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Abstract 
 

Technology positions of a firm may determine its 
competitive advantages and innovation opportunities. 
While a tangible understanding of the technology 
positions of a firm, i.e., the set of technologies the firm 
has mastered, can inform innovation and competitive 
intelligence, yet such positions are heterogeneous, 
intangible and difficult to analyze. Herein, we present a 
data-driven network visualization methodology to 
locate the knowledge positions of a firm as a subspace 
of the total technology space for innovation and 
competitive intelligence analytics. The total technology 
space is empirically constructed as a network map of all 
patent technology classes and can be overlaid with the 
knowledge positions of a firm according to its patent 
records. This paper demonstrates how to use the system 
to conduct historical, comparative and predictive 
analyses of the technology positions of individual and 
different firms. The methodology has been implemented 
into a cloud-based data-driven visual analytics system – 
InnoGPS. 
 
 
1. Introduction  
 

To compete and grow, technology firms need to 
continually exploit the technologies that they have 
mastered and also explore additional technologies for 
new products and services [1]-[3]. The variety of 
previously mastered and all unexplored technologies 
together constitutes the total technology space [4]-[6]. 
The specific set of technologies and related knowledge 
mastered by a firm defines its technology positions in 
the total technology space [7],[8]. Then, its pursuit of 
innovation and growth can be viewed as a process of 

searching (either exploiting or exploring) and 
(re)combining technologies within or beyond its prior 
knowledge positions [3],[9],[10]. 

In the total technology space, the specific knowledge 
positions of a firm may be distant or proximate to other 
unexplored technology domains [11]. Two domains are 
proximate or distant if similar or distinct knowledge or 
capabilities are required to design the technologies in 
them. It will be relatively easy and feasible for a firm to 
comprehend, learn and synthesize additional 
technologies that are proximate to its knowledge 
positions than the distant ones [10],[12],[13]. Therefore, 
the technology positions of a firm are generally built up 
incrementally through a path-dependent learning 
process shaped by its prior positions [14],[15]. 
Meanwhile, exploring distant domains from a firm’s 
prior and present capability positions may unleash the 
potential for radical innovation despite a higher risk and 
resource requirements. For growth and sustainability, 
firms need a balance between exploitation and 
exploration for both incremental innovation 
(economically important for the short run) and radical 
innovation (strategically important for the long run).  

Different firms may have different intents and 
strategies for growth and innovation, and develop 
different positions. Such positions, and in particular 
their structural embeddedness in the total technology 
space, will influence the firm’s future innovation 
potential and competitive advantages. Therefore, a 
tangible understanding of the technology positions of a 
firm within the total space of all technologies may 
provide innovation guidance and competitive 
intelligence. However, such positions of a firm are often 
heterogeneous, complex, intangible and difficult to 
understand and analyze. To address this challenge, we 
present a data-driven visualization methodology to 
support the assessment, comparison and sense-making 
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of the relative technology positions of firms in the total 
technology space for competitive intelligence. 

The methodology locates the technology positions 
of a firm as a subspace of the total technology space, and 
then assess and compare the subspaces of different 
firms. We operationalize the conceptual “total 
technology space” as an empirically constructed 
network map of all patent technology classes defined by 
World Intellectual Property Office (WIPO) in line with 
a few recent studies on patent mapping [16]-[18]. The 
concept of technology positions of a firm is 
operationalized as the patent classes where the firm’s 
patents have been assigned. Specifically, we utilize the 
United States Patent & Trademark Office (USPTO) 
database to create the total technology space map and 
also identify the knowledge positions of a firm on the 
map. 

In next sections, we will present the methodology 
after reviewing the related work, and then demonstrate 
the methodology via a case study. 
 
2. Related work  
 

A few recent studies in the information science 
literature have constructed network maps of patent 
categories [4],[16],[17] and associated these categories 
that are more often called as patent classes by mining 
the patent database. In such a network, the nodes 
represent technology domains and are operationalized 
as all patent classes defined in a patent classification 
system, such as the International Patent Classification 
(IPC), to represent technology design domains, e.g., 
combustion engines. The links among patent classes are 
weighted according to the knowledge proximity 
between technology domains, measured using massive 
patent data [11],[19]. In contrast to the patent mining 
and analysis works focused on small samples of patents, 
such network maps cover all technology classes and 
utilize the entire patent database to compute knowledge 
proximity deriving statistical significance. This 
mapping process helps to provide a picture of all known 
technologies and their relationships as complete and 
accurate as possible in terms of knowledge proximity 
(or distance). In this way such maps approximate the 
total technology space. 

To create such maps, patent data-based measures of 
knowledge proximity between patent classes are 
required and expected to capture the intuition that the 
knowledge and capabilities required to design 
technologies in one class can also be easily used for 
designing technologies in the other. Some measures 
mine patent reference information. Jaccard index [20] 
can be used to calculate the count of shared references 
of a pair of classes normalized by the total count of all 

unique references of patents in either class [21],[22]. 
The cosine similarity index, i.e., the cosine of the 
vectors of patent references made from a pair of classes 
to all other classes or patents, is the most popularly used 
metric [11],[16],[17]. Other measures mine the co-
classification information, i.e., how often two classes 
are co-assigned to the same patents [19]. For instance, 
Breschi et al. [6] measured the cosine of respective 
patent classes’ vectors of occurrences with all other 
classes in patents. Dibiaggio and Nesta [21] measured 
the deviation of the observed co-occurrences of class 
pairs in patents from random expectations. Interested 
readers may refer to a recent review and comparison of 
the most popular knowledge proximity measures used 
in patent mapping [11]. 

Note that, the networks of patent technology classes 
are rather consistent over time [11],[24] regardless of 
the choices of knowledge proximity measures. For 
example, a recent longitudinal analysis [11] showed that 
the changes of all links’ weights and their relative 
rankings by weights over time are trivial. Such stability 
of the measurements and mapping may be the result of 
the innate but latent proximity between different 
physical technologies, e.g., computing and coating. That 
is, the proximity or distance between physical 
technologies has an innate physical nature; the 
technology space is also a latent physical existence. 
Therefore, the technology space approximations using 
data from different time periods are not supposed to 
vary, if sufficient data are computed and statistical 
significance is ensured. 

In turn, the stability of the patent technology 
networks allows their utilization for longitudinal 
analysis of certain patent portfolios as subgraphs of the 
network map covering all patent classes. For instance, 
prior studies have empirically shown firms [6],[21],[25] 
and regions [25],[26] tend to first diversify into new 
technology domains near their prior domains due to the 
relative ease to master new but proximate technologies. 
Our prior analysis of 2 million inventors and 4 million 
patents granted from 1976 to 2010 in the USPTO 
(United States Patent and Trademark Office) database 
statistically shows that inventors are far less likely to 
succeed in obtaining a new patent in new technology 
classes that are more distant to the classes of their prior 
patents [10]. In another analysis of the historical patents 
for hybrid electrical vehicles (HEV), we found the HEV 
patents granted in new classes are more likely to be in 
those more proximate to the classes containing prior 
HEV patents [27]. 

Taken together, these prior studies on the network 
mapping of patent data have provided a ground for us to 
utilize the patent technology space map to develop a 
methodology and a tool to aid firms in innovation and 
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competitive intelligence analyses. In the following 
section, we will describe the methodology. 
 
3. Method  
 
3.1. The technology space map 
 

The core of the methodology is the background 
network map that approximates the total technology 
space. The technology space network includes all the 
122 meaningfully defined 3-digit international patent 
classes (e.g., combust engine, nanotechnology) to have 
the most comprehensive coverage of the conceptual 
total technology space. Although one can also use 4 to 7 
digit patent classes, prior studies have suggested 3- digit 
classes are the most suitable and stable representations 
of technology domains [17] and provide the best map 
resolution and ease for visual analytics [18]. These 
patent classes as network nodes are linked and 
positioned according to the knowledge proximity 
among represented technology domains. 

Herein, the knowledge proximity between each pair 
of technology domains is calculated as the cosine of the 
angle of the two vectors representing two corresponding 
patent classes’ distributions of backward references to 
specific unique patents, formulated as 

 

 

(1) 

 
where Cij denotes the number of citations of all patents 
in patent class i to the specific patent j; k belongs to all 
patents. The backward references of the patents in a 
technology domain approximate the knowledge base of 
the domain. The proximity value in [0,1] indicates the 
similarity of the knowledge bases of two domains. 

Despite the existence of other measures of the 
relationships between patent categories [11],[28],[29], 
this metric is chosen for its high explanatory power on 
firms’ historical diversifications across technology 
domains according to our statistical analysis [18]. To 
ensure statistical significance, more than 6 million 
granted patents in the USPTO database are used to 
calculate the knowledge proximity between each pair of 
the 122 technology domains. Figure 1 shows the total 
technology space map based on the knowledge 
proximity measure above. The size of a node 
corresponds to the total number of patents in the 
corresponding technology domain. 
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Figure 1. Technology space map of InnoGPS platfrom and positions of GM between 2010-2017 
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3.2. Overlay the map  
 
For our interest in the technology positions of a firm, 

the total technology space map is overlaid by 
highlighting the subset of technology domains where the 
firm has been granted patents. Each patent has one or 
multiple patent classes. A firm may be present in one or 
multiple technology positions (i.e., domains) in the total 
technology space. For instance, the total technology 
space map in Figure 1 is overlaid with the technology 
positions of General Motors (GM) between 2010 and 
2017. The red colored nodes are GM’s technology 
positions, and the intensity of red corresponds to the 
portion of GM’s patents in the domain over its total 
patents during the chosen time period. The grey colored 
domains do not host any patent of GM during the same 
time-period and represent the technology whitespace for 
the firm to explore for innovation, diversification and 
growth opportunities in future.  

In turn, such an overlaid map can be used to assess 
the technology positions of a single firm at a time or 
their evolution over time and explore the next positions 
in future. The highlighted positions of different firms on 
the same background map may allow the visual 
comparison of different firms in terms of their 
technology positions for competitive intelligence. 
 
3.3. Assessment of the technology positions of a 
firm 
 

In addition to the overlay visualization, network-
based metrics can be used to quantitively evaluate the 
set of technology positions of a firm as a sub-network of 
the total technology space network. Hereafter, we 
consider four measures. 

Entropy reveals the spread of technology positions 
of a firm in the total technology space or the extent of 
technological diversification of the firm, and takes the 
form of information entropy as follows 

 

 
(2) 

 
where xi is the portion of the firm’s patents in 
technology domain i, and C is the maximum entropy 
attainable when the patents of the firm are equally 
distributed across all technology domains i. 

Coherence concerns the proximities among the 
technology positions of a firm and implies the potential 
or the ease to recombine the mastered technologies 
within the firm’s portfolio for new products or services 
in the form of incremental innovation. It is calculated as 
the weighted-average proximity between all pairs of 
technology positions of a firm. 

 

 

(3) 

 
Expandability denotes the capacity of a firm’s 

present technology positions to be further expanded into 
unexplored domains (i.e., the whitespace), given their 
locations and connectivity in the heterogeneous total 
technology space. It implies the firm’s potential to 
synthesize unexplored technologies with the ones that 
the firm has mastered for innovation opportunities. It 
can be calculated as the weighted average proximity 
between the firm’s current technology positions and all 
other unexplored domains in the total space. 

 

 

(4) 

 
where j is the set of unexplored technology domains. A 
is the maximum weighted degree of nodes in technology 
space, and it is used to normalize the metric value into 
the range [0, 1]. 

Orientation denotes the extent of overlap of the 
present technology positions of the firm (i.e., the 
subnetwork) with the heterogeneous structure of the 
total technology space and indicates the level of general 
technology development of the firm. Its formula takes 
the form of soft cosine similarity as following. 

 

 

(5) 

 
where ai is the number of firm’s patents in technology 
domain i and bj is the number of all patents in domain j. 
Taken together, these metrics provide a systemic 
assessment of the technology positions of a firm from 
different but complementary perspectives. 
 
3.4. The proximity of a firm’s positions with 
unexplored domains and the positions of other 
firms 
 

One can further identify the unexplored whitespace 
domains that are most proximate to the firm’s present 
positions, according to the network structures around its 
positions. Such nearby domains host the new 
technologies that the firm can most easily learn, 
comprehend and utilize for new products and services, 
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because they are based on highly similar knowledge 
with that of the firm’s current technologies. For each of 
the domains in the white space, we calculate its 
weighted average proximity with all the technology 
positions of the firm as follows: 

 

 (6) 

 
where i belongs to all the current technology positions 
(the red nodes); j represents each of the unexplored 
domains (i.e., the grey nodes) in the network. 

In addition, one can also assess the knowledge 
proximity between the technology positions of two 
different firms using the soft cosine similarity as 
following. A high value of this metric suggests two 
firms occupy similar technology positions and are likely 
to compete. A low value suggests two firms’ technology 
positions are distant in the technology space, and 
unlikely to compete or even collaborate. A modest value 
may suggest two firms may either collaborate, compete 
or both. The equation (5) can also be used to calculate 
technology position proximity between two firms where 

bj now corresponds to the number of the second firm’s 
patents in technology domain j. 

In the following section, we will demonstrate the use 
of the data-driven methodology, including the overlay 
visualization and network-based metrics, for 
competitive intelligence analyses of a pair of firms in 
the automotive sector, General Motors and Toyota 
Motor Company. 
 
4. Case Study 
 
4.1. GM versus Toyota 

 
Figure 1 visually highlights the technology positions 

of GM as a subspace, as opposed to the white space, in 
the total technology space. The leading positions, 
according to the red color intensity, are “electronic 
communication” (hosting 29.7% of GM’s patents in the 
time period), “computing” (12.6%), “vehicles in 
general” (10.1%), “measuring & testing” (8.2%) and 
“signaling” (7.4%). This visual finding may explain 
GM’ strategic emphasis on car telematics, for example, 
the successful OnStar system for in-vehicle safety, 
security, navigation, and remote diagnostics. The 
competitors of GM would be interested to visually 
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i j
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Figure 2. 5 most proximate technology domains to GM’s present position in technology space map 
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observe such positions and monitor their changes over 
time. 

For the GM itself, the relative proximity or distance 
of such positions with the white space may guide its own 
search for new technologies in the neighboring and even 
distant domains in the whitespace for next innovations. 
Figure 2 uses purple color and yellow circle to highlight 
the 5 domains in the whitespace of GM’s technology 
positions (from 2010 to 2017) that have the highest 
weighted average knowledge proximity (calculated 
using Equation 6) to GM’s current technology positions 
(i.e., the red nodes). These 5 most proximate domains to 
GM’s present positions are “nano-technology”, “sheet-
binding”, “information storage”, “sports & 
amusements”, “electric techniques”. These nearby 
domains host the technologies that GM has yet utilized 
for its existing products and services, but can most 
easily learn, comprehend and synthesize with its 
previously mastered technologies for new products or 
services. Such ease of feasibility is enabled by high 
knowledge proximity between them and the 
technologies that GM has mastered. Therefore, these 
domains present near-term innovation and 
diversification opportunities for the firm. 

In addition to single-firm analyses, the total 
technology space map can also serve as a benchmark for 
the comparison of the technology positions of different 

firms. Figure 3 uses the same total technology space 
map as the background, but now overlays it with the 
technology positions of Toyota Motor Company based 
on the classifications of Toyota’s patents during the 
same time-period (2010 to 2017). It is visually apparent 
that Toyota has more diversified technology positions 
including many small domains, whereas GM is only 
present in relatively large domains. For example, Toyota 
has mastered technologies in “organic chemistry”, 
“inorganic chemistry”, “physical or chemical process”, 
“fuels and chemicals”, “biochemistry & genetic 
engineering”, “organic macromolecular compounds”, 
etc., where GM has zero presence. Toyota is considered 
the global technology leader in alternative fuels and fuel 
cell vehicles. It is the only automotive company that has 
been selling proton exchange membrane fuel cell-
powered sedans in the passenger car market. 

“Vehicles in general” (hosting 24.3% of its patents) 
is still the largest technology position of Toyota 
(indicated by the red color intensity of the 
corresponding node at the bottom right area of Figure 3) 
despite its wide spread in the total technology space. 
Other strongest positions of Toyota include 
“computing” (9.4%), “electric elements” (8.7%), 
“measuring & testing” (7.5%) and “land vehicles” (5%). 
In contrast, GM’s strongest technology position is 
actually “electric communication”, as visually revealed 

Figure 3. Positions of Toyota Motor Company between 2010-2017 in technology space map 
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in Figure 1. In brief, the overlay map visualizations 
reveal the differentiation of technology positions of GM 
and Toyota and suggest the fundamental differences in 
their competitive advantages and strategies (e.g., 
telematics versus alternative fuels). 

We apply Equation (5) to calculate the weighted 
proximity between the heterogeneous sets of technology 
positions of GM’s and Toyota’s. The value is 0.63, 
indicating only a modest similarity. These two firms that 
are considered head-to-head competitors have indeed a 
sufficient differentiation in their technological 
capabilities. We further calculated the weighted 
proximities of the technology positions of a group of 
automotive firms (GM, Toyota, Ford, Nissan), 
telecommunication firms (Cisco, Qualcomm, Ericsson, 
Broadcom and Huawei) and software and internet firms 
(Facebook, Google, Amazon and Microsoft), and used a 
force-directed algorithm to compute and visualize the 
proximity versus distance relationships among all these 
firms in one inter-firm network, as shown in Figure 4. 
The clustering structure visually reveals that GM is, in 
fact, more proximate with the telecommunication firms 
than other automotive firms. For instance, GM’s 
technology position proximity to Huawei is 0.95, 
whereas its proximity to Ford Motor is only 0.4. 

 

 
Figure 4. Knowledge proximity among the technology 
positions of internet, telecommunication and automotive 

firms. The value next to an edge is the knowledge 
proximity (calculated using Equation 5) between the 

technology positions of each pair of firms. 
 

In addition to data-driven visual analysis, one can 
also utilize the network-based metrics introduced in 
section 3 to assess and compare the technology positions 
of different firms in the total technology space. Table 1 
presents the entropy, coherence, expandability and 
orientation values of the technology positions of GM 
and Toyota. Higher entropy value of Toyota indicates 
that its technology positions are more spread out and 

diversified in the total technology space. Higher 
coherence and expandability values of GM indicate 
greater prospects for next incremental innovation within 
the present positions and radical innovation via 
exploring the whitespace. The positions of both firms 
are similarly and modestly oriented (0.74 and 0.72) 
toward the general structure of the total technology 
space. 
 
Table 1. Network metrics to assess and compare the 

technology positions of two firms (2010-2017) 
Metrics GM Toyota 

Entropy 0.43 0.66 
Coherence 0.17 0.06 
Expandability 0.24 0.08 
Orientation 0.74 0.72 

 
4.2. InnoGPS: Data-driven visual analytics 
system 
 

The foregoing case study and multifaceted analyses 
showcase the sense-making power of our data-driven 
visualization methodology for historical, comparative 
and predictive analyses of firms’ technology positions. 
This methodology, i.e., overlaying the total technology 
space map with a firm’s technology positions based on 
public patent data, is aimed to enhance knowledge 
management, technology road mapping, and 
competitive intelligence analysis toward a more data-
driven and visual-informed fashion. 

To support relevant research and practice, we have 
implemented the data-driven visualization methodology 
in a cloud-based system called InnoGPS 
(www.innogps.com), which stands for “Innovation 
Global Positioning System”, as the core function of the 
system is to position firms, individuals or regions in the 
total technology space according to their innovation 
records, and make use the information of such positions, 
relative to the white space, in the total technology space, 
for innovation and competitive intelligence. The 
functions and design of InnoGPS are largely analogous 
to the GPS that we use for positioning, neighborhood 
exploration, and direction finding in the physical space. 
Figure 5 is a screenshot of InnoGPS. 

In addition to the function to visually position a firm 
in the map and quantitatively analyze heterogenous 
network positions, the system also reports detailed 
information of the firm’s inventors and patents in each 
of the technology positions of the firm, which is 
valuable for competitive intelligence analytics. The 
inter-firm knowledge proximity analytics as illustrated 
in Figure 4 are also automated in InnoGPS. For 
innovation intelligence, InnoGPS requires only one 
click to highlight the white space domains according to 
their proximities to the firm’s positions and recommend 
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network routes from the firm’s current positions to any 
chosen white space domain for the planning of 
incremental technology capability building into the 
future. 

 
Figure 5. InnoGPS platform 

 
5. Summary 

 
This paper presents a new data-driven visualization 

methodology and a system to assess and compare the 
technology positions of firms in the total technology 
space for competitive intelligence. The methodology is 
based on the synthesis of innovation theories, network 
analysis and visualization, information sciences, and 
patent data. The GM-Toyota comparative case 
demonstrates its power for visual sense making. Its 
implementation in the cloud-based InnoGPS system is 
aimed to provide firms and managers with rapid, data-
driven, scientifically grounded, and visually-informed 
innovation opportunities and competitive intelligence. 

Moving forward, the utility and effectiveness of our 
data-driven methodology and the InnoGPS are still 
conditioned on a few maps and system design factors 
and need to be further tested and exploited. For instance, 
4- to 7-digit classes as domains may provide more 
nuanced information, whereas 3-digit classes may 
provide analytics at a more macro level. Furthermore, 
micro-level analysis of technology classes may reveal 
indications of varying relations in technology space. 
Alternative knowledge proximity measures and 
visualization techniques may lead to different network 
structures and map layouts, affecting the human 
understanding of the visual results. Evolutionary 
analysis of network metrics may provide indications on 
the innovation strategies and development stages of 
firms. Future research is required to explore and 
experiment alternative map construction strategies and 
network analysis methods.  

The general framework constituted by the data-
driven methodology can be modified to various kinds of 
maps for different mediums. One such medium can be 
science domain, where a map of scientific fields can be 
constructed using enormous scientific publications data 
available to position research institutions on the space 
of science. 

In conclusion, we hope this research may invite 
more uses of the data-driven visualization 
methodologies in both research and practices for 
innovation and competitive intelligence. 
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