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Abstract

Music making and listening practices increasingly rely on techno-

logy, and, as a consequence, techniques developed in music information

retrieval (MIR) research are more readily available to end users, in par-

ticular via online tools and smartphone apps. However, the majority of

MIR research focuses on Western pop and classical music, and thus does

not address specificities of other musical idioms.

Irish traditional music (ITM) is popular across the globe, with regular

sessions organised on all continents. ITM is a distinctive musical idiom,

particularly in terms of heterophony and modality, and these character-

istics can constitute challenges for existing MIR algorithms. The bene-

fits of developing MIR methods specifically tailored to ITM is evidenced

by Tunepal, a query-by-playing tool that has become popular among

ITM practitioners since its release in 2009. As of today, Tunepal is the

state of the art for tune recognition in ITM.

The research in this thesis addresses existing limitations of Tunepal.

The main goal is to find solutions to add key-invariance to the tune re-

cognition system, an important feature that is currently missing in Tune-

pal. Techniques from digital signal processing and machine learning

are used and adapted to the specificities of ITM to extract harmonic

iv



and temporal features, respectively with improvements on existing key

detection methods, and a novel method for rhythm classification. These

features are then used to develop a key-invariant tune recognition system

that is computationally efficient while maintaining retrieval accuracy to

a comparable level to that of the existing system.
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Chapter 1

Introduction

The widespread use, and constant improvement, of mobile technology is

profoundly influencing the practice and enjoyment of music. One con-

sequence of the growth of the smartphone market, in the past decade,

is that apps based on techniques from the field of music information re-

trieval (MIR) have become popular with end users. Examples of music-

oriented apps abound: Shazam, which allows users to identify commer-

cial audio recordings, counts more than 100 million monthly active users

(MAU);1 Yousician, an e-learning software released in 2014, reported 8

million MAU in 2016.2

Research in MIR has been motivated, in part, by the need for reliable

and efficient ways of processing audio data, made evident by the increas-

ing digitisation of music. For example, retrieving information from raw

audio signals is essential to build music search systems or annotate large

1https://9to5mac.com/2018/01/26/shazam-apple-acquisition/, last visited August 26,
2019

2https://youtu.be/nIH-Wr2mJWw?t=462, last visited August 26, 2019

1

https://9to5mac.com/2018/01/26/shazam-apple-acquisition/
https://youtu.be/nIH-Wr2mJWw?t=462


collections (Downie, 2003). This led to the organisation, in 2000, of the

first International Symposium on Music Information Retrieval (ISMIR).

The symposium became a conference 2 years after, and is still one of the

most important academic events in the field.

Early in the history of MIR, Futrelle and Downie (2002) pointed out

that most research focused on Western pop and classical music, and have

highlighted the need for the field to expand to include other musical cul-

tures. Tzanetakis et al. (2007) later coined the term computational eth-

nomusicology, and attempted to offer some guidelines for analysis of

non-Western musics. In 2010, the first conference on Analytical Ap-

proaches to World Music (AAWM) was organised; the year after, an

AAWM journal began, as well as an annual workshop on Folk Music

Analysis (FMA). Researchers active in both AAWM and FMA have ad-

vocated in de Valk et al. (2017) for more collaboration between MIR

researchers and digital music archives.

In particular, there is a growing literature on the use of technology

for Irish traditional music (ITM), a musical tradition popular across the

globe. Examples of such research projects include stylistic analysis

of ITM recordings (Ali-MacLachlan et al., 2018; Köküer et al., 2019),

composition of new tunes fitting the musical style with a generative re-

current neural network (Sturm et al., 2015; Sturm and Ben-Tal, 2018),

and the creation of an ontology for ITM (Weissenberger, 2017).

The work presented in this thesis finds its place in this active land-
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scape, and in particular around Tunepal, a query-by-playing tune recog-

nition system for ITM (Duggan, 2010). Tunepal is now widely used

among learners and practitioners of ITM, handling more than 20,000

queries per month (Duggan et al., 2016). Improving the retrieval accur-

acy of this system would not only benefit this user base, but also offer

a better tool for annotating and exploring digital music archives. Cur-

rently, one of the main limitations of Tunepal is the fact that tune recog-

nition is not key-invariant: a tune cannot be recognised if it is played in

a different key to the one in which the corresponding score in the search

space is written.

The main goal of this thesis is to propose computationally efficient

solutions for key-invariant tune recognition in ITM. To this end, meth-

ods relying on techniques from digital signal processing and machine

learning, and tailored to take the specificities of ITM into consideration,

are developed. Both the harmonic and rhythmic dimensions of musical

signals are considered, respectively with the tasks of key detection and

rhythm classification. Tune recognition relies in part on automatic music

transcription (AMT), a task in which significant progress has been made

since the release of Tunepal. Using state-of-the-art AMT algorithms,

and the new and improved MIR methods for ITM, a system for key-

invariant tune recognition is proposed, with a focus on computational

efficiency while maintaining retrieval accuracy to a comparable level to

that of the existing system. This efficiency concern is particularly rel-

3



evant given that Tunepal is typically used on mobile devices where the

profile of computational resources can vary and may be limited.

1.1 Contributions

The first type of contribution to the field resulting from this thesis is the

manual annotation of a number of corpora of ITM recordings. These

annotations were used to evaluate the systems developed in the thesis.

Furthermore, the annotations have been made publicly available, as has

the code for the systems, and so the evaluations carried out in this thesis

are replicable by other researchers. The annotations include:

• key annotations for the audio recordings of the Foinn Seisiún CDs

(FS) published by Comhaltas Ceoltóirí Éireann and Grey Larsen’s

recordings, accompanying the book 300 Gems of Irish Music for

All Instruments (Larsen, 2013) (see Chapter 3);

• annotations on a collection of 500 recordings of tunes gathered

from the FS collection and other online sources. Annotated fields

contain the tune type, instruments recorded, tune id for the cor-

responding score on the website The Session, and transposition

between the recording and the score. The choice of tunes in the

collection was done to respect distributions of tune types across 4

reference collections (see Chapter 4 and 5);

4



• pitch track annotations for 30 tune recordings, made with the aid

of the Tony software (Mauch et al., 2015) (see Appendix A).

The second type of contribution to the field resulting from this thesis

is a set of novel methods tackling different tasks in MIR: key detection,

rhythm inference, and key-invariant tune recognition. These novel meth-

ods are developed and evaluated in Chapters 3 through 6 of the thesis.

More specifically:

• in Chapter 3, key detection is performed in a standard manner, by

means of pre-defined key-profiles, and a set of new key-profiles

adapted to ITM are introduced;

• a novel method for rhythm inference is introduced in Chapter 4,

in which a logistic regression model is trained to predict a rhythm

type from low-level audio features;

• a key-invariant tune recognition system is introduced in Chapter 5.

New metrics are defined to deal with the specifics of this inform-

ation retrieval system. Improvements on this system are proposed

in Chapter 6 by taking into consideration the predictions from the

models introduced in Chapter 4.

5



1.2 Publications arising from this thesis

The research contributions made to the field by the work reported in this

thesis have been the basis for a number of international peer-reviewed

publications. These include:

Chapter 3: Beauguitte, Pierre, Duggan, Bryan and Kelleher, John D.,

Key Inference From Irish Traditional Music Scores and Record-

ings. In Proceedings of the 14th Sound and Music Computing Con-

ference, July 5-8, 2017, Espoo, Finland.

Chapter 4: Beauguitte, Pierre, Duggan, Bryan and Kelleher, John D.,

Rhythm Inference From Audio Recordings of Irish Traditional Mu-

sic. In Proceedings of the 8th International Workshop on Folk Mu-

sic Analysis, June 26-29, 2018, Thessaloniki, Greece.

Appendix A: Beauguitte, Pierre, Duggan, Bryan and Kelleher, John D.,

A Corpus of Annotated Irish Traditional Dance Music Recordings:

Design and Benchmark Evaluations. In Proceedings of the 17th

International Society for Music Information Retrieval Conference,

August 7-11, 2016, New York City, USA.

Other publications made during the course of this research, but not

explicitly referred to in this thesis, include:

• Beauguitte, Pierre, Duggan, Bryan and Kelleher, John D. (editors),
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Proceedings of the 6th International Workshop on Folk Music Ana-

lysis, 15-17 June, 2016, Dublin, Ireland.

• Beauguitte, Pierre, The AEPEM Collection: A Set of Annotated

Traditional French Music Scores. In Proceedings of the 7th In-

ternational Workshop on Folk Music Analysis, 14-16 June 2017,

Málaga, Spain.

• Beauguitte, Pierre and Huang, Hung-Chuan, Content-based Music

Retrieval of Irish Traditional Music Via a Virtual Tin Whistle. In

Proceedings of the 9th International Workshop on Folk Music Ana-

lysis, July 2-4, 2019, Birmingham, UK.

1.3 Thesis summary and structure

The main body of this thesis is structured as follows.

Chapter 2 provides definitions and context for the work presented in

the subsequent chapters. After defining concepts and terms from music

theory useful for the present purposes, it focuses on the history and prac-

tice of ITM. Then a survey of related work in MIR and ITM is presented.

Motivated by a first tentative architecture for key-invariant tune re-

cognition, Chapter 3 presents some improvements on the state of the art

for key detection, on both audio and symbolic music.

After focusing only on the harmonic content of musical signal in

Chapter 3, Chapter 4 focuses on the temporal dimension. Using low-
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level audio features and machine learning models, the proposed method

predicts rhythm categories from an audio signal. A new dataset of an-

notations on ITM recordings is introduced.

In Chapter 5, the task of key-invariant tune recognition is approached

with a new architecture, as the key detection method from Chapter 3

proved to lack robustness in this musical context. The new method,

based on pitch class histogram alignment, is presented, new metrics are

defined, and the performance of the proposed system is compared to

existing methods.

In Chapter 6 an improved key-invariant tune recognition system is

presented, which integrates the rhythm prediction system from Chapter

4 into the key-invariant tune recognition system from Chapter 5. The

evaluation of this system indicates that the integration of rhythm predic-

tions into the system improves the system in terms of both computational

efficiency and retrieval accuracy.

Finally, concluding remarks and discussions of future work are given

in Chapter 7.

The thesis also includes a number of appendices. Appendix A in-

troduces a corpus of manual pitch track annotations of ITM recordings,

along with a benchmark study of existing automatic music transcription

algorithms. The work presented in this appendix represents preliminary

work carried out during this research project that informed the selection

of the automatic music transcription systems that are used in the present
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thesis. Appendix B gives 4 confusion matrices for the final experiments

of Chapter 3. Finally, Appendix C gives URLs to the datasets and imple-

mentations realised in the context of the work presented in this thesis.
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Chapter 2

Background

This chapter gives some definitions and context for the work presented

in this thesis. Section 2.1 introduces some definitions and terminology

from music theory. Section 2.2 is a short presentation of the history

and current practice of Irish traditional music (ITM). Finally, relevant

research in the field of music information retrieval (MIR) is presented in

Section 2.3.

2.1 Elements of music theory

Some terms and concepts of music theory are introduced here. Even

though ITM often does not follow the harmonic and tonal structures

of Western pop and classical music, the theory and vocabulary are still

useful for the discussion.

The atomic component of a melody is a note, that has both a pitch

and a duration. Other properties such as loudness and timbre are not
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considered. The pitch of a note is its perceived frequency, that can be

different from the physical frequency of the sound. In the 12-tone equal

temperament (12-TET) used in Western music, the octave (i.e. the inter-

val between a frequency f and its double 2 f ) is split in 12 equal steps,

called semi-tones. The MIDI scale offers a convenient representation

of pitch as integer numbers, with the convention that the middle A, or

A4 (440 Hz) is represented by the number 69, and the unit is the semi-

tone. Consequently the middle C, or C4, being 9 semi-tones below A4,

is represented by 60. In general, a pitch of fundamental frequency f is

represented by the MIDI note:

p = 69+12× log2

(
f

440 Hz

)
(2.1)

It is often useful to consider pitch classes, with respect to octave

equivalence ( f ∼ 2 f , or modulo 12 in MIDI notation). Pitch classes

can be seen as elements of Z12, where 0 represents C.

Another useful unit of pitch is the cent, defined such that a semitone

corresponds to 100 cents. The octave then corresponds to 1200 cents,

and the number of cents between two notes at fundamental frequency a

and b is:

n = 1200× log2

(
b
a

)
Melodies are sequences of notes. In a score, the notation support for
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Western music, note durations are quantised as fractions of the beat: a

crotchet represents one beat, a quaver half a beat, and so on. However,

melodies can also be represented without any reference to a beat, for

example as succession of notes in the format (pitch, onset, duration).

Monophony refers to the situation where only one melody is be-

ing played, by one or several players. Polyphony means that multiple

melodies, or one melody and some accompaniment, are played sim-

ultaneously. Heterophony is an intermediary situation, where multiple

players interpret the same melodic line, but not in the exact same man-

ner. It can be described as a “complex” monophony.

Most of Western music is built around the diatonic scale, i.e. the

arrangement of seven degrees separated by one or two semitones, as

represented by the polygon on Figure 2.1. A mode is then determined

by choosing a degree as a starting point, or tonic. Choosing Do results in

the Ionian mode, with the intervals T-T-S-T-T-T-S (T and S standing for

tone and semitone, respectively). Re results in Dorian, T-S-T-T-T-S-T.

As there are 7 degrees in the diatonic scale, 7 such modes exist, but only

the 4 used in Irish music are represented on Figure 2.1.

A mode can be either major or minor, depending on the nature of

the third, that is the number of semitones between the first and third

degrees of the mode. A major third has 4 semitones, a minor third only

3. Ionian and Mixolydian are major modes. Dorian and Aeolian are

minor modes. The musical key of a piece is defined by both the tonic
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note and the nature of the third. The notation is simply the pitch class of

the tonic followed by M for major or m for minor (e.g. GM, B[m).

Ionian

Dorian

Mixolydian

Aeolian

Do

Re

Mi
FaSol

La

Ti

Figure 2.1
Circular representation of a diatonic scale, and the 4 modes used in ITM

2.2 Irish traditional music

The history of ITM has been the subject of a large number of books

and publications already (Ó Canainn, 1993; Breathnach, 1996; Ó hAllm-

huráin, 2004; O’Shea, 2008; Vallely, 2011), so this section does not in-

tend to provide a comprehensive overview of the topic, but rather fo-

cuses on a few aspects relevant for the work presented in this thesis.

2.2.1 Tunes, types and structure

The nature of the music is melodic and modal, as opposed to the more

common harmonic and tonal aesthetics of Western pop and classical

music. In common with similar aurally transmitted musical traditions,

ITM is subject to variations and ornamentation in its interpretation. The

melodies, or tunes, are usually short and consist of two or sometimes
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more repeated parts. Each part is typically 8 bars long, and repeated

twice in most tunes.

A large part of ITM was played to accompany dances. If nowadays

the music is more often played on its own than to accompany dancers,

the dance types are still present as the different tune categories. The

most popular are reels, jigs (of which there exists different types: double,

single, slip, hop), hornpipes, slides, polkas, and rarer types include high-

lands, strathspeys, mazurkas, waltzes, and barndances. The majority of

melodies follow simple rhythmic structures, mostly consisting of quaver

movements.

In the first volume of the collection Ceoil Rince na hÉireann (1963),

collector, author, and musician Breandán Breathnach lists the typical

tempi for different tune types. These are given in Table 2.1, along

with the quaver duration these tempi imply, as well as the duration of

a tune part (8 bars) in the corresponding time signatures. On a set of

manual annotations of tunes (Köküer et al., 2019), the duration of notes

is measured to be between 80 and 220ms 90% of the time, with a mode

at 130ms. Compared to the values listed in Table 2.1, these are much

shorter, indicating faster tempi.

2.2.2 Collections

Collections of Irish music have been published since the eighteenth cen-

tury, with the work of John and William Neale, A Collection of the Most
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tune type tempo (BPM) quaver (s) 8 bars (beats) 8 bars (s)

double jig (8
6) ˇ “‰ = 127 0.157 16 7.56

single jig (8
6) ˇ “‰ = 127 0.157 16 7.56

hornpipe (4
4) ˇ “ = 180 0.333 32 10.67

slip jig (8
9) ˇ “‰ = 144 0.417 24 10

reel (4
4) ˇ “ = 224 0.268 32 8.57

Table 2.1
Durations in ITM

Celebrated Irish Tunes, published in 1726. At the turn of the century in

1792, a harp festival was held in Belfast, where Edward Bunting was ap-

pointed musical scribe. This led to the publication, in 1796, of his Gen-

eral Collection of the Ancient Irish Music. Later, in the middle of the

nineteenth century, George Petrie published in Ancient Music of Ireland

(1855) the melodies he had collected from musicians around Ireland.

Concerning both Bunting and Petrie, it has been noted (Ó Canainn,

1993; O’Shea, 2008) that their collection process was both selective (in

that it purposefully left out some airs that, according to the collector, did

not belong to the collection) and incorporative (in that it included pieces

that originated from other neighbouring traditions).

Classical notation was used to write the melodies, thus discarding

any microtonality or non-tempered scales that native musicians might

have used. Tomás Ó Canainn notes “the tendency of most collectors to

change modal tunes into minor airs, with a sharpened seventh, thereby

changing their whole character” (Ó Canainn, 1993, p. 18). Melodies

were also arranged with piano accompaniment, that stemmed from the

musical knowledge of the collector in classical harmony, but did not
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(a) Reel “The Blackberry blossom” in George Petrie’s The Ancient Music of Ireland. Volume 2
(1882) (source: https://www.itma.ie/digital-library/text/ancient-music-of-
ireland-petrie-vol-2, with the permission of the Irish Traditional Music Archive)

(b) Reel “The Blackberry blossom” in Francis O’Neill’s The Dance Music of Ireland (1907)
(source: https://imslp.org/wiki/Special:ReverseLookup/259251)

Figure 2.2
Two notations of the reel “The Blackberry Blossom”

belong to the musical idiom of native musicians.

The collection of tunes The Dance Music of Ireland published by

Francis O’Neill in 1907 is different in this regard: melodies were writ-

ten without accompaniment or indications for interpretation, and was

aimed at an audience of musicians already familiar with the Irish mu-
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sical idiom, and thus able to make “an informed interpretation using

an individual choice of phrasing, embellishment and variation from a

familiar stylistic palette” (O’Shea, 2008, p.20). By contrast, Bunting

and Petrie had arranged the melodies to suit more classical ears. Figure

2.2 shows two notations of a same reel, “The Blackberry Blossom”, in

George Petrie’s The Ancient Music of Ireland - Volume 2 (1882) and in

Francis O’Neill’s The Dance Music of Ireland (1907). Key and metre

are different, but more important is the piano arrangement in the former,

applying classical tonal harmony to an Irish melody.

A more recent collection of tunes is Breandán Breathnach’s Ceoil

Rince na hÉireann, a series of 5 books published between 1963 and

1999. With the advent of the Internet in the early 1990s, online collec-

tions have appeared. A notable one is that released by Heinrik Norbeck,1

first published in 1997 and regularly updated, for a current total of over

2500 tunes.

Lastly, The Session2 is a very popular website hosting discussions

about ITM, listings of regular sessions (see below Section 2.2.6) around

the world, and a user-curated collection of tunes, comprising more than

30,000 settings, or variants, of more than 15,000 tunes. Some of these

tunes clearly originate from outside Ireland: for example, a tune called

The Crested Hens is listed as one of the most popular waltzes of the

collection, when it is actually a French bourrée, a dance much faster than
1https://norbeck.nu/abc/
2https://thesession.org
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the waltz, composed by hurdy-gurdy player Gilles Chabenat. However

the melody was recorded as a waltz by the Irish-American band Solas

on their eponymous record in 1996, and was subsequently appropriated

by ITM practitioners. Some musicians also add their own compositions

to The Session’s tune collection. However challenging this is to the

notion of traditional repertoire, it is not fundamentally different from

the incorporative nature of historical collections discussed above in this

section. Because it is the most comprehensive collection of tunes, it will

be used as a reference in Chapter 5.

2.2.3 Notation

The collections mentioned above used classical musical notation, thus

ignoring some subtleties of intonation or microtonality, which are used

in ITM (Molloy, 2017; Vallely, 2011). In particular, the third and sev-

enth degree of the scale are often mobile, giving a modal colour to the

music. In some major tunes for example, the seventh is natural when

approached from above, but flat when from below. These nuances were

often discarded by collectors. The increasing use of tempered instru-

ments (see below Section 2.2.4) also led to ITM being closer to well

tempered music.

Other systems of notation have been used by ITM practitioners, often

as mnemonic and teaching devices. Tablatures are common for fretted

string instruments as well as accordions. O’Shea (2008) also mentions
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an old ABC notation for fiddle resembling a tablature: the letters ABCD

indicate which finger to use, and the numbers 1234 represent the string

to bow.

A very popular standard today is the ABC notation, first invented

in the USA (Williams, 2013), then formalised and developed by Chris

Walshaw.3 Its appeal relies to a large extent on it being a text-based

format, both machine- and human-readable. A large number of collec-

tions of Irish traditional music have been digitised in that format, and

are used by Tunepal, as presented below in Section 2.3.5. An example is

given of Figure 2.3. The header of a tune contains a list of fields includ-

ing title, rhythm, metre, key (T, R, M, K respectively). The L fields

defines the length of a note. In the example given on Figure 2.3 it is an

eighth note, or quaver. Following the header is the tune itself, repres-

ented in a straightforward syntax. One letter indicates one note (here a

quaver, as defined by the L field). A number following a letter multiplies

its length: g2 is a quarter note. Casing indicates the octave: upper case

notes are in the first octave of the instrument, lower case in the second

octave. Other conventions allow the representation of all other necessary

indications such as ornaments, repeats, and alterations.

3http://abcnotation.com
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T: Lucky In Love
R: reel
M: 4/4
L: 1/8
K: Gmaj
g2 gd BGGA | BGdB BAAB | gfgd BGAB | cBAc BG G2 |
efed BGGA | BGdB BAAB | g2 gd BGAB | ceAc BGGA ||
BGdG eGdG | BGdB BAAc | BGdG eGdG | BdAc BGGA |
BGdG eGdG | BGdB BAAB | GABd eaag | fdef gabg |]

(a) ABC notation

Lucky In Love

4
4

(b) Standard notation

Figure 2.3
Two notations of the reel “Lucky in love”

2.2.4 Instruments

This section presents briefly the main instruments found in ITM. The list

aims at being comprehensive, but has no pretension of being exhaustive.

Unless other works are cited, Vallely (2011) is the source for the inform-

ation.

The harp, if not a very common instrument in sessions and among

ITM practitioners in general, is perhaps the most emblematic of the tra-

dition, and of Ireland itself, of which it is the national symbol. Harps

have been present in Ireland since at least the 11th century. Older in-

struments used strings made of brass or iron. Modern Celtic harps are
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strung with gut or nylon. They are in general fully chromatic thanks to

semitone levers.

The traditional Irish flute is a side-blown wooden flute with open

tone holes. Some are equipped with keys that can make the instrument

chromatic. This kind of flute started to be used in Ireland only in the

18th century, when their popularity was also rising in Europe. Boehm

system flutes remain somewhat marginal in ITM.

Whistles have been found to be present in Ireland as early as the

12th century. Tin whistles are now very popular, and played by a large

number of ITM practitioners, even though it might not be their main

instrument. It is a six-holes fipple flute, most often in D but existing

in all other keys. In the second half of the 20th century, musicians and

makers experimented to create low-whistles in lower registers. They

have since become quite widespread.

Different types of bagpipes have been present in Ireland since at least

the 11th century. Existing representations indicate that they were mostly

mouth-blown and equipped with 2 drones, similarly to other bagpipes in

Europe. It is only at the beginning of the 18th century that a distinct

Irish kind of bagpipe appears, the uilleann pipes or union pipes. In the

current shape of the instrument, the chanter (melody pipe) has a register

of 2 octaves, larger than other bagpipes. The bag is inflated using bel-

lows. It has a set of drones (usually 3) and a set of regulators, allowing

for chordal accompaniment. An interesting specificity of this type of
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bagpipe is the ability to play staccato, thanks to a closed or “tight” fin-

gering.

The violin, or fiddle in the context of ITM, is one of the most popu-

lar instruments. Although older types of bowed string instruments have

been found in Ireland, dating as far back as the 11th century, the modern

fiddle is the standard orchestra violin originating from Italy in the 16th

century. The style of playing differs from classical playing by both the

bowing technique and the use of non-tempered scales or sliding notes.

O’Shea (2008) notes that the preference for the term “fiddle” over “vi-

olin” is a recent phenomenon, tied to the revival and commodification

of ITM.

The bodhrán is a frame drum, found in its modern form in Ireland

from the 1830s. It is held with one hand inside the frame, sometimes

pushing on the skin to adjust its pitch, and played with a stick held in

the other hand.

The concertina is a six-sided free reed instrument of English and Ger-

man origins. It became popular in Ireland in the second half of the 19th

century. Contrarily to most accordions, both hands are used for playing

melody, and there is no bass or chord accompaniment.

The banjo is a plucked string instrument, with a frame-drum-like res-

onator. Its origins are African American, and Irish musicians that had

emigrated to the USA began using it for ITM at the turn of the 20th cen-

tury. Modern instruments are fretted, and often played with a plectrum,
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but older ones were fretless and strummed with the fingers.

The guitar, the mandolin and the bouzouki are plucked string instru-

ments descending from the lute, and integrated in ITM relatively re-

cently, in the 20th century. The latter is originally from Greece, and was

first used in ITM only in the mid 1960s. Musicians have devised altern-

ative tunings more suitable to Irish music accompaniment (DADGAD

for guitar, GDAD for Irish bouzouki).

Finally, modern drum set and piano have been used in céilí dancing,

a form of traditional dancing revived by the Gaelic League at the end of

the 19th century.

Voice is present in Irish music, with a few different genres and tech-

niques. Sean-nós (“old-style” in Irish) singing is a solo and ornamen-

ted style of singing. Tomás Ó Canainn claims that “no aspect of Irish

music can be fully understood without a deep appreciation of sean-nós

singing” (Ó Canainn, 1993, p. 49). However, these songs do not fall into

the definition of dance tunes (Section 2.2.1) and are therefore out of the

scope of this thesis.

Ballads and folk songs are common in Irish music. Lyrics can be in

English or Irish language, and sometimes a mix of both in macaronic

songs. Some are written in a dance-like rhythm, like the song Rocky

Road to Dublin which has a 8
9 time signature like a slip jig. Again, this

repertoire does not fall into the dance tunes category, and are not in the

scope of this thesis.
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Dance tunes can be sung with a technique called lilting, or vocalisa-

tion of melodies using non linguistic syllables, sometimes referred to

as “diddley-dee”. Lilting can be used as a memory aid for learning a

melody, or as a substitute for instruments. Although this could be in-

cluded in a study of dance music of Ireland, the work in this thesis is

limited to instrumental music, and lilting is not represented.

2.2.5 Keys and tonalities

Some accounts of earlier ITM practice suggest that the keys in which

tunes were played were not fixed. For example, Breathnach (1996)

claims that D was used to denote the bottom note of the uilleann pipes,

flute or whistle, regardless of the actual pitch. Ó Canainn (1993) also

indicates that fiddle players would detune their instrument so that the

D string matches the bottom note of the pipes. That note depended on

the length of the chanter, until the Taylor brothers, pipes makers in Phil-

adelphia, standardised the concert pitch pipes, in D, at the end of the

20th century.

Most of the instruments used in ITM are limited to a certain key, or

a small number of keys. Some, like the concertina, keyed flute or keyed

pipes are fully chromatic, but these notes are used as accidentals or to

borrow from other keys rather than to play in entirely different keys. It

is common for musicians to own different instruments allowing them to

play in different keys.
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Sets of tunes are constructed in a way that most often accommod-

ates these limitations of the instruments, in that the tunes of a set will

generally use the same tone set, even if they modulate between different

modes (e.g. E Aeolian, G Ionian and A Dorian all use the same notes).

It is interesting to compare this to the sets or medleys in the fiddle music

tradition of Cape Breton in Canada, where often the mode changes while

the fundamental remains the same (Doherty, 1996). This means that the

tone set changes, which is perfectly feasible on a chromatic instrument

like the violin.

According to Fintan Vallely, “it is the rule-of-thumb practice to as-

sign a tune the key corresponding to its ending note” (Vallely, 2011, p.

388). However, Breandán Breathnach states that “many airs do not close

on the expected key note”, and “that by the ending or final note is not

simply meant that last note of an air as it would appear in a transcribed

version, but the final note of rest or repose on which the melody can

be fittingly brought to a close” (Breathnach, 1996, p. 8). From this it

appears that defining unambiguously the key of a tune is not straightfor-

ward. The modal nature of ITM blurs even more the notion of key, as

the 4 different modes used in the repertoire are built from the same tone

set (e.g. G Ionian, A Dorian, D Mixolydian, and E Aeolian with G as

Do). Furthermore, many tunes only use 6 or even 5 degrees of the scale,

adding more ambiguity.
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2.2.6 The session

Vallely defines a session as “a loose association of musicians who meet,

generally, but not always, in a pub to play an unpredetermined selection,

mainly of dance music, but sometimes with solo pieces such as slow airs

or songs” (Vallely, 2011, p. 610). This phenomenon is relatively recent:

it began in the middle of the 20h century in the United Kingdom when

Irish workers gathered in pubs to play together, as “a means of celebrat-

ing Irishness as a shared difference” (O’Shea, 2008, p. 43). Since then,

sessions have become global: The Session has a register of 1859 regu-

lar sessions,4 predominantly in Europe and North America, but also on

the other continents. Sessions can be more or less open to newcomers,

and the ratio of professional and amateur musicians can vary a lot. Fre-

quently, the publican pays a few session leaders, who decide on the rules

of the session. A process of commodification, increased by the growing

tourism industry in Ireland, is often discussed, as the example of session

in Doolin, County Clare, discussed in O’Shea (2008). This performative

aspect of some sessions goes against the claim made by Williams that

“Irish music does not require an audience” (Williams, 2013, p. 10) .

When played in a session, Irish music can often be adequately qual-

ified as heterophonic (Williams, 2013). All players of melodic instru-

ments (typically greater in number than rhythmic and harmonic instru-

ments) play the same tune together, but the result is often far from unison

4website visited on July 7th, 2019
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for several reasons. First of all, different instruments can play the same

melody in different octaves (e.g. flute and tin whistle). Additionally,

due to the acoustic limitations of certain instruments, or as an inten-

ded variation, some notes of a tune can be played in a different octave.

The low B (B3) for example cannot be played on most traditional flutes.

Consequently flute players often play a B4 instead, while a banjo player

would play the note B3 and a whistle player would play an octave higher

than the flute, B5. Yet, all would be considered as playing the same tune.

Another important aspect is the amount of variations present in Irish

music. Because of personal or regional stylistic differences, the abund-

ance of different sources (notations, archive or commercial recordings),

and of the music being transmitted aurally (thus relying on the memory

of the musician and therefore subject to interpretation), many different

versions of a same tune may exist. Although musicians will often try to

adapt to each other in order to play a common version during a session,

it is not uncommon to hear some differences in the melodies. Finally,

tunes are almost always ornamented differently by each individual mu-

sician depending on their style and personal preferences.

2.2.7 Recording and ITM

The advance of recording technology has influenced ITM practice over

the last century, and this section illustrates some important aspects of

this relationship.
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The first commercial recordings of Irish music were made in the USA

in the 1920s, notably by 3 fiddlers known as The Sligo Masters, Michael

Coleman, James Morrison and Paddy Killoran, who had emigrated from

Ireland and settled in New York. It had a widespread success in Ireland,

and had a notable effect on practice: many musicians copied the sets and

style of the disc, and this led to a blurring of regional differences.

The physical limitations of the recording format has dictated, to an

extent, the structure of the sets of tunes: 2 or 3 tunes played segue,

repeated 2 or 3 times each (O’Shea, 2008; Vallely, 2011). It is worth

comparing this with other traditions, such as old-time music in the USA,

where tunes can be repeated up to 50 or 60 times (Williams, 2013), or

Cape Breton fiddle music, where tunes in a medley are repeated only

once or twice (Doherty, 1996).

More recently, O’Shea (2008) reports the attitude of some practition-

ers that defend their repertoire, and oppose to being recorded in sessions

for fear of having their tunes “stolen”. Similar tensions were revealed

in Su and Duggan (2014): it describes a live-monitoring system, where

music played at a session is analysed, and the list of recognised tunes

is automatically published on a website. Some musicians disliked the

intrusiveness of the system, and feared its possible consequences on the

practice. The commodification of the session, now an essential part of

the tourism industry in Ireland, multiplies the occurrences of unwanted

and/or unauthorised recordings of live music.
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2.3 Related work

This section gives a concise literature review of MIR research relevant

to the topic of this thesis. Section 2.3.1 gives an overview on the task

of Query by Singing/Humming and defines the task of tune recognition.

This discussion will lead to the question of musical key identification,

which is the focus of Section 2.3.2. Then, Section 2.3.3 presents existing

work aiming at rhythm classification. Section 2.3.4 presents some MIR

research focusing specifically on ITM. Finally, Section 2.3.5 presents

the Tunepal app, which is the basis on which most of the work presented

in this thesis builds upon.

2.3.1 Query by Singing/Humming, tune recognition

The ability to search a digital music library by content, i.e. by playing

or singing a melody excerpt, as opposed to textual search by metadata

(such as title or artist name), has been a core motivation of MIR research

since the early establishment of the field (McNab et al., 1996; Lemström

and Perttu, 2000; Downie, 2003).

Query by Singing/Humming (QbSH) is one of the tasks defined by

the Music Information Retrieval Evaluation eXchange (MIREX)5 initi-

ative. Created in 2005, MIREX aims at fostering research and develop-

ment in MIR by defining precise tasks, establishing evaluation metrics,

and providing evaluation datasets. Although the metrics are not suited
5https://www.music-ir.org/mirex/wiki/MIREX_HOME
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to all MIR research, especially when applied to music genres outside of

the Western pop and classical music canon, they remain a standard in the

field. A common practice is to report both the MIREX metrics as well

as others, tailored to the specific study case (Serrà et al., 2010; Benetos

and Holzapfel, 2015). Other tasks and metrics defined by MIREX will

be discussed where relevant in the remainder of this thesis.

2.3.1.1 Problem definition

In the QbSH task, a query is an audio recording of a sung or hummed

melody excerpt, and the search space consists of either symbolic repres-

entations (MIDI, ABC, or equivalent) or audio recordings of pieces of

music. A typical approach is to transcribe the query into a symbolic rep-

resentation using an automatic music transcription (AMT) algorithm, as

well as the search space items if they are in audio format. Then, meas-

ures of melodic similarity are used to find the item closest to the query.

Companies such as ACRCloud6 or SoundHound7 have made QbSH

tools commercially available. The popular app Shazam8 does not allow

sung or hummed queries, and in fact addresses a task known as audio fin-

gerprinting, where the actual audio signal of a recording is recognised.

The audio-to-audio QbSH situation is similar to another MIREX task,

audio cover song identification. In such cases, some approaches do not

6https://www.acrcloud.com/music-recognition
7https://www.soundhound.com
8https://www.shazam.com/
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make use of an intermediate symbolic representation, but perform the

matching on lower-level audio features, like chromas (Ellis and Poliner,

2007; Serrà et al., 2010; Salamon et al., 2013; Lee et al., 2018).

In the task of QbSH, queries are audio recordings, but other types of

queries are sometimes considered. Pikrakis et al. (2016) addresses the

symbolic-to-audio situation: queries are in a symbolic format (MIDI),

and searched within automatic transcriptions of audio recordings. A

gesture-to-audio paradigm is proposed in Wallace (2018), where a query

is a pitch contour traced by moving a smartphone in the air, recorded

via the accelerometers of the device, and the search space consists of

automatic transcriptions of a collection of recordings of Norwegian folk

music.

The task of tune recognition addressed in this thesis corresponds to

an audio-to-symbolic situation, where the query is an audio recording

and the search space comprises melodies in symbolic format (ABC, in-

troduced in Section 2.2.3). Because queries are played on an instrument

rather than sung or hummed, the term query-by-playing is used.

An important feature of QbSH is key-invariance, i.e. the ability to

identify a query regardless of possible transpositions. Stasiak (2014)

proposes a transposition invariant algorithm, but its alignment method

relies on the assumption that the queries start at the beginning of melod-

ies. As will be explained below in Section 2.3.5, this restriction is not

appropriate for the problem tackled in this thesis. Using intervals instead
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of pitch in the symbolic representation does achieve key-invariance, but

has the effect of amplifying the cost of errors or variations in the query

(Janssen et al., 2017). The symbolic-to-symbolic method proposed in

Martiniano and Silla (2017) relies on knowing the key of the query,

which is not readily available in the case of tune recognition as defined

above. Finding an efficient and robust way to perform key-invariant tune

recognition for ITM is the main motivation for the work in this thesis.

The proposed methods will be presented in Chapters 5 and 6.

2.3.1.2 Automatic music transcription

When an intermediate symbolic representation is used for QbSH, an

automatic music transcription (AMT) algorithm is used. AMT is most

often concerned with either monophonic or polyphonic music, and Be-

netos et al. (2013) claim that the problem can be considered solved for

the former case, although new methods are still proposed (Kim et al.,

2018). For polyphonic music, AMT methods generally attempt at ex-

tracting all the notes from the polyphonic signal, but there also exists a

task called melody extraction, aiming at finding only the main melodic

line. A survey of such approaches is given in Salamon et al. (2014).

The result of an AMT algorithm can be either a continuous pitch

track, giving an estimate pitch for each audio frame, or a set of notes

with onset, pitch, and duration. Both can be useful for QbSH, depending

on the melodic similarity measure chosen. The following list introduces

32



some state-of-the-art algorithms in AMT and melody extraction.

pYIN (Mauch and Dixon, 2014) stands for probabilistic YIN, and is

based on the frequency estimation algorithm YIN (de Cheveigné

and Kawahara, 2002), used in conjunction with HMM-based pitch

tracking. The initial algorithm returns frame-level estimates, but

an additional segmentation step based on HMM modelling of note

events was introduced in (Mauch et al., 2015).

Silvet (Benetos and Dixon, 2012) is based on Principal Latent Compon-

ent Analysis. Although it is designed for polyphonic music tran-

scription, obtaining a single melody track is achievable by simply

limiting the number of notes occurring at any time to one. First,

a pitch track is generated by factorising the spectrogram according

to predefined templates. This is then post-processed with HMM

smoothing, in a similar manner to the pYIN segmentation step.

This approach has a high computational cost due to the complexity

of spectrogram factorisation.

Melodia (Salamon and Gómez, 2012) first extracts a salience function

by detecting peaks in the time/frequency representation of the au-

dio signal and then extracts the best continuous pitch track possible.

The original algorithm aims at extracting the predominant melody

from a polyphonic signal. A variant named PitchMelodia was later

developed for monophonic signals.
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A benchmark study of the performance of these AMT algorithms on

ITM recordings is given in Appendix A.

2.3.1.3 Melodic similarity

Once an audio query has been transcribed into a symbolic representation

via an AMT algorithm, it can be compared to items in the search space

by using a measure of melodic similarity. How to quantify this musical

notion in the form of a computable formula is a complex question, and a

number of such metrics and distances have been proposed. Janssen et al.

(2017) offers a comparative study of the performance of such measures

for retrieving folk songs from short segments. Chen et al. (2018) raises

the issue that no single similarity measure can capture all aspects of

melodic similarity, and addresses it by using a Similarity Network Fu-

sion (SNF), a method that automatically combines several metrics.

2.3.1.4 Evaluation metrics

In MIREX, submissions to the QbSH task are evaluated with a single

metric, the “Top-10 hit rate (1 point is scored for a hit in the top 10 and 0

is scored otherwise).”9 A Best (or Top-1) hit rate, more interesting from

a user perspective, is sometimes also reported (Salamon et al., 2013;

Stasiak, 2014).

Another metric that is often reported for QbSH tasks is the Mean Re-

9https://www.music-ir.org/mirex/wiki/2019:Query_by_Singing/Humming
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ciprocal Rank (MRR) (Dannenberg et al., 2007; Salamon et al., 2013).

It is defined as:

MRR =
1
N

N

∑
i=1

1
ranki

(2.2)

where ranki is the rank of the correct item in the ordered result set for

query i, where the candidates are sorted in order of descending melodic

similarity to the query. In some situations, it can occur that several can-

didates obtain the same similarity score, in which case their ordering

in the result set is purely incidental. It is thus important to clarify the

definition of rank in case of draws. In order to tackle this problem, Mar-

tiniano and Silla (2017) use the Mean draw Reciprocal Rank (MdRR),

defined as

MdRR =
1
N

N

∑
i=1

1
di× ri

(2.3)

where ri and di refer to the rank and the number of draws in the rank of

the correct tune.

Stasiak (2014) defines a new metric for evaluating a QbSH system

as:

δ =
1
N

N

∑
i=1

E(i)
2 −E(i)

1

E(i)
1

(2.4)

where the sum is computed only over the N successful queries of a batch,

and E(i)
1 and E(i)

2 are the distance scores, in that case computed by Dy-

namic Time Warping (DTW) of, respectively, the first and second closest

matches to query i.
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As discussed above in Section 2.3.1.1, a way of performing key-

invariance in QbSH is to know the key of the query. In order to use

this approach in the audio-to-symbolic situation this thesis is concerned

with, this requires inferring the key from the audio recording. This task

is the subject of the next section.

2.3.2 Key inference

The standard key-finding algorithm, based on key-profiles is first intro-

duced in Section 2.3.2.1. Then, existing key-profiles are given in Section

2.3.2.2.

2.3.2.1 Key-finding algorithm

The standard approach to identifying keys in a musical piece is to use

key-profiles (Temperley, 2001). They can be seen as vectors assigning

weights to the twelve semitones, denoted (p[i])i=0,...,11. As there are 12

semitones, and a key can either be major or minor as discussed in Section

2.1, a total of 24 keys exist. Each one of them has its own key-profile,

but only one needs to be defined for a given tonic (C by convention)

in both major and minor keys, as transposition to another tonic note is

performed by rotating the elements in the vector. Key-profiles are then

normalised to sum to 1:

p[i] =
p[i]

∑
11
i=0 p[i]

(2.5)
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A histogram (h[i])i=0,...,11 of cumulative durations of each pitch class in

the musical excerpt is generated, and the score is the weighted sum of

the histogram with the key-profile:

s(p,h) =
11

∑
i=0

p[i]∗h[i] (2.6)

The estimated key is then the one corresponding to the highest scor-

ing profile:

key(h) = key(argmax
p∈P

s(p,h)) (2.7)

where P is the set of 24 key-profiles representing candidate keys. The

normalisation step in Equation 2.5 ensures that there is no bias towards

either major or minor keys. Indeed, if the sum ∑ p is higher for one of

the two key-profiles, major for example, then scores s would be unfairly

higher for major keys than for minor ones. Because ∑ p = 1, this bias

does not occur in estimating the key in Equation 2.7.

Other methods for key-identification are based on higher-level fea-

tures. For example, in Madsen and Widmer (2007) the intervals of a

melody are analysed, which presupposes that an automatic transcription

of the signal has been performed beforehand. In Noland and Sandler

(2006), a Hidden Markov Model (HMM) is trained to estimate the key

from a sequence of chords.

Baseline key-profiles are introduced in the next section. The compu-

tation of pitch class histograms is detailed afterwards in Section 3.1.1.
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2.3.2.2 Existing key-profiles

Triads. Certainly the most naive way to define a key-profile is to con-

sider only the triad of the tonic chord. For example, in C it is expected

that the pitch classes of the tonic C, the third E and the fifth G will be

the most frequent, as reflected in the key-profiles:

ptriad(CM) = [1,0,0,0,1,0,0,1,0,0,0,0]

ptriad(Cm) = [1,0,0,1,0,0,0,1,0,0,0,0]

Krumhansl-Kessler. The key-profiles established in Krumhansl (1990)

were obtained by perceptual experiments, in contrast with the triads

presented above which were motivated by musical theory. Subjects were

asked to rate how well the different pitch classes fit within a tonal con-

text established by a short musical excerpt. The Krumhansl-Kessler key-

profiles are a well known method for key detection.

pKK(CM) = [6.35,2.23,3.48,2.33,4.38,4.09,

2.52,5.19,2.39,3.66,2.29,2.88]

pKK(Cm) = [6.33,2.68,3.52,5.38,2.60,3.53,

2.54,4.75,3.98,2.69,3.34,3.17]

Lerdahl’s Basic Spaces. The basic spaces defined in Lerdahl (1988) are

derived from the diatonic scale of each key. Different weights are given

to the degrees of the scale: 5 for the tonic (index 0 for CM and Cm), 4

for the fifth (index 7 for CM and Cm), 3 for the third (index 4 for CM,
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3 for Cm), 2 to the rest of the diatonic scale, and 1 to the remaining

semitones.

pLerdahl(CM) = [5,1,2,1,3,2,1,4,1,2,1,2]

pLerdahl(Cm) = [5,1,2,3,1,2,1,4,2,1,2,1]

It is worth noting that the natural minor scale, or Aeolian scale, is

considered here: the natural seventh (index 10) is taken as part of the

scale, not the augmented seventh (index 11) as would be the case with

the harmonic minor scale, more commonly used in tonal music.

Leman’s Tone Centre Images. In Leman (1995), the simple residue image

(or R-image) of a chord is generated as a weighted combination of the

undertone series of the tonic. The tone centre images are then derived by

summing the R-images of the chords present in the common cadences,

or sequences of chords used to establish tonal centers. The three typical

cadences selected in Leman (1995) are
I IV V I
I II V I
I VI V I

where the type of the chord depends on the scale considered. For the

major key-profiles, the usual major scale (Ionian) is used. However, for

the minor ones, the harmonic scale is chosen, where the seventh degree

is one semitone higher than in the natural scale.
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The Tone Centre Images (TCI) are then obtained by summing the R-

images of the chords, weighted by how often they occur in the cadences,

and normalising:

6∗ I+3∗V+ II+ IV+VI

After normalisation, the key-profiles obtained are:

pLeman(CM) = [0.36,0.05,0.21,0.08,0.24,0.21,

0.05,0.31,0.07,0.24,0.09,0.10]

pLeman(Cm) = [0.34,0.11,0.15,0.25,0.11,0.25,

0.02,0.31,0.24,0.09,0.12,0.14]

2.3.2.3 Evaluation metric

The evaluation metric for the MIREX audio key detection task is defined

as follows: let k be the ground truth annotation, and k̂ the estimated key,

then the accuracy score for this item is:

acc =



1 if k = k̂

0.5 if k̂ is the perfect fifth of k

0.3 if k̂ is the relative of k

0.2 if k̂ is the parallel of k

0 otherwise

These scores are then averaged across the dataset used. The MIREX

task focuses on audio only, but the same metric can be used for symbolic

representation.
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Chapter 3 will present a study of key inference in ITM, using the

method, key-profiles, and metric introduced in this section, as well as

improvements tailored to ITM.

The next section discusses existing work on rhythm classification.

This is of interest for the task at hand since, as discussed above in Sec-

tion 2.2.1, tunes in ITM are categorised according to dance types, each

having specific rhythmic characteristics.

2.3.3 Rhythm classification

Most of the existing literature on rhythm classification, for either sym-

bolic or audio representation of music, are considering time signatures,

or metres, as categories.

Brown (1993) is an early example of using an autocorrelation func-

tion (ACF) to determine the metre of a piece of music from its score.

Decision criteria on the ACF are explicitly defined. Also focusing on

symbolic music, Toiviainen and Eerola (2006) use discriminant func-

tion analysis to predict the metre of folk tunes. More recent research on

metre detection from written music include De Haas and Volk (2016)

using statistical analysis of inter onset intervals (IOI), and McLeod and

Steedman (2017) using a context free grammar (CFG).

Pikrakis et al. (2004) and Fouloulis et al. (2013) determine the metre

of Greek traditional music recordings, including asymmetric metres, by

hand-crafted decision criteria or template matching on an auto simil-
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arity matrix. In Gainza and Coyle (2007), the time signature is also

detected using self-similarity matrix, but the method is based on a prior

knowledge of the tempo. The method presented in Gouyon and Her-

rera (2003) relies on beats extracted in a semi-automatic manner, and

uses hand-crafted decision criteria to infer the metre. Gainza (2009) and

Varewyck et al. (2013) first extract the beats from the raw audio, then

determine the metre by analysing inter-beat similarity.

None of the work cited in this section has focused on ITM. As was

discussed above, the fact that Irish tunes are readily categorised into

dance types with specific rhythms makes this musical genre suitable for

rhythm classification. Chapter 4 will present a novel method for rhythm

classification in ITM, which will then be used in Chapter 6 to improve

the proposed key-invariant tune recognition system.

2.3.4 MIR and ITM

Duggan et al. (2009) presents the algorithm MATT2, which is at the core

of Tunepal, described below in Section 2.3.5. Its performs tune recog-

nition, as defined in the previous section, by using an AMT algorithm

on the audio query and substring edit distance as a measure of melodic

similarity. Besides its use in Tunepal, MATT2 has also been applied in

Duggan et al. (2008) in order to detect changes of tunes in a set. Su

and Duggan (2014) describe an attempt to use this tune segmentation

algorithm for real time monitoring of sessions. Automatic structural
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analysis, including tune separation but also the detection of parts within

a tune, is tackled in Kelly et al. (2010) by means of cross-correlation.

In order to perform tune recognition, the transcription of audio quer-

ies in Duggan et al. (2009) does not aim at retaining all the subtleties

of the playing, but rather simplifies the transcribed melody to make it

closer to a written score. On the contrary, Jančovič et al. (2015) aims at

finely transcribing all the ornaments in Irish flute recordings. The cor-

pus annotation project presented in Köküer et al. (2019) is a necessary

endeavour for such studies. In its current state of development, 79 tunes

are manually transcribed.

Ali-MacLachlan et al. (2015) relies on similar fine manual annota-

tions of recordings to train models able to recognise musicians from

their style of playing. In more recent iterations of this project, models

are trained directly on the spectrogram of the recordings, thus removing

the need for detailed annotations (Ali-MacLachlan et al., 2018).

Martiniano and Silla (2017) present a study of symbolic-to-symbolic

tune recognition, where key-invariance is achieved using key annota-

tions. Queries are created from excerpts of the scores themselves. An

interesting finding is that queries taken randomly in the middle of tunes

are retrieved better than those taken at beginning or end positions. The

results are first sorted by their order of melodic similarity, measured by

edit distance, then draws are filtered using a model predicting the genre

(or type as described in Section 2.2.1) of the tunes.
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2.3.5 Tunepal

In an Irish session, most of the times the names of the tunes are not

announced in advance. This leads to a very common situation when a

player, hearing a tune he or she does not know, decides to learn it, but can

at best record the audio on a phone. Building a repertoire in this man-

ner is very difficult, as unlabelled recordings are hard to organise, and

searching for different versions or recordings of a tune without know-

ing its name is hardly doable. For these reasons, the query-by-playing

app Tunepal (Duggan and O’Shea, 2011) was warmly welcomed when

it was released in 2009. Tunepal allows a user to record an excerpt of 12

seconds of Irish music, either from a live performance or a commercial

recording, and finds the tune in a large collection of transcriptions. The

user has then access to the name and score of the tune, as well as pointers

to available recordings of it. Today Tunepal handles more than 20,000

queries each month (Duggan et al., 2016). It is the state of the art for the

task of ITM tune recognition. In this section, the general architecture of

Tunepal, represented on Figure 2.4, is explained.

The first step of the process is to record an audio excerpt and tran-

scribe it into a symbolic sequence. The duration of the recording is set

to 12 seconds, which roughly corresponds to the length of one part of

a tune (see Table 2.1). The AMT algorithm used is called MATT2, for

Machine Annotation of Traditional Tunes. It determines the pitch of
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each frame by looking at the harmonicity of the power spectrum. Suc-

cessive frames of the same pitch class are then grouped into notes. The

length of a quaver is computed based on the distribution of note dura-

tions and is used to quantise the sequence at quaver granularity. Pitch

classes are then represented using the ABC convention.

A database of target tunes is created by aggregating ABC transcrip-

tions from several sources, including both historical collections and col-

laborative online repositories.10 Normalisation of the ABC strings is

done by expanding repeated sections; expanding long notes as quavers;

removing metadata such as title, type, metre; removing bar marks and

ornaments; and finally representing all notes by their pitch class, by up-

percasing all notes. After this normalisation process, a tune is represen-

ted by a string of letters A to G.

A similarity score between the transcription t and each tune c in the

corpus is then calculated as

s(t,c) = 1− d(t,c)
|t|

where |t| is the length of the transcription in quavers, and d is the sub-

string edit distance (SSED), a simple modification of the Levenshtein

distance (Navarro and Raffinot, 2002). Tunepal then returns the highest

scoring tunes, which can be several versions of a same tune from dif-

ferent online sources, or tunes that show some melodic similarities with

10The complete list is available at https://tunepal.org/index.html
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Figure 2.4
Architecture of Tunepal

the one being searched.

Currently Tunepal can only recognise tunes that are played in the

same key as the ABC transcription present in the database. This is a

problematic limitation, as playing ITM on instruments tuned differently

from the norm is not uncommon, as discussed in Section 2.2.5. Allowing

key-invariant tune recognition in Tunepal is the main goal of this thesis,

and the next chapter will explore a first attempt to address this limitation.
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Chapter 3

Key detection

As discussed above in Section 2.3.5, the main motivation for this thesis

is to develop a robust and efficient method for key-invariant tune re-

cognition, in order to address an important limitation of Tunepal, the

state-of-the-art query-by-playing system for ITM. In a previous study

on Irish tune recognition, Martiniano and Silla (2017) propose to solve

key-invariance by transposing the query and all the tunes in the search

space to a common key. However, the queries they consider are ob-

tained from written tunes, so that the ground truth key annotations are

consistent between queries and search space. In a tune recognition sys-

tem like Tunepal, the key of the (audio) query is not readily available.

Thus, in order to solve key-invariance by this common-key transposition

method, the key of the query has to be inferred from the audio query it-

self. Figure 3.1 presents a possible architecture for key-invariant tune

recognition based on this method.

This chapter will assess the feasibility of such a system, by focus-
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ing on the problem of key detection. The standard method for this

task, presented in Section 2.3.2.1, is used here, and the existing key-

profiles introduced in Section 2.3.2.2 are used as baselines. In Section

3.1, the details of the pitch class histogram computations chosen for this

experiment are given, as well as a refinement of the standard MIREX

evaluation metric. The dataset, consisting of both audio and symbolic

music, is presented in Section 3.2. A first experiment is presented in

Section 3.3, in which new key-profiles are defined, taking into consid-

eration some specificities of ITM. In Section 3.4, a parametric model

is defined, and trained on the dataset. The content of this chapter is

an extended and corrected version of Beauguitte et al. (2017). The an-

notations dataset and the implementation for the experiments carried out

here are publicly available.1

1https://github.com/pierrebeauguitte/keydetection
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3.1 Method

The standard algorithm for key detection has been presented above in

Section 2.3.2. It relies on the computation of pitch class histograms,

which can be carried out in different ways. Section 3.1.1 gives the details

of the method chosen here. Section 3.1.2 addresses an issue with the

standard metric as defined above in 2.3.2.3.

3.1.1 Pitch class histogram computation

The key identification method only needs a pitch class histogram (PCH)

from the musical excerpt.

In the case of symbolic representation, obtaining this is straightfor-

ward. The software abc2midi2 is used to parse the ABC files into a

sequence of notes ((pitch classt ,onsett ,durationt))t=1,...,T , where dura-

tions are expressed relative to a quaver. The PCH h is obtained by:

h[i] = ∑{durationt , where pitch classt = i} (3.1)

For each audio recording, a chromagram is first generated, then the

chroma vectors are summed over time. Chromagrams are obtained us-

ing the madmom3 library (Böck et al., 2016). Several methods of com-

puting the chromas have been tested: standard pitch class profile, har-

monic pitch class profile (Gómez, 2006), and Deep Chroma extractor

2http://abc.sourceforge.net/abcMIDI/
3http://madmom.readthedocs.io
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(Korzeniowski and Widmer, 2016). This last method, using a deep

neural network trained to extract chromas from a spectrogram, consist-

ently outperformed the others. Consequently all the results reported be-

low are obtained with the Deep Chroma method.

An important difference between the PCH obtained from the audio

recordings and symbolic representations is the presence of harmonics

in the audio. In the symbolic case, only the actual pitch of the notes

contribute to the symbolic PCH, whereas harmonics in the audio will

also contribute to the PCH.

3.1.2 Performance metric

In situations where a draw occurs, i.e. when a same score s is obtained

for different key candidates, the metric introduced in Section 2.3.2.3 is

not properly defined, as the argmax operator in Equation 2.7 does not

define a unique key candidate. Here, in such cases, the key candidate

obtaining the lowest accuracy score is kept as the estimated key. This

choice was made to make the evaluation as strict as possible.

3.2 Dataset

3.2.1 Audio datasets

Two sets of recordings are used in this study, representing overall 636

audio items. Each tune was manually annotated with key information
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by the author, corroborated when possible by scores available on The

Session.

Foinn Seisiún

This collection consists of recordings accompanying the Foinn Seis-

iún books published by Comhaltas Ceoltóirí Éireann, an organisation for

the promotion of the music of Ireland, founded in 1951. They offer good

quality, homogeneous examples of the heterophony inherent to an ITM

session. Instruments in the recordings are representative of the typical

Irish session, as presented above in Section 2.2.4. The whole collection

consists of 3 CDs, representing 327 tunes. The first 2 CDs (273 tunes)

are available under a Creative Commons Licence, while the third is com-

mercially available.4 In five instances, two recordings of a same tune are

present. In four cases, it was decided to keep both as different items in

the dataset, since the set of instruments recorded is different. Only in

one case is the exact same recording present, in which case one of them

was discarded. In the end, this dataset contains 326 distinct recordings,

and is denoted FSaudio.

Grey Larsen’s 300 Gems of Irish Music

Grey Larsen’s recordings, accompanying the book 300 Gems of Irish

Music for All Instruments (Larsen, 2013), is a set of MP3 files commer-

cially available. They consist of studio quality solo recordings of tunes
4https://comhaltas.ie
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played on Irish flute, tin and low whistles, and concertina. This dataset

is denoted GLaudio, and consists of 300 unique recordings.

3.2.2 Symbolic datasets

For each tune in both audio corpora, a symbolic transcription was collec-

ted in ABC format. The majority of the transcriptions were found online,

mostly on The Session (see Section 2.2.2). A small number of tunes

were not available, in whose cases the audio recordings were manu-

ally transcribed to ABC by the author. As discussed above in Section

2.2.3, the symbolic transcriptions do not correspond exactly to the mu-

sic played in the audio recording, and are rather outlines of the melodies

being played, ignoring ornaments and small variations. The difference

between recordings and scores is even clearer for the session recordings:

the audio signal is then heterophonic, as the different musicians are not

playing exactly the same melody.

This time, all redundant copies of duplicate tunes present in the Foinn

Seisiún collection are discarded, as in such cases the score remains the

same even though the recording differs. Hence FSsymb contains 322

items, and GLsymb 300.

3.2.3 Distribution of keys

Both datasets are unbalanced in terms of key distribution, as can be seen

on Figure 3.2. These distributions are actually representative of the ITM
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Figure 3.2
Distributions of keys in FS and GL

repertoire (Vallely, 2011). The keys of D and G are indeed the most

common in sessions, in part due to the fact that some instruments are

limited to these scales (e.g. keyless flute, whistle, uilleann pipes).

3.3 Experiment A: new key-profiles

In this section two new pairs of key-profiles are introduced, and their

performances are compared to the baseline ones.

3.3.1 Modal basic spaces

Lerdahl’s basic spaces, introduced in 2.3.2.2, are based on the natural

scales, or Ionian mode for major and Aeolian mode for minor. In ITM,

two other modes are commonly used: the Mixolydian mode (major with

a minor seventh) and the Dorian mode (minor with a major sixth). The

two basic spaces are modified so that they are suited to both major modes

53



(Ionian and Mixolydian) and minor modes (Aeolian and Dorian). This

is done by setting p[10] = p[11] in the major key-profile, and p[9] = p[8]

in the minor one:

pLerdahl?(CM) = [5,1,2,1,3,2,1,4,1,2,2,2]

pLerdahl?(Cm) = [5,1,2,3,1,2,1,4,2,2,2,1]

This idea of considering the minor and major seventh as equivalent

has already been used for the task of Irish traditional music tune tran-

scription and recognition in Duggan (2009).

3.3.2 Cadences in ITM

These key-profiles are inspired by Leman’s tone centre images. As men-

tioned in 2.3.2.2, cadences play an important role in establishing a tonal

centre. In Irish traditional music, the most common cadence is I - IV

- V - I (Vallely, 2011). In the case of minor tunes, the chord sequence

VII - VII - I - I, often used in accompaniments, is also considered. Con-

sequently the formulae to obtain the key-profiles are Major: 2∗ I+ IV+V

Minor: 4∗ I+2∗VII+ IV+V

Instead of considering R-images, chords are simply represented by

54



FSaudio FSsymb GLaudio GLsymb

Triad 0.873 0.792 0.671 0.707
KK 0.854 0.869 0.665 0.696
Lerdahl 0.887 0.890 0.689 0.774
Leman 0.848 0.829 0.646 0.666

Lerdahl? 0.893 0.890 0.711 0.798
Cadences 0.883 0.874 0.677 0.766
Cadences? 0.902 0.815 0.713 0.747

Table 3.1
MIREX scores for the 4 corpora using different key-profiles

their triads, as introduced in 2.3.2.2. The resulting key-profiles are:

pCadences(CM) = [3,0,1,0,2,1,0,3,0,1,0,1]

pCadences(Cm) = [5,0,3,4,0,3,0,5,1,0,3,0]

Finally, these profiles are also modified to account for the Mixolydian

and Dorian modes:

pCadences?(CM) = [3,0,1,0,2,1,0,3,0,1,1,1]

pCadences?(Cm) = [5,0,3,4,0,3,0,5,1,1,3,0]

3.3.3 Results

Results are given for the seven pairs of key-profiles considered. All the

MIREX accuracy scores are reported in Table 3.1.

Two observations can be made from this table. First, comparing the

MIREX scores on the two symbolic datasets shows that inferring the

key of the tunes in GL is harder than in FS. Second, on the FS col-
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lection, most key-profiles yield better results on the audio data than on

the symbolic data. The opposite is true for GL. Hence it appears that

inferring keys from heterophonic or polyphonic audio is easier than on

monophonic recordings. An explanation for this is that the harmonic

content is richer in heterophonic and polyphonic signals.

The new modal key-profiles introduced in Section 3.3 (Lerdahl? and

Cadences?) outperform the existing key-profiles on all four datasets. In-

spired by Lerdahl’s original key-profiles which assign different weights

to degrees of the scale (see Section 2.3.2.2) the next section will present

an attempt at improving the performance of the Cadences key-profiles,

which are the best performing ones on audio recordings, by assigning

different weights to the tonic, third and fifth degrees in the triads uses to

build the profiles, as presented above in Section 3.3.2.

3.4 Experiment B: parametric profiles

3.4.1 Methodology

The model proposed here is a parameterised version of the previously

introduced Cadences profiles. The parameters considered are the three

weights given to the three notes of the triads, denoted W = (w1,w3,w5)

for the tonic, third and fifth respectively. Then, the following profiles
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can be derived from the cadences chosen in Section 3.3.2

pCadences(W )(CM) = [2w1 +w5,0,w5,0,2w3,w1,0,

w1 +2w5,0,w3,0,w3]

pCadences(W )(Cm) = [4w1 +w5,0,2w3 +w5,4w3,

0,w1 +2w5,0,w1 +4w5,

w3,0,2w1 +w3,0]

The modal versions of these profiles, Cadences?(W) are obtained in

the same manner as in Section 3.3.2.

In order to evaluate the performance of this parametric model, and to

find an optimal set of parameters W , a grid search is performed. The pro-

cess iterates across a three dimensional discrete space, called the grid,

where each point defines a different set of weights W , and hence a differ-

ent model. The MIREX key detection metric introduced in 3.1.2 is used

to evaluate the models. Each parameter wi is allowed to take integer val-

ues in [1,g], where g is the size of the grid. Here g is a hyper-parameter

of the grid search algorithm, as opposed to the parameters wi of the

models being evaluated.

Performing a grid search on a complete dataset is straightforward,

but it merely returns a model fitted to the data, without any indication

about how well it could generalise to unseen data. In order to assess the

performance of the models on new data, it was decided to conduct the

grid search inside a 10-fold cross validation, following Kelleher et al.
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(2015). The dataset is first split into 10 equally sized subsets, called

folds. Each fold is then, in turn, kept aside as a test set, while the grid

search is performed on the rest of the dataset, then called training set. In

each of these 10 experiments (one per fold), the resulting model is tested

on the test set, and a confusion matrix is kept. The aggregate matrix is

finally obtained by summing all 10 confusion matrices.

It is important to note that although a MIREX score can be computed

from the aggregate matrix, it does not correspond to any single model.

Indeed, the models obtained from each of the 10 iterations described

above can all be different. The score is rather an indication of average

generalisation power of parametric models created using a grid search

to fit the parameters applied to different samples of data. Once this is

ensured, one final grid search is run, this time on the whole dataset, to

obtain one single model.

3.4.2 Results

The only hyper-parameter in this experiment is g, the width of the grid.

A wide range allows a better fit on the training data, but poses a risk

of overfitting it, resulting in poor performance on the test sets. The

experiment was performed for g ranging from 2 to 10. The grid size

g = 3, allowing the weights wi to take values in [1,2,3], gave the best

performance, and is used for the following results.

Scores calculated from the aggregate matrices after the cross valida-
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FSaudio FSsymb GLaudio GLsymb

Cadences(W ) 0.891 0.873 0.706 0.779
Cadences?(W ) 0.908 0.842 0.723 0.741

Table 3.2
MIREX scores computed from the aggregate matrices after cross-validation on the 4
corpora

tion on each of the four datasets are presented in Table 3.2. The models

Cadences?(W ) outperform all other methods on the two audio corpora.

However, the Lerdahl? key-profiles evaluated in Experiment A remain

the best performing ones on the symbolic data (see Table 3.1). Con-

sequently the rest of this section focuses on Cadences?(W ) on the audio

datasets.

The result of the cross-validation method suggests that the models

Cadences?(W ) generalise well to unseen audio data. In order to obtain

one single model, a final grid search was then performed on the com-

bined dataset (FS +GL)audio. Grouping the two collections of audio

recordings means that the profiles should perform well on both hetero-

phonic and monophonic recordings. The weights obtained are (3,1,2),

corresponding to the intuition that the tonic and fifth are more import-

ant than the third, as in Lerdahl’s basic spaces (Section 2.3.2.2). The

resulting key-profiles are:

pCadences?(3,1,2)(CM) = [8,0,2,0,2,3,0,7,0,1,1,1]

pCadences?(3,1,2)(Cm) = [14,0,4,4,0,7,0,11,1,1,7,0]
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With these profiles, the MIREX scores are 0.901 on FSaudio and 0.730

on GLaudio, to be compared to the scores in Table 3.1. The lower score on

FS is not unexpected: the grid search maximises the overall score across

the combined audio collection, regardless of the scores on the individual

collections. The overall MIREX score on the combined collection is

0.819, compared to 0.811 with the non-parametric Cadences? profiles.

The confusion matrices for these new key-profiles on the audio col-

lections, and for the Lerdahl? ones on the symbolic datasets (on which

they are still the highest scoring ones), are given in Tables B.1 to B.4,

pages 159 to 162. Rows indicate the actual keys in the ground truth an-

notations, while columns indicate estimated keys. Keys that never occur

in either the ground truth or the estimations are omitted.

The three types of errors taken into account in the MIREX evalu-

ation metrics are highlighted in different shades of blue. Another er-

ror that occurs frequently in this experiment is between a major key

IM and its supertonic IIm, or a minor key Im and its subtonic [VIIM.

The term “neighbour” was chosen to designate this relationship between

such closely related keys. In terms of modes, the scales of a Ionian (resp.

Mixolydian) mode and its neighbour Dorian (resp. Aeolian) mode con-

tain the exact same pitch classes. It is not rare in ITM that a tune labelled

as one key to change its tonic centre for a few bars to the neighbour key,

e.g. Ballydesmond Polka N. 3 shown on Figure 3.3, considered to be a

tune in GM, but with a second part in Am. On both audio datasets, this
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Figure 3.3
Ballydesmond Polka N. 3, a tune with first part in GM and second in Am

type of error is the most common. As such, and although the MIREX

evaluation metric does not take these errors into account, reporting them

seems relevant.

Relative keys are the next most common errors, on both audio and

symbolic datasets. The scales of two relative keys contain, as is the case

with neighbour keys, the same pitch classes, if one considers the Aeolian

mode. Changes of tonic centre in a tune between its key and the relative

key are also quite common in ITM. The high frequencies of these two

types of errors can be explained by the specific characteristics of this

musical idiom.

Table 3.3 gives the percentages of correctly inferred keys per mode

for the best scoring methods, i.e. Cadences? on audio datasets and

Lerdahl? on symbolic ones. A clear difference in performance appears

between the major and minor keys, suggesting that minor keys are harder

to detect than major keys. A possible reason for this is that many minor

tunes have complete bars or sections borrowing to a neighbour or relat-

ive major key.

61



FSaudio FSsymb GLaudio GLsymb

Major 97.5% 91.1% 80.6% 82.5%
Minor 26.8% 58.5% 39.3% 64.0%

Table 3.3
Proportions of correct inference per mode

3.5 Discussion

Although the key-profiles introduced in the chapter managed to im-

prove on the state of the art for key detection in ITM, the algorithm

still fails in about 20% of cases overall, and even more on audio record-

ings. Therefore, the performance of the key-invariant tune recognition

method presented in Martiniano and Silla (2017), or in Figure 3.1, rely-

ing on common-key transposition, would be undermined by the added

difficulty on extracting the key from the audio query.

Before proposing a different way to tackle key-invariance in Chapter

5, the next chapter will focus on extracting rhythmic properties from

audio recordings of tunes. A new dataset, designed to be more repres-

entative of ITM in terms of rhythm and tune types (see Section 2.2.1),

will be introduced.
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Chapter 4

Rhythm classification

The focus of the previous chapter was the harmonic content of music,

both in symbolic notation and audio recording. This chapter now fo-

cuses on the temporal aspect, i.e. the rhythm of the music. Categor-

isation of tunes in terms of their rhythm, or dance type, has been done

in all historical and modern collections, and is relatively unambiguous.

Metres used in ITM, and the corresponding dance types, are:

• simple duple: 4
4 (reel, hornpipe, fling, barndance) and 4

2 (polka)

• simple triple: 4
3 (waltz, mazurka)

• compound duple: 8
6 (double and single jigs) and 8

12 (slides)

• compound triple: 8
9 (slip and hop jigs)

Simple and compound refer to the beat subdivision, while duple and

triple refer to the grouping of beats. No asymmetric metres such as 8
5

or 8
7 are found in ITM. Rather than focusing on the metre, the aim here
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is to detect the tune type. Indeed, inferring a 4
4 metre would not allow

to differentiate between a reel and a hornpipe, although their rhythm

is noticeably different, the latter typically using dotted notes (Vallely,

2011).

A new method, combining low-level spectral features and machine

learning, is presented in Section 4.1. This approach is then used for two

different categorisations: the first one attempts at distinguishing between

duple and triple metres, while in the second one, the actual tune types are

considered. A new dataset is introduced in Section 4.2. Results of the

experiments are given in Section 4.3, and Section 4.4 gives some con-

cluding remarks. Most of the content in this chapter has been published

in Beauguitte et al. (2018), although the experiment is carried here on a

different dataset. The annotations and the implementation of the novel

method realised in the context of this chapter are publicly available.1

4.1 Method

The method introduced next relies on features extracted from the sig-

nal, called quantised lag vectors, presented in Section 4.1.1. Similarly

to some of the work presented in Section 2.3.3, it is based on autocor-

relation. A logistic regression model is then used to predict the rhythm

category from these features, as explained in Section 4.1.2.

1https://github.com/pierrebeauguitte/ITM_rhythm
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4.1.1 Feature extraction

The audio files are sampled at 44100Hz. A magnitude spectrogram is

generated, with window size of 2048 and step size of 10ms, or 441

samples. Following Jehan (2005), this spectrogram is reduced, via a

bank of triangular filters, to a 24-band Bark spectrogram Xk(t) where

1 ≤ k ≤ 24 is the Bark index. Then, following Bello et al. (2005), an

onset detection function is obtained by a method of spectral difference:

SD(t) =
24

∑
k=1

(H(Xk(t)−Xk(t−1)))2 for t > 0

where the rectifier H(x)= (x+ |x|)/2 has the effect of ignoring decreases

of energy, as it is equal to zero for negative values. As a consequence, it

emphasises onsets more than offsets. As the energy difference is com-

puted in each spectral band before being summed, changes in the har-

monic content will appear in the SD function, and the presence of per-

cussive instruments is not required to detect onsets.

The autocorrelation function is then computed on a 5-second window

of the SD function (wt) = (SD(t0+ t))0≤t<N=500 (where t0 is the start of

the window) using Pearson’s correlation coefficient. The autocorrelation

for a lag l is:

ACF(l) =
cov(X ,Y )

σXσY
where


X = (wt)0≤t<N−l

Y = (wt)l≤t<N
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Figure 4.1
Peak picking of the ACF function. Solid line: ACF function. Dashed line: smoothed
function

where cov is the covariance and σ designates standard deviation. This

function is then smoothed by Gaussian filtering with a standard devi-

ation of 20ms, and the local maxima of this smoothed curve are picked,

ignoring the always present peak at l = 0. Figure 4.1 shows an example

of the peak picking procedure on a window of a jig. Each peak p has

a lag pl and an amplitude pa. For the goal of this study, what matters

is not the actual locations of the peaks pl, but their relative positions

from each other. By abstracting the representation from the actual lag

values, tempo invariance will be obtained. The quaver duration will be

extracted from the peaks locations and then used to compute a quantised

representation.

The quaver duration q is found by the fuzzy histogram algorithm,

introduced in Duggan (2009), and given in Algorithm 1. The intervals,

or lag differences, between the peaks are grouped into bins, allowing

for a deviation of a fraction of the bin centre, set to 1/3. The centres
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Quantised lag vector

of the bins are adjusted for each new interval added. Once all peaks

are processed, the quaver length q is taken as the centre of the largest

bin. This value will then be used to quantise the set of peaks P into a

tempo-invariant representation.

This novel representation is dubbed quantised lag vector. Its ele-

ments (qli)1≤i≤16 are obtained by first grouping the peaks as follows:

Pi = {p ∈ P where round(pl/q) = i}

and averaging across these sets:

qli =


(
∑p∈Pi pa

)
/|Pi| if Pi 6= /0

0 otherwise

The number of 16 quavers was chosen empirically. Experiments with

alternative values did not lead to significantly different results.

An example of such a vector is plotted in Figure 4.2, computed from

the ACF peaks shown on Figure 4.1. The ratio of the first nine peaks is
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Algorithm 1: Fuzzy histogram algorithm, adapted from (Duggan, 2009)
Data: P, list of peaks of the ACF (size l)
Result: quaver length

1 bins← {};
2 max← 0;
3 for i← 1 to l do
4 if i = 1 then
5 dur = P[i]l;
6 else
7 dur = P[i]l−P[i−1]l;
8 end
9 found← false;

10 for b in bins do
11 bin_start← b.centre∗(1−1/3);
12 bin_end← b.centre∗(1+1/3);
13 if dur ≥ bin_start and dur ≤ bin_end then
14 found← true;
15 b.centre← (b.centre∗b.count+dur)/(b.count+1);
16 b.count += 1;
17 break;
18 end
19 end
20 if found = false then
21 newBin.centre← dur;
22 newBin.count← 1;
23 bins.add(newBin);
24 end
25 end
26 for b in bins do
27 if b.count > max then
28 maxBin← b;
29 max← b.count;
30 end
31 end
32 return maxBin.centre;

preserved, but the absolute durations of the lags have been discarded,

making this representation tempo-invariant. Some of the subsequent

peaks are grouped together by the rounding operations. More prominent

peaks appear at multiples of 3, as is to be expected from the compound
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metre of that tune type (jig).

Each 5-second window produces a 16-valued vector, and the window

is slid with a step size of 0.5 second. Choosing such a small step size

results in a large amount of examples, which is an advantage for the

machine learning methodology presented in the next section.

4.1.2 Model training

Regression analysis in general attempts at modelling the relationship

between independent variables x (here the ql vectors) and a dependent

variable y (here the rhythm category). Logistic regression models, or

classifiers, are used, because the dependent variables are categorical, i.e.

they can only take one of a given set of values. A similar methodology

will be used to predict, in a first experiment, the metre type, or beat

subdivision and, in a second one, the tune type.

4.1.2.1 Experiment A: beat subdivision

The dataset consists of pairs (x,y), where x is a ql vector and y a label

in {simple, compound}. A 10-fold cross validation methodology is used

as a way of evaluating how well the models generalise (Kelleher et al.,

2015). Each fold is, in turn, kept as a test set, and a binary classifier

is trained on the remaining 9. When preparing the folds, all ql vectors

from one tune are kept in only one of the folds. This way, the models

will be tested on recordings that have not been used during training, thus
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avoiding a form of cheating.

To account for the fact that the classes simple and compound are

not balanced in the dataset, during training the error on an instance is

weighted by the inverse of the relative frequency of the output class of

the instance in the training set; i.e., errors on compound instances are

given a higher weighting than errors on simple instances in the calcula-

tion of the loss function to account for the fact that compound instances

are rarer.

4.1.2.2 Experiment B: tune type

In this second experiment, a model is trained to predict the tune type

from the ql vector. As will be presented in the next Section, because

some tune types are rare, using 10-fold cross validation would only res-

ult in too few examples of them in each fold. To avoid this problem,

4-fold validation is used instead. For each fold, a multinomial logistic

regression classifier is trained in a one-versus-all manner, meaning that

the model actually consists of a set of binary classifiers. As in experi-

ment A, during the training phase, errors are weighted by the inverse of

the relative frequency of the output class.
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4.2 Dataset

As discussed in Section 2.2, the repertoire of Irish Traditional Dance

Music is categorised in a number of distinct rhythms, or tune types, ori-

ginating in the dances these tunes were accompanying. In order to build

a dataset that is representative, in the relative proportion of the different

tune types, of the body of ITM, 4 reference collections, mentioned in

Section 2.2, are considered:

• Francis O’Neill’s The Dance Music of Ireland (1907) (FON), is a

collection of 1001 dance tunes, and considered to be “an important

landmark for the traditional musician” (Ó Canainn, 1993, p. 20).

• Breandán Breathnach’s Ceoil Rince na hÉireann (1963 - 1999)

(CRÉ), is a series of 5 books comprising more than 1200 dance

tunes.

• Henrik Norbeck’s ABC collection2 (HN) is a popular online tune

book, published for the first time in 1997 and growing since, for a

current total of over 2500 Irish tunes.

• The Session3 is a collaborative website that offers among other

things a large database of over 15,000 tunes of mostly, but not ex-

clusively, Irish traditional music.

The first two collections in this list are historically significant, but
2https://norbeck.nu/abc/
3https://thesession.org
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give a rather conservative view of the repertoire. On the contrary, the

two online collections are more representative of the current repertoire

in ITM. For example, neither CRÉ nor FON contain any barndances or

waltzes, whereas these have gained popularity in Irish repertoire (Val-

lely, 2011, p. 739).

In addition to some categories of tunes being entirely absent from a

collection, the grouping of types also differs between them. CRÉ and

HN have only one category for slides and single jigs, The Session only

has slides, and FON only single jigs. The question of the difference

between these 2 types has been the subject of a number of online discus-

sions.4 Following CRÉ and HN, these 2 types will be considered here

as a single group.

Because of their relative rarity, barndances, highlands, strathspeys

and flings are also grouped in a single type labelled Other 4/4, and

waltzes, mazurkas and “three-twos” in a single group labelled waltzes.

Despite a slight heterogeneity, these categories are consistently duple

simple and triple simple metres, respectively.

Set dances (present in all collections except The Session) were dis-

carded, as this type does not constitute a homogeneous rhythmic cat-

egory. Vallely writes:

“Such tunes were often in 2/4 time (‘The Blackbird’, ‘King of

the Fairies’), sometimes 9/8 (‘Is the Big Man Within?’ [the

4for example https://thesession.org/discussions/3854/, last visited August 27, 2019
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second part of which is in 6/8], ‘The Barony Jig’), but gener-

ally resembled 6/8 double jigs (‘Orange Rogue’, ‘St Patrick’s

Day’) or 4/4 hornpipes (‘Garden of Daisies’, ‘Job of Journey-

work’).” (Vallely, 2011, p. 612)

Other discarded categories are airs, O’Carolan tunes (composed by

Turlough O’Carolan, an Irish harper and singer from the late 17th and

early 18th century), country dances, marches, slow airs and songs (in

HN) and “Misc.” (in FON).

The distribution of tunes per type in all 4 collections is given in Table

4.1, in raw count in the top half and in percentages in the lower half.

Apart from the absence of some categories in the two historical col-

lections, rather large differences in distributions appear: FON contains

similar numbers of reels and jigs, whereas CRÉ has about three times as

many reels as it has jigs. Numbers for The Session are for the collection

as it was on February 24th 20195.

A size of N = 500 recordings was chosen for the dataset. The dis-

tribution of tunes per type was chosen by averaging the percentages of

Table 4.1 across the 4 collections, and taking ntype = round(N ptype). The

numbers are given in Table 4.2, along with the resulting distribution of

tunes in simple and compound metres.

The primary source of recordings is the Foinn Seisiún CD series. In

5weekly snapshots of all data from The Session are available at https://github.com/adactio/
TheSession-data
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CRÉ FON HN The Session

reels 646 350 1047 5834
jigs 229 365 506 4044
slides 110 45 119 324
slip jigs 55 45 98 523
hornpipes 82 150 149 1176
polkas 86 0 139 1120
other 4/4 0 0 85 1156
waltzes 0 0 27 1610

Total 1208 955 2170 15787

reels (%) 53.48 36.65 48.25 36.95
jigs (%) 18.96 38.22 23.32 25.62
slides (%) 9.11 4.71 5.48 2.05
slip jigs (%) 4.55 4.71 4.52 3.31
hornpipes (%) 6.79 15.71 6.87 7.45
polkas (%) 7.12 0 6.41 7.09
other 4/4 (%) 0 0 3.92 7.32
waltzes (%) 0 0 1.24 10.20

Table 4.1
Number of tunes per type in collections

Tune type ptype (%) ntype

reels 43.83 219
jigs 26.53 133
slides 5.34 27
slip jigs 4.27 21
hornpipes 9.20 46
polkas 5.15 26
other 4/4 2.86 14
waltzes 2.81 14

simple 63.86 319
compound 36.14 181

Table 4.2
Distribution of tunes in the dataset
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addition, recordings from the Comhaltas Live program were gathered,

mostly from the session category, but also from solo or concerts set-

tings. The complete list with the URLs of the audio files, along with the

relevant annotations, is publicly available.6

4.3 Results

This section presents the results of the 2 experiments. Accuracy scores

are given for aggregate matrices resulting from the k-fold cross valida-

tion methodology described above.

The models of both experiments predict a label for a 5-second win-

dow. In addition to the window-level scores, predictions across a span of

several consecutive windows are also considered. The reason for this is

that rhythm is not as easily identifiable on all 5-second sections of a tune.

Thus it is possible to reach better accuracy by gathering predictions on a

longer segment. The prediction over a span of s windows is obtained by

averaging the prediction probabilities for each class, and choosing the

class that has the highest average probability. Performances are reported

at window-level, over spans of s windows, and finally over whole tunes.

4.3.1 Experiment A

The aggregate confusion matrix resulting from the 10-fold cross valid-

ation is given on Table 4.3. The overall accuracy score at the 5-second
6https://github.com/pierrebeauguitte/ITM_rhythm
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window level is 87.14%. The prediction accuracy is slightly lower on

the simple class than on the compound class. A possible explanation for

this is that there are more distinct tune types included in the simple class

(reel, hornpipe, polka, waltz,...) than in the compound class (only jig,

slip jig and slide). Looking at the score per tune type on Table 4.4, it

appears that performance is lowest for waltzes. Reasons for this may

be that the rhythms of such melodies are less repetitive, with more long

notes and slower tempi, thus making periodicity harder to detect on the

ACF function. Vallely writes: “as is the case with marches, popular

Irish songs [...], Moore’s Melodies [...] and some traditional song-airs

[...] have typically been recruited for service as waltzes” (Vallely, 2011,

p.739), suggesting the non-homogeneity of waltz melodies.

When considering spans of successive overlapping windows, the ac-

curacy increases up to 95.11%, as is shown on Figure 4.3. It is possible

to compute this only up to a span size of 55 windows, corresponding to

the duration of the shortest tune in the collection.

Lastly, the tune-level accuracy is obtained by averaging the predic-

tions over the span of all windows of its recording. The overall predic-

tion accuracy is of 96.80%.

Although the task tackled in this first experiment is arguably easy,

these high accuracy scores are very encouraging and suggest that the ql

vector representation does capture some useful rhythmic information.
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simple compound

simple 86.65 11.91
compound 13.35 88.09

simple 312 9
compound 7 172

accuracy (%) 97.81 95.03

Table 4.3
Aggregate confusion matrix at window-level (top) and tune-level (bottom) for experi-
ment A (column: reference, line: prediction)

Type Accuracy (%)

reels 93.93
jigs 93.62
slides 73.40
slip jigs 69.45
hornpipes 72.85
polkas 76.41
other 4/4 92.01
waltzes 63.18

Table 4.4
Window-level accuracy score per tune type for experiment A
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Figure 4.3
Prediction accuracy by span length for experiment A
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4.3.2 Experiment B

The aggregate confusion matrix resulting from the 4-fold cross valida-

tion is given on Table 4.5. The overall accuracy score at the 5-second

window level is 66.84%. The accuracy per window span length is shown

on Figure 4.4, and reaches a maximum of 79.80% at s = 55.

Finally, the confusion matrix for tune-level prediction is given in

Table 4.5. Overall accuracy reaches 83.2%. The scores are lowest on

slip jigs, of which none are correctly classified, and slides. In both

cases, the tunes are most often misclassified as jigs, which are also of

compound metre: the prediction is still correct at the level of beat sub-

division. However, slip jigs are in triple metre, but are mostly classified

as jigs, that are in simple metre, suggesting that beat grouping is harder

to capture than beat subdivision. A similar trend appears with waltzes

(triple duple): 4 out of 14 of them are classified as hornpipes (simple

duple).

4.3.3 Results on Greek music dataset

The method described in this chapter has been applied to a dataset of

recordings of traditional Greek music during the 8th International Work-

shop on Folk Music Analysis (Thessaloniki, Greece, 2018).7 The task

consisted of predicting the metre, or time signature, of the pieces. A

multinomial model was trained to predict the 7 different categories in-

7http://fma2018.mus.auth.gr/challenge.html
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reels jigs slides slip jigs hornpipes polkas other 4/4 waltzes

reels 79.98 3.77 6.85 6.32 4.56 15.59 32.37 7.28
jigs 2.20 81.52 42.90 45.19 8.37 1.62 2.90 7.61
slides 1.86 5.46 15.46 7.73 6.21 1.47 3.32 9.26
slip jigs 0.40 1.85 5.71 4.88 2.54 0.53 1.07 2.82
hornpipes 4.92 1.45 11.53 7.91 51.37 4.81 21.91 23.24
polkas 1.65 1.82 6.70 5.33 6.80 69.67 2.52 10.87
other 4/4 3.47 0.33 0.60 5.25 7.11 1.37 30.78 7.71
waltzes 5.53 3.80 10.24 17.38 13.04 4.94 5.14 31.22

reels 210 2 1 0 1 3 4 0
jigs 2 129 13 11 1 0 0 2
slides 0 1 6 2 1 0 0 0
slip jigs 0 0 1 0 1 0 0 0
hornpipes 3 0 1 0 33 0 2 4
polkas 0 0 2 0 1 23 0 0
other 4/4 4 0 0 2 2 0 8 1
waltzes 0 1 3 6 6 0 0 7

accuracy (%) 95.89 96.99 22.22 0.00 71.74 88.46 57.14 50.00

Table 4.5
Aggregate confusion matrix at window-level (top) and tune-level (bottom) for experi-
ment B (column: reference, line: prediction)
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Figure 4.4
Prediction accuracy by span length for experiment B
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cluded in the challenge, in the same manner as in Experiment B. Some

parameters were fine-tuned to obtain the best possible predictions.

• The sliding window for computing the ACF function is 10 seconds

long, instead of 5.

• The “fuzz” parameter of the fuzzy histogram, allowing to match

durations up to a certain ratio, is 0.25 instead of 1/3.

• The ql-vectors are of size 64 instead of 16, and the Pi sets are now

defined as Pi = {p∈ P where round(2∗ pl/q) = i}. Multiplying the

numerator by 2 allows rounding at semiquaver positions.

The first modification is a consequence of the sampling rate used in

the challenge (22.05kHz), twice lower than the one used in the present.

The other two were obtained by performing a grid search, using the

public dataset as a validation set.

The multinomial model succeeded at tune-level in 47 out of 80 re-

cordings in the test set, or 58.8%. The accuracy is much lower than for

ITM, but well above chance, here at 1/7 or 14.3%. The main difficulties

were the presence of asymmetric rhythms in Greek music, and the small

size of the public training set.
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4.4 Discussion

A novel method for inferring rhythm information from an audio record-

ing has now been introduced, relying on low-level spectral features and

logistic regression classifiers. The dataset for this experiment was de-

signed to follow the distribution of tune types in 4 reference collec-

tions. The performance on the method on this dataset reached 96.8%

and 83.2% accuracy for metre type and tune type prediction, respect-

ively.

One possible source of errors is the estimation of quaver duration. In-

deed, the fuzzy histogram algorithm returns the most frequent note dura-

tion in a transcription, allowing for variations of±33% (see Algorithm 1

page 68). According to Vallely, a reel “consists largely of quaver move-

ment”, a double jig is “characterised throughout by the rhythmic pattern

of groups of three quavers” (Vallely, 2011, p. 570 and p. 368). These 2

tune types alone account for more than 70% of the repertoire, according

to the average percentages presented in Table 4.2. Hence, in the ma-

jority of tunes, the value returned by the fuzzy histogram should indeed

correspond to the duration of a quaver.

However, again according to Vallely, in a single jig “the pre-dominant

rhythmic pattern is crotchet followed by quaver” and for a slide “the

predominant rhythm involves the alternation of crotchets and quavers

creating the feeling of long and short” (Vallely, 2011, p.368-369). This
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would mean that crotchets and quavers are in similar numbers in tunes

of these types, and the fuzzy histogram could return either of the two.

Vallely also writes that “hop jigs are to slip jigs as slides are to double

jigs ... in each case the three-quaver group is typically changed to a

crochet + quaver group” (Moylan and O’Leary, 2014, cited in Vallely

(2011)). In the choice of categories for the dataset, it was decided to

group hop and slip jigs together, but this might have to be reconsidered

in order to study more finely the way quaver duration is found.

A larger dataset would allow for more training, hopefully leading

to higher accuracy. This would be especially important in the tune

types that are less represented, as generally in machine learning more

examples in the training set can help models generalise better.

Testing the method on solo recordings would be useful to further as-

sess the robustness of the proposed approach. Indeed, although the on-

set detection function relies on spectral content and not on hard onsets

from percussive instruments, drums or plucked string instruments (gui-

tar, banjo) are present in most of the recordings in the dataset. Invest-

igating the performance of the proposed method on flute or fiddle solo

recordings could establish to what extent hard onsets help the rhythm

inference.
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Chapter 5

Key-invariant tune recognition

This chapter focuses on the task, presented in Section 2.3.1, of recog-

nising tunes from audio recordings in a key-invariant manner. A new

architecture is proposed, that does not rely on key recognition, and thus

does not suffer from the difficulties of that task, discussed in Section 3.5.

The basic structure for tune recognition is based on the Tunepal ar-

chitecture, presented in 2.3.5. Section 5.1 introduces the general ar-

chitecture of the new proposed solution. The data for this experiment

is presented in Section 5.2. Both patterns and searched texts have to

be represented in a new way compared to Tunepal, presented in Sec-

tion 5.3. At the core of this new method is the computation of pitch

class histograms, which is detailed in Section 5.4. Section 5.5 details

the implementation of the substring edit distance used as a measure of

melodic similarity. The performance of the new algorithm is measured

via 4 different metrics introduced in Section 5.6. It will be compared

with the performance of the existing, non key-invariant, Tunepal archi-
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tecture, and with that of a third approach, using the brute force method

of considering all possible transpositions. Section 5.7 discusses these

methods, and results are given in Section 5.8. The annotations dataset

and the implementation of the algorithms presented in this chapter are

publicly available.1

5.1 Architecture

Like in Tunepal, the aim is to recognise a tune played in an audio record-

ing. A corpus, or search space, is prepared from an online collection of

tune notations. The audio query is transcribed using an AMT algorithm.

Melodic similarity is measured by substring edit distance, and the tunes

in the search space that are most similar to the transcribed query are

returned to the user.

In its current state, one of the main limitations of the system is that it

is not key-invariant: a tune can only be recognised when played in the

same key as the score present in the search space. However, as discussed

in Section 2.2, the actual key of a tune can be said to be of little import-

ance in practice. In Chapter 3, an architecture was proposed, following

the method proposed in Martiniano and Silla (2017) of transposing quer-

ies and candidates to a common key. However, the lack of robustness of

the key detection algorithm, an essential element in that architecture, as

well as the ambiguity of the notion of key in ITM, motivated the new
1https://github.com/pierrebeauguitte/tunerecognition
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Figure 5.1
Architecture for key-invariant tune recognition

architecture presented in this chapter.

The new architecture is illustrated on Figure 5.1. It does not require

any key annotation, but rather relies on the computation and alignment

of pitch class histograms (PCH). Two different techniques for the com-

putation of the audio PCH will be considered, and are represented by the

two dashed blue arrows on the diagram.

5.2 Dataset

This section presents the dataset used in the tune recognition study. It

consists of 2 parts: a collection of scores, or tunes in symbolic format,

referred to as the search space and presented in 5.2.1; and a collection of

audio recordings of tunes, that the system has to identify. The audio col-

lection is actually an extension of the dataset from the previous chapter,

as is explained in 5.2.2.
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5.2.1 Search space

The collection of tunes from The Session, already presented in Chapter

4, is chosen as the search space for this experiment. It is the largest

available collection, and other collections mentioned above are actually

included in it. It contains scores for all of the tunes present in the au-

dio dataset. Because it is a collaborative site, the set of tunes is always

evolving. An online repository2 contains weekly snapshots of the data-

base. As in Chapter 4, and for the rest of this thesis, the snapshot from

February 24th 2019 is used.

Each score is identified with a unique setting id, and a tune id, which

can be shared by different settings. The term cardinality will denote

the number of settings a particular tune has. This allows the collection

to account for variations: two settings of a same tune are meant to be

variations of a tune. In practice however this is not always respected, and

some duplicates exist (different tune ids when they should be variants of

a same tune), and settings can sometimes be different melodies entirely,

but sharing a same name.

In total, the database comprises 32,747 settings grouped under 15,787

tunes, of cardinality ranging from 1 to 28.

2https://github.com/adactio/TheSession-data
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5.2.2 New data fields on audio dataset

The same audio dataset introduced in 4.2 is used here. Three new fields

are introduced in the annotations:

• tune id in the search space. This will serve as the ground truth for

the tune recognition experiments. Because the recording versions

typically differ to some extent from any of the scores on The Ses-

sion, annotating an exact setting is unpractical, and would require

to somewhat arbitrarily decide when a setting is the “same” tune,

a variation of the tune, or a different tune altogether. Because du-

plicate tunes exist on The Session, some tunes are annotated with

several ids (up to 4). Cardinality in such cases is defined as the

sum of the cardinalities of the individual tune ids. With this new

definition, cardinality of audio excerpts reaches 29.

• key deviation, indicating when the recording is in a different key

than all the scores from The Session. This information is not ne-

cessary for the key-invariant architecture, but will be passed as a

ground truth annotation to the non key-invariant recognition al-

gorithm Originalkey used as a ceiling, as detailed below in 5.7. Only

20 of the 500 recordings are in transposed keys.

• as the aim is to identify excerpts of tunes, randomly placed in the

tune, 4 random offsets are chosen on each tune. The excerpts dur-

ation is chosen at 12 seconds, so that it typically corresponds to at
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least 8 bars of melody, as per Table 2.1. Offsets are spaced by a

minimum of 5 seconds such that overlap is allowed. As the dataset

comprises 500 recordings, this results in 2000 12-second excerpts.

5.3 Representation

This section introduces the way melodies are represented in the tune

recognition system, as sequences of quavers. Pitch is represented in a

different manner than in Tunepal (Duggan, 2010). The motivation for

this, and the new representation, is explained in Section 5.3.1. Rhythm

is represented in the same way as in Tunepal, and explained in Section

5.3.2. The next two sections detail how the quaver sequences are ob-

tained from the audio query and the ABC tune notation.

5.3.1 Pitch representation

In Tunepal, pitch is represented by letters A to G. The symbols are ob-

tained by normalising the ABC notation, as detailed in (Duggan, 2009).

Because mode and accidentals are discarded in the process, a symbol

represents indiscriminately the flat, natural and sharp note. This design

choice addressed the fact that in ITM, thirds and sevenths can be con-

sidered “mobile”, or be tuned in quarter tone between the tempered

pitches. It is not unusual, for example, that tunes in D use both nat-

ural seventh C] and flat seventh C. The pitch representation in Tunepal
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can be understood as considering only the degree of the note, discarding

possible alterations.

An implicit assumption in what is described above is that tunes are

played in D, or more precisely on D-based instruments. For the task at

hand, this hypothesis has to be removed, and the equivalence between

alterations of a note cannot be used. Indeed, when the audio query will

be transcribed, there will be no way to a priori know which semitone

intervals are equivalent or mobile (degrees [3/3 and [7/7) and which

are not: e.g. degrees 3 and 4 are a semitone apart in a major mode, but

are not equivalent.

For this reason, pitch will be represented by integers, with the con-

vention C = 0,C]/D[ = 1, . . . ,B = 11. Pitch class is represented, and

not absolute pitch value (as MIDI notes), because as discussed in Sec-

tion 2.2.6 octave equivalence is suited to the heterophony of ITM. In

Tunepal, octave equivalence was achieved by uppercasing all note sym-

bols and discarding the octave change symbols (, and ’ for lower and

higher, respectively).

Finally, the value 12 is added to the alphabet to represent silence.

5.3.2 Rhythm representation

Melodies are represented as sequences of quavers, as in Tunepal. There

is no other rhythm structure added such as beats or bars. Both the audio

query and ABC tune candidates will be represented in this manner. As
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a consequence, parts of tunes can be simplified or omitted: semiquavers

and short ornamental notes are discarded, and triplets are represented as

normal quavers. However, this simplification is justified by the musical

idiom considered, since, as discussed in Section 2.2.1, quavers are the

fundamental rhythmic unit in ITM.

The next 2 sections explain how these representations are obtained

from the ABC tunes and the audio queries.

5.3.3 ABC to quaver sequence

In (Duggan, 2009, Section 6.7), the ABC notation is normalised through

a 4-step process, which is summarised here and illustrated in Figure 5.2.

First, text annotations and ornaments are discarded; then long notes are

expanded in quavers; repeated sections are expanded, and bar symbols

are removed; finally all notes are brought to the same register by upper-

casing all symbols, and removing , and ’.

Here, the same process is applied, with two differences: first, al-

terations (_, =, ^ for flat, natural and sharp, respectively) are kept in

the representation, whereas they are considered are ornaments and thus

discarded in Tunepal; second, normalisation is followed by a last step

translating the note symbols into pitch class. In order to do so, the text

field indicating the mode (K:) is used to define a mapping between let-

ters and pitch classes, represented by integers. Alterations are processed

to affect the pitch class value by ±1. In the example shown on Figure
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Original:
T: Come West Along The Road
K: G
[...]
d2BG dGBG|~G2Bd efge|d2BG dGBG|1 ABcd edBc:|2 ABcd edBd||

After ornamentation filtering:
mapping (G=7, A=9, B=11, C=0, D=2, E=4, F=6)
d2BGdGBG|G2Bdefge|d2BGdGBG|1ABcdedBc:|2ABcdedBd||

After note expansion:
ddBGdGBG|GGBdefge|ddBGdGBG|1ABcdedBc:|2ABcdedBd||

After section expansion:
ddBGdGBGGGBdefgeddBGdGBGABcdedBc
ddBGdGBGGGBdefgeddBGdGBGABcdedBd

After register normalisation:
DDBGDGBGGGBDEFGEDDBGDGBGABCDEDBC
DDBGDGBGGGBDEFGEDDBGDGBGABCDEDBD

Figure 5.2
Normalisation stages for ABC notation, adapted from Duggan (2009)

ABC Tunepal Proposed representation
T: Kitty Lie Over
[...]
K: Dmaj
|:B|AFD DFA|BdB BAF|
ABA F2D|FEE E2B|

BAFDDFABDBBAF
ABAFFDFEEEEB

11, 9, 6, 2, 2, 6, 9, 11, 2,
11, 11, 9, 6, 9, 11, 9, 6,
6, 2, 6, 4, 4, 4, 4, 11

T: The Musical Priest
[...]
K: Gmin
|:GF|DGG^F GABG|
AG=Fd cAGF|DGG^F GABG

GFDGGFGABG
AGFDCAGFDGGFGABG

7, 5, 2, 7, 7, 6, 7, 9, 10,
7, 9, 7, 5, 2, 0, 9, 7, 5, 2,
7, 7, 6, 7, 9, 10, 7

Table 5.1
Comparison of representation of ABC tunes in Tunepal and in the proposed method

5.2, the annotation K: G would result in the following mapping for G

major:

(G = 7,A = 9,B = 11,C = 0,D = 2,E = 4,F = 6)

Two examples of ABC notations to quaver sequences are given in

Table 5.1, along with the Tunepal representation for comparison.
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Rests, represented by the letter z, are kept like all other notes. As

will be explained below in Section 5.5, silences in the query will act as

a wildcard, that is, will be allowed to match with any other note. This is

useful for instruments such as flute and whistle, where the player often

needs to skip a note in order to take a breath. However, some ABC tunes

in the search space contain long sequences of rests, and allowing these

to act as wildcards would result in these tunes matching any query.

As was explained above in Section 5.2.2, audio queries are taken

as 12-second audio excerpts placed randomly in a recording. In most

cases, the tunes are played several times, thus it can happen that such

an excerpt spans the end of the tune and the beginning of the next repe-

tition. In order for the symbolic representations in the search space to

contain the quaver sequences corresponding to these situations, and thus

to make matching possible (see below Section 5.5), the first half of the

sequence is appended to the representation. Appending only half of the

sequence is sufficient, as it corresponds to at least one full part, or 16

bars, typically lasting longer than 12 seconds (see Section 2.2.1).

5.3.4 Audio to quaver sequence

An audio excerpt is first transcribed using an AMT algorithm, result-

ing in a sequence of notes in the form ( f0,onset,duration). The quaver

duration q is obtained by constructing the fuzzy histogram (Algorithm

1 page 68) from this sequence of notes. The notes are then quantised: a
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note of pitch p and duration d results in round(d
q) quavers added to the

sequence. This means that notes shorter than 0.5q are discarded. The

gap between notes is also quantised, and represented by the value 12.

Pitch is first aligned to the closest MIDI note, then reduced to a pitch

class in [0, 11].

The state-of-the-art AMT algorithms presented in Section 2.3.1.2,

namely pYIN, Silvet, Melodia, and its variant PitchMelodia, will be

considered. In addition, the algorithm originally designed for Tunepal,

MATT2 (Duggan, 2009), standing for Machine Annotation of Tradi-

tional Tunes, will also be considered. In MATT2, pitch is estimated

from the harmonicity of the signal, by processing the peaks of the power

spectrum. Although it is not a state-of-the-art AMT algorithm, it was de-

signed and fine-tuned specifically for ITM, and will serve as a baseline

here.

Open source implementations of these algorithms are available.3 Sil-

vet, pYIN, and MATT2 all return notes in the desired format. Melodia

(and its variant PitchMelodia) do not return a sequence of discrete notes,

but a continuous pitch contour. To obtain discrete sequences of notes,

the PitchContourSegmentation algorithm provided by the Essentia lib-

rary4 is applied (Bogdanov et al., 2013).

3respectively at https://code.soundsoftware.ac.uk/projects/pyin, https://code.
soundsoftware.ac.uk/projects/silvet, http://mtg.upf.edu/technologies/melodia, and
https://github.com/skooter500/matt2

4https://essentia.upf.edu
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5.4 Pitch class histogram computation and alignment

This section introduces the computation of both symbolic and audio

PCH, as well as the alignment method.

5.4.1 Symbolic PCH

The symbolic PCH is obtained from the original ABC by summing the

durations of the notes of each pitch class, on a 120-valued vector where

the unit is 10 cents. At this point, only multiple of 100 cents, corres-

ponding to the tempered semitones, are non-zero, as is shown on Figure

5.3a. To make this representation closer to the audio one, and allow for

slight tuning deviations in the match, this vector is then filtered by per-

forming a convolution with a Gaussian kernel of size 150 cents. The

vector is normalised to sum to 1. An example is plotted on Figure 5.3b.

5.4.2 Audio PCH

Two different ways of computing the audio PCH are presented below.

In Section 5.4.2.1, the PCH is derived from the power spectrum of the

recording, obtained by Fourier transform. In Section 5.4.2.2, it is com-

puted from the notes resulting from the AMT algorithm, as in Chordia

and Şentürk (2013). An advantage of this second method is that only

pitch information contributes to the PCH. In contrast with this, the power

spectrum contains all the harmonics of the signal, and the PCH will be
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affected by non-pitch properties of the audio recording, such as loudness

and timbre. However, the second method is affected by errors made by

the AMT algorithms, and the power spectrum offers a less error-prone

representation.

5.4.2.1 From the power spectrum

In this first method, the audio PCH is derived from the power spec-

trum of the signal, and notated PCHPS. A short-time Fourier transform

(STFT) is performed, with a window size of 4096 samples, or approx-

imately 93ms. This choice of a large window size is motivated by the

fact that temporal information is irrelevant for the task at hand, thus fre-

quency resolution is more important than time resolution. The power

spectrum of the whole signal is obtained by summing the spectrum at

each window. The next steps are to convert the frequencies of the Four-

ier bins to a cent scale, and to wrap this on one octave. Choosing a

10-cent resolution, this results in a 120-valued vector. Here too the vec-

tor is normalised to sum to 1. An example is plotted on Figure 5.3c.

Following this logic of discarding temporal information further, an-

other method is to only perform a single Fourier transform on the whole

signal. The previous method, based of STFT, will be referred to as local;

this new one as global. A post processing step of discarding all frequen-

cies higher than 5kHz from the power spectrum is also considered.
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5.4.2.2 From the transcribed notes

A second way of computing the audio PCH is to consider the notes ex-

tracted by the AMT algorithm, as explained in Section 5.3.4, and to then

apply the same method as for the symbolic PCH, described in Section

5.4.1. Audio PCHs computed in this manner are denoted by PCHAMT.

As discussed above, this representation will not be affected by changes

in timbre or loudness; however, it will be affected by errors in the tran-

scription. An example is plotted on Figure 5.3d.

5.4.3 Alignment

Once the 2 PCHs are generated, the next step is to find the best align-

ment. In more precise terms, if the audio and symbolic PCHs are de-

noted by, respectively, hA = (hA[i])i∈[1,120] and hS = (hS[i])i∈[1,120], and

the symbolic PCH rotated by k steps hS
k = (hS[i−k])i∈[1,120], the optimal

rotation value k is the one maximising the similarity between hA and hS
k .

Following Chordia and Şentürk (2013), the Bhattacharyya coefficient is

chosen as a similarity measure:

BC(p,q) =
n

∑
i=1

√
piqi (5.1)

Going back to the architecture, only one audio PCH is needed for a

query, and this PCH will be aligned to all of the symbolic PCH in the

search space. For efficiency, these symbolic PCH can be pre-computed.

96



0 20 40 60 80 100 120
0.00

0.05

0.10

0.15

0.20

0.25

(a) Symbolic PCH, before filtering

0 20 40 60 80 100 120
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) Symbolic PCH, after filtering

0 20 40 60 80 100 120
0.000

0.005

0.010

0.015

0.020

(c) PCHPS, from power spectrum

0 20 40 60 80 100 120
0.00

0.02

0.04

0.06

(d) PCHAMT, from AMT result

0 20 40 60 80 100 120
0.000

0.005

0.010

0.015

0.020

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(e) Alignment of PCHsymb and PCHPS
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(f) Alignment of PCHsymb and PCHAMT

Figure 5.3
Pitch class histograms

Once this optimal rotation k is found, the symbolic quaver sequence

is transposed by round(k/10) semitones, as the unit for k is 10 cents.

For the examples plotted on Figure 5.3, BC is maximised with k = 91

for PCHPS, and k = 88 for PCHAMT. Figures 5.3e and 5.3f shows how

the peaks are aligned with this optimal k. In this case, the symbolic

sequence is transposed by round(k/10) = 9 semitones.

For each tune in the dataset, and for each of the 4 audio PCH com-

putation methods discussed above, optimal rotation k is computed, and

compared to the ground truth annotation introduced in Section 5.2.2, in-
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Method Number of success (out of 2000)

local 1835
local (<5kHz) 1850
global 1986
global (<5kHz) 1986

Silvet 1994
PitchMelodia 1998
Melodia 1991
pYIN 1939
MATT2 1900

Table 5.2
Alignment performance with PCHPS (top) and PCHAMT (bottom)

dicating the key deviation between recording and score. The numbers

of successful transpositions per computation method are given in Table

5.2. With PCHPS, it appears that the global method, based on a single

Fourier transform, performs best, and that discarding high frequencies

does not affect the number of success. Consequently, in the rest of this

thesis all PCHPS are computed using the global method.

The success of alignments using PCHAMT varies depending on the

algorithm used. For Silvet, PitchMelodia, and Melodia, alignment is

better than with PCHPS, but not for pYIN and MATT2.

5.5 Computing similarity between sequences

A number of metrics and distances aiming at quantifying the notion of

melodic similarity have been proposed (Janssen et al., 2017). Here, as in

Tunepal, melodic similarity is measured via the substring edit distance

between pitch sequences.
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A straightforward way to compute the edit distance, or Levenshtein

distance, is presented in (Wagner and Fischer, 1974). It is a dynamic

programming algorithm, using a matrix of size m×n, where m and n are

the lengths of the two strings to compare. However what is needed here

is substring edit distance (SSED), looking for occurrences of a pattern

(the transcribed audio query) within a text (the candidate tune), allowing

for edit operations. Sellers (1980) gives such an algorithm, where the

only difference with (Wagner and Fischer, 1974) is the initialisation of

the matrix. Its complexity is O(mn), where m is the length of the pattern

p and n the length of the text T .

Wu and Manber (1992) present a bit-parallel algorithm for finding

occurrences of p in T allowing for k edit operations, given here in Al-

gorithm 2. In the present case, the alphabet Σ is the set of integers

[0, 12] used in the representation of pitch sequences. Its complexity

is O(kdm
wen) where w is the bit word length and d.e denotes the ceiling

operation. As will be seen below, the pattern can reasonably be con-

strained to fit within only 1 computer word, hence dm
we = 1, and the

algorithm complexity is O(kn). The only restriction is that an upper

bound on the distance k has to be set at the beginning. In the present

context, the duration of audio queries is set to 12 seconds. As shown

in Table 2.1 in Section 2.2.1 the duration of a quaver is typically above

100ms. Thus, an upper bound of about 120 symbols exists on the length

of search patterns p, and having an upper bound k on the distance value
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is not problematic.

In this algorithm, the pattern p is encoded in a binary table B of size

mk. An example, adapted from (Navarro and Raffinot, 2002) is shown in

Figure 5.4. An occurrence of the pattern with l errors is recorded when

the leftmost bit of Rl is set to 1. The SSED is then the minimum l whose

leftmost bit becomes 1 during the reading of the text. The state of the

leftmost bits is checked at line 19, and the variable d is updated accord-

ingly. In order to allow for a silence (i.e. the value 12) to behave as a

wildcard, the corresponding column in table B is filled with 1s whenever

it is encountered (line 5). This will result in the & operator in line 16 to

always return 1. Allowing a silence in the text to match any character in

the pattern can be achieved simply by setting B[12] = 1k. However, as

explained above in Section 5.3.3, it was decided to only let rests in the

query (i.e. pattern) act as wildcards.

An example of the computation of Algorithm 2 is given Figure 5.4a.

The substring edit distance between these two sequences is 2, as is vis-

ible from the aligned sequences on Figure 5.4b.

As mentioned above, considering bit words of length 120 is enough

for the task at hand. Some modern C compilers , like the GNU C Com-

piler5, define the type __uint128_t to represent unsigned 128 bit in-

tegers. This makes it possible to represent the matrix B and (Ri)i=0,...,k

by numerical variables of this type, without needing the use of non-

5https://gcc.gnu.org/
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B =


2 0 0 1 0 1 0 1
4 0 0 1 0 0 1 0
7 0 0 1 1 0 0 0
9 1 1 1 0 0 0 0
12 0 0 1 0 0 0 0

1. Initialise Ri

R0 = 0 0 0 0 0 0 0
R1 = 0 0 0 0 0 0 1
R2 = 0 0 0 0 0 1 1
R3 = 0 0 0 0 1 1 1

2. Read 9: 1 1 1 0 0 0 0

R0 = 0 0 0 0 0 0 0
R1 = 0 0 0 0 0 0 0
R2 = 0 0 0 0 0 1 1
R3 = 0 0 0 0 1 1 1

3. Read 2: 0 0 1 0 1 0 1

R0 = 0 0 0 0 0 0 1
R1 = 0 0 0 0 0 1 0
R2 = 0 0 0 0 1 0 0
R3 = 0 0 0 1 1 1 1

4. Read 2: 0 0 1 0 1 0 1

R0 = 0 0 0 0 0 0 1
R1 = 0 0 0 0 1 1 1
R2 = 0 0 0 1 1 1 0
R3 = 0 0 1 1 1 0 0

5. Read 2: 0 0 1 0 1 0 1

R0 = 0 0 0 0 0 0 1
R1 = 0 0 0 0 1 1 1
R2 = 0 0 1 1 1 1 1
R3 = 0 1 1 1 1 1 0

6. Read 7: 0 0 1 1 0 0 0

R0 = 0 0 0 0 0 0 0
R1 = 0 0 0 1 0 1 1
R2 = 0 0 1 1 1 1 1
R3 = 0 1 1 1 1 1 1

7. Read 7: 0 0 1 1 0 0 0

R0 = 0 0 0 0 0 0 0
R1 = 0 0 1 0 0 0 0
R2 = 0 1 1 1 1 1 1
R3 = 1 1 1 1 1 1 1
d = 3

8. Read 7: 0 0 1 1 0 0 0

R0 = 0 0 0 0 0 0 0
R1 = 0 0 0 0 0 0 0
R2 = 0 1 1 1 0 0 0
R3 = 1 1 1 1 1 1 1
d = 3

9. Read 9: 1 1 1 0 0 0 0

R0 = 0 0 0 0 0 0 0
R1 = 0 0 0 0 0 0 0
R2 = 1 1 1 0 0 0 0
R3 = 1 1 1 1 0 0 0
d = 2

(a) Steps of Algorithm 2

text 9 2 2 2 7 7 7 9
pattern 2 4 2 7 12 9 9
operation S * S

(b) Edit operations on aligned sequences(S = substitution, * = wildcard)

Figure 5.4
SSED computation for pattern (2,4,2,7,12,9,9) in text (9,2,2,2,7,7,7,9)

101



Algorithm 2: Bit-parallel SSED computation
11 Data: p = p1 p2 . . . pm the pattern, T = t1t2 . . . tn the text, k the maximum

number of edits
Result: d the substring edit-distance
/* Preprocessing */

2 for c ∈ Σ do B[c]← 0m

3 for j ∈ 1 . . .m do
4 B[p j]← B[p j] | 0m− j10 j−1

5 if p j = 12 then
6 for l ∈ 0 . . .11 do B[l] |= 0m− j10 j−1

7 end
8 end
9 d = k

/* Searching */
10 for i ∈ 0 . . .k do Ri← 0m−i1i

11 for pos ∈ 1 . . .n do
12 oldR← R0

13 newR← ((oldR << 1) | 0m−11) & B[tpos]
14 R0← newR
15 for i ∈ 1 . . .k do
16 newR← ((Ri << 1) & B[tpos]) | oldR | ((oldR | newR)<< 1)
17 oldR← Ri
18 Ri← newR
19 if i < d and Ri & 10m−1 6= 0m then
20 d← i
21 end
22 end
23 end
24 return d

standard libraries for big integers. The maximum number of edits k is

set to 64, thus allowing half the pattern to be edited. This is enough for

the task at hand, as changing half the pattern already results in a widely

different melody.

To be consistent with the annotations (see Section 5.2), the distance

between a transcribed pattern and a tune is defined as the lowest distance

between the pattern and all the settings of that tune.
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5.6 Performance metrics

In this section, several ways of evaluating the tune recognition system

are discussed. Metrics introduced earlier in Section 2.3.1.4 are discussed

again and adapted to the present experiment. Section 5.6.1 presents the

standard MIREX metrics. Rank metrics are discussed in Section 5.6.2,

and the definition of rank is clarified to account for draws. A new metric

is introduced in Section 5.6.3 to provide better insight into the robustness

of the retrieval algorithm.

5.6.1 Hit rates

The tune recognition task discussed in this chapter corresponds to the

audio-to-symbolic situation of the Query by Singing/Humming (QbSH)

task presented in Section 2.3.1.

Submissions to the QbSH task are evaluated with a single metric, the

“Top-10 hit rate (1 point is scored for a hit in the top 10 and 0 is scored

otherwise).”6 This metric will be reported, along with a Best (or Top-1)

hit rate, which from a user perspective is a more meaningful metric.

6https://www.music-ir.org/mirex/wiki/2019:Query_by_Singing/Humming
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5.6.2 Rank

Another metric that is often reported for QbSH tasks is the Mean Recip-

rocal Rank (MRR) (Dannenberg et al., 2007; Salamon et al., 2013).

MRR =
1
N

N

∑
i=1

1
ranki

(5.2)

where ranki is the rank of the correct item (here, the candidate tune) in

the ordered result set for query i. For clarity, this will also be referred

to as the rank of the query from now on. This value is in ]0,1], higher

values indicate better performance. MRR is the average of the reciprocal

rank (i.e. inverse of the rank) over N queries.

The candidate tunes are sorted in order of ascending edit distance

to the query. As this distance takes only integer values, it can occur

frequently that several tunes are at the same distance, in which case their

ordering in the result set is purely incidental. It is thus important to

clarify the definition of rank in case of draws.

In order to tackle this problem, Martiniano and Silla (2017) use the

Mean draw Reciprocal Rank (MdRR), defined as

MdRR =
1
N

N

∑
i=1

1
di× ri

(5.3)

where ri and di refer to the rank and the number of draws in the rank

of the correct tune. Two examples of draw reciprocal ranks (1/(di× ri))

over possible result sets are given in Figure 5.5. An issue appears with
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id d rank

723 2 1st
924 2 1st
157 6 3rd
522 7 4th
65 7 4th
147 11 6th
35 12 7th
...

id d rank

865 3 1st
143 3 1st
295 3 1st
754 3 1st
174 3 1st
907 3 1st
616 3 1st
772 3 1st
621 7 9th
...

dRR = 1
4×2 = 0.125 dRR = 1

1×8 = 0.125
Figure 5.5

Examples of MdRR (the correct tune appears in bold)

this metric: in the first situation, the correct tune can only be in position

4 or 5; in the second, it could appear anywhere between positions 1 and

8. However the dRR value is the same in both cases. The position of the

correct answer in an information retrieval task is important, and from

that point of view the first example performs better than the second one,

which the MdRR metric fails to capture.

To address this problem, a new way of ranking is now introduced. For

a query i, let (d(i)
k )k be the distinct edit distances obtained in the result

set, in decreasing order, and let (n(i)k )k be the number of candidate tunes

at each dk value, such that there are nk tunes obtaining distance dk. Then

the worst possible rank (WPR) of that query is defined as ∑
k
l=1 nl where

dk is the distance of the correct tune. The two examples from Figure 5.5

obtain WPR values of 5 and 8, respectively. Figure 5.6 gives 3 further

examples of such result sets.
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id d

64 4
3562 6
260 6

1483 6
2935 10
13 10

5298 12
237 12
758 12
19 15
. . . . . .

id d

572 3
134 3
2389 3
180 5
6002 7
3874 9
54 11

248 11
549 11
439 11
. . . . . .

id d

62 3
28 3

3460 3
383 5
902 5
504 9
340 11
349 11

2459 11
1903 11
. . . . . .

(di) = (4,6,10,12,15, . . .)
(ni) = (1,3,2,3, . . .)

(di) = (3,5,7,9,11, . . .)
(ni) = (3,1,1,1, . . .)

(di) = (3,5,9,11, . . .)
(ni) = (3,2,1, . . .)

WPRi = 1 WPRi = 3 WPRi = 5
Figure 5.6

Examples of result sets and ranks

From now on, any use of rank will refer to this definition, and MRR

is defined as per Equation 5.2. A query is counted as a Top-10 hit if its

rank is less or equal to 10, and as a Best hit if its rank is 1.

So far, three metrics are defined, which all summarise the perform-

ances of a batch of queries in a single number (an integer in [0,N] for

Top-10 hit and Best hit, and a real number in ]0,1] for MRR). This type

of single number metric is good for comparing different algorithms, but

does not allow for more powerful statistical analysis of the results. Keep-

ing one value per query, or N values in total, will allow to run statistical

tests on samples, instead of comparing single values.

Rank is a useful indicator of performance for information retrieval,

but it does not allow to assess the robustness of a successful query. For

example, a query of rank 1 with d1 = 2,d2 = 15 can be said to be more
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robust than one with d1 = 20,d2 = 21. Both are of rank 1, but in the first

case the correct tune is better segregated from the rest than in the second

case. One more error (in the computation of the edit distance) would

make the second query fail, but not the first one. In the next subsection,

a new metric that will account for this is introduced.

5.6.3 Relative difference

In (Stasiak, 2014), a new metric for evaluating a QbSH system is defined

as:

δ =
1
N

N

∑
i=1

E(i)
2 −E(i)

1

E(i)
1

(5.4)

where the sum is computed only over the N successful queries of a batch,

and E(i)
1 and E(i)

2 are the edit distances of, respectively, the first and

second results given by the algorithm for query i. Because this is only

computed for successful queries, E1 < E2, and all summed values are

positive.

Equation 5.4 is modified to define a new metric on a single query i

as:

ai =
d(i)

F −d(i)
T

max(d(i)
F ,d(i)

T )
(5.5)

where dT is the distance of the correct tune, and dF is the lowest distance

obtained by a wrong tune, or in other words the unwanted tune that is

closest to the query. Dividing by the max ensures that ai ∈ [−1,1]. The
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metric is defined on all queries regardless of whether they are success-

ful or not. ai > 0 if and only if the search was successful (0 indicates

a draw), or equivalently if the query has rank 1. Finally, ai can be in-

terpreted as a measure of confidence: higher ai means higher distance

between T and F, in other words higher discriminative power.

The divisor can only be 0 when both dF and dT are 0, in which case

adopting ai = 0 by convention is consistent with what happens in a draw.

Instead of averaging all ai over a set of queries, all individual values

are kept for statistical testing, and the median ai value over all quer-

ies (successful and failing) of a batch will be reported for summarising

performances.

Four metrics are now defined to evaluate the tune recognition al-

gorithm. Best hit rate, Top 10 hit rate and MdRR summarise the per-

formance over N queries in a single value, while the whole sets of N

values of the relative difference a can advantageously be kept for more

powerful comparisons between different retrieval methods.

5.7 Methods for comparison

The proposed approach will be referred to as Align from now on, with

subscript PS or AMT according to the audio PCH used. In order to assess

its performance, it will be compared with three other methods.

The first one is the method currently implemented in Tunepal, which
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is not key-invariant. On the 80 audio excerpts taken from the 20 tunes

that are recorded in a key different than that of the written transcrip-

tion, the algorithm will compute an edit distance between sequences of

pitch that are not aligned, and the odds of finding a match are low. This

method is denoted Original0 and will serve as a baseline.

The second method, Originalk, is an informed approach, where the

key deviation introduced in 5.2.2 will simply be given to the program so

that the symbolic pitch sequences can be transposed accordingly. This

can be seen as the ceiling, as no errors can be made regarding the PCH

alignment and transposition of symbolic pitch sequence.

The last one, All, is a brute force approach, where the similarity of the

recording with all possible 12 transpositions of each tune is computed.

It is a computationally expensive method, as 12 times more SSED have

to be computed. Furthermore, the search space effectively becomes 12

times larger, making retrieval harder from a probabilistic point of view.

This last method, unlike the other two, is key-invariant.

The proposed Align methods will be compared with these other three,

in terms of retrieval accuracy, and in terms of computational cost, meas-

ured as run times.
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5.8 Results

The results of the experiment are presented in this section. First, general

observations and overall statistics are given in 5.8.1. Then Section 5.8.2

focuses on computational costs, and Section 5.8.3 offers more precise

error analysis.

5.8.1 Overall statistics

The Best hit rate, Top-10 hit rate and median a value are given for all

5 AMT algorithms and all 5 search methods in Table 5.3. A first ob-

servation is that for all AMT algorithms except pYIN, the Best hit rate,

Top-10 hit rate, and MRR of all 3 key-invariant methods are consistently

lower than the ceiling Originalk, but higher than the baseline Original0.

For pYIN, this only holds for the Best hit rate of AlignPS.

For Silvet, PitchMelodia, and Melodia, AlignAMT yields the highest

Best hit rate among the 3 key-invariant methods. In the case of pYIN,

this is achieved by AlignPS.

The median a value is, for all algorithms except MATT2, lower for

all 3 key-invariant methods than for both the ceiling and baseline Ori-

ginal methods. To assess the significance of these differences, the Wil-

coxon signed-rank test is used. Indeed, the samples are paired because

the results are obtained from identical audio excerpts, and none of the

distributions of the a samples are following a normal distribution.
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AMT Method Best hit Top-10 Med(a) MRR

Silvet

Original0 1693 (84.65%) 1838 (91.90%) 0.441 0.876
Originalk 1750 (87.50%) 1902 (95.10%) 0.455 0.906

AlignPS 1724 (86.20%) 1886 (94.30%) 0.438 0.894
AlignAMT 1740 (87.00%) 1898 (94.90%) 0.438 0.902
All 1736 (86.80%) 1899 (94.95%) 0.435 0.901

PitchMelodia

Original0 1638 (81.90%) 1802 (90.10%) 0.324 0.852
Originalk 1699 (84.95%) 1870 (93.50%) 0.333 0.884

AlignPS 1666 (83.30%) 1838 (91.90%) 0.314 0.867
AlignAMT 1676 (83.80%) 1854 (92.70%) 0.318 0.873
All 1670 (83.50%) 1851 (92.55%) 0.316 0.872

Melodia

Original0 1486 (74.30%) 1691 (84.55%) 0.286 0.783
Originalk 1538 (76.90%) 1752 (87.60%) 0.294 0.810

AlignPS 1492 (74.60%) 1711 (85.55%) 0.273 0.789
AlignAMT 1494 (74.70%) 1715 (85.75%) 0.273 0.791
All 1492 (74.60%) 1723 (86.15%) 0.273 0.791

pYIN

Original0 1284 (64.20%) 1509 (75.45%) 0.176 0.985
Originalk 1324 (66.20%) 1553 (77.65%) 0.190 0.706

AlignPS 1288 (64.40%) 1508 (75.40%) 0.167 0.686
AlignAMT 1278 (63.90%) 1500 (75.00%) 0.167 0.681
All 1283 (64.15%) 1508 (75.40%) 0.167 0.684

MATT2

Original0 1212 (60.60%) 1374 (68.70%) 0.085 0.639
Originalk 1268 (63.40%) 1438 (71.90%) 0.098 0.669

AlignPS 1236 (61.80%) 1406 (70.30%) 0.083 0.652
AlignAMT 1241 (62.05%) 1415 (70.75%) 0.086 0.655
All 1248 (62.40%) 1423 (71.15%) 0.087 0.662

Table 5.3
Results

These tests show statistically significant differences (p-values < .001)

between the a values samples of any of the 3 key-invariant methods and

both the ceiling and baseline Original methods. This reflects the fact

that key-invariant tune recognition is a more complex task than the one

tackled by both Original methods. However, a is merely an indication

of the confidence of the matching, and all other metrics suggest that the
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AMT AlignPS / AlignAMT AlignPS / All AlignAMT / All

Silvet 0.5157 0.1360 0.0019
PitchMelodia 0.2583 0.2104 0.0004
Melodia 0.6665 0.0472 0.2946
pYIN 4.19e-6 2.22e-6 0.1153
MATT2 0.2808 0.1868 0.5068

Table 5.4
p-values for Wilcoxon signed-rank tests between key-invariant methods

key-invariant approaches do outperform the baseline Original0.

Table 5.4 show the p-values returned by the Wilcoxon signed-rank

tests between the 3 key-invariant methods for all 5 AMT algorithms.

For all algorithms except pYIN, no statistically significant difference

appears between the 2 Align variants. At least one of the 2 Align variants

result in a p-value > 0.1 when compared to the brute force method All

across all AMT algorithms. In the case of Silvet and PitchMelodia, the

median a value is higher for AlignAMT than for All, suggesting that the

significant difference observed (p-values < 0.005) is actually in favour

of AlignAMT. The proposed Align method performs on a par with, and

sometimes even better than, the brute force All.

5.8.2 Computational costs

The execution times of each batch of 2000 queries were measured us-

ing the Linux command time.7 The real elapsed time is of little use,

as it is affected by other local computations. Only user and system

time, measuring CPU time spent on the actual process being monitored

7https://linux.die.net/man/1/time
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Method Step CPU min. Factor

Original batch search 644.35 1

Align
PCH computation 22.98
batch search 800.28
total 823.25 1.278

All batch search 7706.83 11.961

Table 5.5
Measured execution times

are worth reporting. Table 5.5 reports the sum of these two measures,

in minutes, averaged across all 5 algorithms, and across the Original

and Align variants, as the computational complexity of the variants is

the same. The execution times for the automatic transcription of queries

are not included, as these were computed beforehand. Because this step

is identical for all 3 variants of the tune recognition system, it can be

discarded in the comparison. For the Align search method, the compu-

tation time for the PCH generation for all 2000 excerpts is added. The

overhead factor compared to Original is also reported.

It is worth noting that although these numbers seem to indicate a very

time consuming process, the actual run times are much shorter than this,

as the similarity computation across the search space can be done in

parallel. The implementation written for this study8 uses 8 threads, and

runs in about 80 minutes (Original) on an i7 quad core CPU, or about

2.5 seconds per query.

These timings show that while the proposed approach Align, as was

8https://github.com/pierrebeauguitte/tunerecognition
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discussed in the previous subsection, does as well as the brute force

search All, it imposes a much lighter overhead in terms of computational

runtime.

5.8.3 Error analysis

In this section, results are analysed following different categorisations.

All results discussed here are obtained with Silvet and AlignAMT. The

notation SX will be used to refer to the sample of scores on the subset of

category X .

5.8.3.1 Per instruments

Figure 5.7 shows the results obtained on solo recordings, grouped by

instrument. A drop in performance for banjo and harp recordings is

noticeable. This can be explained by the lack of harmonicity in the

signal in the case of the banjo: as it is a plucked string instrument, notes

are not sustained for a long time, making the AMT step challenging.

In the case of the harp, the polyphonic style of playing is also making

transcription harder.

The rest of the recordings are grouped according to how many musi-

cians are playing (duo, trio, or group for 4 or more) and, for duos and

trios, whether or not one of the instrumentalists is playing accompani-

ment, i.e. guitar, piano, bouzouki, harp or bodhrán. These instruments

(except the last) can also be used melodically, but not in this set of re-
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Figure 5.7
Scores per instruments for solo recordings

cordings. Conversely, accordions can be used harmonically, and accom-

pany themselves on the left hand, but are mostly limited to the melod-

ies in these recordings. The results are plotted in Figure 5.8. On both

duos and trios, it appears that the presence of accompaniment makes

tune recognition harder. However, the scores for recordings of larger

ensembles, many of which contain some sort of accompaniment, tend to

be higher. A possible explanation for this is the fact that harmonic ac-

companiment is more prominent is a small ensemble (e.g. a guitar and a

flute) than in a large session, where as a rule harmonic instruments are

a minority (Breathnach, 1996). Thus, duos and trios with accompani-

ment are closer to the definition of polyphony, which can be harder to

transcribe than the heterophony of larger ensembles.
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Figure 5.8
Scores per instruments

5.8.3.2 Per tune types

The scores grouped by tune types are plotted on Figure 5.9. Waltzes ap-

pear to be the most challenging tunes to recognise in the dataset. How-

ever, using Mann Whitney U test to compare the samples, it appears that

the differences between Swaltz and Sslip jig, Spolka, and Shornpipe are not

significant, with p-values > 0.1.

5.8.3.3 Per cardinality

As mentioned above, the structure of the search space is such that a tune

can have one or more settings, a number referred to as the cardinality

of a tune (see Section 5.2). Figure 5.10 shows how the 500 tunes of the

dataset are distributed according to their cardinality. Most of the tunes

have between 2 and 9 settings, with a mode at 6.
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Figure 5.9
Scores per tune type
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Figure 5.10
Number of tunes in the dataset per cardinality

On Figure 5.11, the scores grouped by cardinality are shown. Sk de-

notes the set of scores for excerpts of tunes with cardinality k, and S>k

the set of scores for those with cardinality strictly above k. It appears

that S1 are lower than S2, which in turn are lower than S3. After this,

the scores seem to flatten, and no clear trend is visible. Using a Mann-
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Figure 5.11
Scores per cardinality

Whitney U test, significant differences (p-values < 0.01) appear for pairs

of samples (S1,S2), (S2,S3), (S1,S>1), and (S2,S>2). The flattening ob-

served is confirmed by the statistical testing, as the p-value for (S3,S>3)

is large (0.319).

Two reasons can be given for these observations. The first one is a

statistical explanation: an excerpt for a tune with cardinality 1 is statist-

ically harder to find, as there is only 1 correct score in the search space.

The second reason is musical: by the design of The Session, and con-

sequently the search space, popular tunes tend to have more variants,

and to be more normalised in playing. Thus, tunes of cardinality 1 can

be more subject to interpretation.
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5.9 Discussion

This chapter presented an architecture for key-invariant tune recogni-

tion, based on a novel transposition method based on PCH alignment

introduced in Section 5.4. Two different approaches were explored for

obtaining the audio PCH, from the power spectrum directly or from the

notes returned by the AMT algorithm. Existing literature has often fo-

cused on audio-to-audio alignment in the context of cover song identi-

fication (Ellis and Poliner, 2007; Serrà et al., 2008), or has relied on key

annotation when dealing with symbolic music (Chordia and Şentürk,

2013; Martiniano and Silla, 2017). The method proposed here performs

audio-to-symbolic alignment without the need for key annotation or in-

ference, thus alleviating the difficulty of defining key in ITM, discussed

in Chapter 3.

Section 5.6 introduced two novel evaluation metrics: worst possible

rank (WPR), is a way of ranking results that appropriately deals with

draws. The relative difference measure a gives an indication of the ro-

bustness of retrieval, while its sign indicates the success or failure of a

query. These metrics were designed to suit the experiment discussed in

this chapter, but their definitions are general enough for them to be used

in other similar experiments.

The key-invariant method Align has be shown to perform on a par

with the brute force method All, while being only about 1.28 times
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slower than Original (versus about 12 times for the brute force). Al-

though the non key-invariant ceiling method Originalk did perform sig-

nificantly better according to statistical testing, the Best hit success rate

of AlignAMT is only 0.5% lower (see Table 5.3). These findings are en-

couraging, and the next chapter will explore a method to improve further

on the performance of key-invariant tune recognition by taking into con-

sideration the rhythm classification models presented in Chapter 4.
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Chapter 6

Using rhythm predictions to improve

tune recognition

In terms of computational performance, the key-invariant Align method

presented in the previous chapter has a large advantage compared to the

brute force method All. However, its recognition performance is still not

as good as the informed, non key-invariant, Originalk method, and adds

an overhead of more than 25% in terms of execution time.

This chapter proposes two different ways of integrating the rhythm

predictions obtained from the models introduced in Chapter 4 to the tune

recognition system, in order to improve on both computational complex-

ity and recognition accuracy.

In a first method, presented in Section 6.1, the probability estimates

returned by the models are interpreted as confidence scores, and are used

to weight the distance between the query and a candidate tune. This

method may improve accuracy, but will actually add even more overhead
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to the system. To address this concern, a second method is introduced

in Section 6.2, which consists of pruning the search space according to

the prediction. Three ways of performing this filtering are discussed.

The possible benefits of this are twofold: computational cost is likely

to be lower, as extracting low-level features and running them through a

simple logistic regression model is cheaper than computing edit distance

on the thousands of discarded candidate tunes; and precision might im-

prove as pruning the search space can discard some spurious matches.

Results will only be reported for the best performing AMT algorithm

and search method, i.e. Silvet and AlignAMT, with the AMT subscript dis-

carded for clarity. The same dataset as in the previous chapter is used.

The implementation for the experiments carried out in this chapter is

publicly available.1

6.1 Method A: weighted distances

In this first experiment, the probability estimates given by the rhythm

prediction models from Chapter 4 are interpreted as confidence scores.

Because logistic regression models are used, either binomial or multino-

mial depending on whether metre types (duple vs. simple) or tune types

are predicted, the probability estimates are already calibrated.

Considering an audio query q, d(q, t) is the edit distance between q

and a candidate tune t (see Section 5.5), and (pk(q))k the probability
1https://github.com/pierrebeauguitte/tunerecognition
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estimates of the model, for k ranging in the different classes considered

(2 or 8 depending on the models). Instead of sorting the candidates by

the distances themselves as in Chapter 5, they are sorted on the weighted

distance d′(q, t) = f (pk(q))× d(q, t), where f is a decreasing function

of p, and k is the rhythm class of the candidate tune t. The function

f has to be decreasing because the weighted value is a distance, i.e.

a dissimilarity score: the higher the probability of q being of type k is,

the smaller the weighting factor should be in order to make the weighted

distance d′ smaller. Four different functions are considered, and reported

below in the results.

The same methodology as in Chapter 4 is used: a k-fold cross valid-

ation is performed, and all k models resulting from the successive train-

ings are kept. Then, for each audio excerpt, its tune or metre type is

predicted using the model that has not seen it in training. This makes it

possible to have a prediction for all the excerpts without any peeking.

Results are reported in Table 6.1, along with the performance of

Originalk and Align for comparison. It appears that using the tune type

prediction (i.e. multinomial model) with f (p) =
√

1− p2 gives the

highest scores of the 8 combinations. This can seem surprising, as this

model has poorer accuracy than the simpler binomial model (see Section

4.3).
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Method f Best hit Med(a) MRR

Align 1740 (87.00%) 0.438 0.902

Originalk 1750 (87.50%) 0.455 0.906

1− p 1718 (85.90%) 0.438 0.889
Align with

√
1− p 1731 (86.55%) 0.440 0.896

binomial model 1− p2 1728 (86.40%) 0.438 0.894√
1− p2 1737 (86.85%) 0.440 0.899

1− p 1711 (85.55%) 0.435 0.887
Align with

√
1− p 1742 (87.10%) 0.440 0.902

multinomial model 1− p2 1739 (86.95%) 0.440 0.902√
1− p2 1747 (87.35%) 0.444 0.906

Table 6.1
Results of rhythm weighting

The median a value is reported, but now defined using the weighted

distance d′:

ai =
d
′(i)
F −d

′(i)
T

max(d
′(i)
F ,d

′(i)
T )

(6.1)

Although it is derived from a different distance measure, this new

definition is consistent with the one given previously in Equation 5.5

and used in the two top lines of the table. Indeed, not using rhythm

prediction is equivalent to weighting all distances by a same f (p) value.

The ordering of the results, and the value for a, are left unchanged: (i

superscripts discarded for clarity)

d′F −d′T
max(d′F ,d

′
T )

=
f (p)dF − f (p)dT

max( f (p)dF , f (p)dT )

=
f (p)(dF −dT )

f (p)max(dF ,dT )

=
dF −dT

max(dF ,dT )

(6.2)
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As the probability estimates p are obtained from a logistic regression,

their values are strictly bound by 0 < p < 1. Thus, with the 4 functions

f defined above, f (p) is strictly positive, and the simplification in the

last line of Equation 6.2 is valid. The consistency of the definition of a

makes it possible to compare a values with and without weighting, and

to use the same statistical tools as in Chapter 5.

Wilcoxon signed rank tests between the 16 weighted variants and

Originalk all return p-values close to zero, indicating significantly worse

performance. On the other hand, the same test performed between the

highlighted results and Align also return a p-value close to zero, which,

together with the higher median a, indicate that the weighting method

significantly improves the recognition accuracy. The last line in Table

6.1, using Align, multinomial model, and the function f (p) =
√

1− p2,

also shows the same MRR as Originalk. Results are better than those of

Align alone, but they still do not reach the performance of Originalk, and

obtaining the rhythm predictions adds a computational cost. In the next

section, a different method of using the prediction to prune the search

space is explored.

6.2 Method B: search space pruning

In their tune recognition system, Martiniano and Silla (2017) train a ma-

chine learning (ML) model to predict the tune type of a query, from
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features extracted from the MIDI representation, as in that case queries

are not audio recordings but snippets of tunes in the search space. This

filter is then used to discard matches of a different type than the one pre-

dicted by the model, but only in cases where there are draws is the result

set, that is when di > 1 in the notation of Section 5.6.2. In their study,

using the ML-based filter improved the retrieval accuracy of the system.

However, as was the case in the previous section, no improvement on the

computational cost can be gained, as the filtering happens a posteriori,

once all distances between the tunes and the query have been computed.

Here, the rhythm predictions from the models introduced in Chapter

4 are used a priori to restrict the search space to contain only the tunes

of the predicted rhythm type. In addition to a computational benefit, due

to a smaller search space, an improvement in retrieval accuracy can be

expected, as possible spurious matches of an incorrect rhythm type will

be discarded. Three ways of performing this pruning of the search space

are explored in this section.

The same metrics as in Chapter 5 are reported. However, the defini-

tions of a and MRR have to be modified to account for situations when

the correct tune is pruned out of the search space. For a query i, ai in its

current definition (Equation 5.5) is undefined if the correct tune is not

in the search space, as dT has no value. In such a case, the convention

that a = −1 is adopted, corresponding to the worst case scenario when

dT → ∞. Similarly, as the correct tune does not appear in the result list,
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Model used Best hit Med(a) MRR Search space (%)

None 1740 (87.00%) 0.438 0.902 100
binomial 1654 (82.70%) 0.429 0.855 54.94
multinomial 1393 (69.65%) 0.373 0.720 25.87

Table 6.2
Results of pruning search space using all predictions

the reciprocal rank of the query RRi = 1/ranki is not defined. This defin-

ition is extended as RRi = 0, corresponding to the limit when ranki→∞.

The percentage of the total search space being used on average on the

batch of queries is reported as well.

6.2.1 Using all predictions

A straightforward way to use the predictions to prune the search space is

to only look within the tunes of the predicted class. All predictions are

kept, even though the models do not have perfect accuracy; this means

that whenever the model makes a false prediction, the correct tunes are

discarded from the search space and the search cannot succeed.

Results are reported in Table 6.2. The lower retrieval accuracy was

expected, as a wrong rhythm prediction implies a failed search. How-

ever, the difference of performance in terms of best hit rate is less than

5%, from 87.00% without pruning to 82.70% using binomial model pre-

dictions, when the size of the search space is almost halved. While these

preliminary results are encouraging, the next 2 sections will attempt as

improving on this method in order to reduce the difference in accuracy.
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6.2.2 Maximising F1 score

As a binomial model is a binary classifier, it is possible to compute a

F1-score (Kelleher et al., 2015). In order to do so, one of the 2 classes

has to be considered positive. By convention, the rarer class compound

is taken as the positive class, and simple as negative. The F1 score is

then defined in terms of the precision P and the recall R:

P =
TP

TP+FP
, R =

TP
TP+FN

, F1 = 2
PR

P+R

where TP (true positives) is the number of instances of the positive class

correctly classified; FP (false positives) and FN (false negatives) are

the number of instances of the negative and positive class, respectively,

incorrectly classified. This computation is only doable with the binomial

model, i.e. the metre type predictions.

For an item x, a binomial logistic regression model will evaluate p(x),

the probability that x belong to the positive class; symmetrically, 1−

p(x) is the probability that x belong to the negative class. The standard

approach, which was used in Chapter 4 and in the previous section, is to

consider the class with the highest probability as the model prediction.

Another way of using the probability estimates from the model is to

define a threshold τ ∈ [0,1], and to classify an item x as positive if p(x)>

τ . The standard approach corresponds to τ = 0.5. Here, the value of τ

resulting in the highest F1 score is chosen.
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Figure 6.1
F1-score as a function of τ on training set

Following a general ML methodology, the dataset is split in training

and test set to assess how well the method generalises. The 500 tunes in

the dataset are grouped in two sets of 250 tunes each, balanced in terms

of tune types and, consequently, also in metre types. As in Chapter 4,

predictions are gathered on the training set using 10-fold cross valida-

tion, and the threshold maximising the F1-score on these 1000 predic-

tions is determined as τ = 0.54. Figure 6.1 shows how the F1-score

varies as a function of τ .

Subsequently, one single rhythm prediction model is trained on the

whole training set (as opposed to the 10 models needed in the 10-fold

cross validation method), and its probability estimates for the compound

and simple classes (pc, ps) on the held out test set are evaluated. Here

again, the predicted class is compound if and only if pc is greater than the
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Method Best hit Med(a) MRR Search space (%)

Originalk 874 0.444 0.900 100
Align 864 0.429 0.892 100
τ = 0.5 (standard) 809 0.414 0.835 55.25
τ = 0.54 (max F1) 808 0.410 0.834 55.70

Table 6.3
Results on test set

chosen threshold τ = 0.54. For example, an excerpt obtaining the prob-

ability estimates (pc, ps) = (0.52,0.48) would be predicted as simple

(the negative class), even though pc > ps. Once the metre type for the

excerpt is obtained, as in the previous section the search space is restric-

ted to tunes of the same type.

Results on the test set for this new method are reported in Table 6.3,

along with the results without filtering and with the standard classifica-

tion (τ = 0.5). The approach proposed here performs slightly worse than

the standard binomial classification by all reported metrics. The differ-

ence between the two filtered results is not significant, as a Wilcoxon

signed rank test gives a p-value of 0.433. This was to be expected, as

the threshold found to maximise the F1-score is very close to the stand-

ard method. Only tunes obtaining pc ∈ [0.5,0.54] have been classified

differently.

A better way to integrate rhythm prediction in the system would be

to allow some predictions to be ignored. Indeed, pruning the search

space following a false prediction always leads to a unsuccessful search;

however, the main downside of ignoring a true prediction is a loss of
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computational optimisation, as distances have to be computed for the

whole search space.

The choice of a threshold in this section was made intrinsically: it

was determined only from the performance of the rhythm prediction,

and the impact of this choice on retrieval accuracy was only observed

afterwards. In the next section, this choice will be made extrinsically:

the training set will be used to find the best thresholds in terms of re-

trieval accuracy.

6.2.3 Per-class thresholds

As mentioned above in Section 6.1, the rhythm predictions pk can be in-

terpreted as confidence scores. The results of the 2 previous methods of

filtering the search space suggested that ignoring some of the predictions

could be beneficial. Here, only predictions above a certain threshold will

be used to prune the search space; otherwise they will be ignored, their

low value being interpreted as a lack of confidence. Results presented

in 4.3 showed that prediction accuracy was different depending on the

rhythm type, suggesting that confidence levels in the predictions can

vary across classes. Consequently, a set of thresholds (τk) will be de-

termined, and only if pk > τk will the search space be restricted to tunes

of type k.
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6.2.3.1 Grid search

These thresholds are determined via an extrinsic evaluation, using a grid

search, where each point of the grid corresponds to a set of thresholds

(τk). The dimension of the grid is the number of classes Nc predicted by

the model: 2 for the binomial model (metre type), and 8 for the multi-

nomial model (tune type). For a query q, the predicted type k is taken

as the class getting the highest probability estimate pk(q). In a logistic

regression model, ∑k pk(q) = 1, thus the probability pk(q) of the pre-

dicted class is greater than 1/Nc. Consequently, on each dimension k,

the threshold τk varies in the range [1/Nc,1], or [0.5,1] for the binomial

model and [0.125,1] for the multinomial. The grid step is chosen as

0.05.

With the binomial model, each axis [0.5,1] has 11 points, and the size

of the 2-dimensional grid is 112 = 121. With the multinomial model,

each axis [0.125,1] has 18 points, and the size of the 8-dimensional grid

is 188 = 1.1e10. Two observations will help run the grid search in an ef-

ficient manner, which is particularly important for the multinomial case.

First, by noticing that for each single query, only one of two things can

happen: either the probability is below the threshold, the prediction is

ignored, and the whole search space is used; or the prediction is kept

and only the corresponding section of the search space is used. As the

probability pk(q) remains constant across the grid, the unfiltered and
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filtered result sets can be pre-computed. Then, running the grid search

only consists of combining these result sets according to the thresholds.

Second, the portion of the grid to consider can be reduced by look-

ing at the range of the probabilities for each rhythm type. For ex-

ample, all queries in the training set that are classified as hornpipes have

phornpipe ∈ [0.153,0.610], so the threshold τhornpipe only needs to take

values in [0.15,0.65]. By reducing all 8 axes in this way, the grid size

is 1.8e7, smaller by 3 orders of magnitude. With the binomial model,

probability estimates for both classes range in [0.5,1[, and the full grid

has to be searched.

The same folds as in the previous section are used. On each point of

the portion of the grid under consideration, the Align method of the tune

recognition algorithm is run on the training set, using the thresholds-

based filtering explained above. The point of the grid with the lowest

thresholds, τk = 1/Nc, corresponds to using all predictions as in Section

6.2.1; the one with the highest thresholds, τk = 1, corresponds to the

standard Align method with no filtering, as pk < 1.

The criterion to select the best set of thresholds on the grid is the

following: select the point that results in the highest number of best hits,

while keeping the portion of the search space used as small as possible.

The latter part of the criterion is useful to choose between several values

resulting in the same number of best hits.
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6.2.3.2 Results

On the training set, the Align method without filtering succeeds on 876

excerpts. Using the binomial model, there are 60 grid points, or almost

half of the grid, that result in an equal or greater number of successes.

The criterion defined above leads to the selection of the thresholds

(τcompound = 0.75,τsimple = 0.65)

resulting in 879 successes, while only looking in 63.73% of the search

space on average. Rhythm predictions are used on 82.2% of the queries.

To assess how well this method, designated by Align(τmetre) below,

generalises to unseen data, the algorithm is then run on the test set. The

standard Align search succeeds on 864 excerpts with a median a value

of 0.429. With the selected thresholds, there are 856 best hits, and the

median a has the same value, 0.429. Only 64.60% of the search space is

used on average, with 81.6% of the queries using filtering. These results

are given on Table 6.4. The proposed method Align(τmetre) fails in 8

more cases than the Align method, and the MRR is slightly lower. How-

ever, a Wilcoxon test between the sets of a values of these 2 approaches

gives a p-value of 0.899, indicating no significant difference. Moreover,

the same test between the results of Align(τmetre) and All returns a p-

value of 0.212, showing that the proposed method has a similar per-

formance to the brute force All. However, a Wilcoxon test between res-
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Split Method Best hit Med(a) MRR Search space (%) Filtered (%)

Train

Originalk 876 0.462 0.912 100 0
Align 876 0.455 0.912 100 0
All 876 0.455 0.912 100 0

Align(τmetre) 879 0.456 0.913 63.73 82.2
Align(τtune type) 878 0.455 0.914 94.65 6.1

Test

Originalk 874 0.444 0.900 100 0
Align 864 0.429 0.892 100 0
All 860 0.424 0.890 100 0

Align(τmetre) 856 0.429 0.882 64.60 81.6
Align(τtune type) 860 0.427 0.888 94.23 6.2

Table 6.4
Results of per-class thresholds filtering

ults of Align(τmetre) and Originalk gives a p-value close to 0, indicating

that performance is still significantly worse than the non key-invariant

method.

Using the multinomial model, the best set of thresholds is:

(τhornpipe = 0.45,τjig = 0.90,τother44 = 0.45,τpolka = 0.35,

τreel = 0.90,τslide = 0.35,τslipjig = 0.25,τwaltz = 0.35)

On the training set, this method designated by Align(τtune type) results in

878 successful searches, 6.1% of the predictions are used and 94.65% of

the search space is used on average. On the test set, it succeeds on 860

queries, 4 more than with the metre predictions. These results are also

reported in Table 6.4. Wilcoxon tests between this new method and the

two key-invariant methods Align and All return p-values of, respectively,

0.044 and 0.0011, showing significant differences. However, neither
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the number of best hits nor the MRR improve, and the median a value

is lower than that of Align. The performance also remains worse than

Originalk, with a p-value close to 0.

Filtering on tune types instead of metre types could have been inter-

esting in terms of pruning, as the corresponding sections of the search

space are much smaller than the ones for metre types. However, for

both the training and test sets, more than 94% of the search space had

to be used on average, as only about 6% of the predictions on quer-

ies have been used. It appears that the thresholds found require such

a high confidence that only a little computational efficiency is gained.

The relatively poor accuracy of the multinomial model compared to the

binomial one is a likely explanation for this.

As in previous chapter, the execution times for Originalk and for the

proposed method Align(τmetre) with the best thresholds found above are

given in Table 6.5. Durations are given in CPU minutes, considering

only user and sys. These only correspond to the 1000 queries of the

test set, and as in 5.8.2 the execution time for the transcription of the

queries is ignored. For the filtered results, execution times for the ex-

traction of harmonic and rhythmic features, respectively audio PCH and

quantised lag (ql) vectors, are added. Instead of adding an overhead to

the Originalk method, Align(τmetre) actually results in a shorter execu-

tion time.
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Method Step CPU min. Factor

Originalk batch search 323.28 1

Align(τmetre)

PCH computation 0.03
ql vectors computation 21.19
batch search 259.39
total 280.61 0.868

Table 6.5
Measured execution times

6.3 Discussion

Four different ways of integrating the rhythm predictions presented in

Chapter 4 to the key-invariant tune recognition system have been dis-

cussed in this chapter.

The first strategy, presented in Section 6.1, consisted of ordering the

result set on the edit distance weighted by a function of the probabil-

ity estimates from the rhythm prediction models. Although it was pos-

sible to improve on the Align method from the previous chapter by using

either f (p) =
√

1− p or f (p) =
√

1− p2 and the multinomial model,

performances remained worse than the non key-invariant Originalk, and

an additional computational overhead was incurred.

The other 3 methods consisted of using the rhythm predictions to re-

strict the search space, and consequently to reduce the computational

cost. Only with the third one, presented in Section 6.2.3, was it pos-

sible to obtain results statistically similar to those of Align and All, by

allowing the system to ignore the predictions below a certain confidence

threshold. By using the metre type predictions in this way, Align(τmetre)
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runs faster than Originalk by more than 13%. Indeed, performing the ac-

tual search is the most time consuming step of the process, as it requires

the computation of substring edit distance between the transcribed query

and each item in the search space, of which there are more than 32,000

(see Section 5.2.1). Extracting the ql vectors on each excerpt is relat-

ively fast, and the thresholds found for the binomial model predictions

in the previous section allow to discard more than a third of the search

space on average, as shown on Table 6.4.

To summarise, out of the several techniques attempted in this chapter,

2 stand out as improvements on Align:

• weighting edit distances by f (p) =
√

1− p2 with the probability

estimates from the multinomial model (i.e. tune type classifica-

tion). This results in a more accurate key-invariant recognition sys-

tem, but has a greater computational cost;

• pruning the search space when probability estimates from the bi-

nomial model exceed the thresholds (τcompound = 0.75,τsimple =

0.65). This technique Align(τmetre) results in retrieval accuracy

similar to Align and All and is more efficient than all the other

methods, with an execution time shorter than Originalk by more

than 13%.

A clear trade-off appears between efficiency and accuracy. Depend-

ing on the use-cases for a key-invariant tune recognition system, a choice
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can be made in favour of either solutions. For example, a tool on hand-

held devices like Tunepal might put more priority on efficiency, while

automatic analysis of archive recordings would likely favour accuracy.

Finally, as was discussed at the end of Chapter 4, a larger dataset of

recordings categorised in rhythm types would help to train better mod-

els, and consequently affect the results presented in this chapter.
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Chapter 7

Conclusion

This thesis has presented advancements in MIR methods for ITM, cul-

minating in the development of a new key-invariant tune recognition

system. Using harmonic and rhythmic features extracted from the audio

queries, it performs as well as a brute force search considering all pos-

sible transpositions, and is faster than the existing, non key-invariant,

system. This proposed method addresses one of the main limitations

of the state-of-the-art query-by-playing software Tunepal. This contri-

bution has the potential to not only extend the capabilities of Tunepal,

but also to offer a better tool for annotating and exploring digital music

archives.

Section 7.1 will summarise the main conclusions of the previous

chapters. Then Section 7.2 will point out some limitations of the pro-

posed methods and contributions. Finally, propositions for future work

are discussed in Section 7.3.
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7.1 Summary

After the necessary background was introduced in Chapter 2, Chapter 3

proposed an architecture for key-invariant tune recognition, relying on

audio key inference. Subsequently, the rest of that chapter was a study

on key detection for ITM, where the goal was to detect the musical key,

i.e. tonic note and mode (major or minor), from a tune. A standard

method, based on predefined key-profiles, was used. New key-profiles,

that take into account the specificities of the ITM idiom, in particular

its modal nature, were proposed. The results of the evaluations conduc-

ted indicate that these new key-profiles outperform the existing ones on

ITM. However, in some cases defining the key of a tune can be ambigu-

ous, and even the best performing key-profiles failed on over 20% of the

audio recordings.

The study reported in Chapter 3 focused on the harmonic content

of musical signal. In contrast, Chapter 4 presented a study about the

temporal content, or rhythm, of audio recordings of tunes. Using quant-

ised lag vectors, a tempo-invariant representation derived from the auto-

correlation of an onset detection function, logistic regression models

were trained to predict either metre types, i.e. beat subdivision, or tune

types. Their classification accuracy reached, respectively, 96.8% and

83.2%. An ancillary research contribution in this chapter was the cre-

ation and presentation of a new set of annotations of 500 tune recordings,
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chosen to follow the distribution of tune types in reference collections.

As key inference proved to lack robustness, and to require key an-

notations that are sometimes hard to define, a new method for key-

invariant tune recognition was introduced in Chapter 5. In this new

Align technique, the symbolic representation is transposed to optimise

the alignment of its pitch class histogram with that of the audio query.

Substring edit distance is used for computing melodic similarity. Five

AMT algorithms, and two ways of computing the audio PCH, were con-

sidered, and the best results were obtained with Silvet and PCHAMT,

computing the audio PCH from the transcribed notes. New metrics were

defined to measure the performance of the system, and to compare its

performance to 3 other methods: two non key-invariant ones, Original0

and Originalk, the second one being informed by possible transposi-

tions, and a brute force, key-invariant one, All, that computes melodic

similarity with all possible transpositions. Original0 and Originalk can

be considered as, respectively, the baseline and ceiling in this experi-

ment. Both Align and All performed slightly worse (resp. 87.0% and

86.80%) than Originalk (87.50%), but better than Original0 (84.65%),

and the differences are statistically significant. The difference between

Align and All is also significant, in favour of Align: the proposed method

performs slightly better than the brute force search, with a much lighter

overhead in terms of execution time.

To improve further on this, Chapter 6 explored different ways of in-
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tegrating the rhythm predictions from the models presented in Chapter

4 to the tune recognition system. By weighting the melodic similarity

measure by a function of the probability estimates from the models, it

was possible to improve on the performance of Align, despite remain-

ing worse than the ceiling. A second method consisted in restricting the

search space to the predicted rhythm categories. In this situation, errors

in the rhythm prediction always cause the search to fail. Hence it was

necessary to find thresholds for the probability estimates, interpreted as

confidence scores, below which predictions were ignored. This method

Align(τmetre) resulted in performances statistically similar to Align and

All, with an execution time shorter than Original.

To conclude, this thesis has introduced improvements on key detec-

tion for Irish music, a novel method for classifying audio recordings

in rhythm categories, and has proposed an efficient key-invariant tune

recognition system. Contributions also include the sets of annotations

prepared for these studies.

7.2 Limitations

First, limitations concerning the datasets and annotations prepared for

the different studies in this thesis will be discussed. Manual annota-

tions were carried out by a single annotator, the author of this thesis. A

better practice would be to collect annotations from multiple annotat-
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ors, as a way to reduce bias as well as errors in the annotations. This

would be particularly interesting for key annotation: as was discussed in

Chapter 3, the tonality of tunes can be ambiguous, and studying agree-

ment between annotator (e.g. with Cohen’s κ coefficient) could help

quantify and understand this more closely.

The rhythm class of a tune can be subject to some ambiguity as well,

and the methodology just discussed would also be of use to Chapter 4.

Due to variations in the interpretation of tunes, tune ids introduced in

Chapter 5 may also vary between annotators.

In Chapter 3, it was mentioned that the tonal centre of a melody can

change between or even within parts. Annotating these changes would

allow for a more precise study of tonality in ITM. However, ambiguity

would still arise in some melodies, and, as practitioners typically do not

refer to local tonal centres, but only of the key of a tune, obtaining such

annotations from multiple annotators would be difficult.

Another important limitation is the representation of instruments in

the main dataset, used in Chapter 4 onwards. Recordings were collected

from the Comhaltas archives, while respecting the tune type distribution

as explained in Section 4.2. Consequently the distribution of recordings

per instruments was simply a result of their availability in the archives,

and the dataset is unbalanced in this regard. For example, there are only

3 recordings on solo banjo and solo harp, but 20 on solo fiddle, and the

error analysis conducted in Section 5.8.3.1 showed that tune recogni-
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tion accuracy varied across these categories. A dataset more balanced

in terms of instruments would allow for a more systematic study of the

performance of the different components of the system (music transcrip-

tion, pitch class histogram alignment, rhythm classification). A way to

obtain such a dataset would be to carefully decide on the distribution

of tune types and instruments before organising recording sessions spe-

cifically for this purpose. Data augmentation techniques could also be

used to reach a better balance in the dataset.

Then, limitations of the methods developed in this thesis are dis-

cussed. In Chapters 4 and 5, the fuzzy histogram is used to find the

quaver duration q, which is then used to quantise the lag vectors or the

transcribed notes, respectively. Subsequently, only the quantised rep-

resentations are used, and q is effectively discarded. As it gives an

indication of tempo, it could have been beneficial to use q for rhythm

classification, and potentially improve results in Chapters 4 and 6.

Microtonality in ITM was discussed in Section 2.2, but the PCH

alignment method presented in Section 5.4 aims at aligning peaks of

the audio PCH to those of the symbolic PCH, which are always well-

tempered. This important difference in pitch content between audio re-

cordings and symbolic representations suggests that the PCH alignment

method could be improved.

Finally, some limitations about the results analysis are now discussed.

All the evaluations, statistical analysis, and error analysis in the thesis
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have been conducted at the level of the dataset, or subsets of it. If

considering sets of examples rather than individual ones is necessary

for discussing statistical significance and general observations, conduct-

ing finer error analysis at the level of individual instances could have

provided valuable insights into the strengths and weaknesses of the pro-

posed methods.

Standard metrics, as defined by MIREX, have been used, and their

limitations have been discussed already, in particular in Chapter 3. They

are symptomatic of the difficulty of reconciling the need for standard

metrics, necessary for comparative studies, and the specificities of dis-

tinct musical idioms.

7.3 Future work

In addition to the suggestions regarding datasets, annotations, methods,

and results analysis discussed above, this section outlines possible future

work building on this thesis.

First, making the proposed MIR methods available for end users and

musical archives would be an important step. Integrating them in Tune-

pal would both offer an improved tune recognition tool for musicians,

and help disseminate the product of this research.

Finally, some of the features extracted from audio recordings could

be used to develop a better automatic music transcription (AMT) al-
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gorithm for ITM, which is an important step for tune recognition. In-

deed, the study presented in Appendix A showed that the accuracy of

note-level automatic transcription on session recordings only reaches

a F-measure of 0.75. By using automatically extracted harmonic and

rhythmic features to guide an AMT algorithm, more accurate transcrip-

tion may be obtained.
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Appendix A

A corpus of annotated Irish traditional

music recordings

In this Appendix, a dataset of manual pitch-track annotations, published

in Beauguitte et al. (2016a), is presented. The aim of this preliminary

study was first to evaluate the performance of existing automatic music

transcription (AMT) algorithms on recordings of ITM, but also to offer

a set of data useable for training ML models. Köküer et al. (2019) have

since undertaken a similar annotation effort, aiming at stylistic analysis.

A.1 Presentation of the dataset

In this section, the design of the corpus is presented. Section A.1.1 in-

troduces the set of audio recordings that was chosen to make the corpus

representative of Irish traditional dance music. The annotation format

used to deal with the characteristics of these recordings is then detailed

in A.1.2.
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A.1.1 Source of audio recordings

Three sources of recordings are included in the corpus:

• session recordings accompanying the Foinn Seisiún books pub-

lished by the Comhaltas Ceoltóirí Éireann organisation, available

with Creative Commons licence. Instruments in the recordings in-

clude flute, tin whistle, uillean pipes (Irish bagpipes), accordion,

concertina, banjo, piano, guitar, bodhran (drum). These offer good

quality, homogeneous examples of the heterophony inherent to an

ITM session.

• Grey Larsen’s MP3s for 300 Gems of Irish Music for All Instru-

ments, commercially available. These consist of studio quality re-

cordings of tunes played on Irish flute, tin whistle and concertina.

• Personal recordings of Bryan Duggan on the Irish flute. These are

available together with the annotations.

The corpus comprises 30 tunes in total, which add up to more than

30 minutes of audio. It was decided to include both solo and session

recordings as a way of comparing the performance of transcription al-

gorithms on respectively monophonic and heterophonic music. Table

A.1 categorises the tunes in the corpus by tune type and performance

type. The complete list of tunes with the relevant metadata is included

with the dataset.
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Reel Jig Hornpipe Polka Slide Air

Session 5 5 1 1 1 0
Solo 4 4 3 3 2 1

Table A.1
Classification of tunes in the corpus by tune type and performance type

A.1.2 Format of the annotations

Each audio recording is annotated with note events, consisting of three

values: (pitch, onset, duration). For the goal of obtaining a symbolic

transcription, this format of annotation is more useful as well as easier

to manually annotate than a continuous pitch track labelling every au-

dio frame. The session recordings are heterophonic, but only interested

in the underlying melodic line shared by all the instrumentalists is con-

sidered. For this reason there is no overlap between the notes, and the

resulting transcriptions are monophonic.

Due to the heterophonic nature of Irish traditional music as played

during a session, and to the slight tuning differences between the instru-

ments, a single fundamental frequency cannot appropriately describe a

note. Therefore it was decided to report only MIDI note references in-

stead of frequencies.

In session performances, the playing of ornamentation such as rolls

and cuts (Vallely, 2011) often results in several successive onsets for

a single long note. Figure A.1 shows an example of such a situation,

where three instruments interpret differently the same note (the short

notes played by the flute are part of a roll and are not melodically signi-
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Fiddle
Flute
Banjo

Transcribed
Figure A.1

Example of ornamented notes on different instruments

ficant, therefore they are not transcribed). This makes it difficult, even

for experienced musicians and listeners, to know when repeated notes

are to be considered as a single ornamented note or as distinct notes.

Because of this inherent ambiguity, it is not appropriate to associate

one onset with one note in the transcription. For this reason, consec-

utive notes of identical pitch are merged into one single note. A change

of note in the annotations thus corresponds to a change of pitch in the

melody.

In solo performances, there are some clear silences between notes,

typically when the flute or whistle player takes a breath. Whenever such

a silence occurs, two distinct notes were annotated even if they are of

the same pitch. In the solo recordings present in the corpus, the typical

duration of a breath was measured at around 200ms. Notes repeated

without pauses or cut by an ornament were still reported as a single note,

in order to be consistent with the annotations of session recordings.

Manual annotations were made with the aid of the Tony software

Mauch et al. (2015). After importing an audio file, Tony offers es-

timates using the pYIN algorithm, already presented in Section 5.3.4.
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These were then manually corrected, by adding new notes, merging re-

peated notes and adjusting frequencies. The annotations were finally

post-processed to convert these frequencies to the closest MIDI note ref-

erences. With this annotation format, the dataset comprises in total more

than 8600 notes.

A.1.3 Open publication of the dataset

The dataset is publicly available as a set of csv files.1 Each file contains

the annotation for an entire audio file. Each line represents a note (as

onset time, duration, MIDI note). The annotations can be easily used in

any evaluation framework, e.g. mir_eval (Raffel et al., 2014), as well

as with the software Sonic Visualiser (Cannam et al., 2010).

A.2 Results of AMT algorithms

In this Section, the transcriptions obtained by the AMT algorithms in-

troduced in Section 5.3.4 are evaluated on the dataset. In order to be

consistent with the annotation format presented above, it is necessary to

post-process the estimates of these algorithms in the following manner:

• align all frequencies to the closest MIDI note;

• for note-level estimates, merge consecutive notes of same pitch

separated by less than 200ms.

1https://github.com/pierrebeauguitte/tuneset
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The second step is particularly critical for the note-level metrics of

the MIREX Note Tracking task (see below Section A.2.2), but will also

affect the frame-level metrics of the Melody Extraction tasks for the

frames in the filled gaps.

Evaluations are performed with the mir_eval framework (Raffel

et al., 2014).2

A.2.1 Frame-level evaluation: Melody Extraction

The MIREX Melody Extraction task evaluates transcriptions at frame

level. Pre-processing of both the ground truth and the estimates is ne-

cessary, and simply consists of aligning both on the same 10ms time

grid. The pitch estimate for a frame is considered correct if it is dis-

tant from the ground truth by less than a quarter of a tone (50 cents).

The metrics also look for voicing errors: a voiced frame is one where

a melody pitch is present. Five different metrics are computed for each

tune. Results are shown in Figure A.2.

A.2.2 Note-level evaluation: Note Tracking

This section presents the results of the MIREX Note Tracking task.

Although this task is primarily aiming at polyphonic music transcrip-

tion systems, it also applies directly to monophonic music as long as

both ground truth annotations and returned estimates are in a note-event

2https://github.com/craffel/mir_eval
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Figure A.2
Scores of the MIREX Melody Extraction task evaluation
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format. MATT2, pYIN and Silvet already return transcriptions in this

format. Melodia and PitchMelodia have to be post-processed by the

PitchContourSegmentation algorithm of the Essentia library (Bogdanov

et al., 2013).

Estimated notes are associated with their closest match from the ref-

erence annotation, and a note is considered correctly transcribed if its

onset is distant from the reference note by less than 50ms and its pitch

by less than a quarter of a tone. Another way of evaluating the transcrip-

tion is to also take the duration of notes into account. Commonly found

instruments in Irish music have a wide range of acoustical characterist-

ics: some (like the flute, the fiddle, the uilleann pipes) can be played

legato or staccato, depending on personal or regional styles, or on the

type of tunes performed; others (typically the banjo) can only be played

staccato, with hard onsets and very little sustain. Consequently, the off-

set of the notes is of little interest for the present evaluations, particularly

in session recordings where all these instruments can play together. This

is why only results for the first type of evaluation are reported.

Precision, recall and F-measures are computed with the mir_eval

framework (Raffel et al., 2014), and plotted in Figure A.3. Results for

the Chroma correctness, where a note is correctly transcribed if its onset

(±50ms) and its pitch class are correct, are also shown.

A statistical analysis comparing the performances of the different

AMT algorithms on these 2 tasks was given in Beauguitte et al. (2016a).
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Scores of the MIREX Note Tracking task evaluation
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Here, it will simply be observed that for the Note Tracking task, which

corresponds to the way audio queries are transcribed in Chapters 5 and

6 (see Section 5.3.4), Silvet obtains the highest F-measure on session

recordings, followed by PitchMelodia and Melodia. This is consistent

with the performances observed for these algorithms in the tune recog-

nition task (see Section 5.8.1). Although MATT2 obtains a higher F-

measure, its precision on chromas is much lower than that of pYIN,

which explains why it performed worse in the tune recognition task.
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Appendix B

Confusion matrices for key detection

This Appendix gives the the confusion matrices obtained in the second

experiment for key detection in Chapter 3, Section 3.4.2.
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Appendix C

Links to implementations and datasets

This Appendix lists the URLs for the datasets and implementations for

the contributions presented of this thesis.

Chapter 3. Key detection

https://github.com/pierrebeauguitte/keydetection

Chapter 4. Rhythm classification

https://github.com/pierrebeauguitte/ITM_rhythm

Chapter 5 & 6. Tune recognition

https://github.com/pierrebeauguitte/tunerecognition

Appendix A

https://github.com/pierrebeauguitte/tuneset
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