A New Class of Non-Quest-Newton Methods and Their Global Convergence with Goldstein Line Search

Changhai Zhang

Kaoping Song
Yuxue Wang

Follow this and additional works at: https://aisel.aisnet.org/iceb2001

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ICEB 2001 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

A NEW CLASS OF NON-QUASI-NEWTON METHODS AND THEIR GLOBAL CONVERGENCE WITH GOLDSTEIN LINE SEARCH

Changhai Zhang

Address: Mathematical Science Department, Daqing Petroleum Institute, 151400 Anda, HeiLongJiang, China
Telephone: 86-459-4653702

Kaoping Song

Address: Petroleum Engineering Department, Daqing Petroleum Institute, 151400 Anda, HeiLongJiang, China
Telephone: 86-459-4654630
E-mail: skp@dqpi.edu.cn

Yuxue Wang

Address: Mathematical Science Department, Daqing Petroleum Institute, 151400 Anda, HeiLongJiang, China

Abstract

In this paper, on the basis of the DFP method a class of non-quasi-Newton methods is presented. Under some condition the global convergence property of these methods with Goldstein line search on uniformly convex objective function is proved.

PROPOSAL OF NEW ALGORITHMS

For problems of unconstrained optimization

$$
\begin{equation*}
\min f(x), \quad x \in R^{n} \tag{1.1}
\end{equation*}
$$

The quasi-Newton methods is one of the most well considered, and extensive methods and the DFP method which is one of quasi-Newton methods, given by Davidon[1], revised by Fletcher and Powell[2], was first derived.
Steps of DFP algorithm are as follows
Algorithm A
Step1. Given $x_{1} \in R^{n}, B_{1}$ is $n \times n$ symmetric and positive definite matrix,
Step2. Calculate $g_{k}=\nabla f\left(x_{k}\right)$, if $g_{k}=0$, then stop calculating, x_{k} can be obtained, otherwise turn to the next step.
Step3.

$$
d_{k}=-B^{-1} g_{k}
$$

Step4. Do line search to determine step length λ_{k}.
Step5.

$$
x_{k+1}=x_{k}+\lambda_{k} d_{k}
$$

Step6.
$B_{k+1}=B_{k}-\frac{B_{k} s_{k} y_{k}^{T}+y_{k} s_{k}^{T} B_{k}}{s_{k}^{T} y_{k}}+\left(1+\frac{s_{k}^{T} B_{k} s_{k}}{S_{k}^{T} y_{k}}\right) \frac{y_{k} y_{k}^{T}}{s_{k}^{T} y_{k}}$
Where

$$
\begin{equation*}
S_{k}=x_{k+1}-x_{k} \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
y_{k}=g_{k+1}-g_{k} \tag{1.4}
\end{equation*}
$$

Step7. $k:=k+1$ and go to Step2.
Formula (1.2) is DFP update formula, the present paper revises (1.2), as follows
Step 6

Where

$$
\begin{equation*}
Q_{k}(t, \tau)=t y_{k}^{T} s+\tau\left(f_{k+1}-f_{k}-s_{k}^{T} g_{k}\right) \tag{1.6}
\end{equation*}
$$

Here

$f_{k}=f\left(x_{k}\right), t \in\left[0, T_{1}\right], \tau \in\left[0, T_{2}\right], t+\tau \geq t_{0} \emptyset\left\langle t_{0}\left\langle 1, T_{1}\right.\right.$
and T_{2} are constants, which are larger than 1 . When $t=1, \tau=0$ formula (1.5), that is formula (1.2).
Make (1.5) replace (1.2), the rest procedures are the same to Algorithm A, the derived algorithms may be written as Algorithms. The characteristic of Algorithms may be analyzed as follows
From (1.5), we gain

$$
B_{k+1}(t, \tau) s_{k}=\frac{Q_{k}(t, \tau)}{s_{k}^{T} y_{k}} y_{k}
$$

When $t \neq 1 \quad$ or $\tau \neq 1, \quad \frac{Q_{k}(t, \tau)}{s_{k}^{T} y_{k}} \neq 1, \quad$ therefore Algorithms $B(t, \tau)$ are not the quasi-Newton methods. And since they contain DFP method, therefore Algorithms $B(t, \tau)$ are called a class of non-quasi-Newton methods.
To Algorithms $B(t, \tau)$, there are two methods to determine the steplength λ_{k}. One is exact line search, the other is inexact line search. The paper examines Goldstein line search, that is to say λ_{k} satisfy

$$
\begin{align*}
& f\left(x_{k}+\lambda_{k} d_{k}\right) \leq f\left(x_{k}\right)+\rho \lambda_{k} g_{k}^{T} d_{k} \tag{1.8}\\
& f\left(x_{k}+\lambda_{k} d_{k}\right) \geq f\left(x_{k}\right)+\sigma \lambda_{k} g_{k}^{T} d_{k} \tag{1.9}
\end{align*}
$$

Where $\rho, ~ \sigma$ are constant, and $0<\rho<\sigma<1$.

SEVERAL LEMMAS AND PROOFS [3][4][5]

In order to discuss the global convergence property of Algorithms $B(t, \tau)$ with Goldstein line search, we may assume objective function $f(x)$ to be as follows
(a) $f(x)$ is twice continuously differentiable;
(b) There exist positive constants m and M such that

$$
\begin{equation*}
m\|y\|^{2} \leq y^{2} \nabla^{2} f(x) y \leq M\|y\|^{2} \tag{2.1}
\end{equation*}
$$

For all $x \in R^{n}$ and all $y \in R^{n}$, where and hereinafter || . || stands for the Euclidean norm.

Lemma 1

$$
\begin{gather*}
m \leq \frac{s_{k}^{T} y_{k}}{\left\|s_{k}\right\|^{2}} \leq \frac{\left\|y_{k}\right\|^{2}}{s_{k}^{T} y_{k}} \leq M \tag{2.2}\\
\sum_{k=1}^{\infty} \lambda_{k} g_{k}^{T} H_{k} g_{k}=\sum_{k=1}^{\infty}-s_{k}^{T} g_{k}<+\infty \tag{2.3}\\
-\frac{2(1-\sigma) M}{2 M-m} s_{k}^{T} g_{k} \leq s_{k}^{T} g_{k}-\frac{2(1-\rho) M}{m} s_{k}^{T} g_{k} \tag{2.4}
\end{gather*}
$$

Proof. From mean value theorem and condition (a), (b) we can get (2.2).
As for the proof of formula (2.3), see〔6〕.
According to mean value theorem and condition (a), (b), we get

$$
\begin{equation*}
f\left(x_{k}+\lambda_{k} d_{k}\right)-f\left(x_{k}\right) \geq s_{k}^{T} g_{k}+\frac{1}{2} m\left\|s_{k}\right\|^{2} \tag{2.5}
\end{equation*}
$$

From (1.8) we have

$$
\begin{equation*}
f\left(x_{k}+\lambda_{k} d_{k}\right)-f\left(x_{k}\right) \geq \rho s_{k}^{T} g_{k} \tag{2.6}
\end{equation*}
$$

And hence by (2.5) and (2.6) we get

$$
\begin{equation*}
m\left\|s_{k}\right\|^{2} \leq-2(1-\rho) s_{k}^{T} g_{k} \tag{2.7}
\end{equation*}
$$

Using (2.2)

$$
\begin{equation*}
\left\|s_{k}\right\|^{2} \geq \frac{s_{k}^{T} y_{k}}{M} \tag{2.8}
\end{equation*}
$$

Which, with (2.7), implies that

$$
\begin{equation*}
s_{k}^{T} y_{k} \leq-\frac{2(1-\rho) M}{m} s_{k}^{T} g_{k} \tag{2.9}
\end{equation*}
$$

From mean value theorem and (1.9) we obtain

$$
\begin{equation*}
-s_{k}^{T} g_{k+1}+\frac{1}{2} m\left\|s_{k}\right\|^{2} \leq-\sigma g_{k}^{T} s_{k} \tag{2.10}
\end{equation*}
$$

Therefore from (2.2) and (2.9) we get

$$
\begin{equation*}
s_{k}^{T} y_{k} \geq-(1-\sigma) s_{k}^{T} g_{k}+\frac{m}{2 M} s_{k}^{T} y_{k} \tag{2.11}
\end{equation*}
$$

Which implies that

$$
\begin{equation*}
s_{k}^{T} y_{k} \geq-\frac{2(1-\sigma) M}{2 M-m} s_{k}^{T} g_{k} \tag{2.12}
\end{equation*}
$$

Lemma 2

Let $a_{k}>0, b_{k}>0$ for all $k \geq 1$, and there exist positive constants β_{1}, β_{2}, such that

$$
\begin{equation*}
a_{k} \leq \beta_{1}+\beta_{2} \sum_{j=1}^{k-1} \lambda_{j} \tag{2.13}
\end{equation*}
$$

for all $k \geq 1$ and $\sum_{k=1}^{\infty} \frac{b_{k}}{a_{k}}<+\infty$, then $\sum_{k=1}^{\infty} b_{k}<+\infty$.

Lemma 3

There exist positive constants m_{1} and M_{1} such that

$$
\begin{equation*}
m_{1} s_{k}^{T} y_{k} \leq Q_{k}(t, \tau) \leq M_{1} s_{k}^{T} y_{k} \tag{2.14}
\end{equation*}
$$

For all positive integer k, where $Q_{k}(t, \tau)$ is from the definition of (1.6).

Proof. It follows from(1.6) and Taylor's formula that

$$
\begin{align*}
& Q_{k}(t, \tau)=t s_{k}^{T} y_{k}+2 \tau\left(f\left(x_{k+1}\right)-f\left(x_{k}\right)-\nabla f\left(x_{k}\right)^{T} s_{k}\right) \\
& =t s_{k}^{T} y_{k}+\tau s_{k}^{T} \nabla^{2} f\left(\overline{x_{k}}\right) s_{k} \tag{2.15}
\end{align*}
$$

where \bar{x}_{k} is between x_{k} and x_{k+1}. From assumed condition (a) and (b), we obtain

$$
\begin{equation*}
m\left\|s_{k}\right\|^{2} \leq s_{k}^{T} \nabla^{2} f\left(\overline{x_{k}}\right) s_{k} \leq M\left\|s_{k}\right\|^{2} \tag{2.16}
\end{equation*}
$$

And from (2.2) obtain

$$
\begin{equation*}
\frac{s_{k}^{T} y_{k}}{M} \leq\left\|s_{k}\right\|^{2} \leq \frac{s_{k}^{T} y_{k}}{m} \tag{2.17}
\end{equation*}
$$

Thus (2.7)-(2.9) give

$$
Q_{k}(t, \tau) \geq t s_{k}^{T} y_{k}+\tau \frac{m}{M} s_{k}^{T} y_{k} \geq t_{0} \frac{m}{M} s_{k}^{T} y_{k}
$$

And

$$
Q_{k}(t, \tau) \leq t s_{k}^{T} y_{k}+\tau \frac{M}{m} s_{k}^{T} y_{k} \geq\left(T_{1}+T_{2}\right) \frac{M}{m} s_{k}^{T} y_{k}
$$

Let $m_{1}=t_{0} \frac{m}{M}, M_{1}=\left(T_{1}+T_{2}\right) \frac{M}{m}$, then (2.14) hold.

Lemma 4

If B_{k} is symmetric and positive definite for $k \geq 1$, then $B_{k+1}(t, \tau)$ from the definition of (1.5) is symmetric and positive as well.

Proof. Formula (1.5) can be written as

$$
\begin{equation*}
B_{k+1}(t, \tau)=B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{Q_{k}(t, \tau)}{\left(s_{k}^{T} y_{k}\right)^{2}} y_{k} y_{k}^{T}+v_{k} v_{k}^{T} \tag{2.18}
\end{equation*}
$$

Where

$$
v_{k}=\left(s_{k}^{T} B_{k} s_{k}\right)^{\frac{1}{2}}\left(\frac{y_{k}}{s_{k}^{T} y_{k}}-\frac{B_{k} s_{k}}{s_{k}^{T} B_{k} s_{k}}\right) .
$$

Let

$$
\begin{equation*}
\widetilde{B}_{k}=B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{Q_{k}(t, \tau)}{\left(s_{k}^{T} y_{k}\right)^{2}} y_{k} y_{k}^{T} \tag{2.19}
\end{equation*}
$$

Then from the calculating formula of revised determinant of rank 2 and rank1, we obtain

$$
\begin{equation*}
\operatorname{det}\left(\widetilde{B}_{k}\right)=\operatorname{det}\left(B_{k}\right) \frac{Q_{k}(t, \tau)}{\left(s_{k}^{T} B_{k} s_{k}\right)^{2}} \tag{2.20}
\end{equation*}
$$

$\operatorname{det}\left(B_{k+1}(t, \tau)\right)=\operatorname{det}\left(B_{k}\right) \frac{y_{k}^{T} H_{k} y_{k}}{\left(s_{k}^{T} y_{k}\right)^{2}} Q_{k}(t, \tau)$
Where $H_{k}=B_{k}^{-1}$. From (2.2) and (2.14), we have $Q_{k}(t, \tau)>0$ and hence $B_{k}+\frac{Q_{k}(t, \tau)}{\left(s_{k}^{T} y_{k}\right)^{2}} \times y_{k} y_{k}^{T}$ is positive definite. Thus from (2.19) and the interlocking eigenvalue theorem of rank1 revised matrix, we know that
the least eigenvalue of \widetilde{B}_{k} and $\operatorname{det}\left(\widetilde{B}_{k}\right)$ have the same sign． But from（2．20），we know $\operatorname{det}\left(\tilde{B}_{k}\right)>0$ ，therefore \tilde{B}_{k} is positive definite．Moreover，from（2．21），we know $\operatorname{det}\left(\widetilde{B}_{k+1}(t, \tau)\right)>0$ ，thus by using the interlocking eigenvalue theorem once again，we know that $B_{k+1}(t, \tau)$ is positive definite．

Lemma 5

For all $k \geq 1$ ，we have

$$
\begin{equation*}
\sum_{j=1}^{k} \lambda_{j} \geq k C \tag{2.22}
\end{equation*}
$$

Where C is a positive constant．
Proof．According to Lemmas 3， 4 and the proving process similar to〔3〕，we can prove the lemma．

Lemma6

The following limit holds

$$
\begin{equation*}
\lim g_{k T} H_{k} g_{k}=0 \tag{2.23}
\end{equation*}
$$

Proof．According to（1．5）and make use of matrix inversion formula，we get

$$
\begin{equation*}
H_{k+1(t}(t, \tau)=H_{k}-\frac{H_{k} y_{k} y_{k}^{t} H_{k}}{y_{k T} H_{k} y_{k}}+\frac{s_{k} s_{k}^{T}}{Q(t, \tau)_{k}} \tag{2.24}
\end{equation*}
$$

From（2．24）and $g_{k+1}=g_{k}+y_{k}$ ，we get
$g_{k+1}^{T} H_{k+1} g_{k+1}=y_{l}^{T} H_{k} g_{k}+2 g_{k}^{T} H_{k+1} y_{k}+g_{k}^{T} H_{k+1} g_{k}$
$=\frac{s_{k}^{T} y_{k}}{Q_{k}(t, \tau)}+2 \frac{s_{k}^{T} y_{k}}{Q_{k}(t, \tau)} s_{k}^{T} g_{k}+g_{k}^{T} H_{k} g_{k}-\frac{\left(g_{k}^{T} H_{k} g_{k}\right)}{y_{k}^{T} H_{k} y_{k}}+\frac{\left(s_{k}^{T} g_{k}\right)^{2}}{Q_{k}(t, \tau)}$

Then

$$
\frac{\left(g_{k}^{T} H_{k} g_{k}\right)^{2}}{y_{k}^{T} H_{k} y_{k}}=g_{k}^{T} H_{k} g_{k}-g_{k+1}^{T} H_{k+1} g_{k+1}+\frac{s_{k}^{T} g_{k+1}}{Q_{k}(t, \tau)}
$$

Replace index k of formula（2．26）with j ，and extract the sum from 1 to k to j at the two ends，we get
$\sum_{j=1}^{k} \frac{\left(g_{j}^{T} H_{j} y_{j}\right)^{2}}{y_{j}^{T} H_{j} y_{j}}=g_{1}^{T} H_{1} g_{1}-g_{k+1}^{T} H_{k+1} g_{k+1}+\sum_{j=1}^{k} \frac{\left(s_{k}^{T} g_{j+1}\right)^{2}}{Q_{j}(t, \tau)}$

But from（2．14），（2．3）and（2．4），we get

$$
\begin{align*}
& \sum_{j=1}^{k} \frac{\left(s_{j}^{T} g_{k+1}\right)^{2}}{Q(t, \tau)} \leq \frac{1}{m_{1}} \sum_{j=1}^{k}\left[\frac{s_{j}^{T} g_{j}}{s_{j}^{T} y_{j}}+2 s_{j}^{T} g_{j}+s_{j}^{T} y_{j}\right] \tag{2.27}\\
\leq & \frac{1}{m_{1}} \frac{2(2 \sigma-1) M m-m^{2}+4(1-\rho)(1-\sigma) M^{2}}{2(1-\sigma) M m} \sum_{j=1}^{k}\left(-s_{j}^{T} g_{j}\right) \tag{2.28}
\end{align*}
$$

For $0<\rho<\sigma<1$ ，we have

$$
\begin{aligned}
& 2(2 \sigma-1) M m-m^{2}+4(1-\rho)(1-s) M^{2} \\
& >2\left[(1-\sigma)^{2}+(2 \sigma-1)\right] M m+\left[2(1-\sigma)^{2}-1\right] m^{2} \\
& >(2 \sigma-1)^{2} m^{2} \geq 0
\end{aligned}
$$

And hence by（2．27）and（2．28）we get

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{\left(s_{j}^{T} g_{j+1}\right)^{2}}{Q_{j}(t, \tau)}<+\infty \tag{2.29}
\end{equation*}
$$

Therefore from（2．29），we get

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{\left(g_{j}^{T} H_{j} y_{j}\right)^{2}}{y_{j}^{T} H_{j} y_{j}}<g_{1}^{T} H_{1} g_{1}+\sum_{j=1}^{\infty} \frac{\left(s_{j}^{T} g_{j+1}\right)^{2}}{Q_{j}(t, \tau)}<+\infty \tag{2.30}
\end{equation*}
$$

From（2．27），（2．29）and（2．30），we know $\lim _{k \rightarrow \infty} g_{k}^{T} H_{k} g_{k}$ exists．If $\lim _{k \rightarrow \infty} g_{k}^{T} H_{k} g_{k}>0$ ，then from
$\sum_{k=1}^{\infty} \lambda_{k}<+\infty$ is known，that is in contradiction with（2．22）， therefore（2．23）is correct．
Let $r_{k}=\frac{-s_{k}^{T} g_{k}}{s_{k} y_{k}}$ ，then from（2．4）and（2．23），we know $\lim _{k \rightarrow \infty} \frac{g_{k}^{T} H_{k} g_{k}}{r_{k}}=0$ ，therefore there is a subsequence，which is monotone decreasing towards 0 ，in the sequence $\left\{\frac{g_{k}^{T} H_{k} g_{k}}{r_{k}}\right\}$.

Lemma 7

Let $l=(m / M)^{3}$ ，then

$$
\begin{equation*}
\left\|g_{j}\right\|^{2} \geq l\left\|g_{k+1}\right\|^{2} \tag{2.31}
\end{equation*}
$$

Holds for $j=k, k-1, \cdots, 1$ ．
Proof．see〔4〕

GLOBAL CONVERGENCE RESULTS［6］［7］

The main results of this paper are introduced and proved as follows．
Theorem1．Assume conditions（a），（b）holds，and $\left\{x_{k}\right\}$ to be a sequence derived from Algorithms $B(t, \tau)$ ，if one of the following two conditions holds

$$
\text { (i) }\left\|g_{k+1}\right\|^{2}-\left\|g_{k}\right\|^{2}-\left\|y_{k}\right\|^{2}=O\left(\frac{g_{k}^{T} H_{k} g_{k}}{r_{k}}\right)
$$

（ii）when k is sufficiently large，$\left\{\frac{g_{k}^{T} H_{k} g_{k}}{r_{k}}\right\}$ is monotone decreasing，and $\sigma<\frac{m}{2 M}+l\left(1-\frac{m}{2 M}\right)$ ，then Algorithms $B(t, \tau)$ has global convergence property

$$
\begin{equation*}
\lim _{k \longrightarrow \infty} \inf \left\|g_{k}\right\|=0 \tag{3.1}
\end{equation*}
$$

Proof．From（1．5），（2．3），（2．6）and $\frac{s_{j}^{T} y_{j}}{\lambda_{j}}=\frac{y_{j}^{T} H_{j} g_{j}}{r_{j}}$ ，we get

$$
\operatorname{tr}\left(B_{k+1}\right)=\operatorname{tr}\left(B_{k}\right)-2 \frac{y_{k}^{T} B_{k} s_{k}}{s_{k}^{T} y_{k}}+\left(Q_{k}(t, \tau)+s_{k}^{T} B_{k} s_{k}\right) \frac{\left\|y_{k}\right\|^{2}}{\left(y_{k}^{T}\right)^{2}}
$$

$$
\begin{align*}
& =\operatorname{tr}\left(B_{1}\right)-2 \sum_{j=1}^{k} \frac{y_{j}^{T} B_{j} s_{j}}{s_{j}^{T} y_{j}}+\sum_{j=1}^{k}\left(Q_{j}(t, \tau)+s_{j}^{T} B_{j} s_{j}\right) \frac{\left\|y_{k}\right\|^{2}}{\left(s_{j}^{T} y_{j}\right)^{2}} \\
& =\operatorname{tr}\left(B_{1}\right)+\sum_{j=1}^{k} \frac{\lambda_{j}\left(\left\|g_{j+1}\right\|^{2}-\left\|g_{j}\right\|^{2}-\left\|y_{j}\right\|^{2}\right)}{s_{j}^{T} y_{j}} \\
& +\sum_{j=1}^{k} \frac{Q_{j}(t, \tau)+s_{j}^{T} B_{j} s_{j}\left\|y_{j}\right\|^{2}}{s_{j}^{T}} \\
& \leq \operatorname{tr}\left(B_{1}\right)+\sum_{j=1}^{k} \frac{\lambda_{j}^{T} y_{j}}{\left.s_{j+1}\left\|^{2}-\right\| g_{j}\left\|^{2}-\right\| y_{j} \|^{2}\right)} s_{j}^{T} g_{j} \\
& \sum_{j=1}^{k} \frac{2 M-m}{2(1-\sigma)} \lambda_{j}+M M_{1} k \tag{3.2}
\end{align*}
$$

Assume condition (i) holds, and $\lim _{k \rightarrow \infty} \inf \left\|g_{k}\right\|>0$, then there is $\varepsilon>0$ such that

$$
\begin{equation*}
\left\|g_{k}\right\| \geq \varepsilon \tag{3.3}
\end{equation*}
$$

For all $k \geq 1$. From condition (i), there exist positive constant L such that

$$
\left\|g_{j+1}\right\|^{2}-\left\|g_{j}\right\|^{2}-\left\|y_{j}\right\|^{2} \leq L \frac{g_{j}^{T} H_{j} g_{j}}{r_{j}}
$$

That is

$$
\begin{equation*}
\frac{r_{j}\left(\left\|g_{j+1}\right\|^{2}-\left\|g_{j}\right\|^{2}-\left\|y_{j}\right\|^{2}\right)}{g_{j}^{T} H_{j} g_{j}} \leq L \tag{3.4}
\end{equation*}
$$

for all $j \geq 1$. From (3.2), (3.4) and (2.22), we get

$$
\begin{align*}
& \operatorname{tr}\left(B_{k+1}\right) \leq \operatorname{tr}\left(B_{1}\right)+L R+\frac{2 M-m}{2(1-\sigma)} \sum_{j=1}^{k} \lambda_{j}+M_{1} M R \\
& \quad \leq \operatorname{tr}\left(B_{1}\right)+\left(\frac{L}{C}+M M_{1}+\frac{2 M-m}{2(1-\sigma)}\right) \sum_{j=1}^{k} \lambda_{j} \tag{3.5}
\end{align*}
$$

From (3.3), (2.3) and, $\operatorname{tr}\left(B_{k}\right) \geq\left\|B_{k}\right\| \geq \frac{\left\|g_{k}\right\|^{2}}{g_{k}^{T} H_{j} g_{j}}$, we know

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\lambda_{r}}{\operatorname{tr}\left(B_{k}\right)} \leq \sum_{k=1}^{\infty} \frac{g_{k}^{T} H_{k} g_{k}}{\left\|g_{k}\right\|^{2}} \lambda_{r} \leq \frac{1}{\varepsilon^{2}} \sum_{k=1}^{\infty} \lambda_{k} g_{k}^{T} H_{k} g_{k}<+\infty \tag{3.6}
\end{equation*}
$$

Thus, from Lemma 2 , (3.5) and (3.6) we know $\sum_{k=1}^{\infty} \lambda_{k}<+\infty$, this is in contradiction with (2.22).
Now assume condition(ii) to be correct, still suppose $\lim _{k \rightarrow \infty} \inf \left\|g_{k}\right\|>0$,then (3.4) holds. Let $\mu=\frac{(1-l)\left(1-\frac{m}{2 M}\right)}{1-\sigma}$, then

$$
\begin{equation*}
0<\mu<1 \tag{3.7}
\end{equation*}
$$

From condition(ii), we know that there exists a positive integer k_{0} such that when $k \geq k_{0}$,

$$
\begin{equation*}
\frac{g_{k_{0}}^{T} H_{k_{0}} g_{k_{0}}}{r_{k_{0}}} \geq \frac{g_{k_{0}+1}^{T} H_{k_{0}+1} g_{k_{0}+1}}{r_{k_{0}+1}} \geq \ldots \geq \frac{g_{k}^{T} H_{k} g_{k}}{r_{k}} \geq \ldots \tag{3.8}
\end{equation*}
$$

We assume without loss of generality that $k_{0}=1$. From
(3.8).(2.4) and (2.31), we obtain

$$
\begin{aligned}
& \sum_{i=1}^{k} \frac{\left.r_{j}\left\|g_{j+1}\right\|^{2}-\left\|g_{j}\right\|^{2}-\left\|y_{j}\right\|^{2}\right)}{g_{j}^{T} H_{j} g_{j}} \leq \sum_{j=1}^{k}\left[\frac{r_{j+1}\left\|g_{j+1}\right\|^{2}}{g_{j+1}^{T} H_{j+1} g_{j+1}}-\frac{r_{j}\left\|g_{j}\right\|^{2}}{g_{j}^{T} H_{j} g_{j}}\right]+ \\
& \sum_{j=1}^{k}\left[\frac{r_{j}}{g_{j}^{T} H_{j} g_{j}}-\frac{r_{j+1}}{g_{j+1}^{T} H_{j+1} g_{j+1}}\right]\left\|g_{j+1}\right\| \|^{2} \\
& \leq \frac{r_{k+1}\left\|g_{k+1}\right\|^{2}}{g_{k+1}^{T} H_{k+1} g_{k+1}}-\frac{r_{1}\left\|g_{1}\right\|^{2}}{g_{1}^{T} H_{1} g_{1}}-\sum_{j=1}^{k}\left[\frac{r_{j+1}}{g_{j+1}^{T} H_{j+1} g_{j+1}}-\frac{r_{j}}{g_{j}^{T} H_{j} g_{j}}\right]\left\|g_{j+1}\right\|^{2} \\
& =\frac{\left\|g_{j+1}\right\|^{2}}{g_{j+1}^{T} H_{j+1} g_{j+1}} r_{j+1}(1-l)-\frac{r_{1}}{g_{1}^{T} H_{1} g_{1}}\left(\left\|g_{1}\right\|^{2}-l\left\|g_{j+1}\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
\leq \frac{\left(1-\frac{m}{2 M}\right)(1-l)}{1-\sigma} \frac{\left\|g_{j+1}\right\|^{2}}{g_{j+1}^{T} H_{j+1} g_{j+1}} \leq \mu\left\|B_{j+1}\right\| \leq \mu \operatorname{tr}\left(B_{j+1}\right) \tag{3.9}
\end{equation*}
$$

Therefore from (3.2), (3.9), (3.7) and (2.22), we obtain

$$
\begin{equation*}
\operatorname{tr}\left(B_{k+1}\right) \leq \frac{\operatorname{tr}\left(B_{1}\right)}{1-\mu}+\left[\frac{2 M-m}{2(1-\mu)(1-\sigma)}+\frac{M M_{1}}{C(1-\mu)}\right] \sum_{j=1}^{k} \lambda_{j} \tag{3.10}
\end{equation*}
$$

As the form of (3.10) is similar to that of (3.5), and hence (3.6) holds too. Therefore from (3.6),(3.10) and Lemma 2, we know $\sum_{j=1}^{\infty} \lambda_{j}<+\infty$, which contradicts the (2.22), thus (3.1) must hold.

REFERENCES

[1] W.C. Davidon, Variable metric methods for minimization, Argonne National Laboratories Report ANL5990,1959
[2] R.Fletcher, M.J.D.Powell, A rapid convergent descent method for minimization, The computer Journal, 6(1963),163-168
[3] R.Byrd, J.Nocedal, Y.Yuan, Global convergence of a class of quasi-Newton methods on convex problems, SIAM J. Numer. Anal. 24(1987), 1171-1189
[4] Xu Da-chuan, Global convergence analysis of DFP method, Math. Nu mer. Sinica, 3(1997), 287-292
[5] Ya-Xiang Yauan, Richard H.Byrd, Non-quasi-Newton Updates for Unconstrained Optimization, Journal of Computational Mathematics, 2(1995),95-107.
[6] Y.Yuan, Convergence of DFPalgorithm, Science in China (Series A), 38(1995), 1281-1294.
[7] Chen Lanping, Jiao Baocong, Convergence properties of the preconvex part of non-quasi-Newton's family, Math. Numer. Sinica, 3(2000), 369-278.

