCITA-like 

problems (e.g., monitoring large-scale, networked IT, 

military, and national transportation systems 

complexities). In this vein, an interesting direction for 

future research could be to extend the subject being 

monitored from IT architecture to enterprise 

architecture, that is, to the high-level logic for business 

processes and IT capabilities (Ross et al., 2006, p. 48). 

The present study focused on the perspective of 

individual firms and on their need to monitor the 

complexity of the IT architecture. We envision that our 

set of design principles will also provide value during 

the construction of IT artifacts for groups of firms as 

well as institutions overseeing groups of firms or entire 

markets. For example, regulators in the banking 

context could use our set of design principles to build 

a tool that is useful for assessing the complexity and 

systemic risk of the international banking sector. 

An underlying assumption of the design principle 

development in this paper is bounded rationality 

(Simon, 1991) and the resulting need for IT support 

and a tool that enables human decision makers to 

monitor the complexity of IT architectures. As shown 

in related areas (e.g., monitoring the complexity of 

large-scale networked IT systems), the task of 

monitoring the complexity of IT architectures can, 

under certain conditions, be automatized and carried 

out by machines or “digital control systems” (Lee & 

Berente, 2012). It remains to be seen and explored in 

future studies whether, how, and under what 

conditions we can relax the assumption of bounded 

rationality and address (parts of) MCITA problems 

through such digital controls. The suggested focus of 

our theory to place problem-solving complexity as 

opposed to structural and dynamic complexity into the 

foreground may need to be revisited in the future as the 

level of automation increases and thus reduces 

problem-solving complexity. 
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Appendix A 

Table A1. Selected Existing Design Knowledge about Monitoring Complex Systems 

Source Problem space Solution space 

Becz, S., Pinto, 

A., Zeidner, L., 

Khire, R., 

Reeve, H., & 

Banaszuk, A. 

(2010)  

Problem focus: Managing complexity in aerospace 

systems to reduce cost and schedule overruns. 

Problem understanding: Technical complexity of 

the system is interrelated with complexity of system 

requirements, development teams and 

organizational partnerships, resulting in emergent 

behavior of the system as a whole. 

Artifact development: A newly proposed design process for 

complex systems. 

Artifact components: Four key elements of the design process, 

including: (1) abstraction based design tools (that are able to 

handle different levels of abstraction); (2) quantitative 

complexity metrics; (3) advanced architecture synthesis 

methods (allowing for evaluation of different feasible 

architecture options); and (4) robust uncertainty management (to 

manage key risks). 

Domerçant, J. 

C., & Mavris, 

D. N. (2011)  

Problem focus: Acquisition of a complex military 

system of systems that provides a suppression of 

enemy air defenses capability. 

Problem understanding: Complexity is a key design 

issue for a system-of-systems architecture, defined 

as the structure of components, their relationships, 

and the principles and guidelines governing their 

design evolution over time.  

Artifact development: Method to define and measure complexity 

of a military system of systems. 

Artifact components: Number of functionally and physically 

distinct system types; number of functions performed by each 

system; number of network interfaces used to transmit 

data/information; interface complexity multiplier; cyclomatic 

complexity (to understand interactions among systems and 

coordination of diverse system functions).  

Henneman, R. 

L., & Rouse, W. 

B. (1986)  

Problem focus: Monitoring a communication 

network to identify failures by human operators. 

Problem understanding: Complexity of large-scale 

systems is viewed as being a result of both the 

structure of the system and the human operator’s 

understanding of the system. 

Artifact development: CAIN (contextually augmented integrated 

network). 

Artifact components: Measures of structural complexity of the 

system, including the physical system and the human-system 

interface, and measures of strategic complexity that capture 

operator performance, including node failures and subject’s 

paths through the network to resolve those failures. 

Maier, M. W. 

(1998)  

Problem focus: Design of large-scale systems of 

systems such as integrated air defense networks, the 

internet, and enterprise information networks. 

Problem understanding: System is defined as an 

assemblage of components that produces behavior 

or functionality not available from any component 

individually. System of systems is proposed to be an 

assemblage of components that individually may be 

regarded as systems, and that possess two additional 

properties, i.e., operational and managerial 

independence of the components. 

Artifact development: Four abstract design principles are 

proposed to architect a system of systems. 

Artifact components: (1) stable intermediate forms (so systems 

are capable of operating and fulfilling useful purposes); (2) 

policy triage (choosing very carefully what systems to control, 

as overcontrol will fail for lack of authority and undercontrol will 

eliminate the system nature of the integrated system); (3) 

leverage at the interfaces (paying more attention to the interfaces 

than the components of the system due to high interdependence 

of components); (4) ensuring cooperation (taking a joint utility 

approach and ensuring that each participant’s wellbeing is 

partially dependent on the wellbeing of other participants). 

Natu, M., 

Ghosh, R. K., 

Shyamsundar, 

R. K., & 

Ranjan, R. 

(2016) 

Problem focus: Performance monitoring of hybrid 

clouds. 

Problem understanding: Monitoring the continuous 

evolution of enterprise systems, especially in hybrid 

cloud computing environments, is a problem of 

monitoring complexity, including the databases, 

operating systems, and cloud-based storage and 

network devices underlying applications that serve 

business functions. 

Artifact development: Conceptual ideas for an IT artifact and 

solution. 

Artifact components: Referred to as “insights” in the paper: (1) 

need for a comprehensive system-wide solution (holistic view of 

entire complexity of IT architecture); (2) need for solutions that 

adapt to system changes (adaptive monitoring, adaptive 

probing); (3) need for efficient ways to manage scale (invariant 

detection, multiresolution analysis, noise reduction); and (4) 

need to be proactive rather than reactive (through use of 

analytics). 

Psiuk, M., & 

Zielinski, K. 

(2015)  

Problem focus: Monitoring of service-oriented 

architecture (SOA).  

Problem understanding: To tackle the problem of 

increasing system complexity, adaptive monitoring 

must occur across SOA layers on the basis of 

monitoring goals defined by the user. 

Artifact development: DAMON (Dynamic Adaptive 

MONitoring). 

Artifact components: Automated monitoring instrumentation 

(during the startup process of the service container; monitoring 

mechanisms (topology discovery, causality identification and 

measurement acquisition); and realization of the monitoring 

process (nominals identification, sentinels selection and adaptive 

drill-down). 
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Appendix B 

Application of the Entropy Measure to Quantify IT Heterogeneity 

The foundational idea of Tool B is the transfer measures of heterogeneity from different contexts to the domain of IT 

architecture. 4  The tool allows the incorporation of different measures of heterogeneity (e.g., the Herfindahl-

Hirschman-Index and the Entropy Measure discussed in Jacquemin & Berry, 1979) and supports the analysis of 

different types of heterogeneity in IT architectures. In the following, we use the entropy measure to illustrate. A 

classical use of the entropy measure in the field of economics involves quantifying market concentrations. Here, 𝑓𝑖 

denotes the relative market share of firm 𝑖. 

entropy measure = ∑ 𝑓𝑖  𝑙𝑛 (
1

𝑓𝑖
)𝑛

𝑖=1  

A high index value denotes a low concentration. The entropy measure takes a minimum value of 0 in a “monopoly” 

and reaches its maximum for values with an equal distribution. Applied to the MCITA problem, an example would 

involve quantifying systems variety with respect to partnering firms in a platform-based business, where fi can be 

interpreted as the relative share of solution components provided by firm i. A high entropy measure index value denotes 

a high variety of solution components with respect to the firms that provide them. The entropy measure takes a 

minimum value of 0 in a monopoly (single-partner scenario) and reaches its maximum for values with an equal 

distribution (multi-partner scenario). The tool can be used to quantify heterogeneity for all kinds of elements of an IT 

architecture, such as heterogeneity of semantics in databases, software vendors in application architectures, suppliers 

of hardware, and performance of clients. 

The entropy measure captures the both facets “evenness” and “richness” of the conceptualization of systems variety 

described in the second heuristic theorizing cycle (Section 5.3). Accordingly, applied to the example above, the entropy 

measure increases with a larger number of different partnering firms (richness) and with a higher parity of the 

prevalence of partnering firms (evenness). To understand better which of the two facets of variety is the main driver 

of the entropy measure, at least one of the two facets (richness or evenness) needs to be considered in addition to the 

overall entropy measure (if one of the two facets is known, the other facet can be easily derived). Drawing on the 

overall entropy measure in addition to at least one of the two facets (richness or evenness) offers the advantage of 

combining an aggregated and detailed view of systems variety. This is illustrated in the following example: The 

distributions 5%-5%-10%-80% (four partnering firms contributing to the ecosystem solutions portfolio with differing 

intensity) and 50%-50% (two partnering firms contributing with the same intensity) lead to nearly the same value of 

the entropy measure value (0.70 and 0.69, respectively). However, these two scenarios are very different. In the first 

scenario, the observed variety stems primarily from the richness of the ecosystem. In the second scenario, the observed 

variety stems primarily from evenness. 

  

 
4 The underlying model is based on (Widjaja et al., 2012). 
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