
Association for Information Systems Association for Information Systems 

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL) 

ICEB 2002 Proceedings International Conference on Electronic Business 
(ICEB) 

Winter 12-10-2002 

A Curriculum Development Project for IBM Linux in Academia A Curriculum Development Project for IBM Linux in Academia 

Program Program 

Chih-Yang Tsai 

Andrew Pletch 

Arthur Palmiotti 

Gerri Peper 

Michael Wuest 

See next page for additional authors 

Follow this and additional works at: https://aisel.aisnet.org/iceb2002 

This material is brought to you by the International Conference on Electronic Business (ICEB) at AIS Electronic 
Library (AISeL). It has been accepted for inclusion in ICEB 2002 Proceedings by an authorized administrator of AIS 
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326833204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/iceb2002
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb
https://aisel.aisnet.org/iceb2002?utm_source=aisel.aisnet.org%2Ficeb2002%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


Authors Authors 
Chih-Yang Tsai, Andrew Pletch, Arthur Palmiotti, Gerri Peper, Michael Wuest, Chris Rohrbach, and Kevin 
Curley 



A Curriculum Development Project for IBM Linux in Academia Program

Chih-Yang Tsai, Andrew Pletch
School of Business, Department of Computer Science

State University of New York at New Paltz, New York, USA

tsaic, pletcha@newpaltz.edu

Arthur Palmiotti, Gerri Peper, Michael Wuest, Chris Rohrbach, Kevin Curley
IBM, USA

apalmiot, gpeper, mwuest, rohrbach, curley@us.ibm.com

Abstract

This paper introduces the IBM Linux in Academia
program and a curriculum development project initi-
ated by the authors for the program. The service of
IBM Linux in Academia program is based on the Linux
virtual service concept in which a mainframe computer
is partitioned into many Linux images supported by
IBM’s Virtual Machine Operating System. On the
IBM S/390 system, each image acts as an independent
Linux server. This free service saves the acquisition
and management cost of running multiple physically
separated servers for participating universities. The
curriculum development project intends to create
and share curriculum materials for e-Business related
courses among participants. The main IBM software
used in this project includes DB2 Universal Database
and WebSphere. The main objective in the first
stage of this project is to develop a data warehouse
generator to manipulate a large read-only database
obtained from a real world health care application
supplied by IBM. Through a web based user interface,
an instructor could flexibly create a data warehouse
using the Account Data Model developed by some
of the authors from the read-only database with the
desirable size and attributes to support pedagogical
needs. Other aspects of the project are also addressed.

key words:Account Data Model, Data Ware-
housing, DB2, Linux, WebSphere

1 Introduction

The objective of the IBM Linux in Academia program
is to provide a robust and reliable Linux environment
for the university community dedicated to educational
and research purposes [2]. The service provided by
the program is hosted on an IBM S/390 mainframe
computer located at Colorado State University, capa-
ble of running hundreds of Linux images (servers) on
the same hub server at the same time. The hub server
partitions the necessary processing, storage and net-
work capacity for each Linux image. As a result, re-
sources can be allocated flexibly to meet the individ-
ual need of an image while maintaining the same level

of separation between images as any physically sepa-
rated servers would. A commercial service based on
the same concept was launched by IBM recently [6].
The Linux in Academia program allows a participat-
ing university free accesses to not only IBM software
packages but also virtual servers to host those applica-
tions. The major benefit to a participating educational
institution from this arrangement is that the institu-
tion could offer its instructors and students accesses
to the state-of-the-art information technologies with-
out heavy investment in IT infrastructure. The service
is especially valuable to colleges without adequate fi-
nancial and human resources to acquire and manage
the hardware and software required to support their
IT related curricula. In addition to the common open
source packages for Linux, the two major IBM software
components included in this service are DB2 Universal
Database and WebSphere.

Despite the abundant resources provided by the
Linux in Academia program, the service does not in-
clude instructional resources such as course materials
and sample databases. This might not pose a serious
problem for a Computer Science program which may
require students to build software and network applica-
tions on a Linux image from scratch. As the need of a
business program, MBA in particular, focuses more on
utilizing existing databases for the purpose of training
students on analytical skills (marketing research, cus-
tomer relationship management) and managerial con-
cepts (e-Business strategies), there is a demand for in-
structional materials, especially those supported by a
user friendly interface for students without program-
ming experience. The Business School at the State
University of New York at New Paltz (hereafter re-
ferred to as SUNY-NP) signed a collaboration agree-
ment with IBM on October 26, 2001, to establish an
e-Business Virtual Lab using the service from the Linux
in Academia program. As the first business program
participating in the Academia program, the authors
propose a project to develop course materials for the
program. We hope the instructional resources devel-
oped from the project could encourage more colleges
to join the Linux in Academia program which in turn
helps the program develop and test more contents.

The core of the project is to develop a framework

Administrator
The Second International Conference on Electronic Business Taipei, Taiwan, December 10-13, 2002

Administrator




and all associated software so that an instructor could
easily extract and build a customized data warehouse
from a large read-only database (57 GBytes) for his or
her instructional need on the instructor’s own Linux
image. This read-only database is structured using a
popular data model for data warehouses, namely the
star schema. As a result, extracting a small portion
from the large database is relatively easy. However, we
would like to take this opportunity to test a new data
model, Account Data Model (see [7] for details), as the
data model for warehousing purposes due to its flexibil-
ity. The extracted data warehouse is created from the
dimensions and attribute values chosen by the instruc-
tor. For example, the instructor may select a shorter
period of time or a focused subset of geographical re-
gions to control the size of the resulting data ware-
house. The instructor has full privilege to the resulting
database and could control the privileges rendered to
his/her students. The read-only database is provided
by IBM from a real world application in health care
(medical insurance) industry with all personal and in-
stitutional identities removed or disguised. The size of
the extracted data warehouse on the instructor’s im-
age is targeted at 2 GBytes, which we believe can still
give students a flavor of a realistic data warehouse with
considerable size. As transmitting 2 GByte data on the
Internet can be very time consuming, the Academia
program provides a perfect platform for us to imple-
ment this project. Although the read-only database
is installed on a Linux image which is logically sep-
arated and independent from the instructor’s image,
both are physically located on the same S/390 system.
This configuration significantly reduces the download
time. Using a web based GUI interface, the process of
creating the instructional data warehouse is reduced to
clicking on the desired attribute values presented in a
tree structure similar to a file/directory navigating sys-
tem such as Windows Explorer. Additional web based
user interface for students to access the data warehouse
on their instructor’s image is also intended for reduc-
ing the level of computer skills needed to query the
database. Those user interfaces will be built on com-
mon open source software and be organized and man-
aged by IBM’s WebSphere.

The following sections provide more detailed intro-
duction and descriptions of the infrastructure of the
Academia program and our plan of supporting this ser-
vice with course contents developed from this curricu-
lum development project.

2 Infrastructure of IBM Linux in
Academia Program

The service of the Linux in Academia program is based
on the “utility computing” concept advocated by ma-
jor UNIX server vendors including IBM, HP, and Sun
Microsystems. They argue that the computing re-
sources do not necessarily need to reside in the user’s

FI
R

E
W

A
L

L

Future LINUX
Image
Growth
Potential

IBM Z/series Processor

VM

LINUX for zSeries

WebSphere for Linux

Web−based Sample App. 

DB2 for Linux

SUNY New Paltz

University 1

University 2  .........

Figure 1: Linux Images on S390

organization. Instead they can be outsourced to a re-
mote server managed by a vendor to save management
costs on maintaining system hardware, software, secu-
rity, and reliability, etc. The organization only needs
to maintain lean clients to tap into the utility sys-
tem. The Academia program has setup its Linux hub
at Colorado State University on an IBM S/390 main-
frame running a Virtual Machine (VM) operating sys-
tem which supports the partition of system resources
to host many virtual servers (images) each running a
Linux (for S/390) operating system. Figure 1 illus-
trates the architecture of the system. The two layers
at the bottom are the zSeries processor and the VM
operating system for the S/390. The top four layers
on the left demonstrates a sample Linux image cre-
ated for SUNY-NP. At the foundation of this image
is a SuSE version of Linux for S/390 and the middle-
ware includes a DB2 Universal Database Server and
a WebSphere Server on which web based applications
(top layer) can be built. The other side shows poten-
tial future images. These images act like independent
servers protected by their own firewalls. For a Com-
puter Networking course, each student may obtain an
image of his/her own with small disk space. For an e-
Business course offered by a business school to students
with limited computer experience, the whole class may
share an image having much bigger memory and disk
space than those images created for individuals. Thus,
an image can be created to serve the need of a course,
a user, or an application area with the desired software
packages, computing power and storage space.

Accesses to the Linux images are provided via three
channels as listed below.

• An end user either on or off campus can connect
to the campus LAN which in turn connects to the
server through a secure VPN session.

• A user could also access the image directly
through an internet Secured Shell (SSH) connec-
tion.



• A user can use a browser to access a pass word
protected web sites as a gateway to the resources
and applications on various Linux images.

Software packages such as Putty and WinSCP2 are
ideal tool to access Linux images through a secured
shell (SSH). Both programs are small and do not re-
quire installation. This is particularly convenient for
students to carry them in a floppy disk and work on
different locations. However, the easiest way to access
an application for non-computer savvies on a Linux im-
age is to do it through a web browser which is available
almost everywhere. As a result, this is the approach
we recommend for our business students.

3 Potential Curriculum Supports

There are many areas and courses that can utilize the
service and its contents. We discuss a few potential
areas in this section.

Data Analysis: In courses like Marketing Research
and Decision Support Systems, students can access a
read-only database created by their instructors and re-
trieve necessary data through a browser on selected
dimensions and ranges of attribute values. The inter-
face translates the user’s request into a SQL SELECT
statement and connect to the data warehouse to get the
data which is saved as a file in the user’s account. The
student can then download the resulting data set to
local machines for further analysis. This application is
also suitable for covering course subjects such as data
mining and customer relationship management. The
instructor can observe and discuss the different view-
points and conclusions generated by students from the
same database and demonstrate the benefit obtained
from such analysis.

Virtual Company: Students create their own small
databases with full access privilege to store product,
customer, and order information for their virtual com-
panies. This exercise involves students from the de-
sign phase of setting up an information system for a
company. Students are asked to consider the issues of
how their designs can help the organization achieve its
strategic goals and manage daily operations. The in-
structor can address the importance of design issues
related to a MIS project and how a well designed in-
formation system can facilitate business decision pro-
cesses, which in turn enhance an organization’s com-
petitive advantages.

Virtual Community: The first two applications focus
more on the database issue which is the building block
for other e-Business applications. The virtual commu-
nity application extends the database built earlier to
create an online community by connecting the virtual
companies from various students together. For exam-
ple, a manufacturer wants to purchase materials online
from its supplier and a bank handles the payment be-
tween the manufacturer and the supplier. Students can
team up with Computer Science majors on these web

application projects to develop their first e-Business
practice, which handles online transactions and update
their databases. This service can be provided either
by the Apache web server with CGI supports or from
a fully integrated software for e-Business such as IBM
WebSphere.

One concern we have at this point is the internet
traffic during peak hours. During certain time of the
day, the connection to the hub may be much slower.
In that case, the instructor may consider installing a
local copy of the application to support instructional
purposes. For example, the instructor can further ex-
tract a 2 MByte data warehouse from the 2 GByte data
warehouse on his/her image to a local Linux server
(DB2 is available through IBM Scholar program for
local installation). Students may practice and pro-
totype their work on the local server during internet
peak hours and submit their pretested queries to the 2
GByte warehouse for their project later.

4 The Medical Insurance Database

In this section, we introduce the Medical Insurance
database used in this project. This database is a
database used by IBM for software testing purposes. It
is obtained from a real practice at a health insurance
company. All sensitive information is either removed
or disguised in this database. The database is struc-
tured under a popular data model for data warehouses,
namely, the star schema. As a result, understanding
the meaning of attributes and writing queries against it
are relatively easy. The data warehouse only contains
one year medical insurance claim data which already
consumes 57 GByte hard disk space on a Linux image.

At the center of this data warehouse sits a fact table,
INS700TB, which records detailed insurance claim his-
tory. The metrics in this fact table are dollar amount
and frequencies of insurance claims, including measures
such as payment amount, deductible amount, coinsur-
ance amount, third party payment amount, and claim
utilization counts, etc. This table has 228,221,751
rows. There are 11 dimension tables as follows.

1. INS002TB: Each row in this table represents an
individual who enrolled in this insurance policy
(1,428,826 rows).

2. INS800TB: This table stores 15,186 different di-
agnosis categories (15,186 rows).

3. INS801TB: Diagnosis are also classified into 512
diagnosis related groups (512 rows).

4. INS804TB: There are 19 different reasons for dis-
charging a patient from a hospital stay (19 rows).

5. INS805TB: This is a list of states where the pa-
tient resides. It covers all fifty states of the United
States (50 rows).

6. INS806TB: All claims are classified into 5 different
types (5 rows).



7. INS808TB: This table lists the year when services
are provided. Since we only have one-year data,
this dimension table has no effect on any query
results.

8. INS809TB: This table records all month and year
combination during the one-year period (12 rows).

9. INS810TB: This table records the
month/date/year and month/year combina-
tions for the recorded period (365 rows).

10. INS811TB: There are 4275 different medical pro-
cedures (4275 rows).

11. INS812TB: This table records the provider’s lo-
cations which include the 50 US states, the iden-
tification and short name of the state, and some
foreign countries or regions (132 rows).

In addition to the main fact table, there are 5 sum-
mary tables with higher level of aggregation. There-
fore, their sizes are much smaller.

1. INS750TB: This table summarizes the utilization
of the insurance policy by patient state, year,
month, and claim types (2998 rows).

2. INS751TB: This is a summary of utilization by
providers, provider state, year, month, and claim
types (2998 rows).

3. INS752TB: This is a summary of service grouped
by diagnosis, diagnosis related group, patient
state, and primary procedure performed, year,
month, and claim types (7,811,520 rows).

4. INS752TB: This is a summary by claim type and
year (5 rows).

5. INS756TB: This is a summary by provider state
and year. It has 51 rows, one for each of the 50
states and the remaining one for the sum of all
non-US countries and areas.

The number of dimensions for those summary ta-
bles is also smaller, ranging from two to seven. Due to
the fact that we are only given one year data, the year
dimension (INS808TB) is irrelevant in this case. Nev-
ertheless, we still retain this dimension to preserve the
overall structure of the data warehouse. The main fact
table, INS700TB is the most detailed one which has all
dimension tables except for INS808TB as its star di-
mensions. Summary table INS750 has four dimension
tables including

1. INS805TB (50)

2. INS806TB (5)

3. INS808TB (1)

4. INS809TB (12)

Numbers in the parentheses indicate the number of
rows in each table. Figure 2 shows the dot model
for summary table INS751TB. The dot model is cen-
tered at table INS751TB, its fact table, and four
dimension tables INS806TB, INS808TB, INS809TB,

~l l

l

l
INS809TB (12)

INS751TB (403,851)

INS806TB (5)

INS812TB (132) INS808TB (1)

Figure 2: Dot Model for INS751TB

and INS812TB, which maintain one-to-many relation-
ship with the fact table. Summary table INS752TB
(7,811,520) has seven dimension tables as shown be-
low.

1. INS800TB (15,186)

2. INS801TB (512)

3. INS805TB (50)

4. INS806TB (6)

5. INS808 (1)

6. INS809TB (12)

7. INS811TB (4,275)

Summary table INS853TB (5) is joined by two dimen-
sion tables INS808TB (6) and INS808TB (5). Tables
INS808TB (1) and INS812TB (132) are the dimension
tables for INS756TB (51) which summarizes the claim
amount and frequencies by providers’ locations with all
non-US locations aggregated into one row.

Those tables and their indices take about 57 GByte
of disk space. Table INS700TB alone occupies more
than half of that space and due to its size, has to be
separated into 30 containers. We also observe that the
design of this data warehouse follows a practice sug-
gested by some practitioners, i.e., having a main fact
table accompanied by a half dozen summary tables
[8] to shorten response time on frequently requested
queries about highly aggregated information.

5 The Account Data Model

In this section, we briefly introduce the Account Data
Model (ADM) used in our data warehousing com-
ponent of the project. Detailed discussion of the
model can be found in Pletch, et al. [7]. In most
of database implementations, the transaction support



. . .

. . .

. . .

. . .

Sub-Accounts

Controlling Accounts

. . .

. . .

. . .

. . .

J
J
J

J
J
J

C
C
C

¦
¦
¦

l
l

ll

·
·

·

J
J
J

l
l

ll

¦
¦
¦

C
C
C

J
J
J

C
C
C

¦
¦
¦

¦
¦
¦

EXPENSE

l
l

ll

·
·

·

l
l

ll

¦
¦
¦

C
C
C

J
J
J

·
·

·

·
·

·

J
J
J

C
C
C

¦
¦
¦

·
·

·

C
C
C

ASSET

l
l

ll

REVENUE EQUITY

B
B
BB

A
A
A

LIABILITY

·
·

·

l
l

ll

Figure 3: An Account Hierarchy

database and decision support database (data ware-
house) are built based on separate data models. The
most popular data model for the former is the En-
tity Relationship (ER) Model [1] and the latter usu-
ally adopts a dimensional model with a star schema
or a snowflake schema [5]. In our database design,
the transactional and warehousing databases are inte-
grated using the same data model, the ADM. From
a data warehousing perspective, this data model can
be viewed as a special case of a snowflake schema in
which there is only one table joined to the fact ta-
ble that specifies the type of account each row of the
fact table belongs to. It uses a hierarchy of accounts
to model the information found in an organization’s
transactional as well as decision support processing.
Most of this hierarchy follows standard double-entry
accounting practices, i.e. a set of accounts organized
in sub-trees rooted in five major accounting categories,
namely ASSET, LIABILITY, EQUITY, REVENUE,
and EXPENSES. The leaf nodes in Figure 3 repre-
sented by boxes below the solid line are called sub-
accounts. They are the only accounts which actually
participate in transactions and are the ones that link to
the fact table from a warehousing perspective. Boxes
above the solid line (referred to as controlling accounts)
form a type hierarchy and are used as summary ac-
counts, summarizing the activity of the accounts below
them in the hierarchy.

Following accounting practices, a transaction is a
collection of components that document either debit
or credit operations against accounts. Transactions
should be balanced in that every crediting component is
offset by a corresponding debiting component. Ensur-
ing that transactions are balanced before they are ac-
cepted pushes some of the data cleansing activity typi-
cal of the migration of data from an ER-based database
to a data warehouse into the data entry phase. How-
ever, unlike the ER model, the design of the hierar-

WHTransaction

WHTransaction

post¾

6roll-up

AA¢¢ AA

¢¢

¢¢

SS

SS
¶¶

AA

¶¶
SS

Controlling
Account

Account

¶¶

Transaction
Component

Transaction

The Quad

Component

Figure 4: The Quad with Data Warehouse Exten-
sion

chical account structure is less intuitive and requires
better understanding of the business side of the organi-
zation. Nevertheless, a well designed account hierarchy
serves as a good managerial tool for companies want-
ing to practice the principles of the Balanced Scorecard
[4] which requires measuring performances from four
interrelated categories. This is due to the fact that
the design process forces a designer to create accounts
which could also represent performance measures. In
addition, the double entry system guarantees that an
activity is viewed at least from two perspectives. The
two entries can also be used to track the links or causal
relationship between two performance measures. The
pain of designing the hierarchy can somewhat be eased
by adopting the standard charts of accounts developed
by specific industries.

Part of the justification of our claim that an ADM
implementation can be used as a data warehouse is our
confidence in the quality of the data stored due to the
balanced-transaction nature of the model. Transac-
tions and transaction components along with accounts
and controlling accounts eventually come to reside in
a standard four-table structure as shown in the dashed
box of Figure 4. We refer to this table structure as the
Quad. Each transaction involves a row in the trans-
action table and several rows in the transaction com-
ponent table. A typical transaction can be better de-
scribed using the following example.

Example 5.1 A customer, XYZ, orders four units of
widget at the unit price of $15 and unit cost of $10 on
July 15, 2002.

The event in Example 5.1 generates the following
accounting entries.





(a) Account Receivable–XYZ Co. $60
(b) Sales–XYZ Co. $60

(c) Cost of good Sold–widget $40
(d) Inventory–widget $40

(1)



m
i i

i i i i

¡¡ SS

¢
¢

C
C

¯
¯

T
Tiii

i

i i
¤
¤

SS

m
i

i i

i i

i

m

i i

i i i i

i i i

i i

´́ SS
PPPP

¦
¦
S
S

¶
¶

¦
¦

L
L

´
´́

XXXXX

L
L

¿
¿¿

T
TT

·
··

e
ee

¶¶ T
T

%%
b

bb

¶¶ C
C

... ...

... ... ... ...

... ... ...

... ...

ASSET REVENUE

Inv($) Inv(SKU)Rcv Widget Gadget

XYZ PQR W’t G’t W’t G’t XYZ PQR XYZ PQR

(a) (d) (f) (b)
-4 -$60-$40+$60

... ... ... ...

... ... ... ... ...

EXPENSES

Cost of Goods Sold Units Sold

Widget Gadget Widget Gadget

1/98 6/98 6/98

PQR XYZ PQRXYZ
(c)

(e)

+$40

+4

1/98

Figure 5: The Components in Accounting Trees

In addition, two inventory entries are also recorded for
this event, one debited four units of widgets into cus-
tomer XYZ’s account and the other credited four units
from the inventory account of widgets as shown in the
following entries.

{
(e) Units sold –XYZ Co./widget 4

(f) Inventory–widget 4
(2)

One row is added to the Transaction table in Figure 4
to represent this transaction. The six accounting en-
tries correspond to six transaction components, half of
them debiting accounts and the other half crediting ac-
counts. Hence, six rows are added to the Transaction
Component table of Figure 4.

At some point after a transaction has been entered,
it undergoes a process called posting which updates the
sub-accounts in the account table affected by the new
transaction. These modifications are further propa-
gated to the controlling accounts (rows in the Control-
ling Account table) higher up the account hierarchy
from the affected sub-accounts by a process called roll-
up. Both these activities are indicated diagramatically
in Figure 4. When these components are posted, we
see the changes in Figure 5 to the balances of the six
affected sub-accounts. Note that the negative values
under inventory and inventory SKU (Stock Keeping
Units) in the figure come from debiting a credit ac-
count (or crediting a debit account). Both posting and
roll-up become part of the model through automated
means - stored procedures, triggers and the like.

The ADM does not support modifying or deleting
an existing Quad transaction directly. When a busi-
ness activity, a sales order for example, is later modi-
fied the ADM implements this modification by adding

a totally new transaction. The net effect of combining
the components in the new transaction and the origi-
nal transaction produces new account balances. Thus
the original transaction and a corresponding modifying
transaction provide a history of the ordering process.
From a process point of view, every possible change
to an account must be kept for the purpose of process
control.

The two tables not in the dashed box of Figure 4
are used specifically for warehousing (decision sup-
port) purposes, the WHTransaction and WHTransac-
tion Component tables share exactly the same format
as their transactional support counter parts, Transac-
tion table and Transaction Component table. As we
use the same data model for the two, they share the
same Account and Controlling Account tables. In fact,
some of the performance measures from the Financial
category of a balanced scorecard may have already
been built into the Quad in the transactional sup-
port part of the Quad while the performance measures
from the remaining three categories (customers, inter-
nal business process, learning and growth) are gener-
ated for decision support purposes. The warehouse ver-
sion of the Transaction Component table may choose
to keep only the net result of a transaction after it has
been fulfilled.

The ADM shows its true strength in its ability to add
new information about any transactional and ware-
housing applications without the need for table re-
design. This is achieved by adding new accounts and
sub-accounts for the new attributes and entities and
then, for each type of affected transaction, additional
transaction components are generated to support deb-
iting or crediting the new accounts. In such cases we
add more rows to existing tables; never more columns
nor more tables. Indeed in the current implementation,
transactions saved under an old design schema, which
is then redesigned to affect different sub-accounts, will
automatically reflect the new design simply by being
brought into the user-interface and saved again with-
out change. This is particularly useful if changes of
design are needed to reflect new business processes or
performance measures. What makes the ADM a vi-
able data warehousing model is the fact that all trans-
actional and decision support components are stored
in the same table structures. Adding new types of
transactions or even modifying the design of existing
transactions becomes a data-entry activity rather than
a design endeavor. Thus the line between the transac-
tional database and data warehouse becomes blurry.

6 The Data Warehousing Compo-
nent of the Project

Universities throughout the world often need access to
large databases for various pedagogical reasons. In ed-
ucational programs such as Computer Science where
students are simply learning to use SQL or where query



performance or execution are the issues, the kind of
data in the database is of little concern. Benchmark
databases such as TPC [9] are useful in those situa-
tions. Downloading the benchmark database generator
written in C/C++ takes almost no time. The genera-
tor could install randomly generated databases of var-
ious sizes by manipulating the values of some control
parameters. On the other hand, in educational pro-
grams where the students are more interested in the
query results and what they mean, students in a busi-
ness program for example, it is very difficult to make
any real-world sense of the query results from randomly
generated databases because these databases contain
information that is only marginally realistic. It is nev-
ertheless not reasonable to provide a real database for
download, even one of moderate size (a couple of gi-
gabytes) because the download time over the Internet
would be unacceptable. The IBM Linux in Academia
computing hub provides us with an opportunity to
make available to universities a realistic database of
considerable size and avoid the typical download time
problems. The medical insurance database labelled in-
surdb in Figure 6 plays this role. In order to keep main-
tenance to a minimum, this install should be read-only.

Although it is possible to allow students to query
insurdb directly, the result set is usually too large for
them to download to their local computers for further
analysis using other software packages. In addition,
an ill structured query may take hours before a re-
sult can be produced. Therefore, we would like to give
an instructor control of the size of a customized data
warehouse. This project component gives instructors
necessary user interface to build their own data ware-
houses from insurdb with the size they deem reasonable
for their classes. Since a certain amount of customiza-
tion would probably be needed we envisage each uni-
versity/program having its own Linux kernel and own
DB2 installed on the same S/390 where the insurdb
database is installed and that extracts of some size (up
to 1 or 2 GBytes) could realistically be made from the
insurdb database into these user-controlled databases,
labelled WHQuad 1 through WHQuad n in Figure 6.

We show how SUNY-NP could use the Linux vir-
tual service environment to support business intelli-
gence course taken by students in our business program
and how our own work could be packaged so as to allow
other universities to replicate our activities with their
own students. We envisage a package that would make
it possible for many different users/universities to pro-
duce local extracts from the insurdb to copies of DB2
running on their own images located on the same S/390
system and into databases we have labelled WHQuad
1 through WHQuad n in Figure 6 using the Account
Data Model.

An instructor at university i could specify the de-
sired time range, dimensions, and range of attribute
values to extract a small portion of insurdb and build
a customized data warehouse WHQuad i. The ex-
tract resides in databases controlled by the instruc-

Linux kernals
w/ db2

master

univ 1

univ 2

univ n

Linux/390 box

insurdb

WHQuad 1

WHQuad 2

WHQuad n

University n local db2 server on PC/Linux

Figure 6: DB2 Structure

tor. In most cases, the instructor may want to make
the WHQuad i data warehouse read-only to students.
The WHQuad i databases, although smaller than the
insurdb database, would still be too large for down-
loading onto machines that are local to the final users.
However they could be used to produce much smaller
exports - tables on the order of 2000 to 20000 rows -
which would be small enough to download onto local
machines (either as files or into a local copy of db2 )
- and it is our intention that these latter tables, look-
ing much like the fact tables in a star-schema data
warehouse but much smaller, could easily be analyzed
using local OLAP, Statistics and Data Mining software
which, at this time, we do not envisage providing to the
user.

Key elements of the package are listed below and
explained in Sections 6.1 and 6.2.

• WHQuad Create : This script will create the ini-
tially empty WHQuad database tables and indices
and install various stored procedures and triggers.

• WHQuad Import : This program will generate
insert statements for the tables in the WHQuad i
database. The program will proceed from a suit-
ably prepared configuration file and extract data
from the insurdb database.

• WHQuad Cube Build : This program provide the
user with a web-based GUI interface from which
the user can select dimensions and performance
indicators of interest and build a data cube (typ-
ically 2000 to 20000 rows) suitable for analysis
using off-the-shelf OLAP tools.

• WHQuad Export : This program will export
mini-cubes created using the Cube Build software
to the user’s local copy of db2. Although this step
is not essential and involves installation and main-
tenance of a second (local) copy of db2 by the user,



it will serve as a backup in case the access to the
hub server is interrupted.

6.1 The WHQuad Databases

We use the Account Data Model (ADM) [7] to build
the data warehouse WHQuad i, i = 1, . . . , n, due to
the fact that ADM is generic and flexible. Once a
Linux image and DB2 are available for a university,
the WHQuad Create program described earlier can be
used to install a fresh copy of the WHQuad database.
This database can be populated with a subset of the
information in the insurdb database using the WHQuad
Import program.

A web-based GUI interface, program WHQuad Cube
Build described in [7], can now be used to extract in-
formation from the WHQuad tables into mini-cubes or
fact tables. A number of OLAP tools such as Brio have
been developed precisely to present the information in
such fact tables.

At this point, the user is able to extract several fact
tables containing different dimension/performance in-
dicator configurations. These could be prepared in ad-
vance and given to students as source information for
data analysis exercises. It is also possible that these
fact tables could be exported to local copies of DB2 run-
ning at the user’s university, which we describe next.
We should also point out that since insurdb adopts a
star schema, creating a smaller data warehouse on in-
structors’ images with exactly the same star schema
should be straight forward. Thus, we do not include it
as a component in this project.

6.2 Local Installation of db2

We expect the size reduction from

insurdb → WHQuad db → fact table

to be in orders of magnitude in general. The insurdb
database is 57 gigabytes, the WHQuad databases as
large as a couple of gigabytes but usually smaller than 2
gigabyes and the fact tables generated by the WHQuad
Cube Build software could be as big as 2 megabytes.

Only the latter tables are small enough to be real-
istically downloaded to machines local to the partici-
pating universities. They are just on the edge of being
too large to be used on an ad hoc basis so we feel the
appropriate thing to do is to download them once and
use the local copy for conducting classroom activity
when the connection to the Linux image is either in-
terrupted or unbearably slow. The program WHQuad
Export would accomplish this task. It is also possible
to use IBM data migration software to do this.

7 Other Components of the Project

Next to the applications surrounding DB2 databases
is the development of WebSphere applications. There

are several application areas that WebSphere can play
a major role.

1. As mentioned earlier, all tools developed for an
instructor to generate a data warehouse from the
medical insurance database are web based appli-
cations. Java Servlets provides a good tool for
database intensive applications.

2. The target users of this service are business stu-
dents who usually do not have profound knowl-
edge in Linux operating system and program-
ming. In order to shield the technical details from
the students, a web interface supported by Web-
Sphere as the middleware allows students to fo-
cus on analytical and business issues rather than
struggling with programming details.

3. We would also like to create some templates for
student to easily deploy a virtual company with
online transaction capability. This will first link
to the database created by students to operate
their e-store. Step by step, it can be developed
into an online trading community where there are
buyers, sellers and transaction facilitating media
such as banks and shippers.

The third component in this project covers the area
of group decision support, which is a key element in
knowledge management. An open source, XML-based
software, Jabber [3], can be used as a building block
for creating and testing a group decision support en-
vironment. Other miscellaneous supporting tasks like
developing tools to assist instructors managing student
accounts are also intended. This includes programs
for setting up the accounts, granting appropriate priv-
ileges, and monitoring usage.

8 Conclusion

In this paper, we introduce the service offered by
the IBM Linux in Academia program and describe a
project designed to take advantages of the service pro-
vided by the program. The objective of the project
is to develop instructional resources including a data
warehouse generator using a web based user interface
and the Account Data Model. The software allows in-
structors to carve out a portion of a huge database and
create a customized data warehouse for their instruc-
tional needs. The data warehouse generator along with
other web based resources are designed to facilitate the
offering of e-Business and knowledge management re-
lated courses in a business program. We hope the soft-
ware and tools produced from this project can help a
business program enhance its capacity and capability
to train students on both strategic and analytical is-
sues related to e-Business and knowledge management.
We would also like to invite participation from other
institutions to contribute to the process of developing
and testing more instructional resources.



References

[1] Chen, P. P., “The Entity-Relationship Model: to-
ward a Unified view of data”, ACM Trans. on
Database Systems, Vol. 1, 1, 1976, 9-36.

[2] CSU/IBM Linux Hub Home Page,
http://204.146.24.13

[3] Jabber Software Foundation,
http://www.jabber.org

[4] Kaplan, Robert S., Norton, David P., The Bal-
anced Scorecard - Translating strategy into Action,
Harvard Business School Press, Boston, 1996.

[5] Kimball, Ralph, A Dimensional Modeling Mani-
festo, DBMS, vol. 10, no. 9, 1997, pp. 58-72.

[6] Olavsrud, Thor, “IBM Offers Processing Power
As Utility”, InternetNews, July 1, 2002.

[7] Pletch, A., Tsai, C-Y., and Matula, C., “The
Account Data Model”, in S. Spaccapietra, S.T.
March, Y. Kambayashi, (Eds) Lecture Notes in
Computer Science for the 21st International Con-
ference on Conceptual Modeling (ER2002), Octo-
ber 7-11, 2002, Tampere, Finland, Vol 2503, pp.
263-275.

[8] Todman, Chris, Desiging a Data Warehouse–
Supporting Customer Relationship Management,
Prentice Hall PTR, New Jersey, 2001.

[9] Transaction Processing Performance Council,
http://www.tpc.org.


	A Curriculum Development Project for IBM Linux in Academia Program
	Authors

	tmp.1587480452.pdf.__Hy2

