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Abstract 

The effectiveness of fitness app in health promotion success has been observed and may 

greatly contribute to large health improvements of the public. However, the actual 

engagement with these interventions is unexpectedly low. Fitness app developers design 

Behavior change techniques (BCTs) to enhance user engagement with fitness apps. 

Although several studies have examined the effectiveness of some BCTs in encouraging 

user engagement with Internet-based applications in general, investigations remain 

underspecified. Based on the theory of psychological fit, we focus on the gender boundary 

condition of the effectiveness of BCTs on user engagement with fitness apps. The purpose 

of this research is twofold. First, we aim to explore gender differences in preferences for 

BCTs. The second purpose is to investigate whether there exists “gender fit” effect on user 

engagement of fitness apps with different BCTs. 

Keywords:  Fitness app, Gender, User engagement, Behavior change techniques 

 

Introduction 

Physical inactivity has been extensively recognized a factor of many chronic illnesses (Paffenbarger Jr & 

Hyde, 1984; Siscovick, Laporte, & Newman, 1985) and is associated with almost 5.3 million deaths per 

year (Lee et al., 2012). With the prevalence of smartphones, mobile applications (Apps) are prevalent as 

tools to help users monitor and manage their health. The market share of mobile health has greatly 

increased. By 2012, almost one in five U.S. smartphone owners download at least one health app from the 

app market (Fox & Duggan, 2012), and fitness apps are the most popular health apps (Statista, 2017). 

Fitness apps can monitor health behavior in a noninvasive manner via smartphone built-in accelerometers 

and interact with users in real time, making them a powerful tool to promote physical activity levels on a 

large scale. The effectiveness of fitness app in health promotion success has been observed (Serrano, Yu, 

Coa, Collins, & Atienza, 2016) and may greatly contribute to large health improvements of the public. 

However, the actual engagement with these interventions is unexpectedly low (Brouwer et al., 2011), which 

is a concern of both researchers and health service practitioners. 

Behavior change techniques (BCT) taxonomy is a systematic and rigorous method to characterize complex 

persuasive interventions in a consistent format (Michie et al., 2013). BCT refers to a component of an 

intervention (e.g., using a mobile fitness apps) designed to facilitate health behaviors, e.g., self-monitoring, 

feedback, and reward (Yang, Maher, & Conroy, 2015). Fitness app developers design BCTs to motivate 
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user engagement with fitness apps (Serrano, Coa, Yu, Wolff-Hughes, & Atienza, 2017). Many studies have 

examined the effectiveness of some BCTs in encouraging user engagement with Internet-based applications 

in general (see review Brouwer et al., 2011). However, the boundary conditions of the effectiveness of 

BCTs receive scant attention. Research about psychological fit suggests that better psychological fit 

between persuasive interventions and individual preferences achieves better performance (S. Matz, 

Kosinski, Nave, & Stillwell, 2017). However, little is known about the effect of psychological fit between 

BCTs and users on user engagement with fitness apps.  

This research focuses on preferences driven by gender differences. There are two reasons. First, gender 

information is a common factor of consumer segmentation. Gefen and Straub (1997) suggest that the 

development of a more favorable communication environment should take gender into consideration. This 

attempt may enrich the theory of health behavior change by identifying the gender boundary condition. 

Second, gender information can be identified easily in practice. As males and females have different 

preferences for mobile apps or services (Weiser, 2000; Xu, Frey, & Ilic, 2016), a closer look at the gender 

boundary of the effectiveness of BCTs can provide useful guidance for fitness app users to find a more 

suitable health behavior intervention tool, and for fitness app developers to attract higher user engagement 

according to the gender distribution of their users. 

User engagement of apps is a multi-facetted concept, which emphasizes on users’ positive experiences of 

interacting with the app (Lalmas, O'Brien, & Yom-Tov, 2014). In accord with the web analytics-based 

approach (Lalmas et al., 2014), we measure user engagement of fitness apps by the frequency of access to 

the app. The purpose of this research is accordingly twofold. First, we aim to examine whether there is any 

gender difference in preference for BCTs. The second purpose is to investigate whether there exists “gender 

fit” effect on user engagement with fitness apps. In this research in progress paper, we selected two typical 

fitness apps with BCTs that were more preferred by men and women respectively. Then, we assign them a 

gender of male or female, namely app gender. We also refer to the gender of user as user gender. Research 

questions are: 

(1) Whether female and male users are more likely to adopt fitness apps with BCTs that are more preferred? 

(2) Whether the fit between app gender and user gender may improve user duration use of fitness app? 

Theoretical background 

Psychological fit is a concept from psychology literature that indicates the extent to which people feel the 

environment fit their preferences (Mazt, Gladstone, & Stillwell, 2016). It is well-established that better 

psychological fit of the environment makes people feel more comfortable to express themselves and 

reinforces their self-concepts (Grubb & Grathwohl, 1967), which leads to higher user satisfaction and better 

persuasion effectiveness (Jokela, Bleidorn, Lamb, Gosling, & Rentfrow, 2015; S. Matz et al., 2017). For 

example, a social incentive, such as the verbal praise, may be more persuasive in changing behaviors to the 

people who are interdependent than others who are independent because the behavior may fulfill their need 

of being cared by others and reinforce their self-expression of being part of the team. This mechanism was 

referred to as the theory of psychological fit by Mazt, Gladstone, & Stillwell (2016). 

The theory of psychological fit has been widely used by consumer psychologists and in marketing practices 

where self-expression behaviors may occur (S. C. Matz, Gladstone, & Stillwell, 2016). Dubois, Rucker, 

and Galinsky (2016) report a power fit effect on the persuasive effectiveness and suggest that the interaction 

between communicator power and audience power should be considered to achieve a successful persuasive 

communication. Cesario, Higgins, and Scholer (2008) propose several methods to increase the effectiveness 

of changing behavior by inducing regulatory fit. In the age of computational social science (Lazer et al., 

2009), more recent studies apply this theory to real-world persuasion on a large-scale population. S. Matz 

et al. (2017) find that the fit of advertisements with individual preferences driven by personality 

significantly change consumer behavior in terms of online ad clicks and purchases. 
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We apply the theory of psychological fit to this research, as user engagement with fitness apps is a form of 

self-expression. When BCTs used by fitness apps fit the preferences of users, users are likely to be more 

motivated to engage with the intervention and to regulate their physical activity behaviors following the 

guides. In our paper, user preferences for BCTs are driven by gender differences. 

Hypotheses Development 

In accord with the theory of psychological fit, we posit that female and male users are more likely to adopt 

fitness apps that provide their preferred BCTs. By reviewing relevant major theories and literature about 

gender differences, Meyers‐Levy and Loken (2015) conclude five major differences. Our hypotheses 

about gender differences in preferences for BCTs are built upon three of their conclusions that are relevant 

to our research.  

First, males focus on instrumentality and independence, whereas females focus on inclusiveness and 

interdependence (Meyers‐Levy and Loken, 2015). Males tend to view themselves as separate from others, 

whereas females feel more connected to others (Guimond, Chatard, Martinot, Crisp, & Redersdorff, 2006). 

In this regard, Peterson, Lawman, Wilson et al. (2013) suggested that males and females have different 

preferences for social support on physical activity. Females prefer emotional social support that helps them 

to disclose themselves to others. For instance, users are allowed to post their exercise data, which can been 

seen and liked by their friends (coded as the BCT 3.3 social support (emotional), 3.3 is the BCT’s coding 

number consistent with Michie et al., 2013). By contrast, males prefer instrumental social support. For 

instance, users are allowed to join groups and seek technical support on exercise from others (coded as 3.1 

social support (unspecific)). Accordingly, we expect that males prefer BCTs about personal goal 

achievement, whereas females prefer BCTs about social and affective supports.  

Second, males show more risk seeking tendency, whereas females behave with more cautiousness (Meyers‐

Levy and Loken, 2015). Males tend to take a risk to pay for more gains in return (Buchan, Croson, & 

Solnick, 2008). For instance, male users are more likely to participate in paid programs where they cannot 

get the payment back if they don’t complete exercise goals (coded as 14.3 Remove reward). Moreover, 

males prefer competitive activities than females who prefer a variety of activities (Wright, Wilson, Griffin, 

& Evans, 2008), leading to a higher preferences for BCTs about getting material rewards or incentives for 

goal achievement (e.g., 10.1 Material incentive (behavior), 10.2 Material reward (behavior)). By contrast, 

females may prefer BCTs about reducing costs and loss. Social incentives or rewards, such as earning a 

virtual metal that can be seen by others or verbal praise (10.5 Social incentive, 10.4 Social reward), may be 

more attractive to females. 6.3 Information about others' approval may also satisfy females’ preference for 

reducing costs by giving them more information. 

Third, females exhibit more comprehensiveness and males are more selective in information processing 

(Meyers‐Levy and Loken, 2015). Females tend to elaborate more message cues than males (Meyers-Levy 

& Sternthal, 1991). Thus, we posit that males prefer BCTs that require less cognitive process and help them 

achieve behavior goals straightway, whereas females may prefer BCTs that provide rich and diverse 

information about the behavior and the process. For example, the BCT 5.4 Monitoring of emotional 

consequences, which enables users to record their feelings after exercises, may be more preferred by 

females than males. Additionally, the BCT of frequent reminders on doing exercises (i.e., 8.3 Habit 

formation) or motivational cues (i.e., 7.1 Prompts/cue) may attract more female users because it requires 

considerable cognitive efforts to deal with the frequent contacts. 

H1: More male users than female user use BCTs that involve (a) more instrumentality and independence, 

(b) more risks and material rewards and (c) more simplicity. 

H2: More female users than male users use BCTs that involve (a) more inclusiveness and interdependence, 

(b) less punishments and (c) more variety. 
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Considerable previous studies suggest that the persuasive effectiveness is particular high when the 

persuasive communication fits the psychological preferences of individuals (Dubois et al., 2016; S. Matz 

et al., 2017; S. C. Matz et al., 2016). Fitness apps implement various BCTs to motivate their users to follow 

their persuasive interventions on health behavior change. The level of user engagement with the app is a 

reflection of the persuasive effectiveness of the app because users are more likely to change behaviors when 

they have frequent access to the persuasive interventions (Brouwer et al., 2011). As argued above, there are 

gender differences in preferences for BCTs. BCTs that match individual psychological preferences tend to 

be more persuasive (Yardley, Morrison, Bradbury, & Muller, 2015). Hence, we expect that the fit between 

gender preferences and BCTs used by fitness apps may elicit higher engagement.  

H3: User engagement with fitness apps is higher in congruent conditions where user gender match app 

gender than in incongruent conditions. 

Methodology 

In this section, we describe the methodology we utilize to test hypotheses. First, we discuss the dataset and 

the preprocessing of the dataset. Then we describe the statistical analysis method to analyze the data.  

Dataset and Preprocessing 

The data used in this research were derived from an anonymized mobile app usage database of 300,000 

mobile phone users from a province of China. We made a list of 59 fitness apps, which were relevant to 

physical activity and top-ranked on two major application marketplaces in China: Apple iTunes (iPhone 

operating system [iOS]) and Ying Yong Bao (Android application platform of Tencent Inc.). Users were 

extracted from the whole database who used at least one of the 59 apps in a week from Jan 7, 2018 to Jan 

13, 2018, resulting in 5821 users (3990 males and 1831 females).  

An app used by a user in the week was saved as a record. A user might use more than one app, leading to 

6403 records. Then, we calculated the number of records for each fitness app and observed that nine apps 

took up 91% cumulative share of total engagement records. Thus, we only included the users of the top 

nine fitness apps in the analysis, resulting in 5440 users (3715 males and 1725 females) and 5830 

engagement records. The coverage rate of our sample was 93.5% (5440/5821). The age distribution of the 

sample was in consistent with Ernsting, Dombrowski, Oedekoven, and LO (2017)’s population-based 

survey in German that fitness app users were young. More than 50 percent of our sample users were below 

35 years old.  

It is notable that our analyses below are based on BCTs, thus app names are not essential. Hence, we 

anonymized app names due to a confidentiality agreement.  We sort the nine fitness apps by the number of 

users from most to least and refer to them as App1, App2, … , App9. At first, we clarify some definitions 

that are used in data processing. We assume that there are 𝑛 fitness apps (in this research, 𝑛 = 9). 𝒖𝑖 

indicates a set of 𝑛 fitness apps that are used by user i, i.e., 𝒖𝑖 = {𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛}, where 𝑎𝑖𝑘 represents 

whether the app 𝑘 is used by user i (value=1) or not (value=0).  

BCTs Coding Scheme 

We recruited and trained 3 coders to independently code the presence or absence of BCTs implemented in 

each app using the BCT taxonomy (v1), which proposed 93 different BCTs (Michie et al., 2013). They used 

the above nine fitness apps for two weeks. After that, they were asked to code all apps in a room 

independently (reviewing apps were allowed during the coding process). Coding discrepancies were 

discussed and resolved to achieve consensus. We screen out those BCTs that are unused in the analysis, 

and define fitness app 𝑗  as 𝒂𝑗  with the remaining 𝑚 BCTs, i.e., 𝒂𝑗 =  {𝑏𝑗1, 𝑏𝑗2, … , 𝑏𝑗𝑚}, 𝑗 ∈ {1,2, … , 𝑛}, 
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where 𝑏𝑗𝑘  is the presence (value=1) or absence (value=0) of BCT 𝑘  in fitness app 𝑗 . Thus,  𝑨 =

 {𝒂1, 𝒂2, … , 𝒂𝑛}𝑇 indicates the BCT coding result of 𝑛 fitness apps. 

Gender Differences in Preferences for BCTs Analyses 

We define another vector 𝒄𝑖 = {𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑚}, which indicates a set of 𝑚 BCTs that are adopted by user 

i.  𝑐𝑖𝑘 = 1 means BCT 𝑘 is implemented in at least one fitness app that is used by user 𝑖, otherwise, 𝑐𝑖𝑘 =
0. We acknowledge that a user may prefer some of the BCTs implemented in a fitness app rather than all 

of them, but our proposition make sense in the big data context because we perform the calculation at the 

group level and individual biases may reduce owing to the aggregation effect. 

Measurement of gender differences in preferences for BCTs. The preference for BCTs that we 

investigate is illustrated by the use of BCTs. We assume that a larger proportion of male (or female) users 

than female (or male) users who use a specific BCT indicates a higher preference for the BCT among males 

(or females). Hence, we measure gender preferences for a BCT with the proportion of users (male vs. female) 

who use a specific BCT 𝑗, i.e., 𝑃𝐺𝑒𝑛𝑑𝑒𝑟,𝑗 (Gender=male or female). 

𝑃𝐺𝑒𝑛𝑑𝑒𝑟,𝑗 =
∑ 𝑐𝑖𝑗𝑖∈𝐼𝐺𝑒𝑛𝑑𝑒𝑟

𝑇𝑜𝑡𝑎𝑙𝐺𝑒𝑛𝑑𝑒𝑟
,   

where 𝐼𝐺𝑒𝑛𝑑𝑒𝑟  represents that a set of male users (Gender=male) or female users (Gender=female). 

𝑇𝑜𝑡𝑎𝑙𝐺𝑒𝑛𝑑𝑒𝑟 is the total number of male or female users. Gender differences 𝐷 in preferences for BCT 𝑗 is 

computed by 

𝐷𝑗 = 𝑃𝑀𝑎𝑙𝑒,𝑗 − 𝑃𝐹𝑒𝑚𝑎𝑙𝑒,𝑗,                                     Equation (1) 

where 𝐷𝑗 > 0 indicates that BCT 𝑗 is more preferred by males, and 𝐷𝑗 < 0 indicates that BCT 𝑗 is more 

preferred by females. Then we get two lists of BCTs. 𝐿𝑀𝑎𝑙𝑒  contains a list of BCTs where 𝐷𝑗∈𝐿𝑀𝑎𝑙𝑒
> 0, 

whereas 𝐿𝐹𝑒𝑚𝑎𝑙𝑒 contains a list of BCTs where D𝑗∈𝐿𝐹𝑒𝑚𝑎𝑙𝑒
< 0. 

Gender Fit Effect on Engagement Level Analyses 

Based on previous analysis, we obtain two lists of BCTs that are preferred by males and females 

respectively. In this part, we differentiate fitness apps by BCTs that they adopt. In congruent conditions, 

male and female users use fitness apps, which adopt more male- and female-preferred BCTs. In incongruent 

conditions, male and female users use fitness apps, which adopt more female- and male-preferred BCTs.  

Definition of app gender. In accord with S. Matz et al. (2017) who refer to “the personality of the audience 

an ad[vertisement] is aimed at as ad personality”, we refer to the gender of users by whom BCTs of a fitness 

app are preferred as app gender. App gender can be identified by two compatible dimensions, i.e., male and 

female. A fitness app which adopts both male- and female-preferred BCTs is valued high on both 

dimensions. 

Measurement of user engagement level with fitness apps. Adapted from Serrano et al. (2017), we 

measure user engagement level with a fitness app using the number of days logged in the observation week 

(ranging from 1 to 7).  

At first, we select two typical fitness apps that adopt more male- and female-preferred BCTs, namely male 

app and female app. The principle of selection is that these two apps use a relatively large number of BCTs 

in 𝐿𝑀𝑎𝑙𝑒  and 𝐿𝐹𝑒𝑚𝑎𝑙𝑒  lists respectively. This principle is to ensure that one of the two apps is more 

representative of male app, whereas another is more representative of female app. In doing so, we first pair 

two fitness apps, either of which is taken from male apps and female apps. Then, we calculate correlations 

for all pairs. The pair that are most uncorrelated are selected as our target male and female apps. Finally, 

we make a 2 (male app vs. female app ) × 2 (male user vs. female user) design to test the gender fit effect 

on engagement level.   
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Preliminary Findings  

BCT Coding Result 

The mean Cohen’s Kappa of the initial coding result is 0.644, ranging from 0.621-0.677, indicating 

moderate to substantial agreement. After discussion, all the three coders agree with a consensus coding 

result, which is summarized in Table 1. Among the total 93 BCTs of the BCT taxonomy (v1), we observe 

33 BCTs in the coded fitness apps (therefore, m = 3). Appropriate 18 BCTs on average with a range 6-23 

(Mean=17.89, SD=5.34, median=19) are used by each fitness app. The number is relatively high in our 

research compared with in some western countries which is below 10 (Conroy, Yang, & Maher, 2014; 

Yang, Maher, & Conroy, 2015).  

Table 1. BCTs used in the selected nine fitness apps 

BCT code App1 App2 App3 App4 App5 App6 App7 App8 App9 Total 

1.1 Goal setting (behavior) 1 1 1 1 1 1 1 0 1 8 

1.3 Goal setting (outcome) 1 0 1 1 0 1 0 0 1 5 

1.4 Action planning 1 1 1 1 1 0 1 0 1 7 

1.5 Review behavior goal(s) 1 1 0 1 0 0 0 0 0 3 

1.6 Discrepancy between current behavior and goal 1 1 1 1 1 1 1 0 1 8 

1.7 Review outcome goal(s) 0 0 0 1 0 0 0 0 0 1 

2.2 Feedback and behavior 1 1 1 1 1 1 1 0 1 8 

2.4 Self-monitoring of outcomes of behavior 1 0 1 1 1 1 0 0 1 6 

2.6 Biofeedback 0 1 1 0 0 1 0 0 0 3 

2.7 Feedback on outcome(s) of behavior 1 1 1 0 1 1 0 0 1 6 

3.1 Social Support (unspecified) 0 1 0 1 0 0 1 1 0 4 

3.3 Social Support (emotional) 1 1 1 1 1 1 1 1 1 9 

4.1 Instruction on how to perform a behavior 1 1 1 1 1 1 1 1 1 9 

5.1 Information about health consequences 1 0 1 1 1 0 0 0 0 4 

5.4 Monitoring of emotional consequences 1 0 0 1 0 0 0 0 0 2 

6.1 Demonstration of the behavior 1 1 1 1 1 0 1 1 1 8 

6.2 Social comparison 1 1 1 1 1 1 1 0 1 8 

6.3 Information about others' approval 1 0 0 0 0 0 0 1 0 2 

7.1 Prompts/cue 1 1 0 1 1 0 0 0 0 4 

8.3 Habit formation 1 1 0 0 0 0 0 0 0 2 

8.7 Graded tasks 1 0 1 1 1 0 1 1 0 6 

9.1 Credible source 1 1 1 1 1 1 1 0 1 8 

10.1 Material incentive (behavior) 0 1 1 0 0 1 1 0 0 4 

10.2 Material reward (behavior) 0 1 1 0 0 1 1 0 0 4 

10.4 Social reward 1 0 0 1 0 0 1 0 0 3 

10.5 Social incentive 1 0 0 1 0 0 1 0 0 3 

10.11 Future punishment 0 1 0 0 0 1 1 0 0 3 

11.3 Conserving mental resource 1 1 1 1 1 1 1 0 1 8 

13.5 Identity associated with changed behavior 0 0 0 0 0 0 1 0 0 1 

14.1 Behavior cost 0 1 0 0 0 1 1 0 0 3 

14.3 Remove reward 0 1 0 1 0 1 1 0 0 4 

14.10 Remove punishment 0 1 0 0 0 0 1 0 0 2 

16.3 Vicarious consequences 1 0 1 1 1 0 1 0 0 5 

Total 23 22 19 23 16 17 22 6 13  

Note. The code numbers of the 33 BCTs that are used by the nine fitness apps are the same as they are in the BCT taxonomy (v1). 1 in the table represents 

the presence of the BCT in the app, whereas 0 represents the absence of the BCT in the app. 
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Hypotheses Test 

We measure gender differences in preferences for each BCT with the method described in methodology 

section. Figure 1 displays the result of 𝐷𝑗 (see Equation (1) for computation) for each BCT (coding numbers 

are derived from Michie et al. 2013). Coded BCTs are plotted on the horizontal axis, whereas 𝐷𝑗 for all 

BCTs are plotted on the vertical axis.  BCTs with values above the horizontal axis are regarded more 

preferred by males, whereas those below the horizontal axis are regarded more preferred by females. As 

shown in Figure 1, females prefer BCTs including 6.3 Information about others' approval, 8.3 Habit 

formation, 5.4 Monitoring of emotional consequences, 10.5 Social incentive, 10.4 Social reward, 1.5 

Review behavior goal(s), 7.1 Prompts/cue, etc. Males prefer BCTs including 10.1 Material incentive 

(behavior), 10.2 Material reward (behavior), 2.6 Biofeedback, 14.3 Remove reward, 3.1 Social Support 

(unspecified), etc. Most H1 and H2 are supported.  

 

Figure 1.  Results of gender differences in preferences for BCTs analyses. 

Note. Each BCT has a coding number derived from (Michie et al., 2013). BCTs with 𝑫𝒋 values above the horizontal axis are 

regarded more preferred by males, whereas those below the horizontal axis are regarded more preferred by females. 

In testing H3, we first select two target apps following the method described in the methodology section. 

These two target apps distinct in app gender. We conduct hierarchical linear regression analyses for 

engagement level with fitness apps using user gender, app gender and their two-way interaction as 

predictors. The result is shown in Table 2. We observed the significant interaction effect of user gender and 

app gender on engagement level (B = 0.228, p < 0.05). The result is robust after controlling the effect of 

age and its interaction effect with app gender.  

Further, we test whether or not an app has a higher engagement among users in congruent conditions where 

user gender and app gender fit. The engagement level with apps is redefined as low engagement level (using 

an app for up to three days, N=1360) and high engagement level (using an app for at least five days, N=955). 

Then we conduct Chi-square test in congruent group and incongruent group with low and high engagement 

levels. The result suggests that the engagement level is 1.447 times more likely to be higher in congruent 

group than in incongruent group ( 𝜒2(1) = 18.649, odds ratio (OR) = 1.447 [1.223 − 1.711], P =
0.000 < 0.05). This effect supports H3. 

To be specific, we conduct Chi-square test for user engagement level in male and female apps respectively. 

As depicted in Figure 2, the gender fit effect is significant in using the female app, as females are 1.364 

times more likely to increase engagement with the female app ( 𝜒2(1) = 8.340, odds ratio (OR) =
1.364 [1.105 − 1.686], P = 0.004 < 0.05). However, in using the male app, the gender fit effect on 

engagement level is not significant ( 𝜒2(1) = 0.184, odds ratio (OR) = 1.077 [0.766 − 1.514], P =
0.668 > 0.05). This result suggests that males and females engage equally with the male app and the 

engagement level is relatively higher than with the female app. However, females significantly engage more 
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with the female app than males, indicating that the female app is more persuasive among females and less 

persuasive among males. 

Table 1 Hierarchical linear regression analyses for engagement level 

 Model 1 Model 2 

User gender 0.046 (0.022) -0.113 (0.151) 

App gender -0.125 (0.000) -0.290 (0.001) 

Age 0.013 (0.518) -0.037 (0.596) 

User gender × App gender  0.228 (0.035) 

Age × App gender  0.063(0.442) 

 

 

Figure 2. Interaction effect of user gender and app gender on engagement level with fitness apps 

Conclusions 

Our research findings suggest that males and females have different preferences for BCTs. If users use the 

“right” fitness app which adopts their preferred BCTs, users tend to engage more with this app. This gender 

effect is significant for the female app, which indicates a better performance of the female app to enhance 

female user engagement than male user engagement. The reason why gender fit effect is not significant for 

the male app may be due to the ceiling effect. The engagement level with the male app is relatively high, 

making it difficult to facilitate significant increase of engagement level via matched BCTs. 

Our research makes several initial theoretical contributions that deserve a deep investigation in future 

research. First, we make a complement to the BCT research by identifying gender differences in preferences 

for BCTs adopted by fitness apps using objective app usage data. To our best acknowledge, this research is 

the first to investigate gender differences in preferences for BCTs implemented in fitness apps in the context 

of real-life environment. A better understanding of which BCTs fit which users may shed light on designing 

personalized health behavior change interventions. In addition to gender differences, we call for future 

investigations on other characteristics of users.  

Second, we observe a gender fit effect between user gender and app gender on user engagement with fitness 

apps. Gender is a personal trait that can be easily identified or predicted (Hu, Zeng, Li, Niu, & Chen, 2007). 

As most existing research on psychological fit emphasizes self-reported psychological traits, our 

investigation on gender preferences can be more easily applied in practice without the need of user 

participation. As an exploratory work, we only target at nine fitness apps that cover more than 93% of our 

sample records, and two typical apps that are distinct in male- and female-preferred BCTs. Our future 

research is to expand our sample and test the generalizability robustness of our findings.  
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For practice, our research may benefit both the users and fitness app developers. For app users, our research 

suggests them to choose the fit mobile fitness app from hundreds in the market that contains their preferred 

BCTs to maximize their engagement in future. For app developers, our research suggests them to provide 

different BCTs for female and male users in order to sustain user engagement. We have identified some 

BCTs that are more preferred by males and females for both of them to make decisions. 
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