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Abstract 

 
Engineering project outcomes are driven by a 

dynamic mix of the social physics of teams, the unique 

complexities of the engineering challenge at hand, and 

stakeholder pressures in context. Various related 

research has demonstrated formal experiments for 

tightly controlled problems in small teams, including 

work in organizational psychology, computational 

organization theory, design thinking, and coordination 

science. We realize there is room for testing these 

foundational concepts in quasi-controlled 

environments with distributed teams challenged by 

problem, solution, and organization complexity 

common today. This paper presents a quasi-experiment 

to study how engineers proceed through attention, 

decision, and learning cycles in the design of a System 

of Systems. The experiment utilized an ensemble of an 

agent-based model, a decision-support interface, and a 

variety of sensors to record behavior and activity. Four 

pilots for a maritime industry challenge were 

conducted with experienced industry experts, followed 

by a primary experiment for data collection. Though 

this work is preliminary, the experimental approach 

detects (for this case) how designers focused on 

different variables (attention), manipulated variables 

to accomplish desired outcomes (decisions), and 

explored the system performance trade space variously 

over time to reveal false assumptions and uncover 

better decisions (learning). Lessons learned from this 

quasi-experiment are guiding this research team to 

prepare scalable and reproducible engineering 

teamwork experiments that include sensors of events 

over time in the problem, solution, and socials spaces 

of engineering projects. 

 

1. Background  
 

This research is rooted in observations of 

engineering as a social activity across a team of teams 

as they explore fundamental and often counterintuitive 

tradeoffs. [1] In a stable environment, with teams, 

markets, and technologies well understood, 

engineering can be characterized as a drive to 

efficiency through an analytic process, improved with 

decreasing uncertainty over time. Tacit capabilities and 

mental models for successful teams remain aligned 

with internal and external realities. However, for 

modern, disruptive, and strategic industrial needs, 

engineering is much the opposite, proceeding by 

innovation under uncertainty. 

Innovation is a collective capability, involving 

individual behaviors and group dynamics. Design is a 

crucial component of innovation. One example of how 

social behavior affects design decisions is the manner 

in which designers engage with each other to frame 

and re-frame the design problem itself, which 

subsequently influences solutions [2], [3]. 

A team’s mental models can limit their capacity for 

awareness during complex work. Organization 

processes, including those for engineering teams, have 

been proposed to assess, refresh, expand and make 

explicit the mental models of coordinating teams. [4]–

[9] 

While a century ago organizations were conveyed 

as structured, centrally controlled entities; that view 

has given way in recent decades to a more natural 

representation. Kozlowski and others have articulated 

teamwork in an organization as distributed and 

dynamic, and thus our models and research on 

organizations must be multi-level. As such, a mix over 

time of elements, relationships, topology, externalities, 

and dynamics leads to organization as system with 

performance as an emergent outcome. [10], [11] 

Supported by advances in artificial intelligence, 

operations research, and computational organization 

theory, models of teams and organizations are 

simulated, allowing virtual experiments to validate, 

question, and expand existing ethnographic and 

management frameworks. [12]–[15] While there have 

being increasing variants and interesting explorations, 

relatively few of these models for engineering 

teamwork have been validated with reproducibility at 

real world scale. 
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Recently, with the advent of low-cost pervasive 

sensors and digital twin models, a research opportunity 

has risen to supplement existing frameworks and 

formal experiments with a broader empirical basis. 

[16]–[18]  The motivation of this research is to build 

quasi-experiments for real-world engineering project 

teams supported by digital models and sensors as 

instrumented teamwork. 

 

1.1. Research Framing 
 

We characterize design challenges as being 

composed of the problem space, solution space, and 

social space. A broad motive is to systematically 

observe how the social space influences or perhaps 

even governs how teams navigate the links between 

problems and solutions. In other words, we wish to 

study how the social physics of engineering teams 

influences design process and outcomes [19]. 

These perspectives build on the information 

processing view of innovation and learning in project 

organizations [13], [20]. With change, old information 

loses relevance, uncertainties arise, and new 

information is generated. The position and value of 

information across the network of the organization 

evolves.  Information new to actors in a given situation 

may be a surprise [21]. The relevance of new 

information is not proportional to volume, but a value 

given topological significance of the knowledge. [22] 

Small facts may yield big insights with systemic effect. 

How the organization frames the problem and potential 

solutions may encourage exploration and recognition 

of these surprises. [3] 

An alternative framing for design behavior is 

Berglund & Leifer’s [23] Triple-Loop model (process, 

product, and context) variables, building on Argyris’s 

(1977) Double Loop model of learning [24]. 

A social space is viewed through the position and 

interaction of teams of both individuals and other 

teams (Team of Teams – ToT). Some researchers have 

sought to measure the quality of the social space 

through constructs such as collective intelligence (or C 

factor) [25] or the Interaction Dynamics Notation 

(IDN) [26]. These efforts are among the first to 

develop a cognitive-behavioral model of engineering 

design team performance. Of particular interest in the 

literature on innovation is the role of influence cycles 

[18] in team interactions and the impact on what teams 

focus on (attention), how they arrive at choices 

(decisions), and how they improve on past choices 

(learning) [27]. 

In this ongoing experimental study, we focus on the 

idea that the design process is path-dependent. We seek 

to study how the latent social behaviors associated with 

path-dependent exploration influence design choices 

and outcomes in complex system engineering [1], [28]. 

Path-dependence in a design trade space is 

explained as follows. Engineering teams begin at a 

legacy position in the tradespace, determined by the 

prevailing solution to the problem, tacit knowledge, 

and influenced by externally determined specifications. 

Teams then move through the space, attempting to 

successively improve on the previous positions, i.e. do 

better than where they have been. They eventually 

converge to final choices either by arriving at a pareto 

location, or satisfying requirements under resource 

constraints. The phenomenon of the design walk – the 

path moving through the design space -- can be 

observed and is akin to project shaping [29]. However, 

many underlying latent behaviors such as attention, 

decision, and learning that govern the exploration 

process have until recently been difficult to observe 

and influence. 

A Platform for Quasi Experiments: We realize 

there is room for testing these foundational concepts in 

quasi-controlled environments with distributed teams 

challenged by problem, solution, and organization 

complexity common today. We refer to this level of 

complexity as the meso-scale, in contrast to micro-

scale experiments with individuals and small teams and 

macro-scale experiments relying on population scale 

data. This paper presents a quasi-experiment to study 

how engineers proceed through attention, decision, and 

learning cycles in the design of a System of Systems. 

We pose the following research questions to link the 

unobservable / latent behaviors in the social space to 

the observable events in the problem and solution 

spaces:  

a) Attention allocation – how do individual and 

team behaviors influence the particular design variants 

that teams focus on as they proceed? What are the 

social signals and factors to which the designers are 

attuned in relation to this focus set of variants? 

b) Decision – how do teams evaluate and process 

their design moves by either progressing or regressing 

through the space? What interactions result in 

agreement, or a choice? 

c) Learning – how do teams recognize, process and 

engage over the trade-offs that result from design 

decisions, and how do they alter them to improve upon 

previous choices? 

Our methodology and approach are accordingly 

structured to observe how individuals and teams 

behave at the individual and collective levels [25], 

[30], [31], so that patterns of attention, decision, and 

learning that influence path-dependent design 

tradespace exploration are revealed. 

 

 

Page 350



 

 

2. Methodology & Approach 
 

2.1. Experimental Platform 
 

Improvements in computation and sensing have 

now made it possible to study the activities of 

engineering using a platform that combines models and 

experiments. Such a platform enables (i) the 

deployment of complex computation to the edge, i.e. 

where individuals and teams can use distributed 

devices to handle complex computation in near real-

time, (ii) enable visualization of complex design 

tradespaces to support trade-off evaluation and 

decision-making, and (ii) instrument individuals and 

their environment to observe individual and team 

interaction and behavior. 

These technologies promise to minimize the 

cognitive burden on individuals trying to process 

complex information, which is a major concern in the 

engineering of complex systems [32].  An objective in 

the deployment of these technologies is to free up 

cognitive and emotional capacity for individuals to 

engage in meaningful exchange of insights as they 

explore the tradespace. Recent studies have 

demonstrated that this experimental approach requires 

model development as both boundary object for 

engagement and as support for instrumentation and 

observation [33], [34]. 

 

2.2 Design Challenge Setting 
 

We formulated an engineering challenge for teams 

of teams (ToT) as part of a commercial maritime 

cluster of companies and a national laboratory. The 

cluster consists of stakeholder representatives 

(Figure 1) from the Japanese shipping industry -- 

cargo suppliers and buyers, ship owners and operators, 

infrastructure assets owners including ports and 

bunkering facilities, regulatory system principals, and 

the ship building sector (designers and builders). 

 

 
Figure 1. Maritime shipping stakeholder landscape 

The challenge for these stakeholders (the team of 

teams) is to re-design the integrated marine system to 

comply with revised emissions reduction regulations 

enacted by the IMO MARPOL (International 

Convention for the Prevention of Pollution from 

Ships). 

The decisions necessary to invest and change the 

industry are dependent across actors and therefore 

require coordination. This revision of the regulation 

mainly sets limits for Sulphur Oxides (SOx) and 

Nitrous Oxides (NOx) emissions from ships’ exhausts, 

and will go in effect in 2020. Thus the new regulations 

create performance targets; participants must study 

how design variants trade-off other performance 

dimensions to meet the newly specified performance 

targets. 

Teams are asked to modify a reference crude oil 

shipping system involving a tankers’ fleet composed of 

Very Large Crude Carriers (VLCCs), currently fueled 

with Heavy Fuel Oil (HFO) and transporting crude oil 

from a supply port in the Persian Gulf to a delivery 

port in Japan. 

The challenge addresses the expected progressive 

transition from the currently predominant use of HFO 

to Liquefied Natural Gas (LNG), and considers the 

LNG infrastructure needed to support this transition.  

The design goal is to reduce SOx and NOx emissions, 

while fulfilling shipping contracts, at the lowest 

possible cost (Table 1). Individuals representing 

various stakeholders consider, enumerate, and evaluate 

feasible system architectures in a tradespace simulated 

in a computer model. Designers seek the Pareto 

frontier of non-dominated architectures, and choose a 

subset of preferred architectures. 

Table 1. System performance metrics in the design 
exercise 

Objective  Description Metrics Units 

Emissions 

Reduction 

Ability of the system 

to reduce emissions, 
in respect to baseline 

emissions of HFO 

combustion. 

NOx 

Emissions 

Ton/ Ton 

Cargo * km 

SOx 

Emissions 

Ton/ Ton 

Cargo * km 

CO2 

Emissions 

Ton/ Ton 

Cargo * km 

Schedule Ability of the system 

to meet the contract 

schedule for crude 
oil shipping, with 

minimal disruption. 

Waiting 

Time 

% 

Cargo 

Moved 

Cargo Ton 

CAPEX The cost of 
installation of new 

LNG bunkering 

facilities, and 
retrofitting crude oil 

tankers. 

Initial Cost MUSD 

OPEX Cost of operating the 

retrofitted crude oil 
tankers fleet, incl. 

voyage. 

Fuel Cost 

Efficiency 

USD/ 

Cargo Ton 
* km 
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2.3 Quasi-Experiment Setup 
 

A quasi-experiment based on the maritime 

transition design challenge was established (Table 2). 

In the exercise, designers can modify designs to 

achieve one or more variants by playing with a limited 

set of architectural decisions.  These decisions and 

options for each decision are represented in a 

morphological matrix. For the crude oil shipping 

system these include propellant fuel for the fleet of 

ships, engine and overall propulsion system 

architecture, fuel tank and vessel layout, fuel bunkering 

and refueling implications, berth flexibility options and 

levels (Table 3). 

Table 2. Experiment variables 

Dependent: Emissions (NOx, SOx, CO2), Waiting 

Time, Cargo Moved, Initial Cost, Fuel Cost Efficiency 

Independent: Number of architectures enumerated, 

Attention allocation to the problem space, Attention 

allocation to the solution space, Number of path dependent 

sequences, Number of surprises, Timestamps 

Controlled: Time limit, System of systems model, 

Demographics (No randomization, quasi-experiment) 

 

Table 3. Matrix of design variables and levels 

Decision Alternatives 

# Ships HFO 

0 5 15 20 
# Ships LSFO 

# Ships LNG 

# Ships HFO/LNG 

LNG Bunkering 

Location 

Persian 

Gulf 

Singa-

pore. 
Japan - 

LNG Bunkering 

Method 

Truck 

to Ship 

Ship 

to 

Ship 

Shore 

to 

Ship 

- 

# LNG Bunkering 

Facilities by 

Location 

0 1 3 - 

 
The design challenge variables were selected based 

on the research questions to be explored, the typical 

tasks of design teams, and the associated teamwork 

phenomena mapped in Table 4. 

The quasi-experiment was developed through a 

series of four pilot experiments with experienced 

industry professionals at sites in the USA and Japan.  

The pilot experimentation phase also served for 

prototyping the computer simulator that implements 

the system of systems (SoS) model and the interactive 

visualization software user interface. 

 

 

Table 4. Experiment variables mapped to teamwork 
tasks and phenomena 

Teamwork 

Task 

Teamwork 

Phenomena 

Experiment Variables 

Collective 

interpretation 

of design goals 

and definition 

of strategy 

Attention 

Allocation 

Attention allocation on 

elements of the problem 

space 

Decision System performance 

metrics priorities 

Collective 

enumeration of 

architectures 

Attention 

Allocation 

Attention allocation on 

elements of the solution 

space 

Decision Number of architectures 

enumerated 

Collective 

consideration 

and evaluation 

of architectures 

Attention 

Allocation 

Attention allocation on 

Elements of the 

problem space 

Learning Number of path 

dependent sequences 

Number of surprises 

Collective 

selection of 

best 

architecture 

Attention 

Allocation 

Attention allocation on 

elements of the problem 

space 

Decision System performance 

metrics from selected 

architecture 

 

2.3 Tradespace Simulation 
 

MOSES is an agent-based simulator developed by 

Wanaka for the evaluation of architectural decisions in 

ship transportation systems. [35] The simulator was 

developed based on specific technical and physical 

realities of the ship, shipping, and port for the case in 

the experiment. The simulation was then improved 

through the pilot experimentation phase specifically for 

this exercise. 

There are five types of agents and five types of 

demands (Table 5). Agents have four functions: (i) 

observe, (ii) select, (iii) checkNextEvent, and (iv) 

update.  For each iteration of the simulation, agents 

observe their status and task list according to the 

demand, select their next task, and estimate the next 

event. 

Table 5. Types of agents and demands in MOSES 
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Further to the computer simulator MOSES 

introduced here, the experiment developed is 

instrumented and aided by several other software 

packages, the most significant of them being the so-

called Maritime Decision Support System (DSS). 

The Maritime DSS software is a package of open 

source software developed by Winder.  It enables 

teams engaged in the design problem to generate and 

evaluate architectures with enhanced visualization 

features. It provides a UI that augments a team’s 

understanding of the problem and the solution spaces, 

as well as the underlying system model of the 

simulator and its assumptions. During the experiment, 

socio-metric data is collected passively while the teams 

engage in solving the design problem. 

Figure 2 provides a snapshot of the UI.  The left-

hand toolbar allows users to configure and simulate a 

unique shipping fleet. The right-hand toolbar allows 

users to explore seven dimensions of KPIs (the system 

performance objectives or -ilities).  The KPI plot 

(lower right) allows users to track and revisit the 

performance of multiple scenarios over time in a 

tradespace format. 
The Maritime DSS has a module called “Team 

Space IO” for analysis of “fingerprints” data collected 

(Figure 3).  By cross-referencing fingerprint data with 

other time-stamped observations about intention, 

behavior, and/ or strategy, we can verify or preclude 

research hypotheses. 

 

 
Figure 2. Maritime DSS UI 

We focus on two broad categories of data: 

● Attention: We measure attention by knowing 

what subset of information (i.e. KPIs) users are 

viewing over time.  We can also view which inputs are 

changed. 

● Performance: Performance is evaluated relative 

to other teams and relative to a simulated tradespace. 

 
Figure 3. Sensor output interface for Maritime DSS 

system 

3. Experiment Results 
 

3.1. Attention Allocation by Teams 
 

Attention allocation on the variables of the problem 

space can be sensed by recording how much time a 

tradespace variable was set or remained set to a certain 

system performance objective. 

The major objectives subject of attention in this 

experiment have been Fuel Cost, Cargo Moved and 

Initial Cost. The following Figure 4 provides the 

distribution of attention into the different trade 

variables in the very moment that a team performed a 

simulation or a recall. 

 

Figure 4. Tradespace variables on which teams 
focused 

The results documented in Table 6 show that there is a 

variance in how teams allocated attention to variables. 

Table 6. Attention Allocation on Variables of the 
Problem Space for different Teams 
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Figure 5 illustrates the distribution of attention into 

the possible trade-offs between objectives by different 

teams. Some teams evaluated architectures from more 

viewpoints (checked more types of trade-offs) than the 

other teams. 

 
Figure 5: Joint variables on which teams focused 

Figure 6 provides an aggregated view of the 

density of categories of changes through time by 

different teams. 

 

Figure 6. Architectural Changes by Teams over 
Time 

A few teams seem to have concentrated more on 

changing bunkering infrastructure options rather than 

on ship portfolio options, while the other teams seem 

to have had a more balanced distribution of focus on 

design inputs.  This can also be observed in the 

following Table 7, which shows the dominant areas of 

attention. 

Table 7. Attention Allocation on Variables of the 
Solution Space for different Teams 

 

3.2. Decisions by Teams 
 

The design goal of the exercise was to reduce SOx 

emissions and NOx emissions, while fulfilling shipping 

contracts, at the lowest possible cost. Figure 7 plots 

the time series of the outcomes for a sample of 

different teams.  Team 1, 2 and 4 have a very large 

number of data points, while Team 3 and 5 have much 

less. 

 
Figure 7. Performance variable changes over time 
by each of 5 teams; team 1 at top (red), team 5 at 

bottom (purple) 

Teams interpreted the design goals differently. The 

Post-survey collected from each team identifies the 

design strategy followed for this experiment: 

● Team 1 (red): “Maximize Cargo Moved and 

minimize Fuel Cost, while keeping Emissions as low 

as possible”. 

● Team 2 (green): “Decrease Fuel Cost, with a 

compromise on Emissions and Cargo Moved”.  

● Team 3 (blue): “Minimize Emissions and long-

term operation cost”.  

● Team 4 (yellow): “Maximize revenue first, and 

achieve lower SOX/NOX as a secondary goal. To this 

end, we identified that the main variables contributing 

to revenue were Cargo moved, Fuel cost, and capital 

cost. Our model is (roughly) Revenue = CM - FC – 

CC”. 
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● Team 5 (purple): “Maximize Cargo Moved, and 

minimize Fuel Cost and Capital Cost, while keeping 

Emissions reduction reasonable”. 

In terms of design strategies, the teams approached 

the design walk differently: 

● Team 1 considered/ enumerated new 

architectures, evaluated them and then compared them 

with (recalled) previous architectures in cycles, 

converging to their selected architecture. 

● Team 2’s design walk shows that they simulated 

many times and did not use the recall function.  It is 

not clear how many of the simulations are in effect 

actually a recall without further analysis. 

● Team 3’s design walk shows they simulated 

fewer architectures and recalled a few times. 

● Team 4 attempted to generate the simulated 

tradespace, analyzed it (through recalls), defined 

design goals, and selected an architecture. 

● Team 5’ design walk shows they simulated fewer 

architectures and recalled only a handful of times. 

 

3.2. Learning Cycles by Teams 
 

A method used in this quasi-experiment to detect 

and analyze learning cycles is illustrated with a 

detailed review of Team 1.  The nature of the surprises 

encountered, the associated outcomes, and subsequent 

changes are visualized. 

A learning cycle is defined as a process by which a 

team considers, evaluates, and reflects about design 

choices. Learning cycles are characterized by the 

encounter of surprises followed by a set of changes in a 

sequence as the team explores in response to the new 

information in the surprise. 

Identification of learning cycles of teams is 

performed by detecting when and why design teams 

encounter surprises while carrying out a design task, 

and reviewing the design changes they execute. The 

changes are driven by design goals. Mental models of 

the team evolve with the new information obtained and 

the associated reflection and reframing that happens 

after encountering a surprise. When a team fixes design 

variables after having encountered a surprise (i.e. after 

having learned something new about system dynamics) 

then continues exploring changes to other design 

variables, we speak about a path-dependent sequence 

of design solutions. The new design solutions tested 

may be dependent on insights derived from previous 

design solutions. This procedure has been applied to 

four different teams in the frame of two design 

workshops. 

Table 9. Definitions for identifying learning cycles 

Variable Description 

Surprise Indicates the point in time in their design walk 

when a team encountered a surprise. 

Variable Description 

Architecture The system configuration, a set of design 

decisions, that was considered and evaluated 
when the team encountered the surprise. 

Recorded Reasons 

for Surprise 

The reasons the team judged the outcomes 

different than expected. A surprise is 
encountered when system performance is 

better or worse than expected.   

Potential Learning 

and likely decision 
in course of action 

What the teams possibly learned about the 

specific system dynamics and what they 
probably decided for the next moves in their 

design process. 

Subsequent 
Changes until next 

Surprise 

The type of design changes that the team 
explored until the time they encountered 

another surprise in their design process. 

 

Figure 8 provides the time series of outcomes and 

design changes, whereby the architectures enumerated 

(i.e. the time that an architecture considered was first 

simulated -marked with asterisks), and recalled (i.e. the 

times that an architecture previously enumerated was 

recalled -marked with red dots) are highlighted. 

Learning cycles are plotted as black lines 

connecting the asterisks. Phases of the design walk are 

identified in the figure as follows: (1) is an exploratory 

phase, whereby mental models were likely initially 

confirmed or challenged. In this initial phase we can 

see fewer recalls, as there are fewer architectures to be 

recalled, and the first systemic surprises/ learnings 

emerge.  In this phase we also see more testing of both 

Ship Portfolio and Bunkering options; (2) comprises an 

analysis phase, where there is higher density of recalls 

(i.e. comparison between architectures) and where 

path-dependent sequences are established.  In this 

phase we also see more testing of bunkering options; 

(3) appears to be a deliberation phase, including a 4min 

pause before 11 am; (4) indicates a fine-tuning phase, 

with some last new architectures and very high density 

of recalls from the array of LNG and Dual Fuel hybrid 

fleet options, i.e. testing of Ship Portfolio details with a 

fixed bunkering decision; ending in (5) a final decision 

phase characterized by a 7min pause and some recalls. 

Table 8. Features of architecture selected by Team 1 

 
A first path-dependent sequence of Ship Portfolio 

(incl. 10xDual-fueled ships) seems to have been 

triggered by Surprise 5 (the first time the selected 

architecture was considered). This surprise likely 

caused a reframing about the positive effects of 

designing for a half fleet of LNG ships. This is 

identified in Table 10. The elements of surprise are 

highlighted with yellow circles (i.e. Better performance 

than anticipated in all variables), and the associated 

path-dependent sequence with a yellow rectangle. 
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Figure 8. Analysis of design walk showing phases, surprises, and sequences across design & performance 

variables 
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The second path-dependent sequence is triggered 

by Surprise 2 (i.e. Shore-to-Ship too high an 

investment), after which most of the design walk 

considers Ship-to-Ship configurations, with some 

checks on Truck-to-Ship, on an attempt to verify a 

significant reduction in Initial Cost (Surprise 7). The 

related outcomes that resulted different than 

anticipated are marked with pink circles (i.e. Worse 

Cargo Moved, Fuel Cost, and Initial Cost than 

anticipated), and the Ship-to-Ship bunkering choices 

made thereafter can be seen in the sequences marked 

with a pink rectangle. 

A third path-dependent sequence is triggered by 

Surprise 6 (i.e. Further investigate 10LNG/10Dual 

configurations).  This surprise likely caused a 

reframing about the effect of including any number of 

HFO ships in a fleet, thereby confirming the Ship 

Portfolio configuration of the selected architecture. 

Surprise 6 on Worse Emissions than expected has been 

marked with a blue circle and the associated sequence 

of Ship Portfolio choices with a blue rectangle. 

A fourth path-dependent sequence is triggered by 

Surprise 9, however the insight was first discovered at 

Surprise 5 (i.e. Bunkering in Singapore could work 

too.).  This confirms the location of the bunkering 

point in Singapore. Surprise 9 (Worse Cargo Moved, 

and Fuel Cost than anticipated) is marked with green 

circles, and the path-dependent sequence with a green 

rectangle. 

Regarding the number of bunkers, it could be 

argued that the team had a pre-existing mental model 

that supported one bunker configurations (most of their 

architectures considered feature one or no bunkers). 

Table 10. Key surprises in Team 1’s learning cycle 

Sur-

pri-

se 

Previous Arch. Recorded 

Reasons for 

Surprise 

Potential Learning and 

likely decision in course 

of action 

Changes 

until next 

Surprise 
Current Arch. 

2 20x HFO Worse 

Cargo, 

Fuel Cost, 

and Initial 

Cost than 

anticipated 

Shore-to-Ship too high 

an investment. 

Explore other 

bunkering methods. 

Changes 

in Fuel 

and 

Bunke-

ring 

10x LNG, 10x Dual 

1x in PG, Shore-to-

Ship 

1x Bunker (JP), Shore-

to-Ship 

5 10x LSFO, 10x Dual 

1x Bunker (PG), Ship-

to-Ship 

1x Bunker (JP), Ship-

to-Ship 

Better than 

anticipated 

in all 

variables 

Good candidate. 

Continue exploring 

hybrid fleet 

combinations. 

Continue exploring 

bunkering 

configurations incl. 

Ship-to-Ship. 

Changes 

in Fuel 

and 

Bunke-

ring 

10x LNG, 10x Dual 

1x LNG (SG), Ship-to-

Ship 

6 10x HFO, 10x Dual 

1x Bunker (PG), Ship-

to-Ship 

1x Bunker (JP), Ship-to-

Ship 

Worse 

Emissions 

than antici-

pated 

Team wrote: “Capital 

cost not changing 

huge, NOx and SOx 

went up, SOx same” 

Do not further 

consider fleets incl. 

HFO. Further 

investigate 

10LNG/10Dual config. 

Changes 

in 

Bunke-

ring 

5x HFO, 5x LNG, 10x 

Dual 

1x Bunker (SG), Ship-

to-Ship 

Sur-

pri-

se 

Previous Arch. Recorded 

Reasons for 

Surprise 

Potential Learning and 

likely decision in course 

of action 

Changes 

until next 

Surprise 
Current Arch. 

7 5x HFO, 5x LNG, 10x 

Dual. 

1x Bunker (SG), Ship-

to-Ship 

Worse 

Initial Cost 

than antici-

pated 

Team wrote: “Not 

huge benefit in capital 

cost by changing to 

truck to ship, should 

keep ship to ship” 

Continue exploring 

bunkering 

configurations incl. 

Ship-to-Ship. 

Changes 

in 

Bunke-

ring 

10x LNG, 10x Dual. 

1x Bunker (PG), Ship-

to-Ship 

1x Bunker (JP), Truck-

to-Ship 

9 10x LNG, 10x Dual. 

3x Bunker (PG), Ship-

to-Ship 

3x Bunker (JP), Truck-

to-Ship 

Worse 

Cargo 

Moved, 

and Fuel 

Cost than 

anticipated 

1 bunker in Singapore 

seems a good option. 

Continue exploring 

bunkering. 

Note: Team wrote: 

“Didn't change cargo 

moved, fuel costs 

higher than 1 bunker in 

Singapore”. 

Changes 

in 

Bunke-

ring 

10x LNG, 10x Dual. 

3x Bunker (SG), Ship-

to-Ship 

 

3.4. Team Performance 
 

Teams were ranked based on the performance of 

their selected architectures. For every trade-off, each 

architecture is compared to the others in the two 

objectives of the trade-off.  The comparison consists of 

a simple estimate of the distances between the one 

architecture subject of analysis and the best performing 

architecture in both of the trade-off objectives. 

 

 
Figure 9. Selected architecture performance plotted 

on Cost, NOx, Cargo, and Fuel tradespaces. 

The selected trade-offs are the most likely that the 

teams considered in their design walks, according to 

their statement of design principles (goals), and the 

attention allocation data collected.  Every trade-off is 
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equally weighted, so that a “Global Rank” is calculated 

simply aggregating the “Trade-off Ranks”. 

In cases were the distances are similar, distances to 

an imaginary point that would be non-dominated have 

been calculated.  That is the case with Team 3 and 

Team 4’s solutions in Cargo Moved vs. Fuel Cost, and 

Team 3 and Team 5 in NOx Emissions vs. Fuel Cost.  

This is shown in Figure 10, the intent is to illustrate 

possible easy ways to calculate relative ranks. 

 
Figure 10. NOx vs. Fuel Cost by Team. Distances to 
an imaginary non-dominated point in team 3 & 5’s 

solutions. 

Table 11. Performance ranking 

 
According to this performance assessment, Team 1, 

2, 4, and 5 performed better than Team 3.  However, 

Team 3 was the only team that stated slightly different 

design goals giving Emissions Reduction a higher 

priority than the other teams.   

We observe that even on NOx Emissions vs. Initial 

Cost, Team 1, 2, and 5 perform better on NOx 

Emissions (and even dominate Team 3’s solution).  

Another example is with NOx Emissions vs. Fuel Cost, 

whereby we can see the same on NOx Emissions and 

both Team 1 and 2 dominate Team 3’s solution.  Then, 

it could be argued that Team 1, 2 and 5’s higher 

performance ranking than Team 3 is justified. 

 

4. Key Findings 

 

For this maritime cluster expert workshop, a model 

and simulation of the system, the marine crude oil 

shipping industry, was effective in enabling teams to 

enumerate possible design variants and to visualize the 

tradeoffs of various configurations.  

To assess cognitive behavioral aspects, during 4 

pilots workshops and one quasi-experiment this 

research prototyped methods for instrumenting the 

individual’s attention allocation processes. We also 

observed decision-making and learning aspects of the 

attention-decision-learning cycle of influence. These 

sensors and the quasi experiment platform are work in 

progress. 

 

4.1. Proposed Hypotheses 
 

This quasi-experiment leads the authors to propose 

a more formal exploration of five testable hypotheses 

(shown in Figure 12). The units of analysis are 

individuals and teams. 

 
Figure 11. Testable hypotheses 

The quasi-experimental results – not conclusive by 

themselves - provide insights for a preparation of 

Do higher-performing teams explore more through 

their design walks than lower performing teams?  

H1: Higher-performing teams enumerate more architectures 

than lower performing teams. 

Do higher-performing teams learn more through their 

design walks than other teams? 

H2: Higher-performing teams encounter more surprises 

than lower performing teams. 

H3: The design walk of higher-performing teams contains 

more path-dependent sequences of systemic relevance, than 

the design walk of lower performing teams. 

Do teams with clear goals learn more through their 

design walks than teams with unclear goals? 

H4: Teams that agree on clear design goals encounter more 

surprises than teams with unclear goals. 

Do teams that approach design problems from different 

perspectives learn more through their design walks than 

teams with narrow perspectives?  

H5: Teams that focus their attention on more problem 

variables encounter more surprises, than teams that spread 

their attention over fewer problem variables. 
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scaled experiments with controlled testing of 

hypotheses.  In this case: 

H1: Higher-performing teams enumerate more 

architectures, than lower performing teams. 

Teams 1, 2, and 5 enumerated 17, 14, and 18 

architectures, respectively, while Team 3 enumerated 6 

architectures only.  Team 4 is excluded from this 

evaluation, as they approached the design challenge in 

a fundamentally different way than the other teams. 

H2: Higher-performing teams encounter more 

surprises, than lower performing teams. 

Teams 1, 2, and 5 recorded 14, 7, and 10 surprises, 

respectively, while Team 3 encountered 4 only.  Team 

4 recorded 5 insights through their analysis, but once 

again, it is difficult to compare this figure with the 

others because of the different approach they followed. 

H3: The design walk of higher-performing 

teams contains more path-dependent sequences of 

systemic relevance, than the design walk of lower 

performing teams. 
This hypothesis addresses the idea that higher-

performing teams learn more through their design 

walks, than lower performing teams. 

This hypothesis could not be evaluated, as only 

Team 1’s design walk was studied in depth. 

H4: Teams that agree on clear design goals 

encounter more surprises, than teams with unclear 

goals. 

In the main experiment, all teams seem to have 

defined more clear design goals at the outset of the 

challenge, as opposed to what was observed in the 

previous pilot experiment, and the attention allocation 

data confirms these goals, except for Team 3. 

While Team 3 mentioned a design goal in 

minimizing Emissions, we observe that Team 3’s 

attention allocation data indicates a higher focus on 

Cargo Moved (not Emissions).  This finding suggests 

that Team 3 did not focus on their agreed design goals. 

This could be verified by reviewing the audio files.   

H5: Teams that focus their attention on more 

problem variables encounter more surprises, than 

teams that spread their attention over fewer 

problem variables. 

In this quasi-experiment, the higher performing 

teams explored more of the tradespace than lower 

performing teams. 

 

4.2. Discussion and Lessons 
 

The team performance ranking method used in this 

thesis project should be reviewed, and more precise 

algorithms developed. Rather than only surprises, one 

can explore more types of learning events, as we have 

seen that not only unexpected results can trigger 

reflection and learning. Consolidation of insights might 

also be considered as a learning event. 

Machine audio analysis proved infeasible in the 

experiment conditions, making “manual” analysis the 

only way to index the recordings.  Alternative methods 

for audio analysis should be developed. Sentiment 

analysis of audio files could be implemented, whereby 

validation of surprises could be obtained.  Possibly, 

non-disruptive video recording tools could be tested for 

capturing/ validating team’s mood correlating it to the 

timestamp of surprises. 

All steps of the experiment procedure (incl. 

registration, pre-survey, and post-survey) should be 

integrated within one platform that makes the 

experiment participation seamless. Further work 

should also focus on the scalability and reproducibility 

of experiments in an industrial setting for collection of 

larger amounts of data. 

 

4.3. Future Work 
 

Based on ongoing and future work we will report in 

detail on the chosen approach to instrumentation, early 

results, implications for subsequent rounds of 

experiments and the consistency of observations with 

other recent literature. We will also lay out the specific 

testable hypotheses we intend to test before launching 

an at-scale, reproducible experiment. 
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