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ABSTRACT  

Transfer Learning is a popular technique in Medical Image classification. Transfer Learning methods are extensively applied 

with CNNs such as Resnet, Densenet, VGG16, and Inception, etc. for various medical diagnosis tasks. CNNs are around 

since the 1980s, but 60-80 percent of the TL research in MIC is done in the last three years. While CNNs can be used in 

traditional computer vision domain, they have been ensembled, segmented and improvised recently to resolve multiple MIC 

problems. This review identifies three main challenges in implementing Transfer Learning for Medical Image Classification: 

(1) Overparameterization of deep CNN models, (2) Expensive Computations, and (3) Insufficient availability of labeled data 

in the Medical field. The study also identifies research opportunities in the form of Light-weight architectures and Multi-

stage Transfer Learning which could potentially mitigate the above-mentioned challenges. 
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INTRODUCTION 

Convolutional Neural Networks(CNNs) are powerful image recognition networks built with Convolutional, pooling, and 

fully-connected layers. They use deep learning(DL) methods and architectures for Medical Image Classification (MIC) 

tasks(Altaf et al. 2019; Gao et al. 2019).  The early works of CNNs date back to 1980s with Neocognitron(Fukushima 1980), 

a self-organizing architecture that recognizes patterns based on similarities in geometrical shapes and unaffected by position 

changes. The true success of CNNs in object recognition was witnessed in 2012 after AlexNet(Krizhevsky et al. 2012) won 

ILSVRC, an image classification competition. Since AlexNet’s success, tremendous interest has been generated in image 

classification research, especially in MIC(Yamashita et al. 2018). Extensive research on CNN in MIC is done in recent years 

among various image segmentation and classification tasks(Litjens et al. 2017; Shin et al. 2016). While CNNs can be used 

successfully with their original architectures, they have been ensembled (Majtner et al. 2018), segmented (Wong et al. 2018) 

and improvised (Xu et al. 2018) more recently to resolve multiple MIC problems.  

While Deep CNNs usually require large amounts of labeled data for training purpose to avoid overfitting, Transfer Learning 

(TL), an effective method for data-scarce situations, is extensively applied with ImageNet (a large dataset of labeled natural 

images) pre-trained classic architectures like Resnet (He et al. 2016), Densenet (Huang et al. 2017), VGG16 (Simonyan and 

Zisserman 2014), Inception (Szegedy, Wei Liu, et al. 2015), etc. for various medical diagnosis tasks(Menegola et al. 2017). 

The rapid growth of CNN applications in MIC motivates us to review the current strengths and weaknesses of TL in MIC. 

Analyzing the complex networks and presenting future research directions would help create better MIC solutions. This study 

aims to 1. Identify the current challenges associated with TL in MIC, 2. Present potential opportunities to mitigate the 

challenges, and 3. Provide future research directions. In this review, the articles focusing on TL in MIC are collected from 

digital libraries such as IEEE explore, Arxiv, Pubmed and Google scholar. The search methods include the usage of 

keywords such as "Transfer Learning", "Convolutional Neural Networks", "Medical Image Classification". Furthermore, we 

follow the recommended forward and backward referencing approach, proposed for high-quality literature reviews in the IS 

field (Webster and Watson 2002). In the following sections, we provide a review of TL, identify challenges and opportunities 
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with a focus on Multistage TL and Lighweight Architecture. In the discussion section, we propose a Multi-stage TL 

framework for MIC tasks.  

TRANSFER LEARNING 

TL is the application of features learned in one task for better generalization of a different task (Pan and Yang 2010; Yu et al. 

2017). For instance, in task T1, a model learning the visual features of buildings will be able to learn and generalize the 

visual features of cars in task T2 given the considerable amount of buildings data is provided in task T1. There  are two types 

of transfer learning in CNN, feature extraction and fine-tuning. In the above-mentioned example of TL, feature extraction is 

performed when a CNN learns features from Task 1, then uses the same base network of convolutional and pooling layers by 

replacing the fully connected layer with the Task 2-specific classifier. During this operation, the weights of the convolutional 

base are frozen (thus preserved) and only the new classifier is trained for classification of cars. The features learned from the 

convolutional base are reusable and generic, whereas in the fully-connected layers, representations learned are specific to the 

classes on which the network is trained.  Hence it is replaced for new data(François 2017).  

In fine-tuning, the weights of the convolutional base are slightly altered to match the task 2 problem after training the 

network on buildings data. Unlike feature extraction, fine-tuning requires unfreezing some top-level layers of convolutional 

base and a new classifier is added (together with its parameters learned while the entire conv base are frozen). While 

performing this type of TL, the unfrozen layers of the CNN are trained along with the fully-connected layer when passed 

through new data. Multi-stage transfer learning is applying either feature extraction or fine-tuning more than once, enabling 

customized training pipelines and higher flexibility of reusing representations learned from previous stages in the subsequent 

training tasks. 

CHALLENGES  

Overparameterization 

Many of the MIC studies based on TL use variants of classic CNN architectures including but not limited to Alexnet, 

Densenet, ResNet, Inception, VGG16, etc. CNNs are overparameterized in MIC to gain performance improvements. A recent 

study on understanding TL for MIC(Raghu et al. 2019) reported that standard deep CNNs learn slower when compared to 

lightweight models during the training process because of overparameterization. This challenge could lead to an increase in 

training times and longer epochs because of inefficient learning.  For instance, an Alexnet is combined with the Support 

Vector Machine algorithm(Dawud et al. 2019) for Brain Hemorrhage classification tasks which showed better accuracy than 

the baseline Alexnet model, but it took a larger number of epochs and longer training time to achieve higher accuracy. The 

research(Raghu et al. 2019) also pointed out that TL provides significant benefits instead of training the model from scratch, 

however, the architecture sizes and parameters have negative influences in the case of fine-tuning ImageNet pre-trained 

models.  

Expensive Computations 

A recent study (Wu et al. 2019) uses extra attention modules for gaining discriminative features from the deep layers and to 

decline features that are not required. Using these modules proved to improve the accuracy but increased the computational 

load. Intuitively, shorter training times and lower computational costs would be benefitial to the MIC field if model 

effectiveness is not decreased. Standard CNN models are successful in MIC because of their high amount of depth and large 

number of layers but incur additional computational costs. The Inception network has 7 million parameters that are fewer,  

comparing to other classic CNNs, but still too expensive to be trained on a regular i5 computer. While there is a big 

advancement in Central Processing Units and Graphics Processing Units recently, it is not cost-effective in many real-world 

applications. This situation provides the opportunity to explore Lightweight Architectures (LWAs) that can be applied in 

mobile devices for better usability and efficiency as it is still in its earlier stages (Khan et al. 2019). 

Insufficient Labeled Data 

A dataset is considered labeled if it contains appropriate annotation of the images for all the available classes. For example, if 

a chest X-ray image dataset has two classes "pneumonia" and "normal", each image must be annotated with either of these 

two classes. Labeled datasets are important for MIC, because deep learning architectures depend on  large amounts of labeled 

images for training purpose to provide successful image classification(Menegola et al. 2017). Obtaining large amounts of 

labeled medical image datasets in any domain may be a difficult task (Altaf et al. 2019), comparing with natural images. TL 

can further prosper and create more robust solutions with the availability of sufficient labeled data. Traditional TL methods 

are performing well in the data-scarce conditions, but there is still room for further improvement. In natural images, the 
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differences in features are significant from one image to another, with the images possessing a variety of lightning and 

shapes, but in medical images, these differences can be minute depending on the problem(Erickson et al. 2018), making it 

difficult to learn representations with limited data while using TL method. One effective method used to overcome this 

challenge is Multistage Transfer Learning. 

OPPORTUNITIES 

Multi-stage TL 

While Traditional TL uses fine-tuning and feature extraction, multi-stage TL applies it more than once. This allows us to 

learn features from a similar domain(medical) and perform better on target because of feature similarities(Kim et al. 2017; 

Samala et al. 2019). Modality bridge TL by (Kim et al. 2017) is one of the first studies to implement two-stage TL in MIC, 

they employed pictures from MRI, CT, and X-Ray as bridge datasets and used the target databases from the same domains 

with less annotated images, while the source is still ImageNet(natural images). First, projection function from the source 

database into the feature space of bridge dataset is learned, based on this function, non-linear mapping of feature space from 

source to bridge is done and finally, the classifier learns based on projection function leveraged by bridge database. This 

process supports the domain adaptation of the problem dataset and the source dataset. VGG16 architecture is used to perform 

the experiments and resulted in improving the accuracy in all three modalities (MRI, CT, and X-Ray). 

Another study(Samala et al. 2019), compared the results of single-stage TL with multi-stage to classify malignant and benign 

masses in breast cancer. In the first approach, they simply fine-tuned the pre-trained CNN with digital breast 

tomosynthesis(DBT) data. In a two-stage approach, the pre-trained CNN learned representations from mammography data 

and then in the second stage, it was fine-tuned with the target DBT dataset. The two-stage approach significantly 

outperformed the traditional approach. This research indicates that, in limited data conditions, TL, when applied more than 

once can leverage the knowledge gained through source tasks from unrelated and related domains. 

Lightweight CNNs 

Lightweight Architectures have fewer parameters and are smaller in size compared to standard deep CNNs, however, they 

seem to produce similar accuracies. LWAs enable us to train these models quickly and perform well (Iandola, Ashraf, et al. 

2016). Squeezenets(Iandola, Han, et al. 2016), MobileNets(Howard et al. 2017), ShuffleNet(Zhang et al. 2017), 

MobileNetsV2(Sandler et al. 2019), Plexusnet(Eminaga et al. 2019), NasNets(Zoph et al. 2018), EfficientNets(Tan and Le 

2019), etc. are some of LWAs that are laying path towards more efficient image classification tasks. Each of these models 

possesses different architectural benefits producing better results in image recognition tasks. For example, MobileNets use 

depthwise separable convolutions while SqueezeNets achieve better accuracy by replacing 3X3 convolutional filters with 

1X1 filters to significantly reduce computational costs during training. 

Applications of LWAs in MIC are still in the early stages, but the field is rapidly advancing with proposals of new 

approaches to improve efficiency as mentioned in the earlier section. Many of these models are applied for TL in MIC, for 

example, a recent study on Mobile Dermoscopy for skin cancer detection(Ech-Cherif et al. 2019) uses MobileNetV2 for 

binary classification of benign and malignant cases. This model achieved a 91.33% accuracy when trained with a batch size 

of 32. A prototype of this model was implemented in a mobile app that classifies all the sample images correctly. Another 

study(Shamim et al. n.d.) compares six CNN models, Alexnet, GoogleNet, InceptionV3(Szegedy, Vanhoucke, et al. 2015), 

ResNet 50, Squeezenet, and VGG19 for tongue lesion classifications for both binary and multi-class classification tasks. The 

Squeezenet model achieved the best speed when compared to all other models because of its architecture of fewer 

parameters. Even though Squeezenet achieved competitive results with more complex models, there were some major 

misclassifications of precancerous images as benign, so there still exist issues in LWAs and thus further research is required. 

DISCUSSION AND CONCLUSION 

While recent studies conducted in various medical domains have provided state of the art results, TL in MIC has a 

remarkable potential to further success. Deep CNNs with advanced features facilitated these results. However, challenges like 

overparameterization, expensive computations and insufficient availability of labeled data may cause major hurdles to the 

advancements of TL applications. We identified opportunities in the form of multi-stage TL and LWA as the potential 

remedies to mitigate the above-mentioned challenges to some extent. Multi-stage TL in MIC is largely focused on standard 

deep CNNs in recent history. We encourage future researchers to accelerate research in multi-stage TL using LWAs to reap 

the benefits of shorter training time that could potentially solve the challenges like insufficient labeled data and expensive 

computations substantially. This kind of research is suitable in numerous medical areas including but not limited to 
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Radiology, Neurology, Dermatology, etc. In the future, we plan to implement multi-stage TL with more than two stages of 

TL using LWAs in various medical areas such as Brain, Chest, tongue, etc. Fig 1 below shows the proposed multi-stage TL 

framework with four stages using LWA. Additionally, conducting a systematic literature review with a focus on LWAs 

would be beneficial since there seems a lack of systemic literature reviews that synthesize the architectural evolution and 

delineate the differences between standard CNNs and LWAs.  

 

 

 

Figure 1. Multi-Stage TL System 
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