
Divergence Based Non-Negative Matrix Factorization for
top-N Recommendations

Md. Enamul Haque, SM Zobaed, Mehmet Engin Tozal, Vijay Raghavan
School of Computing and Informatics
University of Louisiana at Lafayette

Lafayette, LA 70504 USA
{enamul, sm.zobaed1, metozal, raghavan}@louisiana.edu

Abstract

Personalized top-N recommendation algorithms
are among the most effective techniques providing
customized suggestions in information retrieval
applications. Most of the current methods construct
personalized recommendations based on various
loss functions such as pairwise ranking loss and
point-wise recovery loss. In this paper, we propose
a personalized top-N recommendation method based
on non-negative matrix factorization with divergence
as a point-wise ranking loss function. Our method
finds the latent factors from the existing data to
improve recommendation predictions. We formulate
the learning problem with regularized divergence as
a constrained non-convex minimization problem and
develop a projected gradient descent optimization
algorithm to solve the divergence problem. We evaluate
our approach using six personal recommendation task
related datasets by employing root mean squared error
(RMSE) and hit rate (HR). Our experimental results
demonstrate improved RMSE and HR for most of the
datasets.

1. Introduction

Many companies have both online and traditional
brick-and-mortar presence, because it helps to reach
a larger and more diverse customer base. These
companies use recommendation systems or engines to
attract customers who are more likely to purchase their
products and services. In other words, recommendation
systems are employed to personalize user experience
on different media. These systems suggest users what
to purchase, where to eat, which movie to watch,
which songs to listen or even who to be friends with.
Although individual users’ preferences vary, we can
find preference patterns by analyzing their historical
data. Typically, people like things that are similar to
their other likings. They also tend to have similar
tastes as other people who are “closer” to them.

Recommendation systems capture these patterns using
different learning algorithms to facilitate user-level
item suggestion. E-commerce, social media, video
streaming systems, and online news platforms use their
own recommendation systems to improve their users’
overall experience. Similarly, other industries have been
employing recommendation engines to improve their
customer services. Intelligent traffic and navigation
system for personal use (waze1), IBM traffic control
system, and airline route navigation for efficient fuel
consumption are few examples from the transportation
industry using recommendation systems.

Informally, top-N recommendation identifies a
set of N items that will be of interest to a
certain user. Over the past decade, a variety of
recommendation techniques have been introduced for
top-N recommender systems [1]. These techniques
are categorized into three groups based on user
behavior and similarities: collaborative, content-based,
and hybrid filtering. Collaborative filtering method
includes neighborhood, model, and ranking based
methods. Neighborhood based methods identify
similarities among user-item pairs [2–5]. For instance,
item based k-NN method first identifies a set of similar
items with respect to the user purchase history, and then
recommends top-N items. Model based methods such
as matrix factorization (MF) use latent user-item factors
to find unknown relations between user and item pairs.
Finally, ranking methods for top-N recommendation
such as Bayesian personalized ranking (BPR) criteria
[6] are used to differentiate between user-purchased
items and the rest of the items. Content-based filtering
systems generate recommendations based on item
descriptions and user interests on the items [7]. Hybrid
recommendation systems combine both collaborative
and content-based approaches.

Matrix factorization is a common technique used
in top-N recommendation algorithms. Most of these
algorithms use different matrix norms to compute the
distance between original and reconstructed matrices.

1www.waze.com

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59485
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 450

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326833799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.waze.com

In this paper, we present the effectiveness of K-L
divergence for top-N recommendations instead of the
traditional distance measures. We formulate the learning
problem with regularized divergence as a constrained
non-convex minimization problem, and solve it using
projected gradient descent algorithm, called as top-N
recommendation using Matrix Factorization (TNMF).
We apply our approach on six well-known datasets
and compare with three state-of-the-art methods. The
experimental evaluations demonstrate improved root
mean square error (RMSE) in the majority of the
datasets. Additionally, we present hit-rate with respect
to different latent factors and iterations. In general, we
observe improved hit-rate for higher latent factors.

Our proposed technique can be extended in different
domains such as e-commerce applications, on-line
streaming services, and academic institutions. For
instance, TNMF can be used to recommend a student
a list of suitable universities to apply for graduate
studies based on his profile evaluation (e.g., GPA, GRE,
TOEFL, and Publications).

The remainder of this paper is organized as
follows. Section 2 presents some state-of-the-art
recommendation methods as background. Section 3
defines our proposed problem and solution formulation
using K-L divergence based user-item preference loss
function and projected stochastic gradient descent
optimization. Section 4 presents experimental
settings along with dataset descriptions. Section 5
presents evaluation results of our proposed approach
and comparisons with three state-of-the-art top-N
recommendation methods. Finally, section 6 concludes
the paper.

2. Background

Different methods have been developed in the literature
for top-N recommendation systems [8]. In recent years,
top-N recommendation systems have been used in a
number of different applications such as recommending
products which a customer will most likely buy,
advertisements that a user is likely to click, and
identifying webpages of interest [9–12]. Based on
user-item interactions, there are three main classes of
recommendation systems: collaborative, content-based,
and hybrid filtering. Collaborative filtering systems
generate recommendations based on crowd-sourced
input [13, 14]. They recommend items based on user
behavior, and similarities between users. An example
is Google PageRank, which recommends similar web
pages based on different methods such as web pages’
back links. Most of the collaborative filtering
based studies generally focus on the two dimensional

user-item problem [15]. Koren et al. claimed that Matrix
Factorization (MF) techniques perform better than
traditional nearest neighbor techniques [16]. Matrix
Factorization characterizes both users and items based
on a set of latent factors, also denoted as features, to
represent the relationships between users and items.
These factors are determined from the patterns of
different item ratings [17]. Then, two low rank matrices
are formed that represent the relationship between users
(or items) and the set of features [15].
A new algorithm for collaborative filtering is proposed
in [18], which explicitly optimizes the Area Under
the Curve (AUC) with improved performance on the
MovieLens dataset. However, the drawback of this
approach is its complexity. The algorithm cannot be
promptly applied to large datasets as it requires the
optimization of n quadratic problems where each one
is defined over m variables.
Two different algorithms, designed for Non Negative
Matrix Factorization (NMF), are analyzed in [19]. They
vary only slightly in the multiplicative factor used in
the update rules. One algorithm is responsible to
minimize the traditional least squares error and the other
minimizes the generalized Kullback-Leibler divergence.
The algorithms can also be interpreted as diagonally
rescaled gradient descent, where the rescaling factor is
optimally chosen to ensure convergence.

Generally, content-based filtering systems generate
recommendations based on items’ description and user’s
interests on the items [7]. Such systems are widely
used in several domains such as generic web contents,
news articles, movies, and serials. For example,
Pandora uses content-based filtering to make its music
recommendations. Additioanlly, in [7], the author
discusses the importance of data representation for semi
structured data. The authors claim that content-based
systems do not provide satisfactory recommendation
if the content does not have sufficient distinguishable
data that help to segregate items liked by a user
from his unliked items. Hybrid recommendation
systems combine both collaborative and content-based
approaches. They help to improve recommendations
that are derived from sparse datasets. Netflix is a prime
example of a hybrid recommender.

On the other hand, we can categorize the
recommender systems into two major groups based
on the loss functions used. The first category uses
point-wise comparison losses. For example, the sparse
linear method (SLIM) was developed to recover the
missing recommendation entries [20]. Collaborative
filtering methods also fall into this category. Pairwise
ranking methods, on the contrary, produces top-N
recommendations by optimizing preference structure

Page 451

consistency between original and reconstructed
recommendation matrices [18, 21–24].
Pan et. al. proposed a relaxed assumption of pairwise
preferences over item-sets, which defines a user’s
preference on a set of items instead of on a single
item in [23]. Park et. al [24] proposed a large-scale
non-convex implementation (AltSVM), which trains a
factored form of the matrix via alternating minimization.
According to their presented result, this algorithm
performs well to large problem settings. Moreover,
the proposed solution outperforms Cofirank [21] and
Robirank [25].

In this paper, we present a personalized top-N
recommendation method based on non-negative matrix
factorization with divergence as a point-wise ranking
loss function. Our proposed approach falls in the
collaborative filtering category, as we use matrix
factorization to construct a recommendation score for
the users from unseen items.

3. Problem Statement

In this section, we present regularized non-negative
matrix factorization (NMF) [19] for top-N
recommendation tasks which minimizes the divergence
between original and reconstructed recommendation
matrices. We assume that the factored matrices
represent the latent factors (features) for both users
and items that can expose users’ behaviors. The basic
NMF problem can be represented as follows. Given
a non-negative matrix R ∈ Rm×n+ (R ≥ 0) and a
number of latent factors λ, find two non-negative
matrices Xλ×m and Yλ×n such that R ≈ X>Y where
λ ≤ min(m,n).

For our particular problem, we consider a rating
matrixRm×n withm users and n items whereRij refers
to the rating of item j given by user i. Additionally,
the matrix R is very sparse as there are only a few
ratings for each user with respect to the total items.
Our aim is to fill the missing rating values for all items
in R and provide top-N items for each user to choose
from. We present a generic framework for a top-N
recommendation task and our solution formulation for
regularized divergence minimization using projected
Stochastic Gradient Descent (SGD) method. Note that,
the optimization can be solved using alternating least
squares (ALS) method as well.

3.1. A Generic Learning Framework for
top-N Recommendations

For a given input user-item rating matrix R, a generic
framework for learning the reconstructed matrix is
performed by minimizing the regularized loss function

presented in Equation 1.

arg min
θ
L(R, R̂(θ)) +R(θ) (1)

where R̂ = X>Y denotes the reconstructed
recommendation matrix with parameter θ, L(·) denotes
a convex reconstruction loss function with R(·) as
a regularization function. L(·) can be replaced by
different loss functions with reconstruction parameter
θ. An example of such case is the AltSVM [24]
that uses non-convex optimization problem formulation
for the user-item preference completion presented in
Equation 2.

minU,V
∑

(i,j,k)∈Ω L(Yijk(X) · Ui(Vj − Vk)>) + β
2 (||U ||2F + ||V ||2F) (2)

where Yijk is a function of X such that Yijk = 1 when
user i prefers item j over item k in X and Yijk = −1
otherwise.

3.2. Divergence Function

Most matrix factorization algorithms use some form
of distance function to measure the difference between
original and reconstructed matrices. Standard Euclidean
distance (L) as the distance measure between original
(R) and reconstructed matrices (X,Y) is presented in
Equation 3.

L = ‖R−X>Y ‖2F (3)

In our problem formulation, we assume randomness
in continuous rating distribution for users. In
order to compute the differences between users’
rating distribution, a commonly used measure
with convexity properties is the Kullback-Leibler
divergence [26]. Essentially, KL divergence is an
information-based measure of disparity. Therefore,
we use Generalized Kulback-Leibler divergence and
user-item regularization to find the divergence between
the matrices using the minimization function in
Equation 4.

arg minX,Y
∑

(i,j)∈Υ L

(
Rij log

Rij

(X>Y)ij
−Rij + (X>Y)ij

)
+ β

2

(
‖X‖2F + ‖Y ‖2F

)
(4)

where L is considered as max-margin hinge loss, R
denotes the original matrix, X denotes the user matrix,
Y denotes the item matrix, β denotes the regularization
parameter, and Υ refers to the set of user-items that has
non-negative ranks assigned in R.

Page 452

3.3. Optimization Algorithm

Equation 4 presents a non-convex optimization
function for our top-N recommendation using matrix
Factorization (TNMF) approach. The function is convex
with respect to either the entries of the matrix X or the
matrix Y , but not both [19]. Hence, finding the global
minimum is not feasible for this function. Nevertheless,
there exists several numerical optimization methods
that can be applied to find local minimum. Gradient
descent is the simplest among them with the cost of
slow convergence. Other faster techniques such as
conjugate gradient methods are complex to implement
compared to gradient descent. We use projected
Stochastic Gradient Descent (SGD) algorithm to solve
the problem. As the function is non-convex, we fix
each of the variables once and take partial derivatives
to formulate standard gradient descent optimization.
Later, we project the updated user/item variables onto
the feasible set. The overall learning algorithm using
projected SGD is given in Algorithm 1.
The partial derivative of Equation 4 is set to zero to
solve for the optimal user/item vector for the loss or
divergence function. The general formula for updating
variable Xi with respect to the loss function L in the
SGD for convergence is given in Equation 5.

Xnew
i ← Xold

i − η ∂L
∂Xi

(5)

where Xnew
i , Xold

i , and η refer to current user
component, old user component, and learning rate,
respectively.

In our specific problem formulation, we take partial
derivative of our divergence function (Equation 4) with
respect to user component Xu and item component Yv ,
respectively.

∂L
∂Xu

=

n∑
i=1

yui
Rui

(X>Y)ui
−

n∑
i=1

Yui + βX>u (6)

∂L
∂Yv

=

m∑
i=1

xvi
Rvi

(X>Y)vi
−

m∑
i=1

Xvi + βY >v (7)

Finally, we get our desired gradient update rules for each
iteration using Equations 8 and 9 .

Xu
new ← Xu

old − η

(∑n
i=1 yui

Rui

(X>Y)ui
+
∑n
i=1 Yui − βX>u

)
(8)

Yv
new ← Yv

old − η

(∑m
i=1 xvi

Rvi

(X>Y)vi
+
∑m
i=1Xvi − βY >v

)
(9)

The learning rate η in the SGD update is typically
set to a small fixed number. We use η = 1 × 10−6 and
β = 1 × 10−9 in our experiments. The overall learning
algorithm using projected SGD is given in Algorithm 1.

Algorithm 1: Projected Stochastic Gradient
Descent

Input: η > 0, β > 0, initialize Xλ×m = 0 and
Yλ×n = 0

Output: X,Y
Set: latent factors array, λ
repeat

1. Randomly select i, j
2. Update Xu by using (8)
3. Project the updated Xu onto the feasible

set:
Xu = max(0, Xu)

4. Update Yv by using (9)
5. Project the updated Yv onto the feasible set:

Yv = max(0, Yv)
until converge;
return X,Y

4. Experimental Settings

In this section, we present experimental evaluation of
our proposed approach using root mean squared error
(RMSE) and hit rate (HR). We set N as 10 for top-N
recommendations in all experimental results reported in
this paper We use datasets from different domains to
establish the effectiveness of our approach.

4.1. Datasets

We evaluate the performance of our method using six
different real datasets: Yahoo! music rating v1.0, Yahoo!
movie rating v1.0, Movielens-100k (ml-100k) [27],
Netflix, Book crossing, and Jester datasets. The dataset
statistics are presented in Table 1. We choose different
datasets for building our model with a wide variety of
ratings from different domains. Netflix, Yahoo! Movie,
and Movielens are related to the movie ratings. Book
crossing is related to book ratings and Jester is a jokes
review datasets. We also consider selecting datasets
based on user interest. Netflix and Yahoo! Music are the
most popular among the selected. In addition, Yahoo!
Movie and Jester are not commonly used. Next, we
briefly discuss each of the dataset properties.

Page 453

Yahoo! music dataset contains ratings for music from
users during normal interactions with Yahoo! music
services. This dataset represents a snapshot of the
Yahoo! Music community’s preferences for various
musical artists. The ratings range from 0 to 5 in this
dataset. We can interpret the lowest rating as user
dislike. The dataset also contains missing entries which
we replace with 0 at the beginning. Note that Equation 4
is defined on user-item pairs that has actual ratings in the
dataset. For example, one user x might dislike song a,
but user y might like that song.
Yahoo! movie contains movie ratings from users.
This dataset contains a small sample of the Yahoo!
Movies community’s preferences for various movies.
We created a small arbitrary sample of ratings for 2309
users and 2380 movies to test our proposed approach.
The ratings range from 0 to 5 in this dataset as well.

Table 1: Dataset statistics

Dataset User Item Sparsity Transact
Yahoo! music 268 4641 1.03% 12791
Yahoo! movie 2309 2380 0.18% 10136
ml-100k 943 1682 6.30% 100000
Netflix 83539 22 5.44% 100000
Book crossing 2582 24009 0.02% 12102
Jester 3000 100 71.01% 213037

ml-100k data sets are collected by the GroupLens
Research Project at the University of Minnesota. The
dataset consists of ratings for movies from different
users. As this dataset is quite smaller compared to the
other movie ratings data used in our experiment, we do
not take a smaller sample for the experiments.
Netflix data contain more than 100 millions of ratings
from 480 thousand arbitrarily selected viewers over
17 thousand movies. The dataset comprises of movie
ratings provided by users where the ratings range from
1 to 5 and missing entries represent unseen movies by
users. We consider the missing entries as zero which
can be treated as the user has not seen the movie.
Therefore, we want to predict whether a user should be
recommended that movie for future watch list or not.
Book crossing contains book rating information from
various users where the ratings are between 1 and 10.
As the dataset is extremely sparse, we remove the book
titles with fewer than 10 ratings. Additionally, users
with at least 10 ratings are kept for the sampling. Again
in this scenario, we took a sample ratings of 2582 users
and 24009 books.
Jester dataset contains joke recommendation
information for over 4.1 million continuous ratings of
100 jokes from 73,421 users. The major difference

between this dataset and the others is that it contains
ratings between -10 to +10. Although we transformed
the ratings into 1 to 5 scale, the continuous property
was preserved to see how our method performs.

Table 1 shows detailed information of the datasets
used in our experimental evaluation. We included two
additional information: sparsity, and transact for each
of the datasets that explain how sparse the data set
is, and the number of nonzero entries in the matrix,
respectively.

4.2. Evaluation Methodology

We use root mean squared error (RMSE) and hit rate to
evaluate our top-N recommendation system with matrix
factorization (TNMF). As our matrix factorization (MF)
and divergence based error function computes the
differences between rating distributions for each user
and movie interchangeably, we use root mean squared
error to evaluate our method and compare with recent
works. On the other hand, we use hit-rate to explain the
performance of our method as well.

Root mean squared error of two rating matrices, R̂
and R is defined as

RMSE =

√√√√1

r

∑
(u,i)

(R̂ui −Rui) (10)

where R̂ui andRui refers to predicted and actual ratings
of user-item pairs, respectively. r refers to the size of the
test set.

The recommendation quality is measured by the
hit-rate [2]. The metric directly quantifies the
performance of the model based on user feedback.
Ning et. al. mentions that this is one of the most
meaningful metrics for top-N recommendation task
evaluations [20]. Hit rate (HR) is defined as

HR =
#hits

#users
(11)

where #hits refer to the number of users whose item
in the testing set is contained (i.e., hit) in the size-N
recommendation list, and #users is the total number of
users [28]. An HR value of 1.0 means that the algorithm
is able to always recommend the proper items correctly,
whereas an HR value of 0.0 indicates that the algorithm
is not able to recommend any of the proper items.

4.3. Comparison Algorithms

In this part, we consider those approaches that
perform better on sparse and imbalanced datasets

Page 454

1 2 5 10 25 50 100 200

Number of iterations

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

R
M

S
E

λ=10

λ=20

λ=30

λ=40

λ=50

(a) Yahoo! music

1 2 5 10 25 50 100 200

Number of iterations

0.480

0.485

0.490

0.495

0.500

0.505

0.510

0.515

0.520

R
M

S
E

λ=10

λ=20

λ=30

λ=40

λ=50

(b) Yahoo! Movie

1 2 5 10 25 50 100 200

Number of iterations

0.48

0.50

0.52

0.54

0.56

0.58

R
M

S
E

λ=10

λ=20

λ=30

λ=40

λ=50

(c) ml-100k

1 2 5 10 25 50 100 200

Number of iterations

0.497

0.498

0.499

0.500

0.501

0.502

0.503

0.504

R
M

S
E

λ=10

λ=20

λ=30

λ=40

λ=50

(d) Netflix

1 2 5 10 25 50 100 200

Number of iterations

0.48

0.49

0.50

0.51

0.52

0.53

R
M

S
E

λ=10

λ=20

λ=30

λ=40

λ=50

(e) Book crossing

1 2 5 10 25 50 100 200

Number of iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
M

S
E

λ=10

λ=20

λ=30

λ=40

λ=50

(f) Jester

Figure 1: RMSE scores for Yahoo! music, movies, ml-100k, Netflix, book crossings, and Jester datasets, respectively.

such as Netflix dataset and use matrix factorization
as a recommendation technique. Therefore, we
compare the performance of the proposed method
with three state-of-the-art top-N recommendation
algorithms, including probabilistic matrix factorization
(PMF) [29], Bayesian probabilistic matrix factorization
(BPMF) [30], and Large-scale parallel collaborative
filtering for the Netflix prize (ALS-WR) [31].
PMF. The goal of this method is to present probabilistic
algorithms that scale linearly with the number of
observations. The method is extended to include an
adaptive prior on the model parameters and show how
the model capacity can be controlled. Additionally, a
constrained version of PMF model is introduced in the
paper that assumes the users who have rated similar sets
of movies are likely to have similar preferences. This
method works well on very large datasets and deals with
users who have very few ratings.
BPMF. A fully Bayesian treatment of Probabilistic
Matrix Factorization is presented by placing
hyper-priors over the hyper-parameters and using
Markov Chain Monte Carlo (MCMC) methods to
perform approximate inference. This algorithm also
demonstrates that Bayesian PMF (BPMF) models
achieve better recommendation accuracy compared to
the MAP-trained PMF models.
ALS-WR. Most of the collaborative filtering
based recommender systems face two problems
related to scalability and sparseness of the user
profiles. ALS-WR (Alternating Least Squares with

Weighted-λ-Regularization) method is designed as
a parallel algorithm for Netflix Prize challenge.
It is reported that the performance of ALS-WR
monotonically increases with respect to the number of
features and the number of ALS iterations.

5. Experimental Results

In this section, we present experimental results
for our proposed approach and three state-of-the-art
approaches. Then, we compare and contrast our method
(TNMF) with those three approaches.

While performing TNMF on six datasets we used
latent factor parameter, λ as 10,20,30,40, and 50.
Although the increased factorization creates opportunity
for better performance, the model complexity becomes
higher. To make a trade-off between these two
performance aspects, we suggest using λ between
20 and 40 for different data domains. In all our
experiments, we empirically choose η and β as very
small numbers, 1 × 10−6 and 1 × 10−9, respectively.
Note that the parameters can be efficiently optimized
using naı̈ve or brute-force grid-search method. We
envision to use those in our future improvement.
For PMF method, we use default parameters mentioned
in the original implementation where the number
of features is 10, ε=1, λ=0.1, and momentum=0.8.
Similarly, we kept the suggested parameters for BPMF
and ALS-WR while running the comparison part in our
experiments. In the following, we first demonstrate the

Page 455

1 2 5 10 25 50 100 200

Number of iterations

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

H
it

 r
a
te

λ=10

λ=20

λ=30

λ=40

λ=50

(a) Yahoo! music

1 2 5 10 25 50 100 200

Number of iterations

0.51

0.52

0.53

0.54

0.55

0.56

0.57

H
it

 r
a
te

λ=10

λ=20

λ=30

λ=40

λ=50

(b) Yahoo! Movie

1 2 5 10 25 50 100 200

Number of iterations

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

H
it

 r
a
te

λ=10

λ=20

λ=30

λ=40

λ=50

(c) ml-100k

1 2 5 10 25 50 100 200

Number of iterations

0.484

0.486

0.488

0.490

0.492

0.494

0.496

0.498

H
it

 r
a
te

λ=10

λ=20

λ=30

λ=40

λ=50

(d) Netflix

1 2 5 10 25 50 100 200

Number of iterations

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

H
it

 r
a
te

λ=10

λ=20

λ=30

λ=40

λ=50

(e) Book crossing

1 2 5 10 25 50 100 200

Number of iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
it

 r
a
te

λ=10

λ=20

λ=30

λ=40

λ=50

(f) Jester

Figure 2: Hit rate for Yahoo! music, movies, and ml-100k, Netflix, book crossings, and Jester datasets, respectively.

performance of TNMF. Next, we compare TNMF with
other approaches.

5.1. TNMF Performance

In Figure 1, we discuss RMSE for our proposed method,
TNMF, with respect to the numbers of iterations and
latent factors. In all cases, we notice significant
improvement over RMSE with respect to increased
iterations. In case of Yahoo! music dataset, the latent
factor 10 performs better compared to the other factors.
TNMF creates low dimensional matrices from Yahoo!
music data. As a result, the processing complexity
is quite lower compared to other factors. In case of
Yahoo! movie dataset, λ=30 performs better compared
to other factors. ml-100k dataset exploits consistent
RMSE throughout the iterations for all the factors except
40. On the other hand, Netflix data shows that higher
latent factors perform better. Book crossing and Jester
datasets exploit lower factors to be better for producing
low RMSE values because of the transformed rating
values.

Next, we explain the hit rate for our proposed
approach for the same six datasets using Figure 2. We
expect a consistent hit-rate with respect to different
iterations from a good recommendation method. Yahoo!
music dataset exploits uniform hit rate for all the factors
used. On the contrary, Yahoo! movie performs better in
terms of hit-rate when latent factor is 30. In this case,
we notice a consistent hit rate for almost all iterations.

ml-100k, on the other hand, produces acceptable hit
rate for the first half of the iterations for all factors.
Similar outcome is noticed for Netflix dataset using
factor parameter 30. For Book crossing and Jester data,
hit-rate exploits reverse effect from one another. Firstly,
Book crossing shows flat hit rate for all factors. Jester
shows inconsistent hit rate for all factors. In all cases,
we intentionally removed 10 ratings from each users
ratings profile and matched them after the prediction
step. Note that the matching is not performed using
exact similarity, instead, we define a threshold scheme
that enables a soft assignment and comparison between
element-wise rating entry for the previously removed
ratings.

5.2. Comparison

In the following, we first present RMSE for probabilistic
matrix factorization approach using Figure 3. PMF is
proposed to scale linearly with the increase in user and
item observations. We noticed in the earlier results that
our method does not work well on Netflix data. This is
due to the highly sparse structure of the dataset. PMF
performs very well on large, sparse, and imbalanced
data as well. In all datasets, PMF performs a smooth
transition by decreasing RMSE with the increase in
iterations. However, the Netflix dataset shows an
interesting property, where RMSE does not decrease
linearly, instead, it remains steady. RMSE for Yahoo!
music and Jester converges very quickly compared to

Page 456

Table 2: RMSE with standard deviation for different datasets and methods.

Methods ml-100k yahoo! music yahoo! movies Netflix Jester Book X
TNMF 0.522±0.032 0.496±0.011 0.493±0.005 0.500±0.001 0.539±0.151 0.494±0.007
PMF 1.013±0.071 0.424±0.001 0.142±0.001 0.825±0.010 1.270±0.223 1.098±0.001
ALS-WR 0.703±0.022 0.292±0.003 0.143±0.001 0.186±0.034 0.898±0.021 0.898±0.021
BPMF 0.782±0.040 0.299±0.011 0.137±0.002 0.323±0.025 0.913±0.023 0.913±0.023

0 50 100 150 200

(a) Yahoo! movies

0.1410

0.1415

0.1420

0.1425

0.1430

0.1435

0.1440

R
M
S
E

0 50 100 150 200

(b) Yahoo! music

0.42375

0.42400

0.42425

0.42450

0.42475

0.42500

0 50 100 150 200

(c) ml-100k

0.95

1.00

1.05

1.10

R
M
S
E

0 50 100 150 200

(d) Book crossing

1.0970

1.0975

1.0980

1.0985

1.0990

1.0995

0 50 100 150 200
Number of iterations

(e) Jester

1.2

1.4

1.6

1.8

R
M
S
E

0 50 100 150 200
Number of iterations

(f) Netflix

0.8244

0.8245

0.8246

0.8247

0.8248

Figure 3: RMSE for Yahoo! movies, music, ml-100k,
book crossings, Jester, and Netflix datasets, respectively
for PMF method.

other datasets as well for PMF. On the other hand,
RMSE for Book crossing data takes longer to converge
due to high sparsity.

Next, we present RMSE for Bayesian probabilistic
matrix factorization (BPMF) approach using Figure 4.
BPMF is a variant of PMF where Markov Chain Monte
Carlo method is used to train the model. This method
is very efficient in terms of convergence. Although
the convergence is faster, the RMSE is not always
better than our approach. However, if we want quick
convergence and ignore the RMSE parameter, this
method turns out to be very powerful and efficient.

In Figure 5, we present the performance of ALS-WR

0 50 100 150 200

(a) Yahoo! movies

0.1360

0.1365

0.1370

0.1375

0.1380

0.1385

R
M
S
E

0 50 100 150 200

(b) Yahoo! music

0.290

0.295

0.300

0.305

0.310

0.315

0 50 100 150 200

(c) ml-100k

0.80

0.85

0.90

0.95

1.00

R
M
S
E

0 50 100 150 200

(d) Book crossing

1.25

1.30

1.35

1.40

1.45

1.50

1.55

0 50 100 150 200
Number of iterations

(e) Jester

0.92

0.94

0.96

0.98

1.00

R
M
S
E

0 20 40 60
Number of iterations

(f) Netflix

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Figure 4: RMSE for Yahoo! movies, music, ml-100k,
book crossings, Jester, and Netflix datasets, respectively
for BPMF method.

for the six datasets where alternating least squares with
weighted regularization scheme is used to solve the
optimization problem. In ALS-WR, the user and item
components are fixed alternatively at each iteration to
minimize the least squares objective function. The
experimental results show a similar behavior in RMSE
compared with BPMF. All datasets except Yahoo!
movie presents early convergence in RMSE. In our
proposed approach we used SGD (Algorithm 1) as an
optimization approach to minimize the loss function. In
case of ALS-WR, the alternating least squares is used
as the optimization approach where the update-indices
are selected randomly at every iteration until the

Page 457

0 50 100 150 200

(a) Yahoo! movies

0.14260

0.14265

0.14270

0.14275

0.14280

0.14285

0.14290
R
M
S
E

0 50 100 150 200

(b) Yahoo! music

0.295

0.300

0.305

0 50 100 150 200

(c) ml-100k

0.70

0.72

0.74

0.76

0.78

R
M
S
E

0 50 100 150 200

(d) Book crossing

1.10

1.12

1.14

1.16

1.18

1.20

1.22

0 50 100 150 200
Number of iterations

(e) Jester

0.90

0.91

0.92

0.93

R
M
S
E

0 10 20 30 40
Number of iterations

(f) Netflix

0.18

0.19

0.20

0.21

0.22

0.23

Figure 5: RMSE for Yahoo! music, movies, ml-100k,
Netflix, book crossings, and Jester datasets, respectively
for ALS-WR method.

convergence is ensured.
In the following, we present a direct comparison of

our approach with the three state-of-the-art approaches
using mean RMSE with standard deviation in Table 2.
Our method (TNMF) performs better for ml-100k, Book
crossings, and Jester data. ALS-WR performs better
in both Yahoo! music and Netflix. On the other
hand, BPMF performs better in Yahoo! movies. We
include standard deviation with the mean RMSE to
show that the recommendation performance has a very
little or insignificant variance. The mean RMSE is
computed using 200 iterations for every method. The
major reason for TNMF to perform poorly compared
to other approaches on Yahoo! music, movie, and
Netflix datasets is dimensionality (represented by latent
factor parameter) reduction by matrix factorization and
individual dataset structure such as different rating
scales (e.g., 0-5, 1-5, 1-10) and missing entries. Note
that it is not possible to perform matrix multiplication
with incomplete or missing entries. Thus, we
replace those entries with zero values. As a result,
both original and replaced zeros are interpreted as
missing entries that causes biased learning during SGD

optimization. Another dimension that we investigated is
the correlation between matrix sparsity and rating range.
Our results do not provide any conclusive arguments
on the impact of correlation between matrix sparsity
and rating range over the mean square error. In our
experiments, the latent factors are considered between
10 and 50. The ranking performance of our approach
varies for different datasets because matrix factorization
is a lossy transformation and it’s efficiency depends on
particular task and the number of latent factors (usually
between 5 and 100).

6. Conclusions

In this paper, we propose a personalized top-N
recommendation method based on non-negative matrix
factorization with divergence as a point-wise ranking
loss. Our proposed method finds the latent factors
from the existing data to improve recommendation
predictions. We formulate the learning problem with
regularized divergence as a constrained non-convex
minimization problem. We develop projected gradient
descent optimization algorithm to solve the divergence
problem. We evaluate our proposed approach on
a set of personal recommendation tasks related data
using root mean squared error (RMSE) and hit
rate. Although we first envisioned our approach
to perform better on all datasets, our approach
(TNMF) has room for improvement for few of
them, e.g., Yahoo! music and movies. We
plan to include pair-wise ranking scheme in our
optimization function to alleviate the aforementioned
concern. In addition, our preliminary analysis
show that estimation of missing recommendations
increases mean square error due to the replacement of
missing values with zeros. Therefore, our approach
demonstrates limited applicability for datasets having
large number of missing values. Finally, we made our
implementation and data publicly available at https:
//github.com/enamul-haque/TNMF to support
reproducibility in future studies.

References

[1] X. Ning, C. Desrosiers, and G. Karypis, “A
comprehensive survey of neighborhood-based
recommendation methods,” in Recommender systems
handbook, pp. 37–76, Springer, 2015.

[2] M. Deshpande and G. Karypis, “Item-based top-n
recommendation algorithms,” ACM Transactions on
Information Systems (TOIS), vol. 22, no. 1, pp. 143–177,
2004.

[3] J. Chen, H. Zhang, X. He, L. Nie, W. Liu, and T.-S.
Chua, “Attentive collaborative filtering: Multimedia
recommendation with item-and component-level
attention,” in Proceedings of the 40th International ACM

Page 458

https://github.com/enamul-haque/TNMF
https://github.com/enamul-haque/TNMF

SIGIR conference on Research and Development in
Information Retrieval, pp. 335–344, ACM, 2017.

[4] X. Yang, C. Liang, M. Zhao, H. Wang, H. Ding, Y. Liu,
Y. Li, and J. Zhang, “Collaborative filtering-based
recommendation of online social voting,” IEEE
Transactions on Computational Social Systems, vol. 4,
no. 1, pp. 1–13, 2017.

[5] J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopoulou,
and G. Saake, “A feature-based personalized
recommender system for product-line configuration,”
ACM SIGPLAN Notices, vol. 52, no. 3, pp. 120–131,
2017.

[6] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme, “Bpr: Bayesian personalized
ranking from implicit feedback,” in Proceedings of
the twenty-fifth conference on uncertainty in artificial
intelligence, pp. 452–461, AUAI Press, 2009.

[7] M. J. Pazzani and D. Billsus, “Content-based
recommendation systems,” in The adaptive web,
pp. 325–341, Springer, 2007.

[8] F. Ricci, L. Rokach, and B. Shapira, “Introduction
to recommender systems handbook,” in Recommender
systems handbook, pp. 1–35, Springer, 2011.

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Analysis of recommendation algorithms for
e-commerce,” in Proceedings of the 2nd ACM conference
on Electronic commerce, pp. 158–167, ACM, 2000.

[10] C.-N. Ziegler, G. Lausen, and L. Schmidt-Thieme,
“Taxonomy-driven computation of product
recommendations,” in Proceedings of the thirteenth
ACM international conference on Information and
knowledge management, pp. 406–415, ACM, 2004.

[11] M. E. Haque, M. E. Tozal, and A. Islam, “Helpfulness
prediction of online product reviews,” Proceedings of the
18th ACM symposium on Document engineering, 2018.

[12] B. Liu, Y. Fu, Z. Yao, and H. Xiong, “Learning
geographical preferences for point-of-interest
recommendation,” in Proceedings of the 19th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pp. 1043–1051, ACM, 2013.

[13] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen,
“Collaborative filtering recommender systems,” in The
adaptive web, pp. 291–324, Springer, 2007.

[14] X. Su and T. M. Khoshgoftaar, “A survey of collaborative
filtering techniques,” Advances in artificial intelligence,
vol. 2009, p. 4, 2009.

[15] M. H. Abdi, G. O. Okeyo, and R. W. Mwangi, “Matrix
factorization techniques for context-aware collaborative
filtering recommender systems: A survey,” Computer
and Information Science, vol. 11, no. 2, p. 1, 2018.

[16] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer,
vol. 42, no. 8, 2009.

[17] Y. Koren and R. Bell, “Advances in collaborative
filtering,” in Recommender systems handbook,
pp. 77–118, Springer, 2015.

[18] F. Aiolli, “Convex auc optimization for top-n
recommendation with implicit feedback,” in Proceedings
of the 8th ACM Conference on Recommender Systems,
pp. 293–296, ACM, 2014.

[19] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in Advances in neural information
processing systems, pp. 556–562, 2001.

[20] X. Ning and G. Karypis, “Slim: Sparse linear methods
for top-n recommender systems,” in Data Mining
(ICDM), 2011 IEEE 11th International Conference on,
pp. 497–506, IEEE, 2011.

[21] M. Weimer, A. Karatzoglou, Q. V. Le, and A. J.
Smola, “Cofi rank-maximum margin matrix factorization
for collaborative ranking,” in Advances in neural
information processing systems, pp. 1593–1600, 2008.

[22] H. Steck, “Training and testing of recommender systems
on data missing not at random,” in Proceedings of
the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 713–722,
ACM, 2010.

[23] W. Pan and L. Chen, “Cofiset: Collaborative filtering
via learning pairwise preferences over item-sets,” in
Proceedings of the 2013 SIAM International Conference
on Data Mining, pp. 180–188, SIAM, 2013.

[24] D. Park, J. Neeman, J. Zhang, S. Sanghavi, and
I. Dhillon, “Preference completion: Large-scale
collaborative ranking from pairwise comparisons,”
in International Conference on Machine Learning,
pp. 1907–1916, 2015.

[25] H. Yun, P. Raman, and S. Vishwanathan, “Ranking
via robust binary classification,” in Advances in Neural
Information Processing Systems, pp. 2582–2590, 2014.

[26] J. M. Joyce, “Kullback-leibler divergence,” in
International Encyclopedia of Statistical Science,
pp. 720–722, Springer, 2011.

[27] F. M. Harper and J. A. Konstan, “The movielens datasets:
History and context,” ACM Transactions on Interactive
Intelligent Systems (TiiS), vol. 5, no. 4, p. 19, 2016.

[28] Z. Kang, C. Peng, and Q. Cheng, “Top-n recommender
system via matrix completion.,” in AAAI, pp. 179–185,
2016.

[29] A. Mnih and R. R. Salakhutdinov, “Probabilistic
matrix factorization,” in Advances in neural information
processing systems, pp. 1257–1264, 2008.

[30] R. Salakhutdinov and A. Mnih, “Bayesian probabilistic
matrix factorization using markov chain monte carlo,”
in Proceedings of the 25th international conference on
Machine learning, pp. 880–887, ACM, 2008.

[31] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan,
“Large-scale parallel collaborative filtering for the netflix
prize,” Lecture Notes in Computer Science, vol. 5034,
pp. 337–348, 2008.

Page 459

	Introduction
	Background
	Problem Statement
	A Generic Learning Framework for top-N Recommendations
	Divergence Function
	Optimization Algorithm

	Experimental Settings
	Datasets
	Evaluation Methodology
	Comparison Algorithms

	Experimental Results
	TNMF Performance
	Comparison

	Conclusions

