
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Conference papers School of Computing 

2020-06-30 

Moving Targets: Addressing Concept Drift in Supervised Models Moving Targets: Addressing Concept Drift in Supervised Models 

for Hacker Communication Detection for Hacker Communication Detection 

Susan McKeever 

Brian Keegan 

andrei quieroz 

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon 

 Part of the Robotics Commons 

This Conference Paper is brought to you for free and 
open access by the School of Computing at ARROW@TU 
Dublin. It has been accepted for inclusion in Conference 
papers by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact 
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, 
brian.widdis@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 3.0 License 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Arrow@dit

https://core.ac.uk/display/326828602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


Moving Targets: Addressing Concept Drift in
Supervised Models for Hacker Communication

Detection
Andrei Lima Queiroz

Information Technology Secretariat - STI
University of Brası́lia - UnB

Brası́lia, Brazil
andreiqueiroz@unb.br

Brian Keegan
Applied Intelligence Research Centre
Technological University (TU) Dublin

Dublin, Ireland
brian.x.keegan@dit.ie

Susan Mckeever
Applied Intelligence Research Centre
Technological University (TU) Dublin

Dublin, Ireland
susan.mckeever@dit.ie

Abstract—In this paper, we are investigating the presence of
concept drift in machine learning models for detection of hacker
communications posted in social media and hacker forums. The
supervised models in this experiment are analysed in terms of
performance over time by different sources of data (Surface web
and Deep web). Additionally, to simulate real-world situations,
these models are evaluated using time-stamped messages from
our datasets, posted over time on social media platforms. We
have found that models applied to hacker forums (deep web)
presents an accuracy deterioration in less than a 1-year period,
whereas models applied to Twitter (surface web) have not shown
a decrease in accuracy for the same period of time. The problem
is alleviated by retraining the model with new instances (and
applying weights) in order to reduce the effects of concept drift.
While our results indicated that performance degradation due to
concept drift is avoided by 50% relabelling, which is challenging
in real-world scenarios, our work paves the way to more targeted
concept drift solutions to reduce the re-training tasks.

Index Terms—Cyber Security, Machine Learning, Concept
Drift, Hacker Communication, Software Vulnerabilities

I. INTRODUCTION

In recent times, machine learning algorithms have been
popularised due to their capacity for solving real-world prob-
lems through the discovery of useful patterns in data. These
algorithms have revolutionised tasks such as image recognition
(e.g., handwriting and face classification) and natural language
understanding (e.g., sentiment analysis, Named-entity recog-
nition). The enthusiasm surrounding data-driven learning ap-
proaches has expanded to a wide range of domains, including
cyber security [1].

In general, machine learning models applied to cyber secu-
rity tasks are designed with the assumption of a static world
view. Such an assumption does not accommodate dynamic
changes which present themselves over a period of time [2].
As a result, the accuracy of these models can be affected by
changes in the problem concept, rendering the models less
effective or useless as time goes on. This phenomenon is
known as Concept drift and it is commonly seen in natural
language tasks where the language usage and meaning changes
constantly.

In cyber security initiatives that use hacker communications,
movement in the concept is observed when new forms of
malicious hacking emerge and are shared in social media
channels. As seen in [3], new cyber related vocabulary (i.e.
jargon) is created by hackers to communicate well-known
security issues in computer systems. These forms of expression
amongst peers are not static and are susceptible to changes.
As seen in [4], between 2013 to 2017, there was an increase of
new types vulnerabilities in software that were not previously
categorised. This implies that hackers are communicating this
type information by using different words and grammatical
structures for expressing new concepts. It is in this dynamic
context that cyber defenders are trying to operate to protect
computer systems from threats.

For this reason, the aim of this paper is to investigate the
extent and effect of concept drift on the accuracy of machine
leaning (ML) models used to detect software vulnerabilities
mentioned in social media posts. We base our experiment in
the following research questions:

• Does the accuracy of our machine learning models,
created to detect software vulnerabilities in social media
posts degrade over time, indicating concept drift?

• Can we alleviate this problem using a typical concept
drift solution method?

With this in mind, we carry out our work using 3 datasets,
consisting of user posts gathered from social media and hacker
forums. These datasets are gathered over an 8 year period,
allowing a sufficiently long temporal window to observe and
alleviate concept drift, if it exists. In order to visualise the
concept drift, the messages which the models are trained
and tested on are organised to consider the date and time
where they were posted on social media platforms. We believe
that this study can also be used as a base for detection
of hacker communications regarding security problems in a
new paradigms, such as Smart Cities and Internet of Things
(IoT), which are constantly being shared in underground
communities [5]

The structure of this paper is as follows: In Section 2, we



review a selection of related works on software vulnerability
communication detection and concept drift. In Section 3 we
describe our approach, including a description of the datasets
used and methodology. We also present our approach to
quantify the effect of the concept drift in the models. In Section
4, we provide an analyses of the performance of the model
in 1-year period for Twitter(surface web) and hacker forum
(deep web) datasets. In section 5, we measure the slope of the
line to identify the best approach to contain the deterioration
of performance in these models. Finally, in Section 6, we
summarise the contribution of this work and present the future
work.

II. RELATED WORK

Recent work in the domain of hacker communication de-
tection has shown little or no concern with the evolving
nature (concept drift) of communications amongst peers. For
instance, in [6], the authors provided an experiment using tra-
ditional classification algorithms to detect cyber discussions in
social media channels. Also, in [7], the authors have provided
a comparison of traditional Support Vector Machine (SVM)
algorithm and Convolutional Neural Network (CNN) applied
to the detection of hacker communications. Despite showing
promising results, with high levels of classification accuracy,
neither work considers the importance of the applicability and
durability of their models over time under effects of concept
drift.

To the best of our knowledge, there is no other work
measuring concept drift in communication specific to software
vulnerabilities in hacker forums and social media. However,
our research has identified supporting work applied to the
security domain, where the authors identified that the perfor-
mance of machine learning models are affected by the rapidly
evolving (drift) of malware software. As a result, further
unseen malware is not identified by models trained in long
time past data [8].

Other related studies on concept drift use specific algorithms
for triggering the retraining of models when changes in the
underlying distribution of the incoming data is detected. As
seen in [9], the authors proposed an algorithm that observe
the change in distribution of the data using dynamic sliding
window. Furthermore, an algorithm proposed in [10] detects
the drift in a on-line manner without storing datapoints in
memory, which provides a more efficient algorithm in terms
of memory resource. These algorithms applied to concept drift
are of interest, as they indicate future options for our work.

III. APPROACH

A. Dataset

The 3 datasets used in this work have been used previously
in [11] [12] and can be found in http://tiny.cc/8ws67y. They
contain posts from on-line social media platforms such as fo-
rums and micro-blogs, commonly used by hackers for sharing
and learning information about hacking and computer security
in general. The subject of these messages range from technical
to personal opinions and are related to a broad range of

security topics, e.g., software security, data breach, copyright
infringement, stolen credit card. Among these messages, we
visually identify that few are related to malicious activities in
software products or have mentioned security problems (flaws,
vulnerabilities).

A summary description of each original dataset is described
below:

D1 - CrackingArena Forum - This is a collection from
one of the most used hacker forums existing in 2018 with
11,977 active users. It contains communications related to
security issues in computing, which makes the data suitable for
cyber security research on the interaction patterns among cyber
criminals. The variety of covered topics in the forum ranges
from social engineering, cracking/exploit tools to tutorials,
which makes this forum a viable source for pinpointing the
characteristics of newly emerged hacker assets.

D2 - Security Experts - The data contains posts from 12
security-expert users on Twitter, where six of them are part of
the well-known-security experts having an average number of
followers of 18,800, and the other six are part of the lesser-
known security experts, having an average number of followers
of 1,100. Their tweets are mostly related to security aspects
of technology, including software vulnerabilities and hacking.

D4 - Garage4Hackers Forum - This is a medium-sized
forum in terms of number of content and users. This forum
contains material related to exploitation, botnets and reverse
engineering, it also provides information regarding specialised
hacking tools.

The dataset D2 lies on the Surface Web domain as it is
indexed by search-engines (e.g., google search) and can be
freely accessed by every person with internet access. Whereas
D1 and D4 lie on the domain of Deep web, which has its
content accessed only by users with permission, credentials or
invitation.

B. Labelling Process

The messages in these datasets were labelled consistently,
using the following method. Each message was labelled 3
times, by three different computer science experts according
to the following rules:

• Yes, for posts that appear as malicious communication
regarding software vulnerabilities and exploitation.

• No, for posts that not appear as malicious communication
regarding software vulnerabilities, which also include
data breach, copyrighted software cracked, stolen ac-
counts (e.g., Netflix, Amazon) and credit card accounts.

• Undecided, for messages where the labeller does not have
enough information or confidence to mark as Yes or No.

The undecided choice is to cater for the ambiguity of
certain posts, which is a non-trivial task (even for experts)
to determine whether they are related to software security
communication. The final label across the set of three labels
was assigned according to the majority of votes. e.g., yes = 2,
no = 1, undecided = 0, the final label (FL) = Yes. The posts
with total disagreement between labellers, e.g., no = 1, yes =



1, undecided = 1, were excluded from the dataset, which are
less than 5% of the messages for all dataset.

In Table I, we have examples of messages and their re-
spective labels. The message M1, marked as Yes, is related
to a type of vulnerability (Stack Buffer Overflow) affecting a
software product. Message M2, also marked as Yes, is related
to a release of a Proof Of concept (PoC) of a vulnerability
called dirtycow. The messages M3 and M4 are related to per-
sonal opinion and have no direct relation to real vulnerabilities
in software. It is worth mentioning that despite M3 and M4
having hack and hacker keywords, they are not considered
malicious.

C. Transforming into a Binary Classification Task

From a security standpoint, we believe it is prudent to
capture the Undecided messages as a potential malicious
problem. For this reason, we have transformed this task into
binary classification. We have placed the Undecided and Yes
messages into the positive class, whereas No messages are
the negative class. Further details on the labelling task and
description of social media platform used can be found in
[12] [11].

It can be observed that all datasets have an imbalanced
number of instances of positive and negative classes, with the
minority proportion of these messages representing the posi-
tive, thus, malicious communication. In Table II, we present
the description of each dataset with respect to the number of
posts, the distribution of positive and negative instances and
the average number of words.

In Fig 1, we present the volume of messages in each dataset
over time. On the x-axis we have the year-month and on the
y-axis the volume of posts collected during that period. The
collected messages are spread in a period between 2010-07 and
2018-01 with each dataset covering a subset of this range of
time. The dataset D1 contains messages between 2013-01 and
2018-01 (5 year), D2, the shortest dataset in terms of temporal
range, contains messages between 2015-11 and 2017-03 (≈ 1
year), D4, the longest, contains data between 2010-07 and
2017-13 (≈ 7 year), To compare these experiments fairly we
choose to use a 1-year peak for each, as the shortest dataset
has about 1 year range.

D. Experimental Methodology

This experiment follows a stream-based methodology over
a period of time. The following sections explains how the
Predictive Sequential (Prequential) evaluation was performed
over a Monthly Time Window (MTW) period. We also de-
scribe how we have trained the start model which proved to
be the base for our experimental procedure.

1) Prequential Evaluation: Considering the changing na-
ture of hacker language with the emergence of new forms of
exploiting software vulnerabilities, we hypothesise that models
trained in past instances will not present the same performance
in new, or future, instances due the concept drift. For this
reason, we propose to simulate the use of these models in real-
life situations, where the model is trained and evaluated with

consideration of the time when the messages occur in social
media platform. The data used to feed the model is therefore
organised by date of publication. For this streaming task, we
are using Sliding Window prequential evaluation similar to
[13], which in our case the windows are fixed by months of
the year.

2) Monthly Time Window: In order to evaluate the perfor-
mance of the model over a 1-year time period, we selected
the use of a monthly time window to train and test the model.
These time windows are organised for every 2 month period
(bimester), although, for the training phase of the experiment,
we have used 2 bimesters (4 months) due to the need of a
minimum number of positive instances for applying oversam-
pling technique as seen in [12]. This technique provides a
performance enhancement of models built using imbalanced
data. For the remainder of this work, the notation shown on the
graphs are as follows: w0, is the start model, which is trained
and cross-validated in 2 bimesters messages, whereas the time
window w1, w2, w3, w4 are the results of the test phase with
the incoming messages with messages of 1 bimester each.

3) Training the Start Model: All experiments presented in
this paper start with this model. The resulting performance is
given by a 10-fold-cross validation and present in the graphs of
this work at w0 window. Considering that this model is trained
with approximately 10% of instances from positive class
(before resampling), we have applied the random oversampling
technique to our training data as done in [12] to improve the
classification performance of the model. The metric used to
evaluate the model is the Average Class Accuracy Metric. This
metric is the sum of the recall of the positive and negative
classes divided by the number of classes as seen in (2) and
recall being (1). This measure is commonly used to evaluate
models trained on imbalanced datasets in order to capture
class level accuracies. The performance achieved with the start
model can be seen in Table III.

Recall =
TruePositive

TruePositive+ FalseNegative
(1)

Avg.ClassAcc =
Recall(pos.Class) +Recall(neg.Class)

No.Classes
(2)

IV. EXPERIMENT - CONCEPT DRIFT IN 1-YEAR PERIOD

In this experiment, we have selected D1, D2 and D4 as these
datasets allow us to reach a minimum proportion of positive
instances (roughly 10%) for training the model within a 4-
month period. Thus, we can apply enhancement techniques
(oversampling) to increase the performance of the model [12].
In addition, the source of these datasets differs on origin, as
D1 and D4 are collected from hacker forums (deep web) and
D2 is from Twitter (surface web).

For testing, we have used the remaining 8 months of
messages. The evaluation was performed considering the time
when the messages occur in social media platform. This was
done to simulate real-life use of this model. The importance



TABLE I: LABELLING TASK EXAMPLES

ID Message Label
M1 Multiple remote memory corruption vulns in all Symantec/Norton antivirus products, including stack buffer overflows Yes
M2 PoC for dirtycow vuln [URL] Yes
M3 Reading about lawyers argue about our Jeep hack is endless fun No
M4 it is amazing a hacker can put up with a sociologist ;) No
M5 Just released ssh scan v0.0.10. Release notes can be found here Undecided
M6 I like sneaker’s error 0xC0000156 Undecided

Fig. 1: Timeline and volume of messages of the datasets

TABLE II: DESCRIPTION DATASET

ID Source Type No. of
inst.

Distrib.
(pos/neg)

Avg.
words

D1 Hacker Forum Deep web 1,682 10/90% 50
D2 Twitter Surface web 1,927 15/85% 13
D4 Hacker Forum Deep web 1,966 13/87% 78

TABLE III: AVG. CLASS ACCURACY OF THE START
MODEL (4 FIRST MONTHS)

SVM+BOW
D1 0.67
D2 0.77
D4 0.68

of evaluating accordingly is to investigate how long the model
would retain its performance after its creation - in other
words, to measure the robustness of the model against the
changes (drift) in the concept. Table IV presents the number
of instances used in the training and test phase as well as the
distribution of the classes in each month. The algorithm and
feature representation used for this experiment are Support
Vector Machine (SVM) with linear kernel and Bag-of-words
(BOW) respectively. The SVM parameters are not tunned, in-
stead, we used the library default values (Sci-kit 0.20.2v). We
choose to use the defaults to fairly compare the performance
of the models throughout all 3 datasets.

A. Static Model Evaluation (Baseline)

The purpose of this baseline experiment is to investigate
the performance of static models over a period of 1-year. For

this specific experiment, we are not performing any retraining
(updating) of the model. We have used messages from a 4-
month period to train the model. In Table III, we see results of
the training phase of this experiment. It is seen that, for hacker
forums (D1 and D4), the model has achieved 67% and 68% of
average class accuracy respectively, while Twitter source (D2)
has achieved 77%.

Moreover, Fig 2 presents the performance of the baseline
model (w0) tested against messages of the remaining 8 months
of the year (w1, w2, w3, w4). We have constructed a regres-
sion line that best fits the data points over time. This line
also represents the rise to run ratio of the model for each
dataset. The x-axis is the time window and the y-axis is the
performance of the model in average class accuracy for that
period of time. w0 represents the results of the static model
trained in 4 months and evaluated by 10-fold cross validation.
w1, w2, w3, w4 represent the results of the model tested in
instances of a 2-month period.

Our baseline results show an apparent drift occurring in
both hacker forums datasets (D1 and D4), whereas there is no
apparent deterioration of the performance of model applied to
D2 (Expert post on Twitter). We imply the hacker forums are
environments that provide a more variate content than Twitter
with regards to novelty on hacker techniques and tools, thus
the drift on the former occurs earlier than in the latter.

Inspecting the absolute numbers, D1 starts at 61% avg. class
acc. and ends in w4 with 59% of avg. class acc., whereas D4
has shown a bigger drift, starting at 68% and ending 56%.
Only D2 (twitter) has shown no sign of drift, with start and
ending performance 77% avg. class acc, while the performance
in w1, w2, w3, w4 does not decrease to less than the static



TABLE IV: DISTRIBUTION OF INSTANCES IN EACH PHASE

D1 D2 D4

Phase Periods (months) Window No. Msgs Distrib. %
(pos/neg) No. Msgs Distrib. %

(pos/neg) No. Msgs Distrib. %
(pos/neg)

Train1 1st to 4th w0 342 (33/67) 826 (39/61) 314 (44/56)
Test 5th and 6th w1 144 (10/90) 317 (11/89) 179 (16/84)
Test 7th and 8th w2 149 (10/90) 263 (13/87) 89 (20/80)
Test 9th and 10th w3 185 (12/88) 291 (23/77) 106 (7/93)
Test 11th and 12th w4 150 (9/91) 257 (19/81) 207 (8/92)
1 Positive class instances in training phase are oversampled by 300% according to [12]

model, in w0, during the entire year.

B. Dynamic Model Evaluation

In this section, instead of using a static unchanging model,
we present the results of a model retrained (updated) with
incoming instances. We have also experimented with the
introduction of weights on these new instances to increase
the classification performance.

1) Updating Model with Past Instances: Differing from the
static experiment, in this dynamic model we have performed
a periodic update such that the model is tested in sample Pn

and outputs the average accuracy Wn, where n ∈ {1, 2, 3, 4}
representing the periods of two months instances. Furthermore,
the parameters of the model are updated considering the
sample Pn. It is worth noting that there is no forgetting
mechanism in this update process, which means that the old
parameters still form part of the model. Fig 3 (b) shows a
simplified graph of this procedure.

In order to investigate the minimum number of instances
needed to update the model, and, thus, avoiding the decrease
of performance over time, we have performed this experiment
using different proportions of relabelled instances. The pro-
portion are: 25%, 50%, 75% and 100% can be seen in Fig 4.
By the results, we see that, with all these proportions, the
model has performed better than the baseline static model
(thick line). It is also observed that, updating the model with
100% of the incoming instances gives, as expected, the best
results. However, we can also reduce the update to 50% of
the incoming instances and still have comparable results to
100%. Reducing the proportion of incoming instances provides
a significant reduction on the time and resource (people)
required to perform the labelling task and the update of the
model.

2) Weighting on Newest Samples: In this experiment, we
have updated the model using only 50% of the incoming data.
On top of that, we have given more importance to the new
incoming data through weighting.

Fig 5 shows how the model has performed after applying
weights on top of the 50% random instances. The thicker
(blue) line represents the model retrained with 50% random
instances without weight, whereas the thin line represent the
model retrained with the same 50% random instances, with
different proportion of weights on them (2:1, 3:1, 5:1 and
10:1).

Visually, we see that the models with weighting schemes
have achieved in w4 the best performance compared to the
baseline (thicker line). Although, in few points of D1 and D4
it was observed a decreasing in performance for some weights.

V. DEGREE OF DRIFT OF DYNAMIC MODELS

According to [14] and [15], there are four common drift
patterns: Sudden, Incremental, Gradual and Reoccurring. We
have noticed that the drift in D1 and D4 occurs gradually,
where D2 the models stays practically flat. In order to measure
this drift, we have calculated the slope of the line in dataset
D1, D2 and D4 throughout a 1-year period. Negative values
mean that the performance of the model has a tendency to
decrease, whereas positive values is the opposite. In Table
V, we show a comparison between the static (baseline) and
dynamic model after applying different values of weight on
50% random samples.

It is observed that by retraining the model, the performance
over time is improved over the baseline static model. With
a minimum of 50% of retraining of the incoming messages
we achieve such improvement. This result has shown that we
can use only 50% of the incoming instances to retrain the
model and still improves over the static model. Thus, reducing
workload of labellers in 50%.

In addition, by weighting the newest incoming samples,
we have achieved further improvements. In Table V, if we
consider the average results, the best configuration for avoiding
performance deterioration over time is by retraining 50% of
new incoming instances and adding weights on them with a
3:1 proportion.

TABLE V: SLOPE OF THE LINE FOR STATIC AND
DYNAMIC MODELS

D1 D2 D4 Avg

Static. (Baseline) -.020 +.005 -.019 -.011

Dyn. (50% relabeled) +.001 +.015 +.003 .005

Dyn. (50% relabeled + x2 weight) +.008 +.019 +.003 .010

Dyn. (50% relabeled + x3 weight) +.005 +.017 +.012 .011

Dyn. (50% relabeled + x5 weight) -.001 +.022 +.008 .009

Dyn. (50% relabeled + x10 weight) .000 +.022 +.007 .009



Fig. 2: Static Model (baseline) - Average Class Accuracy results of the model trained in 4 months period (w0) and tested in
every two months (w1...w4) in 1-year period

Static

Model

Result Wn

PnTest sample

(a) Static Model

Dynamic

Model Result

Test sample

Update

Wn

Pn

Pn

(b) Dynamic Model

Fig. 3: Experimental procedure, where P = sample , W = result
in Avg acc. and n = period

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated how concept drift
affects the accuracy of machine learning models applied to
detection of software vulnerability communication in social
media and hacker forums. As the nature of computer security
and language are dynamic, we confirm our expectation that
the performance of these models decreases with the rapidly
changing of concept within a 1-year period. However, models
trained and applied to Twitter messages do not show apparent
drift. We believe that, compared to other hacker forums,
Twitter provides shorter and less variable post content with
regards to novelty on hacker techniques and exploitation tools.
Thus, we imply that the drift on this platform is not enough
to affect the performance of such models in 1-year period.
Moreover, its users (even security researchers) use a more
direct style of communication to reach broad audience without
the need to deepen into technical details with specific and
novel terms.

Furthermore, in order to provide a solution to the drift
problem, we have investigated techniques such as periodic

update and weighting. We have found that by updating the
model with 50% of the incoming instances in a bimester while
giving them weights in a proportion of 3:1 is sufficient to avoid
the performance decreasing.

We acknowledge that, in real-life situation, it still infea-
sible to perform the labelling of 50% of messages in larger
streams of data. However, with these results we highlight two
important findings: (1) the importance of retraining the model
over new (recent) messages and weight them to maintain the
performance, and (2) not all streamed messages have the same
importance, as the drift can be avoided by at least 50% of
the relabelled data. We also point out that our experiment is
limited to the amount of data we collected. Further tests need
to be done with great volumes of posts in longer periods of
time.

As future work, we intend to study the characteristics
(patterns) of the worth-to-label messages in the data stream.
Finding these messages would allow us to reduce the labelling
task workload while maintaining the model usable for longer
periods. We are also investigating concept-drift-detection al-
gorithms, such as ADAWIN [9], EWMA [10] to trigger the
labelling task after a potential change into the underlying
distribution of the incoming data.

ACKNOWLEDGMENT

Andrei Lima Queiroz would like to thank the scholarship
granted by the Brazilian Federal Programme Science without
Borders supported by CNPq (Conselho Nacional de Desen-
volvimento Cientı́fico e Tecnológico), No 201898/2015-2.



w0 w1 w2 w3 w4
Window

0.55

0.60

0.65

0.70

0.75

0.80

0.85
A
ve
ra
ge
 C
la
ss
 A
cc
ur
ac
y

dataset = D1

w0 w1 w2 w3 w4
Window

dataset = D2

w0 w1 w2 w3 w4
Window

dataset = D4

Retrained
25%
50%
75%
100%

Fig. 4: Comparing the baseline static model, bold line (blue), against models retrained with different proportions (25, 50, 75,
100)% of past instances

w0 w1 w2 w3 w4
Month

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
ve
ra
ge
 C
la
ss
 A
cc
ur
ac
y

dataset = D1

w0 w1 w2 w3 w4
Month

dataset = D2

w0 w1 w2 w3 w4
Month

dataset = D4

Weight
x2
x3
x5
x10

Fig. 5: Comparing models with different values of weights on new instances (x2, x3, x5, x10) against model with no weights,
bold line (blue). All models using 50% proportion of incoming instances

REFERENCES

[1] S. Greengard, “Cybersecurity gets smart,” Communications of the ACM,
vol. 59, no. 5, pp. 29–31, 2016.

[2] T. S. Sethi and M. Kantardzic, “When good machine learning leads to
bad security: Big data (ubiquity symposium),” Ubiquity, vol. 2018, no.
May, May 2018. [Online]. Available: https://doi.org/10.1145/3158346

[3] K. Zhao, Y. Zhang, C. Xing, W. Li, and H. Chen, “Chinese underground
market jargon analysis based on unsupervised learning,” in 2016 IEEE
Conference on Intelligence and Security Informatics (ISI), 2016, pp. 97–
102.

[4] S. Chatterjee and S. Thekdi, “An iterative learning and inference ap-
proach to managing dynamic cyber vulnerabilities of complex systems,”
vol. 193, 2020, p. 106664.

[5] S. Hilt, V. Kropotov, F. Merces, M. Rosario, and
D. Sancho, “The internet of things in the cybercrime
underground,” uRL: https://media.rbcdn.ru/media/reports/
wp-the-internet-of-things-in-the-cybercrime-underground.pdf
[Accessed: Jan, 2020].

[6] R. P. Lippmann, W. M. Campbell, D. J. Weller-Fahy, A. C. Mensch,
G. M. Zeno, and J. P. Campbell, “Finding malicious cyber discussions
in social media,” Lincoln Laboratory Journal, vol. 22, no. 1, pp. 46–59,
2016.

[7] I. Deliu, C. Leichter, and K. Franke, “Extracting cyber threat intelligence
from hacker forums: Support vector machines versus convolutional
neural networks,” in 2017 IEEE International Conference on Big Data
(Big Data), Dec 2017, pp. 3648–3656.

[8] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware

classification models,” in 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, Aug. 2017,
pp. 625–642. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/jordaney

[9] A. Bifet and R. Gavaldà, “Adaptive learning from evolving data streams,”
in Advances in Intelligent Data Analysis VIII, N. M. Adams, C. Ro-
bardet, A. Siebes, and J.-F. Boulicaut, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 249–260.

[10] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand,
“Exponentially weighted moving average charts for detecting concept
drift,” Pattern Recogn. Lett., vol. 33, no. 2, p. 191198, Jan. 2012.
[Online]. Available: https://doi.org/10.1016/j.patrec.2011.08.019

[11] A. L. Queiroz, S. Mckeever, and B. Keegan, “Detecting hacker threats:
Performance of word and sentence embedding models in identifying
hacker communications,” in The 27th AIAI Irish Conference on Artificial
Intelligence and Cognitive Science, 2019, p. in press.

[12] ——, “Eavesdropping hackers: Detecting software vulnerability commu-
nication on social media using text mining,” in The Fourth International
Conference on Cyber-Technologies and Cyber-Systems, 2019, pp. 41–48.

[13] J. I. G. Hidalgo, B. I. F. Maciel, and R. S. M. Barros,
“Experimenting with prequential variations for data stream learning
evaluation,” vol. 35, no. 4, 2019, pp. 670–692. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12208

[14] I. Zliobaite, M. Pechenizkiy, and J. Gama, An Overview of Concept
Drift Applications, ser. Studies in Big Data. Switzerland: Springer
International Publishing AG, 2016, pp. 91–114.

[15] S. V. Kadam, “A survey on classification of concept drift with stream
data,” 2019, uRL: https://hal.archives-ouvertes.fr/hal-02062610 [Ac-
cessed: Jan, 2020].


	Moving Targets: Addressing Concept Drift in Supervised Models for Hacker Communication Detection
	tmp.1594308657.pdf.1HztH

