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Abstract 
 

There is an extensive literature on modelling 

cascading effects in Critical Infrastructures (CIs). 

Concerning the cascading impacts of a cyber-attack 

upon other CIs, a detailed scenario analysis done by 

the Norwegian Directorate of Civil Protection 

concludes that a considerable impact could be 

achieved. However, the analysis admits that the 

probability of the attack would be very low, since it 

would require considerable expertise and resources. 

We argue that a smart attacker could exploit existing 

knowledge on cascading impacts to plan for 

perfidiously-timed cyber-attacks requiring low 

resources that would achieve a significant disruption 

of CIs. To illustrate our point, we build and simulate a 

highly-aggregated system dynamics model using 

estimates of disruptions effects across CIs taken from 

the literature. 

 

 

1. Introduction 

 
Critical Infrastructures (CIs) are resources that are 

essential for the performance of society, including its 

economy and its security, here understood as safety of 

citizens and security of society’s assets. Different 

countries might have slightly different definitions of 

CIs. However, there is consensus that CIs include 

government, society’s ICT (information and 

communication technology); financial sector; energy 

supply; water supply; transportation systems; health 

sector; and security services (police, military). 

CIs are exposed to natural hazards and man-made 

hazards (human errors, human malignity). Critical 

Infrastructure Protection (CIP) embodies the 

management of risk assessment, risk mitigation, 

preparedness, response and recovery against serious 

incidents threatening the critical infrastructure of a 

region or nation. 

CIs are highly interconnected and, hence, 

interdependent: a disruption diminishing the capacity 

of a CI affects other CIs through cascading effects 

(propagation of the disruption to other CIs that need 

services from the disrupted CI).  

Society depends increasingly on the well-

functioning of its information and communication 

infrastructure. For example, a vulnerability analysis 

[9] conducted by the Norwegian Directorate for Civil 

Protection (DSB) concluded that a cyber-attack 

causing complete disruption of the ICT CI’s transport 

network in Norway would have:  

• high impact on security CI;  

• high impact on financial CI;  

• high impact on railways and airline traffic, 

and moderate impact on other transport CIs;  

• low impact on water CI; 

• low impact on energy CI; but then secondary 

cascading effects from minor disruptions on 

energy infrastructure would increase 

significantly the disruption of ICT CI; 

• moderate impact on health CI. 

The aggregate impact of such a cyber-attack on 

ICT CI in Norway would be considerable in terms of 

financial costs (around one billion euro, or 1.2 billion 

US dollars, which is about 3.5 per cent of Norway’s 

gross national product). The estimate is probably 

conservative, since the analysis in the report concludes 

that the ICT CI will not recover completely for about 

one month. The event may cause social and political 

instability in addition, with unpredictable long-term 

consequences.  

The dynamics of interconnected CIs are extremely 

complex. There are numerous approaches for 

modelling cascading effects; a recent extensive review 

[10] enumerates six modelling categories, viz. 

empirical approaches, agent-based approaches, system 

dynamics-based approaches, economic theory based 

approaches, network based approaches, and others. 

The author concludes that none of the existing 

approaches is completely satisfactory: key challenges 

are difficulties of data access and collection, or lack of 

precise data; lack of integration of different modelling 
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approaches, yielding conflicting outcomes; validation 

problems owing to insufficient or unreliable historical 

data, and lack of standards for relevant metrics.  

Furthermore, most models’ predictions rarely can 

be validated by comparison with real data; few models 

of interconnected CIs correspond fully to observed 

scenarios [10]. 

Rather than focusing on detailed models with a 

high number of variables and relations between them, 

we argue that highly aggregated models, with simple 

model structure, have several advantages. They are 

simple to understand, they concentrate on a few 

essential factors and they request only few parameters 

with down-to-earth relations among them. The 

estimate of such relations admittedly relies on expert 

opinion. But the attractiveness of a simple and easy to 

understand model, and the fact that only few 

parameters need to be estimated, facilitate a focused 

discussion and a potentially more reliable estimate in 

a Delphi [8] or a wisdom of the crowd approach [12] 

in conjunction with model iterations.  

Such a simulation model would allow to analyse 

the impacts of cascading effects. Specifically, it would 

allow checking the robustness of a CI system towards 

series of disruptions, whether arising by chance or 

planned by a malignant agent, if they are timed and 

targeted at the weakest links, arising dynamically, as 

the cascading effects propagate. 

An interesting high-level system dynamics 

modelling approach for interconnected CIs has been 

recently proposed by Canzani [2]. Canzani considers a 

system of systems consisting of any number of 

interdependent CIs for the objective to analyse the 

performance level of the CIs when disruptions caused 

by natural or man-made disasters happen. 

In Canzani’s model, each CI is represented as a 

structure of three stocks, viz. ‘Running operations’, 

‘Down operations’ and ‘Recovered operations’, 

describing three possible states for a given CI. The 

stock ‘Running operations’ represents the number of 

active operations in a given CI. The stock ‘Down 

operations’ represents the number of not running 

operations, owing to a disruption; such disruption 

could have been caused directly by a natural or a man-

made event. The stock ‘Recovering operations’ 

represents a state of transition to ‘Running operations’, 

counted as the number of running operations and – but 

for some unexplained reason – not being susceptible 

to disruptions.  

Interesting as it is, Canzani’s approach suffers 

from three major deficiencies. 

First, Canzani’s model is structured as an epidemic 

model known as SIRS, where S refers to a stock of 

susceptible, I to a stock of infected and R to a stock of 

recovering individuals. Canzani argues that the stock 

“Running operations” is analogous to a stock of 

susceptible individuals; that the stock of “Down 

operations” is analogous to a stock of infected 

individuals; and, finally, that the stock of “Recovering 

operations” is analogous to a stock of individuals 

recovering from infection.  

To deserve its name, an epidemic model must 

include infections transmitted through contacts 

between the I and the S state. However, there is no 

such “infection” from “Down operations” to “Running 

operations” in Canzani’s model – nor can it be. The 

process causing running operations to cease operating 

is not an internal transmission of kind of “infections” 

affecting the state of “Down operations” to the state of 

“Running operations”. Rather, the process causing 

running operations to cease operating is an external 

disruption: either a direct disruption to the particular 

CI or indirect disruptions in terms of reduced service 

from other disrupted CIs through cascading effects. 

As a corollary, since Canzani’s model does not 

describe a process analogous to the spread of an 

epidemic, the stock of “Recovering operations” – 

which logically would be a state “immune” to 

disruptions – does not make sense. 

Second, Canzani’s unit of measure for CI 

operations is the number of operations in each of the 

states. This unit of measure, we believe, has been 

proposed in analogy to the stocks in a SIRS model, 

where the unit of measure is the number of individuals 

in the corresponding state (e.g., the number of 

susceptible, the number of infected and the number of 

recovering individuals). The proposed unit of measure 

for CIs – the number of operations in each of the states 

– is an artificial construct with hardly a 

correspondence in practice. 

Third and last, but not least, Canzani’s system 

dynamics model has not been subjected to tests to 

create confidence on the model’s verifiability and 

validity [5, see Ch. 21 “Truth and Beauty: Validation 

and Model Testing”, pp. 845-892]. 

 

2. Theory 

 
Canzani proposes an elegant representation of the 

dependence of a CIj on another CIk in terms of the 

service provided by CIk to CIj and the effect of a 

disruption of CIk on CIj. The indices j and k refer to 

the CIs in the system of systems to be modelled; e.g., 

the index value 1 could represent ICT CI; index 2, 

could stand for Energy CI; etc. Estimates for the effect 

of a disruption of CIk on CIj have been provided in the 

Ph.D. thesis of Ana Laugé [6], see §3. 

The service provided by a given CI labelled with 

the index i, is given by: 
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𝑆𝑖(𝑡)  

= {

1, 𝑂𝑃𝑖
𝑟𝑢𝑛(𝑡) ≥ 𝐷𝐴𝑣

𝑖

𝑂𝑃𝑖
𝑟𝑢𝑛(𝑡)

𝐷𝐴𝑣
𝑖

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

1  

where 𝑂𝑃𝑖
𝑟𝑢𝑛(𝑡) represents the CI’s current running 

operations fraction of its maximum capability, and 𝐷𝐴𝑣
𝑖  

is its average demand. The function 𝑆𝑖(𝑡) is used to 

generate a relative value between 0 and 1.  

Because the breakdown rate 𝛼𝑖(𝑡) is affected by 

this function, the interdependencies of the CI are 

modelled as a formula:  

 𝛼𝑖(𝑡) =  ∑
𝑒𝑖𝑗 ∙ (1 − 𝑆𝑗(𝑡))

|𝐽|
𝑗 ∈𝐽

 2  

The cardinality (sum of all elements in a set) of 𝐽 

represents the set of all the CIs considered. 𝑒𝑖𝑗 is a 

matrix element representing the effect CIj on CIi based 

on the Ph.D. thesis of Ana Laugé. 

 

3. Estimating CI dependencies on other 

CIs 

 
Laugé conducted a survey with CI managers to 

obtain estimates on a Likert scale for such cascading 

impacts caused by a disruption of less than two hours, 

less than six hours, less than 12 hours, less than 24 

hours, more than 24 hours and more than one week; 

she computed averages of the provided estimates 

resulting in tables for each of the cases [2, pp.169–

182]. 

The survey was formed as online questionnaires 

with the aim of analysing the CI interdependencies of 

11 CIs mentioned by [3], namely: Energy, ICT, Water, 

Food, Health, Financial, Public and legal order and 

safety, Civil administration, Transport, Chemical and 

nuclear industry, and Space and research. The survey 

was developed and executed in five concise steps, 

including a trial run, which ensured that the questions 

were well written and understandable for the 

participating experts. 

The survey was divided into three sections, where 

the first section is related to the experts taking the 

survey and they were asked to select which of the 11 

CIs they were the stewards of. Although the survey 

was sent to several experts around the world, the 

organizations the participating experts belonged to 

were predominantly Spanish. The second section is 

concerned with the measurement of interdependencies 

and the time required to recover their CI after the 

interdependent CI have recovered. The answers led to 

the conclusion that there is no standard recovery time, 

due to different equipment and procedures. 

Subsequently from this the average time to restore any 

of the 11 CI operations after a disruption, is undefined. 

The last section asked the experts to assess the effect a 

complete breakdown of a networked CI had on their 

CI. The aim with this section was to know the 

magnitude of the effects, ranging from “0 – no effect”, 

to “5 – very high effect”. This was concerning a direct 

dependency from one CI to another and the 

corresponding table values were calculated by using 

the average of the responses. 

 

4. System dynamics model 

 
System Dynamics (SD) is a methodology to build 

simulation models using computers, to study the 

behaviour of systems [4, 11]. It is an application of 

Servomechanism or Information Feedback Systems 

Theory [11] to almost all kinds of social systems. SD 

is an abstraction of the reality into a system of 

simultaneous non-linear first order differential 

equations. These equations should be solved –usually 

numerically– to reproduce the over-time behaviour of 

the system, under investigation. Our proposed SD 

model is a simple model that is an upgrade from 

Canzani’s model [2]. We have introduced several 

changes that enhanced her model like the CIs included, 

and basically addressed the three major deficiencies 

that model suffered from. In the following subsections 

we will go through the structure of our SD model 

highlighting the changes we have made, in addition to 

presenting the model validation and testing results. 

 

4.1. CI System Dynamics Model Structure 

 
In our model, a CI depends on merely two stocks 

“CI Running Operations” and “CI Down 
Operations” instead of Canzani’s three stocks. For 

any CI included in our model, the “CI Running 
Operations” stock initially contains all its correctly 

functioning operations divided by its maximum 

capability. When a failure happens to the CI, these 

operations (fraction of the CI’s maximum capability) 

will be moved via the “CI Breakdown” rate to the “CI 
Down Operations” stock. After being recovered, 

these operations return to work by being moved back 

to “CI Running Operations” via “CI Return to 
Service” rate. Figure 1 shows our model’s CI 

structure. 

Only five CIs were included in Canzani’s model, 

namely: Energy, ICT, Health, Financial, and 

Transport. To have a more comprehensive picture of 

the effect of a failed CI on other CIs, we have used the 

same CI structure for the 11 CIs included in Laugé 

surveys mentioned before. We have utilized the 

Vensim DSS subscript capability to index the same 
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structure for these 11 CIs. 

 
Figure 1: CI System Dynamics Structure 

Mathematically, the value of the “CI Running 
Operations” stock is the integration of the “CI Return 
to Service” rate minus the “CI Breakdown” rate. 

Whereas the “CI Down Operations” stock is the 

integration of the “CI Breakdown” rate minus the “CI 
Return to Service” rate. The “CI Breakdown” rate 

behaves according to the following equation: 

𝐶𝐼𝐵[𝐶𝐼𝑖] = 𝑚𝑖𝑛 {
𝐶𝐼𝑅𝑂[𝐶𝐼𝑖]

𝐹𝐷𝑇
,

𝐶𝐼𝐷[𝐶𝐼𝑖] + 𝐶𝐼𝑅𝑂[𝐶𝐼𝑖]

∙ ∑ (𝐸𝐶𝐼𝑖𝑗[𝐶𝐼𝑖 , 𝐶𝐼𝑗]

𝑗 ∈𝐽

∙
1 − 𝐶𝐼𝑆𝑃[𝐶𝐼𝑗]

|𝐽|
)} 

where: 
Notation Meaning/Name in the figure 

𝐶𝐼𝐵[𝐶𝐼𝑖] 𝐶𝐼 𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛[𝐶𝐼𝑖]. 
𝐶𝐼𝑖 represents any of the CIs 

included in our model. 

𝐶𝐼𝑅𝑂[𝐶𝐼𝑖] 𝐶𝐼 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠[𝐶𝐼𝑖]. 
𝐹𝐷𝑇 𝐹𝑎𝑠𝑡𝑒𝑠𝑡 𝐷𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒. 

𝐶𝐼𝐷[𝐶𝐼𝑖] 𝐶𝐼 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛[𝐶𝐼𝑖]. 
𝐸𝐶𝐼𝑖𝑗[𝐶𝐼𝑖 , 𝐶𝐼𝑗] 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐶𝐼𝑗 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑛 𝐶𝐼𝑖 

[𝐶𝐼𝑖 , 𝐶𝐼𝑗], which is equivalent to 

𝑒𝑖𝑗 from equation 2. 

𝐶𝐼𝑗  represents all failed CIs 

affecting 𝐶𝐼𝑖, which are the 

elements of 𝐽. 

𝐶𝐼𝑆𝑃[𝐶𝐼𝑗] 𝐶𝐼 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑[𝐶𝐼𝑗], 

which is equivalent to 𝑆𝑗(𝑡) in 

equation 2. 
 

The minimum function and its first term included 

in the equation of the “CI Breakdown” rate are used 

to prevent the rate from draining the “CI Running 
Operations” stock below zero. 

The “CI Return to Service” rate is defined as: 

𝐶𝐼𝑅𝑆[𝐶𝐼𝑖] =
𝐶𝐼𝐷𝑂[𝐶𝐼𝑖]

𝐶𝐼𝐴𝑅𝑅𝑇[𝐶𝐼𝑖]
 

where: 
Notation Meaning/In the figure 

𝐶𝐼𝑅𝑆[𝐶𝐼𝑖] 𝐶𝐼 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑆𝑒𝑟𝑣𝑖𝑐𝑒[𝐶𝐼𝑖]. 
𝐶𝐼𝐷𝑂[𝐶𝐼𝑖] 𝐶𝐼 𝐷𝑜𝑤𝑛 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠[𝐶𝐼𝑖]. 

𝐶𝐼𝐴𝑅𝑅𝑇[𝐶𝐼𝑖] 𝐶𝐼 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑝𝑎𝑖𝑟 𝑎𝑛𝑑  
 𝑅𝑒𝑠𝑡𝑜𝑟𝑒 𝑇𝑖𝑚𝑒[𝐶𝐼𝑖]. 

 

This rate equation will move all operations inside 

the “CI Down Operations” stock back to the “CI 
Running Operations” stock over an average period 

equal to “CI Average Repair and Restore Time”, 

which is the average total time needed to restore and 

repair the failed operations as the name implies. This 

value replaces both two separate values for the total 

average repair time and the total average restore time 

in Canzani’s model. Canzani indicated that these 

values are not the focus of her work and, apparently, 

they were arbitrarily chosen. Accordingly, for 

demonstration purposes, we have arbitrarily chosen 72 

hours for this time constant. 

In Figure 1, the “CI Service Provided” represents 

𝑆𝑖(𝑡) of equation 1. In the model, this variable is 

defined as follows: 

𝐶𝐼𝑆𝑃[𝐶𝐼𝑖]  

= {

1, 𝐶𝐼𝑅𝑂[𝐶𝐼𝑖] ≥ 𝐶𝐼𝐴𝐷[𝐶𝐼𝑖]

𝐶𝐼𝑅𝑂[𝐶𝐼𝑖]

𝐶𝐼𝐴𝐷[𝐶𝐼𝑖]
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where: 
Notation Meaning/Name in the figure 

𝐶𝐼𝑆𝑃[𝐶𝐼𝑖] 𝐶𝐼 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑[𝐶𝐼𝑖]. 
𝐶𝐼𝑅𝑂[𝐶𝐼𝑖] 𝐶𝐼 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠[𝐶𝐼𝑖]. 
𝐶𝐼𝐴𝐷[𝐶𝐼𝑖] 𝐶𝐼 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑[𝐶𝐼𝑖]. 

 

In our model, for demonstration purposes, the “CI 

Average Demand” was arbitrarily assumed to be 95% 

of the CI’s full capacity required to supply the demand 

of its dependent CIs. 

 
4.2. Effect on CIi from CIj 

 
In her model, Canzani used Laugé’s table of CI 

dependencies when other CIs fail for less than two 

hours only. Nevertheless, these dependencies are not 

static as such; as previously mentioned, Laugé’s thesis 

presented different tables for different disruption time 

durations. Accordingly, to include such dynamics in 

our model, we have rearranged the values of Laugé’s 

dependencies tables (see Figure 2) in separate time-

based table functions [11, Ch. 14, p. 551-595]. (Figure 

3 shows the time-based table function of the effect of 

the ICT CI failure on the Energy CI as an example.) 

These SD time-based graph functions provide a 

dynamic time-dependent values of the 𝑒𝑖𝑗 of equation 

2, or of the 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐶𝐼𝑗  𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑛 𝐶𝐼𝑖[𝐶𝐼𝑖 , 𝐶𝐼𝑗] in 

our SD model. 

CI Service Provided

CI Average Demand

CI Running
Operations

CI Down
Operations

CI Breakdown

CI Return to Service

CI Average Repair
and Restore Time

<CI Disruption>

<Effect of CIj
Failure on CIi>

Fastest Draining
Time
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4.3. CI Disruption SD Structure 

 
CI Disruption structure, as the name implies, 

emulates a disruption happening to any of the CIs 

included in our model. Based on a pulse function 

Π (
𝑡−𝑡𝑑

Δ𝑇
) where 𝑡, 𝑡𝑑, and Δ𝑇 represent time, the 

disruption time, and the disruption duration 

respectively [13], the following equation –which is 

used by Canzani [2] as well– presents the disruption in 

CIi: 

𝐶𝐼𝐷[𝐶𝐼𝑖] = 𝐶𝐼𝐷𝑀[𝐶𝐼𝑖] ∙ Π (
𝑡 − 𝐶𝐼𝐷𝑇[𝐶𝐼𝑖]

𝐶𝐼𝐷𝐷[𝐶𝐼𝑖]
) 

where: 
Notation Meaning/Name in the figure 

𝐶𝐼𝐷[𝐶𝐼𝑖] 𝐶𝐼 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛[𝐶𝐼𝑖]. 
𝐶𝐼𝐷𝑀[𝐶𝐼𝑖] 𝐶𝐼 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒[𝐶𝐼𝑖]. 
𝐶𝐼𝐷𝑇[𝐶𝐼𝑖] 𝐶𝐼 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒[𝐶𝐼𝑖]. 
𝐶𝐼𝐷𝐷[𝐶𝐼𝑖] 𝐶𝐼 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛[𝐶𝐼𝑖]. 

Because our model has replaced the static 𝑒𝑖𝑗 with 

a time-based graph function, in addition to the model 

simulation time-line, a coexistent simulation time-line 

that starts with the onset of any disruption is needed. 

This newly generated time-line will work as an input 

to the graph function to generate the correct time-

based 𝑒𝑖𝑗 value replacement. In our model, this new 

time-line is generated inside the model variable 

𝐶𝐼 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝐶𝑜𝑢𝑛𝑡𝑒𝑟[𝐶𝐼𝑖] (shown in Figure 

4). Yet, to calculate this variable, the model needs to 

identify the onset of any disruption. To do so, the 

model benefits from the Vensim DSS “SAMPLE IF 

TRUE” function. This function returns its input when 

certain condition is met, and remains constant 

otherwise [14]. 

The condition that triggers this function in our 

model is the beginning of a disruption, which is 

identified via subtracting the one time-step delayed  

𝐶𝐼 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 [𝐶𝐼𝑖] from itself. As such, the 

“SAMPLE IF TRUE” function is used inside 

𝐶𝐼 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑇𝑟𝑖𝑔𝑔𝑒𝑟[𝐶𝐼𝑖] (shown 

in Figure 4) to sample the value of the simulation time 

when the disruption starts. This sampled time value 

from the simulation time (done inside the model 

variable 𝐶𝐼 𝐷𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝐶𝑜𝑢𝑛𝑡𝑒𝑟[𝐶𝐼𝑖]) as long 

as the disruption continues. Figure 4 shows the whole 

CI disruption SD structure. Figure 5 shows the original 

and one generated simulation time-lines of which 

disruption starts at hour 48 and ends 24 hours later. 

 
Figure 2: CI Dependencies when other CIs Fail for Different Durations 

 
Figure 3: Effect of CI ICT Failure on CI Energy 

over Time 

 
Figure 4: CI Disruption SD Structure 
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Figure 5: Original and Generated Simulation Time-lines 

(Disruption Starts at Hour 48) 
 

4.4. Model Testing and Validation 

 
SD model testing and validation increase 

customers trust in the model, in addition to detecting 

any problems in that model [11]. We have used what 

is applicable from the set of tests introduced by [5] and 

recommended by [11] to test and validate our model. 

Boundary adequacy test [5, 1, 11] is concerned with 

answering whether “the important concepts for 

addressing the [studied] problem [are] endogenous to 

the model” [11]. While structure assessment [1, 11] is 

concerned with answering whether the model structure 

is “consistent with relevant descriptive knowledge of 

the system” and whether the level of aggregation is 

appropriate. Our model inherited the same boundaries 

and basic structure of Canzani’s, which, although a 

simple model, includes all necessary components to 

study a CI disruption effect at this level aggregation. 

Moreover, removing the third stock of Canzani’s 

model presented a change to the structure that aims at 

making the model more consistent with the real 

system. Accordingly, the structure and aggregation 

level were found to be relevant and appropriate for the 

model purpose. 

Dimensional consistency test [5, 1, 11] checks 

whether all equation of the model are dimensionally 

consistent, maintaining that the parameters should 

have real system equivalent [11]. Using the unit check 

feature of Vensim DSS [15] assured the model 

dimensional consistency. 

Parameter assessment [5, 1, 11] is associated with 

answering whether the values of the model parameter 

are consistent with relevant descriptive and numerical 

knowledge of the system, and whether the parameters 

have real system equivalents [11]. Aside from the few 

arbitrarily chosen values clearly indicated before, all 

other parameters used in the model were retrieved 

from Laugé’s survey. 

Furthermore, the model robustness has been tested 

under extreme conditions [5, 1, 11]. Testing extreme 

conditions is concerned with answering whether “each 

equation make[s] sense even when its inputs take on 

extreme values”, and whether “the model respond 

plausibly when subjected to extreme policies, shocks, 

and parameters” [11]. Accordingly, we have utilized 

the “automatically simulate a model on changes” 

functionality of Vensim SyntheSim mode to test the 

consequences of changing model variables and 

parameters to extreme values. The usual consequence 

of changing a variable’s value to zero, as an extreme 

value for example, is several dependent equations 

failing because of division by zero. However, in other 

cases the consequence could be implausible 

behaviour. In all cases, multiple iterations of fixing the 

equations were conducted until reaching plausible 

behaviour. 

Moreover, the model was tested for integration 

error, which aims at checking whether “the results are 

sensitive to the choice of time step or numerical 

integration method” [11]. Different time step values 

and different numerical integration methods were 

tested. The combination of Euler method and time step 

of 0.125 was found suitable, as by decreasing the time 

step value and using different integration methods, the 

behaviour of model was found to be insensitive to such 

changes. In the same time, the time step was not very 

small rendering the numerical integration process 

slow. Behaviours of different variables were also 

compared under different time step, and no difference 

was noticed. 

Moreover, sensitivity analysis [5, 11], which is 

concerned with testing the robustness of the model 

under assumed uncertainties in parameters and initial 

values, was applied to the model using Vensim DSS. 

To test model sensitivity, Vensim DSS uses Monte-

Carlo simulations [13]. We have run 200 Monte-Carlo 

simulations per parameter. As no further information 

about the probability distribution of the parameters 

was available, we opted for Uniform probability 

distribution for all parameters. We did not have any 

benchmark for the numerical changes in the model 

variables due to the change in any of the tested 

parameters to test our results against. However, in all 

sensitivity tests we have conducted, we have not 

spotted any change in the modes of behaviour, 

consequently no policy implications change due to the 

change in the values of the parameters. Accordingly, 

we find the results acceptable. 

 

5. Simulation 

 
In this section we describe several simulations of 

small cyber-attacks in different conditions to fully 

understand the limits of the effect of such disruptions. 

In agreement with Canzani, we have assumed that a 

small disruption will have a magnitude equal to two. 
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5.1. Scenario 1 – a single small cyber-attack 

 
This scenario simulates a single small attack 

disruption aimed at the ICT CI which happens two 

days after the beginning of the simulation, and stays 

active for one day. We have borrowed this scenario 

from Canzani’s research [2] to show the effect of such 

a small cyber-attack for comparison purposes with 

other cyber-attack forms. 

Figure 6 shows the results of this scenario on two 

different charts, one showing the effect of the cyber-

attack on the running operations 𝑂𝑃𝑖
𝑟𝑢𝑛(𝑡) of all 11 

CIs, while the other shows the effect on the service 

provided 𝑆𝑖(𝑡) by these CIs. This single small cyber-

attack causes 41% drop in the running operations of 

the ICT CI in the third day of the simulation. The ICT 

CI could not regain 99% of its running operations until 

the 13th day. Nonetheless, the cascaded negative effect 

on other CIs’ running operations did not exceed 3.1% 

at its highest. In terms of service provided, merely the 

ICT CI was affected negatively with a 38% drop of its 

value, i.e. the attack could not be cascaded to services 

provided by other CIs. 

 

5.2. Scenario 2 – three successive small cyber-

attacks 

 
This scenario simulates three successive small 

attacks aimed at the ICT CI which happen two days 

after the beginning of the simulation time. Each attack 

stayed active for a duration of one day, and there was 

one day off in-between every two attacks. 

Figure 7 shows a large negative effect on the 

running operations of the ICT CI with a 73% drop at 

its highest in the seventh day. The ICT CI could not 

regain 99% of its running operations before the 17th 

day. The effect was cascaded to other CIs’ running 

operations and reached around 5% drop in the case of 

Water, Civil administration, and Space and research 

CIs. The drop reached around 10% for all other CIs, 

reaching 10.1% drop at its highest in the case of 

Chemical and nuclear industry CI. 

In terms of service provided, the drop in the ICT 

CI service provided exceeded 71%. This negative 

effect was not cascaded to Water, Civil administration, 

and Space and research CIs at all. However, the 

negative effect was cascaded to the service provided 

by all other CIs with 5% drop at its highest in the case 

of Public and legal order and safety, and Chemical and 

nuclear industry CIs. 

 

5.3. Scenario 3 – a single small cyber-attack 

followed by an energy failure 

 
This scenario simulates a single small attack 

disruption aimed at the ICT CI which happens 2 days 

after the beginning of the simulation, and stays active 

for one day. This cyber-attack is followed by an 

Energy CI disruption that has a magnitude of eight, 

starts four days from the simulation time, and stays 

 
Figure 6: A Single Small Cyber-attack 

 
Figure 7: Three Successive Small Cyber-attacks 
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active for a duration of one and a half days. 

Figure 8 shows the results of this scenario. Similar 

to Scenario – 1, the attack on the ICT CI dropped its 

running operations by 41% in the third day of the 

simulation. As known from Scenario – 1, the 

cascading negative effect on other CIs is very limited. 

The disruption that happened in the Energy CI caused 

the CI to completely stop working at the fifth day for 

12 hours. 

The effect of both disruptions was cascaded to 

other CIs’ running operations and reached an average 

drop of 7% in Water, Civil administration, and Space 

and research CIs, and an average drop of 14% in all 

other CIs, reaching 18.6% drop at its highest in the 

case of Chemical and nuclear industry CI. 

 

5.4. Scenario 4 – three successive small cyber-

attacks following an energy failure 

 
This scenario simulates an Energy CI disruption 

that has a magnitude of eight, starts at the beginning of 

the simulation, and keeps on for a duration of one and 

half days. This disruption is followed by three 

successive small attacks aimed at the ICT CI which 

happen two days after the beginning of the simulation, 

and having one day in-between every two attacks. 

Each attack stays active for durations of one day as 

well. 

Figure 9 shows the results of this scenario. The 

disruption that happened in the Energy CI by the 

beginning of the simulation caused the CI to 

completely stop working after one day for 12 hours. 

Moreover, similar to Scenario – 3, the cyber-attack 

causes a large negative effect on the running 

operations of the ICT CI that exceeded 76% drop at its 

highest in the seventh day (compared to 73% in 

Scenario – 3). 

The negative effect of both disruptions was 

cascaded to other CIs’ running operations and reached 

around 8% drop in Water, Civil administration, and 

Space and research CIs, and around 16% drop for all 

other CIs, reaching 20% drop at its highest in the case 

of Chemical and nuclear industry CI. 

In terms of service provided, there were a total 

drop in the Energy CI, and another drop in the ICT CI 

service provided which exceeded 74%. The negative 

effect was cascaded to the services provided by Water, 

Civil administration, and Space and research CIs with 

an average drop of 4%. Moreover, the negative effect 

was cascaded to the service provided by all other CIs 

with on average drop of 12%; and at its highest in the 

case of Chemical and nuclear industry CI with 15.8% 

drop. 

 

5.5. Scenario 5 – three successive small cyber-

attacks followed by an energy failure 

 
This scenario simulates three successive small 

 
Figure 8: A Single Small Cyber-attack Followed by an 

Energy Failure 

 
Figure 9: Three Successive Small Cyber-attacks Following 

an Energy Failure 
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attacks aimed at the ICT CI which happen two days 

after the simulation, and having one day in-between 

every two attack. Each attack stays active for durations 

of one day. These cyber-attacks are followed by an 

Energy CI disruption that has a magnitude of eight, 

starts eight days from the simulation time, and keeps 

on for a duration of one and a half days. 

Figure 10, similar to Scenario – 3, shows a large 

negative effect on the running operations of the ICT 

CI with a 73% drop at its highest in the seventh day. 

The disruption happened in the Energy CI caused the 

CI to completely stop working at the ninth day for 12 

hours. Clearly from the figure, this caused the ICT CI 

to require three more days to go back to 99% of its 

running operations compared to Scenario – 2 (not 

before the 20th day of the simulation). 

The negative effect of both disruptions was 

cascaded to other CIs’ running operations and reached 

around 10% drop in Water, Civil administration, and 

Space and research CIs, and around 18% drop for all 

other CIs, reaching 22.4% drop at its highest in the 

case of Chemical and nuclear industry CI. 

In terms of service provided, the drop in the ICT 

CI service provided exceeded 71%. This negative 

effect was cascaded to the services provided by Water, 

Civil administration, and Space and research CIs with 

an average drop of 5%. The negative effect was 

cascaded to the service provided by all other CIs with 

an average drop of 13%; at its highest in the case of 

Chemical and nuclear industry CIs with 18% drop. 

5.6. Scenarios summary 

 

Table 1 summarizes the results of all tested 

scenarios from 1 to 5. In the table, the scenarios are 

referred to by their corresponding number. 
 

Table 1: Scenarios Summary 

# 

Number 

of 

cyber-

attacks 

Energy 

disruption 

Highest 

drop in 

other CIs’ 

running 

operations 

Highest 

drop in 

other 

CIs’ 

service 

provided 

1 1 - 3.1 % 0.0 % 

2 3 - 10.1 % 5.4 % 

3 1 Yes 18.6 % 14.3 % 

4 3 Yes 20.0 % 15.8 % 

5 3 Yes 22.4 % 18.3 % 

While scenario 5 causes about 10 percent higher 

drops in CI operations, comparing Fig. 9 with 10, it is 

quite evident that the cyber attacks following the 

energy outage also prolong the duration of the outage 

and of the disruptions in other CIs. 

 

6. Concluding remarks 

 
The approach presented in this paper combines the 

simplicity of disruption dynamics of interconnected 

Critical Infrastructures with a matrix 𝑒𝑖𝑗 encapsulating 

the complexities of the cascading effect from 

disruption originating in CIj upon CIi, where the 

indices i and j are labels for the Critical Infrastructures 

of interest. We have proceeded on the assumption that 

the approach pioneered by Laugé [6] and Laugé et al. 

[7], i.e. that the expert assessment of 𝑒𝑖𝑗 can render a 

sufficiently accurate metrics of the cascading effects, 

is viable. By “viable” we mean that a door has been 

opened for iteratively assessing such expert 

assessment with simulation results.  

Then, we wanted to investigate whether malicious 

agents could design effective attacks on Critical 

Infrastructures without needing to plan for one major 

disruption. To this effect we relied on the expert 

assessments of 𝑒𝑖𝑗 obtained by Laugé and simulated 

various scenarios. The combination of a major energy 

failure followed by three “opportunistic” small cyber-

attacks did indeed show major cascading effects. 

Massive energy failures happen occasionally; malicious 

attackers can sit on the fence and release of-the-shelf 

cyber-attacks when such failure happens. Slightly larger 

service drops, albeit of shorter duration occurred if the 

energy failure followed after a series of small cyber-

attacks. Such scenario is not unrealistic, since energy 

 
Figure 10: Three Successive Small Cyber-attacks Followed 

by an Energy Failure 
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failures occur more and more often as consequences of 

predictable extreme weather. 

It is indeed a weakness that no empirical estimates 

of the restore times are available. Not having such 

estimates, we do not emphasize the quantitative 

consequences but rather stick to the qualitative 

consequences (patterns of disruption).  

An open question is whether Laugé’s estimates of 

CI dependencies [6, 7] have general validity. In 

Laugé’s study, the organizations the participating 

experts belonged to were predominantly Spanish. To 

what extent this “Spanish” data is valid for other 

countries has not been investigated: it would require. 

duplicating Laugé’s study in other countries. On the 

other hand, critical infrastructures are reasonable 

similar across countries; hence, one would expect 

similar interdependencies in different countries rather 

than very different ones.  

A note of caution: the fact that the aggregated CI 

dependencies provided in [6, 7] are disruptive does not 

mean that organizational and behavioural effects are 

excluded in the experts’ estimates. It is a weakness that 

the estimates are “static”, in the sense of referring to 

the status quo. Hence, at the time being we lack data 

to enhance the model to explore different policies to 

mitigate the impact of disruptions. 

Finally, we wonder whether we should rejoice if 

the path sketched in this paper does lead to simple but 

accurate enough description of attack scenarios on 

Critical Infrastructures. A door would open for using 

simple tools to plan serious CI attacks.  
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