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ABSTRACT 

 
In this paper, on the basis of the DFP method a class of 
non-quasi-Newton methods is presented. Under some 
condition the global convergence property of these methods 
with Goldstein line search on uniformly convex objective 
function is proved. 

 
 PROPOSAL OF NEW  ALGORITHMS  

 
For problems of unconstrained optimization 

( ),min xf  nRx∈                (1.1) 
The quasi-Newton methods is one of the most well 
considered, and extensive methods and the DFP method 
which is one of quasi-Newton methods, given by 
Davidon[1], revised by Fletcher and Powell[2], was first 
derived.  
Steps of DFP algorithm are as follows 
Algorithm A 
Step1. Given nRx ∈1

, 
1B is nn ×  symmetric and 

positive definite matrix,  
Step2. Calculate ( )kk xfg ∇= , if 0=kg , then stop 

calculating, 
kx  can be obtained, otherwise turn to the next 

step.  
Step3.             

.

1

kk gBd −−=    . 

Step4. Do line search to determine step length 
kλ .  
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  (1.2)  

Where        kkk xxs −= +1                 (1.3)                             

kkk ggy −= + 1              (1.4) 

Step7. 1: += kk  and go to Step2.  
Formula (1.2) is DFP update formula, the present paper 
revises (1.2), as follows 
Step 6’ 
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 (1.5) 
Where 

                     
( ) ( )k

T

kkk

T

kk gsffstytQ −−+= +1, ττ       (1.6) 

Here 
( ) [ ] [ ] 10021 1000 TtttTTtxff kk ，〈〈，，，，，， ≥+∈∈= ττ

and 2T are constants, which are larger than 1. When 
01 == τ，t  formula (1.5), that is formula (1.2). 

Make (1.5) replace (1.2), the rest procedures are the same to 
Algorithm Ａ , the derived algorithms may be written as 
Algorithms. The characteristic of Algorithms may be 
analyzed as follows 
From (1.5), we gain 

( ) ( )
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k
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τ
τ

,
,1 =+ . 

When 1≠t  or 1≠τ , 
( )

1
,

≠
k

T
k

k

ys

tQ τ
, therefore 

Algorithms ( )τ,tB are not the quasi-Newton methods. And 
since they contain DFP method, therefore 

Algorithms ( )τ,tB are called a class of non-quasi-Newton 
methods. 
To Algorithms ( )τ,tB , there are two methods to determine 

the steplength kλ . One is exact line search, the other is 
inexact line search. The paper examines Goldstein line 
search, that is to say kλ satisfy 

                       

,)()( k
T
kkkkkk dgxfdxf ρλλ +≤+      (1.8)                                         

,)()( k
T
kkkkkk dgxfdxf σλλ +≥+       (1.9) 

Where σρ、  are constant, and 10 <<< σρ . 
 

SEVERAL LEMMAS  AND PROOFS [3][4][5] 
 
In order to discuss the global convergence property of 

Algorithms ( )τ,tB with Goldstein line search, we may 

assume objective function ( )xf  to be as follows  

(a) ( )xf is twice continuously differentiable;  
(b) There exist positive constants m and M such that 

                               

( ) 2222 yMyxfyym ≤∇≤ ,        (2.1) 

For all nRx ∈  and all nRy ∈ , where and 
hereinafter ‖·‖  stands for the Euclidean norm.  
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Proof. From mean value theorem and condition (a), (b) we 
can get (2.2). 
As for the proof of formula (2.3), see〔6〕. 
According to mean value theorem and condition (a), (b), we 
get 

                    

2||||
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From (1.8) we have 

k
T
kkkkk gsxfdxf ρλ ≥−+ )()(         (2.6) 

And hence by (2.5) and (2.6) we get 
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Lemma 2 

Let 0,0 >> kk ba for all 1≥k , and there exis t positive 

constants 21,ββ , such that 

∑
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Lemma 3 

There exist positive constants 1m  and 1M  such that 
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T
k ysMtQysm 11 ),( ≤≤ τ     (2.14) 

For all positive integer k , where ( )τ,tQk is from the 
definition of (1.6).  

Proof. It follows from (1.6) and Taylor's formula that 
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where kx  is between kx  and 1+kx . From assumed 
condition (a) and (b), we obtain 
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Lemma 4 

If kB  is symmetric and positive definite for 1≥k , 

then ( )τ,1 tBk + from the definition of (1.5) is symmetric and 
positive as well. 
    Proof.  Formula (1.5) can be written as 
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Where 

)()( 2
1

kk
T
k

kk

k
T
k

k
kk

T
kk sBs

sB
ys

ysBsv −= . 

Let  

T
kk

k
T
k

k

kk
T
k

k
T
kkk

kk yy
ys
tQ

sBs
BssBBB 2)(

),(~ τ
+−=     (2.19) 

Then from the calculating formula of revised determinant of 
rank 2 and rank1, we obtain 
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Where 1−= kk BH . From (2.2) and (2.14), we 

have 0),( >τtQk and hence 
T
kk

k
T
k

k
k yy

ys

tQB ×+
2)(

),( τ
is 

positive definite. Thus from (2.19) and the interlocking 
eigenvalue theorem of rank1 revised matrix, we know that 
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the least eigenvalue of kB
~

and det( kB
~

) have the same sign. 

But from (2.20), we know det( kB
~

)>0, therefore kB
~

is 
positive definite. Moreover, from (2.21), we know 

det( ( )τ,
~

1 tBk + )>0, thus by using the interlocking eigenvalue 

theorem once again, we know that ( )τ,1 tBk + is positive 
definite. 
Lemma 5 
For all 1≥k , we have 
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j
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λ                 (2.22) 

Where C is a positive constant. 
Proof. According to Lemmas 3, 4 and the proving process 
similar to〔3〕, we can prove the lemma. 
Lemma6 
The following limit holds 
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Proof. According to (1.5) and make use of matrix inversion 
formula, we get 

k

T
kk

kkkT

k
t
kkk

ktk tQ
ss

yHy
HyyH

HtH
),(

),((1 τ
τ +−=+    (2.24) 

From (2.24) and kkk ygg +=+1 , we get 

),(
)()(

),(
2

),(

2
2

11111

τττ tQ
gs

yHy
gHggHggs

tQ
ys

tQ
ys

gHgyHggHygHg

k

k
T
k

kk
T
k

kk
T
k

kk
T
kk

T
k

k

k
T
k

k

k
T
k

kk
T
kkk

T
kkk

T
lkk

T
k

+−++=

++= +++++

             (2.25) 
Then 

),(
)( 1

111

2

τtQ
gsgHggHg

yHy
gHg

k

k
T
k

kk
T
kkk

T
k

kk
T
k

kk
T
k +

+++ +−=   (2.26) 

Replace index k of formula (2.26) with j , and extract the 
sum from 1 to k  to j  at the two ends, we get 
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∑∑
==

+












++≤

k

j
j

T
jj

T
j

j
T
j

j
T
j

k

j

k
T
j ysgs

ys
gs

mtQ
gs

111

2
1 21
),(
)(

τ  

      

∑
=

−
−

−−+−−
≤

k

j
j

T
j gs

Mm
MmMm

m 1

22

1

)(
)1(2

)1)(1(4)12(21
σ

σρσ
         

(2.28) 
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And hence by (2.27) and (2.28) we get 
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From (2.27)、(2.29) and (2.30), we know kk
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Holds for .1,,1, ⋅⋅⋅−= kkj  
Proof. see〔4〕 
 

GLOBAL CONVERGENCE RESULTS[6][7] 
 
The main results of this paper are introduced and proved as 
follows. 
Theorem1. Assume conditions (a), (b) holds, and { }kx to be 

a sequence derived from Algorithms ( )τ,tB ,  if one of the 
following two conditions holds 
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Thus, from Lemma 2，(3.5) and (3.6) we know +∞<∑
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We assume without loss of generality that 10 =k . From 
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Therefore from (3.2), (3.9), (3.7) and (2.22), we obtain 
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As the form of (3.10) is similar to that of (3.5), and hence 
(3.6) holds too. Therefore from (3.6),(3.10) and Lemma 2, 

we know ∑
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+∞<
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jλ ， which contradicts the (2.22), thus 

(3.1) must hold. 
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