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ABSTRACT 
 

Mathematics is often used to facilitate a clear 
and organized presentation of economic theories 
and problems.  It provides a simplified approach 
for setting up models, making explicit 
assumptions about the models, finding optimal 
solutions, and extending the results by varying 
the parameters and assumptions of the models.  
Many economists would agree that a large gain 
in clarity and economy of effort can be achieved 
by incorporating mathematics into economic 
teaching. What limits the use of mathematics in 
teaching economics is inadequate preparation of 
students in quantitative methods.   In addition, 
some mathematical manipulations and 
calculations turn out to be time consuming and 
tedious for class presentations. This paper argues 
that both of these problems can be overcome by 
using modern mathematical software in teaching 
economics. 
 
 
I- Introduction 
 
As a tool, mathematics can be used to facilitate a 
clear and organized presentation and test of 
economic problems.  It provides a basis for 
setting up a model, making explicit assumptions 
about the model, finding specific optimal 
solutions, and extending the results by varying 
the parameters and assumptions of the model.  A 
large gain in clarity and economy of effort can be 
achieved by incorporating mathematics into 
economic analysis.   

 
What limits the use of mathematics in teaching 
undergraduate courses in economics is students' 
preparation in mathematics.  It is a known fact 
that many students entering higher educational 
institutions do not have enough preparation in 
mathematics to allow them to manipulate 
mathematical symbols, to do numerical 
calculations and to graph the mathematical 
relationships.  These techniques are the basic 
tools of economic analysis and the need for them 
is of even greater importance in the field of 
applied economic.  In many colleges, the lack of 
mathematical preparation has resulted in 
canceling quantitative parts of economic 
curriculum, lowering the course standards, and 
omitting some of the advanced topics.  Even if 
students had enough preparation in mathematics, 
presenting certain topics in the classroom using 
the traditional methods of on-the-board 
manipulation is often very time consuming and 
tedious. 
 
Software utilization in the classroom has the 
potential to radically transform teaching style 
from a static lecture walk and talk format to a 
technologically dynamic environment with an 
interactive and collaborative learning process.  
Students not only have the benefit of learning 
from lectures but also have access to expert 
online resources implemented in the software 
that makes the possibility of self study even 
more likely. The use of quantitative software 
creates a learning community in which the 
differentials in quantitative-skill levels become a 
secondary to conceptual understanding of course 
materials and application of the knowledge to 
real world problems. 
 
Since the introduction of mathematical software 
programs, Mathematica, Maple, MathLab, and 
others have become an increasingly standard 
computational environment for scientists, 
engineers, financial analysts and many others.  
However, economists have rarely used these 
software programs in teaching.  The use of these 
programs in teaching can help to remove 
students handicap in mathematical analysis and 
allow them to concentrate more on the economic 
concepts, theories, and the structure of economic 
optimization rather than worrying about details 
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of numerical calculations and symbolic 
manipulations.  Using these powerful and user 
friendly software programs which can handle 
symbolic, numeric, and stochastic economic 
models, students can experiment with the 
dynamics of economic theories.  The two-
dimensional and three-dimensional graphic 
features of these programs can help students with 
visualizing the relationship among different 
economic variables and can be used in 
presenting graphical solutions of economic 
problems. 
 
Today, it is critical for students of business and 
economics to be fully familiar with mathematical 
concepts and to be equipped with major 
mathematical software programs that can help 
them in modeling a problem, finding the solution, 
and analyzing it by varying the assumptions and 
parameters of the problem.  The application of 
quantitative software in teaching economics 
excels economic students in learning and 
practicing economics and motivate them to 
become competent in economic theory and 
decision process.  
 
Mathematica has been utilized in formulating 
and analyzing several advanced economic and 
financial models (Varian, 1992 and 1996, ).    
However, there are no literature that we know of 
which has addressed the pedagogical benefits of 
using quantitative software in teaching and 
learning quantitative subjects in economics and 
decision science.   This paper uses several 
features of Mathematica, including its power in 
performing numerical calculations, graphic 
presentation, and symbolic solutions of equations 
to present cases in which the use of quantitative 
software can be of enormous benefit in teaching 
and learning environment.  The ease with which 
the numerical and graphic solutions can be done 
by a quantitative software and the similarities 
between the mathematical formulations and the 
software modeling is an argument for using 
quantitative software in teaching economics.   
 
II-  Numerical Calculations:  Present Value 
Problem 
One of the topics that easily yields itself to 
numerical calculation power of quantitative 
software is the present value concept.  Suppose a 
stream of $R is accrued for the next  n yeas.  The 
present value of the cash flows at a discount rate 
of  r can be formulated in Mathematica as 
follows: 
 

Clear [n, t, r, PV] 
r = ?; n = ?; R =?;  

PV
t 1

n
R

(1  r) t
=

=
+Σ  

The present value formulation in Mathematica is 
quite the same as you may find in any standard 
text book.  As well, a decision maker or 
instructor can set the values of the parameters or 
change the values to demonstrate the relationship 
among the three parameters of the problem.  For 
example, with a numerical values of r = 6%, n = 
10 years, and R = $100, the PV =  $736.01.  If 
the stream of the values are accrued over the 
lifetime (consol), n = ¥, and the present value of 
the consol equals to $1666.67.  The Mathematica 
solution is done as follows: 
 
Clear [n, t, r, PV] 
r = .06; n = Infinity; R=100;  

PV
t 1

n
R

(1 r)t=
=

+Σ  

{{$1666.67}} 
 
The graph of the present value of stream of $100 
annual payments forever as the discount rate 
changing from zero to 10%, with an increments 
of .05% can be plotted using the Mathematica 
command "ListPlot" as: 
 
Clear [n, t, r, PV] 
R = 100; n = Infinity; 

PV
t 1

n
R

(1  r) t
=

=
+Σ ;

 

pvalue = N[Table [PV, {r, 0.1, .005} ] ] ; 
ListPlot [pvalue] 
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Present Value and Growth 
 
The present value problem above, can be 
extended to include growth of the future earnings.  
Suppose the stream of future cash flows is 
growing at an annual rate of g per cent.  The 
present value calculation with the revenue 
growth assumption can be formulated as follows:   
 
Clear [R, r, g, t, n] 
R= ?;  g= ?;  r = ?;  n = ?; 

GPV
t 1

n
R (1 + g) t

(1  r) t
=

= +Σ  

 
With a hypothetical numerical assumption of 
initial revenue R = $100, n = 10 years, g = 10%, 
and r = 6%, the present value is $1232.91. 
 
Clear [R, r, g, t, n] 
R= 100;  g = .10;  r = .06;  n = 10;  

GPV
t 1

n
R (1 + g) t

(1  r) t
=

=
+Σ  

{{1232.91}} 
 
Internal Rate of Return 
 
The "Solve" command of the Mathematica is a 
powerful tool in finding internal rate of return 
(IRR ) for any investment project and its future 
stream of cash flows.  The tool can be easily 
applied in project evaluation, profitability 
indexing, and terminal value calculations.  For 
example, to find the internal rate of return for an 
initial investment of CFo = $24000, with the 

stream of the ca sh flows (NCF) for the next five 
years; NCF1 = $5000, NCF2 = $7000, NCF3 = 
$8500, NCF4 = $6000, and NCF5 = $3500, the 
Internal rate of return is calculated as follows,  
 
Clear [NCF1, NCF2, NCF 3, NCF4, NCF5, 
NCFo, r, IRR] 
NCF1= 5000; NCF2= 7000; NCF3= 
8500;NCF4=6000; NCF5=3500; CFo=2400; 
 

IRR = [Solve[
NCF1

(1 + r)
.

NCF5

(1 + r)5
CFo =  = 0, r] ]N + + −. .

 
{{r -> 0.08279}} 
 
The formulation in Mathematica follows exactly 
the same format of the IRR formulation in any 
standard textbook.   
 
If the stream of cash flows for a project is fixed 
with a constant growth rate of g, the IRR is 
calculated as follows: 
   
Clear [NCF, CFo, g, r, n] 
CFo = 24000; NCD = 800; g= .1; n = 20; 
 

Solve[
NCF (1 +  g)

(1  r)
 -  CFo =  =  0,  r]

t 1

n t

t ;
= +
Σ

 
 
{{r -> 0.0605}}  
 
where, the internal rate of return is 6.05%.  By 
changing the values of the parameters of the 
equation, a decision maker ofr an instructor can 
evaluate the resulting values with minimum 
efforts.  For example, the problem may be solved 
for n, the number of years needed for the project 
to achieve break even.   
 
Clear [NCF, CFo, g, r, n] 
CFo = 24000; NCD = 800; g = .1; r = .0605; 

Solve[
NCF (1 +  g)

(1  r)
 -  CFo =  =  0,  n]

t 1

n t

t
;

= +
Σ

 
 
{{n -> 19.9908}} 
 
 
The "ListPlot" command of Mathematica can be 
used to visually present the effect of changes in 
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growth rate, internal rate of return, initial 
investment, or any other parameters of the 
problem on the outcome of the project.  For 
example, a change in annual revenue growth 
from 0% to 20%, with annual increments of 1% 
will result in the following net present value plot. 
 
Clear [NCF, CFo, g, r, NPV, n] 
CFo = 24000; NCF = 800; r= .0605; n = 20 

NPV
t 1

n
NCF(1  g) t

(1 + r) t
CFO;=

=

+
−Σ  

NPValue=N[Table[NPV, {g, 0,.2,.01}]]; 
ListPlot[NPValue] 
 

5 10 15 20 
Growth 
Interval  

-10000 

10000 
20000 

30000 
40000 
50000 
NPValu
e 

 
III.  Using Graphic Property of Software in 
Linear Programming: 
  
The graphic solution of the linear programming 
problems is a useful method to illustrate the way 
in which the Simplex method arrives at the 
optimal solution.  The iterations to achieve 
optimal final solution starts from the degenerate 
corner solution at the origin and progresses to 
optimal solution in several iterations, with each 
iteration improving the solution over the 
previous iteration.  To illustrate the use of a 
quantitative software in teaching the linear 
programming problem, let's start with a standard 
linear programming problem given as: 
  
Maximize:  Z = 1.5x1 + x2            
Subject to:   x1 + 2x2 < 7                
                    3x1 +  x2 < 6              
                          x1, x2 > 0                    
 
The first step in solving the problem is to find 
the constraint region. The constraint region is 

the set of points that simultaneously satisfies the 
constraints.  To find the constraint region, graph 
both constraints using the Mathematica 
command "Plot" as follows: 
 
Clear[x1,x2, equ1, cons1] 
equ1=Solve[x1+2x2==7, 
x2];eq1[x1_]:=x2/.equ1[[1]]; 
cons1=Plot[eq1[x1], {x1, 0, 7}]; 
equ2=Solve[3x1+x2==6, 
x2];eq2[x1_]:=x2/.equ2[[1]]; 
cons2=Plot[eq2[x1], {x1, 0, 2}]; 
cons = Show[cons1, cons2] 
region= Show[Graphics[ {Hue[.7], Polygon[{{0, 
0}, {0, 3.5}, {1,3}, {2,0}}]}]] 
Show[cons , region] 

1 2 3 4 5 6 7
X1

1

2

3

4

5

6

X2

 
The Simplex method provides us with a prove 
that the optimum solution of the linear 
programming problems always lies on one of the 
corner points of the polygon or on one of the 
sides of the polygon, if there are multiple 
solutions.  The optimum solution, however, 
depends on the slope of the objective function 
and the point at which the objective function is 
tangent to the constraint region. The constraint 
region and a group of objective lines are graphed 
below  

0.5 1 1.5 2
X1

1

2

3

4

5

6

x2

 
 
as the objective line is moved from the north east 
corner of the quadrant toward the constraint 
region, the first point where the objective line 
touches the constraint region (the point of 
tangency) provides us with the optimum solution 
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to the problem.  In this case, the solution is (1, 3), 
which is the intersection of the two constraints, 
and the maximum value of Z is Z = 11. 
 
The optimum solution can be tested for using  
the Mathematica command "ConstainedMax"  as 
follows, 
 
Clear[x1, x2] 
ConstrainedMax[2x1+ 3x2,{x1 + 2x2 <= 7,3x1 + 
x2 <= 6},{x1,x2}] 
{11,{x1->1,x2->3}} 
 
It may happen that the slope of the objective 
function is the same as the slope of one of the 
constraints.  In that case, the linear programming 
problem will have multiple solutions .  Any 
point on the constraint function which also lies 
on the constraint region will be a solution to the 
problem.  For example, if the objective function 
of the preceding example were Z = x1 + 2x2 , 
which has the same slope as the first constraint, 
the point (0, 3.5), or (1,3), or any point on the 
line joining these two points is a solution to the 
problem. All of these points will maximize Z 
with a value of Z = 7.  The following figure 
shows the case of multiple solutions. 
 
Show[Plot[{eq1[x1], eq2[x1]}, {x1, 0, 2}], 
Table[Plot[-.5x1+i, {x1, 0, 2}, DisplayFunction-
>Identity],  {i, 3, 5 }],Graphics[{Hue[.7], 
Polygon[{{0, 0}, {0, 3.5}, {1,3}, {2,0}}]}]] 

0.5 1 1.5 2
X1

1

2

3

4

5

6

x2

 
 
If the objective line intersects the constraint 
region in one of the vertices lying on the axes 
(point (2, 0) or (0, 3.5)), the firm will produce 
positive amounts of one good and none of the 
other. Such a solution is called a degenerate 
solution.  For example, if the objective function 
was  Z = 4x1 + x2, the solution would be x1 = 2 
and x2 = 0. If the objective function was Z = x1 
+ 3x2, the solution would be x1 = 0 and x2 = 3.5.  
The following figure shows the degenerate 
solution (2, 0). 

 
Show[Plot[{eq1[x1], eq2[x1]}, {x1, 0, 2}], 
Table[Plot[-4x1+i, {x1, 0, 2}, DisplayFunction-
>Identity],  {i, 6, 9 }],Graphics[{Hue[.7], 
Polygon[{{0, 0}, {0, 3.5}, {1,3}, {2,0}}]}]] 
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2
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Sensitivity Analysis  
For the maximizing problem above, let's relax 
the assumption of the fixed inputs and assume 
that the second input (capital) can be increased.  
Given that the first input (labor) is fixed, the 
question is what will be the effect of increase in 
capital on total revenue, on outputs (X1 & X2), 
and what is the limit of the ncrease in capital.  
Formulating the increments in capital to the 
optimizing problem gives, 
 
Clear[z,u, x1, x2] 
fu=Table[ConstrainedMax[ 2x1+3x2,{x1 + 2x2 
<= 7,3x1 + x2 <= 6+i}, {x1, x2}], {i, 20}]; 
u=N[Table[List[i, fu[[i, 1]]], {i, 20}]] 
   

5 10 15 20
Capital

11.5

12.5

13

13.5

14

Revenue

 
 
The solution and the graph above show that as 
capital input increases total revenue will increase. 
With labor input fixed, maximum total revenue 
is achieved when capital input is 22 units, where 
X1=7, X2 = 0, and the total revenue is $14. 
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Now let the first input (labor) be variable and the 
second input (capital) be fixed.  Formulating the 
problem into the constrained optimizing problem 
gives: 
 
Clear[z,u, x1, x2] 
fu=Table[ConstrainedMax[ 2x1+3x2,{x1 + 2x2 
<= 7+i,3x1 + x2 <= 6}, {x1, x2}], {i, 10}]; 
u=N[Table[List[i, fu[[i, 1]]], {i, 10}]]; 
ListPlot[u] 
 

4 6 8 10
Labor

14

15

16

17

18

Revenue

 
 
The solution and the graph above show that as 
labor input increases total revenue will increase. 
With capital input fixed, maximum total revenue 
is achieved when labor input is 12 units, where 
X1= 0, X2 = 6, and the total revenue is $18. 
 
 
IV.  Constrained Optimizing Problem 
 
Solving even a simple numerical example of a 
constrained optimization problem in the 
classroom is a time consuming  task that every 
faculty and student would like to avoid.  The 
similarity between Mathematica and 
mathematical formulation and the ease with 
which the problems can be solved with 
quantitative software provide faculty and 
students with a powerful tool in the area of 
solving optimization, dynamic problems , and 
simulations.  Consider a constrained 
maximization problem, where the constraint is 
an equality. 
  
Maximize:    U = U(X, Y)                   
 
Subject to:    PxX + PyY = M                
 
Where the first equation is the objective function 
in which U(X, Y) is the utility function, assumed 
to be differentiable, and PxX + PyY = M is the 
budget constraint. The problem is to maximize 

the utility function subject to the budget 
constraint.   
 
The solution of this problem follows the standard 
constrained optimization techniques which uses 
Lagrangian function (L), which is formed by 
augmenting  the  objective function and the 
constraint together with the Lagrange multiplier 

(l). 
 

    L = U(X, Y) + l  (M - PxX - PyY)         
 
The mathematical solution to this problem can 
be solved by optimizing the Lagrangian function 

L(X, Y, l) = U(X, Y) + l(M - PxX - PyY).  This 
function may be maximized with respect to the 

three unknown variables X, Y, and l. The first  
order  condition is: 
 

     Lx = Ux - lPx = 0                          

     Ly = Uy - lPy = 0                           

     Ll = M - PxX - PyY = 0                      
 

A point P(X*, Y*, l*) that satisfies the three 
equations of the first-order condition is the 
extremum.   
 

The second order condition for L(X, Y, l) to 
have a maximum at P is that d2L to be negative 
definite at the extremum. To find d2L, find total 
differential of dL with respect to three variables.  
Expressed in matrix form, the second-order 
condition gives, 
 

(dX dY d

Uxx Uxy -Px dX

dY

d

λ

λ
) Uyx Uyy Py

Px Py

−

− −































0

 
   
The quadratic form of the second-order condition 
is said to be negative definite if the bordered 
principal of the bordered Hessian,  H = 

Uxx Uxy -Px

Uyx Uyy -py

-Px -Py 0

















 alternate in sign, 

beginning with the first bordered principal minor 
negative. That is, the second-order condition for 
maximum utility at the point P* requires that  
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Det
Uxx -Px
-Px 0







 < 0 and  

Det

Uxx Uxy -Px

Uyx Uyy -py

-Px -Py 0

















 > 0. 

 
Now let's formulate and solve a numerical 
example of the same problem using Mathematica.  
Suppose a consumer has a utility function 
expressed as U(x, y) = lnxy,  where x and y are 
quantities of two goods X and Y consumed by 
the consumer.  The market price of X and Y are 
$2 and $3, respectively.  The consumer has a 
budget of $120 to spend on the two goods.  To 
solve the utility maximizing problem for the 
consumer and find the optimum quantities of x 
and y, form the Lagrangian function in 
Mathematica format as: 
 

Clear[L, U, x, y, l] 

L  = Log[x y] + l (120 - 2x - 3y); 
sol = Solve[{D[L, x]==0, D[L, y]==0, D[L, 

l]==0}, {x, y, l}] 

Clear[L, U, x, y, l] 

L  = Log[x y] + l (120 - 2x - 3y); 
sol = Solve[{D[L, x]==0, D[L, y]==0, D[L, 

l]==0}, {x, y, l}] 
 
The first line above clears the values of the 
variables from the computer memory.  The 
second line formulates Lagrangian function.  The 
third line derives the first order condition by 
finding the first derivatives of L and by setting 
them zero.  The resulting equations then are 
solved simultaneously and the solution set is 
assigned a name, here "sol".  To find the second-
order conditions, formulate the Hessian matrix in 
Mathematica format at evaluate it at "sol", the 
solution set of the first order condition.   
 

{{  
1

60
 x  30,  y  20}} λ → → →'  

MatrixForm[ 

D[D[L,  x], x] D[D[L, x], y] D[D[L, x], ]

D[D[L, y], x] D[D[L, y], y] D[D[L, y], 

D[D[L, ], x] D[D[L, ], y] D[D[L, ], 

λ

λ λ λ λ























]

 
 

{{

0 2

0 -

1

900

1

400

− −
−

− −

















3

2 3 0
}} 

The determinant of the bordered principal minors 
are formulated as below and are evaluated at 
"sol", 
 

N[Det[
D[D[L,  x], x]  D[D[L, x], ]

D[D[L, ], x]  D[D[L, ], ]
]]/.{sol}

λ

λ λ λ








 
{{-4.}} 
 

N[Det[

D[D[L, x], x]  D[D[L, x], y]  D[D[L, x], ]

D[D[L, y], x]  D[D[L, y], y]  D[D[L, y], ]
D[D[L, ],  x]  D[D[L, ], y]  D[D[L, ], ]

]]/. {sol}

λ
λ

λ λ λ λ







 
{{0.02}} 
Since the determinants of the bordered principal 
minors alternate in sign beginning with the first 
one negative, the Hessian is negative definite and 
the extremum is a maximum.  
 
To see the solution point graphically in three 
dimensions, plot the objective function and the 
constraint together  
 
U = Log[x y]; 
plo1 = Plot3D[U, {x, .5, 40}, {y, .5, 30}] 
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30

40  
The plot of the constraint surface is derived as: 
 
plo2 = Plot3D[2x + 3y -120, {x, 0, 40}, {y, 0, 
30}]  
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The tangency of the utility function and the 
budget constraint is shown in three dimensions 
using the command 
 
Show[plo1, plo2, ViewPoint->{33, 41, 10.6}] 
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To see the solution point graphically in x-y space, 
plot the indifference curves and the budget 
constraint through the contour plot: 
 
Clear[u, x, y] 
con1 = ContourPlot[U, {x, .5, 40}, {y, .5, 20}, 
ContourShading->False] 
con2 = ContourPlot[2x+3y-32,  {x, 0, 40}, {y, 0, 
20}, Contours->{0},  ContourShading->False] 
Show[con1, con2] 
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The Lagrangian multiplier technique may be 
generalized to cases in which a function is 
optimized subject to more than one constraint, 
provided that the constraints are consistent and 
the number of constraints is less than the number 
of variables.  The Mathematica solution to the 
m-constraint case follows the same formulation 
as in this section, with derivatives extended to 
the new variables introduced to the model. 
 
V- CONCLUDING REMARKS 
 
Advances in semi -conductor and information 
technology have breathed a new life into the 
abstract formulas, particularly in decision theory, 
by making it possible for us to visualize the 
concepts in sequential, simplifying, and 
accessible graphical presentations with much 
flexibility in a timely fashion in the classroom 
environment.  Given the increasing importance 
of quantitative decision theory in the coming 
decades, information technology can assist both 
students and instructors in spending more of 
their efforts on the analytical issues rather than 
on routine computational tasks.  It is time for 
instructors to take full advantage of the 
technology in the classroom instructions and 
concentrate more on the concepts and theories 
than on mathematical computations.    
 
VI- END NOTES 
 
1- The benefits from application of Maple in 
teaching economics has been discussed in a 
recent article published in the Journal of 
Economic Education (Boyd, 1998).  
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2- If the number of the constraints is equal to the 
number of the variables,  locating the extremum 
will become a trivial matter of finding the 
intersection point of the constraints. 
 
3-You may have noticed that there are two 
differences between pure income effect and 
income effect of price change. First, they have 
different signs; second, income effect of price 
change is multiplied by x. Hence, from the pure 
income effect, we can get information about the 
sign of the income effect of price change.   
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