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Automatic Flood Detection in Sentinel-2 Images Using Deep
Convolutional Neural Networks
Pallavi Jain, Bianca Schoen-Phelan, Robert Ross

Technological University Dublin
Dublin, Ireland

{pallavi.jain,bianca.schoenphelan,robert.ross}@tudublin.ie

ABSTRACT
The early and accurate detection of �oods from satellite imagery
can aid rescue planning and assessment of geophysical damage. Au-
tomatic identi�cation of water from satellite images has historically
relied on hand-crafted functions, but these often do not provide
the accuracy and robustness needed for accurate and early �ood
detection. To try to overcome these limitations we investigate a
tiered methodology combining water index like features with a
deep convolutional neural network based solution to �ood identi�-
cation against the MediaEval 2019 �ood dataset. Our method builds
on existing deep neural network methods, and in particular the
VGG16 network. Speci�cally, we explored di�erent water indexing
techniques and proposed a water index function with the use of
Green/SWIR and Blue/NIR bands with VGG16. Our experiment
shows that our approach outperformed all other water index tech-
nique when combined with VGG16 network in order to detect �ood
in images.
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1 INTRODUCTION
Floods are common natural disasters that occur throughout the year
in many locations around the globe. Flooding can occur for a myriad
of reasons, for example unusually heavy rainfall, melting snow, or
tsunamis, and are often exacerbated by a lack of vegetation. In most
cases �oods tend to be highly destructive to property and human
life [11], [19] and as a result the early and accurate detection of the
geographic areas a�ected by �ood is seen as crucial. Within this
context remote sensing has become very popular [26] [8], typically
due to being able to show the location and severity of �ooding at
the same time.
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A �ood mapping is a technique to analyse the extent of �ood
water, and identi�es its spatial distribution over the land area; these
are now common place. In recent years there has been an increase
in techniques proposed that aim to map water bodies [18], [29], [5],
[17], [20] in order to assist with �ood mapping and response. While
automatic detection of �oods from raw satellite image data seems
like an obvious method for accurate detection, the problem is in
practice non-trivial. Floods are shallow waters that are di�cult to
map in urban areas due to those areas being highly built-up; plus
�oods can be obscured by cloud coverage.

Despite the challenges in automated identi�cation and severity
mapping, we argue that satellite data nonetheless presents the best
opportunity for accurate �ood mapping. The Copernicus Sentinel-2
satellite project for example provides high resolution multi-spectral
images with 13 bands1 for analysis. Each band has its own charac-
teristics, which di�erentiate the di�erent geological components
such as water, vegetation, clouds and land cover in terms of their
re�ectance values. Using this type of data we have already seen
several projects that map water bodies or �ood situations with
varying levels of success [22], [25], [3].

Most current and historical approaches to mapping water bodies
from remote sensor data has relied on the idea of water indices.
Water indices are essentially hand-crafted mathematical functions
which provide a measure usually based on the ratio of light re-
�ectance at di�erent wavelengths. These indices are helpful in
highlighting areas of water relative to other objects such as veg-
etation or built-up area. These water indexing techniques have
shown great results in order to map �ood or water bodies regions.
However, �oods are not typical water bodies and most techniques
fails to detect shallow water [20], [27]. Signi�cant work is required
in order to improve the accuracy of detection methods to minimise
mis-classi�cation, and also to increase our ability to detect the
severity of �ooding.

Though over the time, research has shown that appropriate
combination of spectral indices are able to overcome the built-up
areas and cloud shadow issues. For example Xu [29] used SWIR and
Green band to overcome the built-up area, while Mishra & Prasad
[20] used the combination of Normalised di�erence water index
(NDWI) [18] with Blue/NIR spectral indices to detect shallow water.
Similarly AWEI technique by Fyesia et al. [5] helped in overcome
the cloud shadow problem by calculating index using coe�cient
values with di�erent bands. Such techniques are valuable as they
signi�cantly reduce the likelihood of mis-classi�cation of an area.

Beyond the realm of �ood analysis, there has been signi�cant
improvements in the accuracy of automatic visual assessment meth-
ods thanks to the growth of Deep Learning [7], [15] and its many

1https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial
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architectural variations such as Convolutional Neural Networks
(CNNs) [14]. One of the key di�erentiating factors in the success
of these methods is that rather than relying exclusively on hand-
crafted features – comparable to water indices – they automatically
learn what combinations of raw data provide the best basis for
making estimates of a given target variable.

Given the relative success of CNNs across a range of domains
where hand crafted features have been replaced or augmented with
signi�cant improvement of results, we argue that a systematic in-
vestigation of the application of CNNs will likely lead to signi�cant
increases in predictive power than can be gained with water index
type features alone. This paper thus proposed a tiered approach
where a novel water index map tuned to the particulars of the �ood
water challenge is fed in as base data to a deep CNNVGG16 network
[24].

We proceed in Section 1.1 with a review of the most common
methods that have historically been applied to water body detection,
before, in Section 1.2, moving on to discuss the basic features of
a CNN based approach to sensor data analysis. Following that, in
Section 2 we set out our concrete study design in terms of the data
used, methods investigated, and methods of evaluation. Section 3
presents the raw results along with a discussion. Finally, in Section
4 we set out our conclusions and suggestions for future work.

1.1 Water Detection Techniques
Traditional water body detection techniquesmake use of di�erences
in electromagnetic signatures of di�erent bodies, i.e., the relative
absorption (or re�ectance) of electromagnetic radiation across a
range of wavelengths. The wavelengths considered typically range
from the ultraviolet, down through the visible spectrum, on to near
infrared (NIR) as well as short wave infrared (SWIR). The NIR band
is highly absorbed by water and re�ected by vegetation. This makes
water appear dark in NIR images and consequently highlights it
more profoundly. Similarly, the SWIR band has a lower re�ectance
value for water compare to vegetation or build areas.

Given the relative re�ectances of di�erent substances at di�er-
ent wavebands, we can design speci�c functions, or indices, that
calculate a metric to estimate the potential for water being present
or not. These water indices, similar in nature to the also common
vegetation indices, provide an approximate likelihood estimation
for water presence. Rather than there being one universal water
index there are in practice a wide number of such indices. One well
known such index is the NDWI from McFeeters [18].

NDW I =
Green � NIR

Green + NIR
(1)

As can be seen this is a relatively simple index that simply makes
use of the NIR and green bands.

A similar modi�ed NDWI (MNDWI) was later proposed by Han-
qiu Xu [29], who argued that SWIR would provide a more robust
method for providing segmentation in built-up areas.

MNDW I =
Green � SW IR

Green + SW IR
(2)

Both NDWI and Modi�ed NDWI have been widely used to map
water or �ood areas [25], [22], [3]. Lately, various methods were
proposed by either combining these water indexes, or proposing
a di�erent combination of indexing techniques in order to map

water. Mapping �ood in urban areas can be challenging as NDWI
cannot capture shallow water areas. Additionally, shadows from
varying sources are a problem [29] [5]. Several modi�cations of
water indices have been proposed.

For example Feyisa et al. [5] proposed the automated water
extraction index (AWEI). This index attempts to overcome the
di�culty in identifying water in urban areas, and to solve mis-
classi�cation due to shadows of mountains or buildings. This more
complex functions leverages blue, green, NIR, SWIR1 and SWIR2
bands and proposed two variants: (i) shadow and (ii) non shadow.
The signi�cance here is that in �ood detection urban shadows
and mountain shadows can be signi�cant, hence it could be more
appropriate to use shadow version.

AWEIS = Blue + 2.5 ⇥Green�
1.5 ⇥ (NIR + SW IR1) � 0.25(SW IR2) (3)

More recently, Mishra & Prasad [20] proposed another modi�ed
NDWI index (I) to overcome the NDWI lack of separating built-up
areas and the challenge of detecting shallow water. For that they
added another dimensionless index using Blue and the NIR band in
order to extract more detail.

I = NDW I +
Blue � NIR

Blue + NIR
(4)

Another approach in order to reduce mis-classi�cation due to
built-up areas creates a three-dimensional feature space by utilising
NDWI, Normalised di�erence vegetation index (NDVI), and Red
Edge NDWI (RE-NDWI) [12] to detect water using supervised
learning [17].

NDV I =
Red � NIR

Red + NIR
(5)

RE � NDW I =
Green � RE

Green + RE
(6)

The idea here is that each of the three indices NDWI, NDVI, and Red
Edge NDWI, act as high-level features that can be fed into amachine
learning algorithm that can learn the higher-order functions based
on combinations of these features.

While a machine learning driven approach to build higher order
functions based on the low-level indices does provide a more robust
approach to providing accurate �ood estimates, the approach is
however still dependent on the low-level indices themselves being
in some way useful. However the very fact that there is such a large
number of di�erent water indices indicates that the true challenges
is that simple hand crafted index functions cannot capture the vari-
ation in features that underpin an accurate identi�cation of water
bodies. Additionally, it is important to consider that most indexing
techniques have been developed in order to detect water bodies
in general. Therefore, �ood detection might behave in a manner
not anticipated, and that methods for �ood detection should ideally
account for speci�cs of �ood rather than simply water detection

Rather than relying on manually crafting water indices, we ar-
gue that a automated approach to index construction is much more
likely to give rise to useful estimates. In the next section we show
how Deep learning and Convolutional Neural Networks in particu-
lar have great potential to provide such a mechanism.
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1.2 Deep Convolutional Neural Network
Deep Learning is a modern variation on the classical arti�cial neu-
ral network. In its basic form Deep Learning can be used for many
classi�cation and regression tasks such as �ood detection by auto-
matically learning very complex functions from raw input data to
target variables. In the past ten years, deep learning methods have
shown excellent performance in tasks ranging from speech recog-
nition through to image detection and object segmentation. The
key idea with supervised Deep Neural Networks is that a complex
and costly initial training period can automatically be used to �nd
optimal parameters for very complex deep functions so long as suit-
able training data is available. While the initial training process is
expensive, the resulting trained networks are relatively cheap from
a computational perspective and can easily be applied in real-time
to new data.

While the basic design of a deep learning network is based only
on layers of simple linear functions, there are a number of impor-
tant architectural variations that are used to group together layers,
share weights, and improve on performance. One important such
architectural variant for our purposes is the Convolutional Neural
Network (CNN), which is a multi tier network including convo-
lutional layer, pooling layer and fully-connected layer as shown
in Figure 2. The CNN takes advantage of the idea that interesting
low-level features are often spatially invariant. To put this in simple
terms, a line is a useful feature in object identi�cation and lines
are regardless of whether they are at the bottom left of an image
or the top right. Importantly, while CNNs have historically been
developed and used for traditional image data, i.e., either grey-scale
or Red-Green-Blue images, they can in principle be scaled to take
advantage of remote sensed data with many more spectral bands.

While the CNN combined with a related model component called
the pooling layer, provide a basic building block for supervised
training on image like data, a number of speci�c and detailed ar-
chitectures have been proposed to take these ideas and build very
deep networks that provide high-performance. These include net-
works such as AlexNet [13], Ca�eNet [10], and VGGNet [24]. These
networks are very deep and make use of a number of optimisations
to provide high-performance. However, one notable challenge with
these networks to train from scratch is that they require signi�cant
amounts of data to train – usually far more than is available in a
speci�c domain such as �ood detection. For this reason a number
of networks have been pre-trained on alternative datasets are avail-
able for bootstrapping model development. A prominent example
of such alternative dataset for pre-trained networks is ImageNet
[2].

It has been shown that such pre-trained models can generally
be then used to train domain speci�c models with small datasets
[23]. Speci�cally for remote sensing classi�cation tasks, it has been
shown that deep CNNs can provide great performance [21], [4], [9].
Among these models VGGNet has shown outstanding results in
several domain classi�cation tasks [28], and even in remote sensing
images classi�cation [6], [9], [16].

2 STUDY DESIGN
Motivated by the good insights provided by water index based
methods and the excellent performance of CNN based architectures

for a range of imaging tasks in recent years, we propose a modelling
approach to synergise the best of these two elements. In this section
we outline the speci�cs of the approach that we take. We look �rst
at the details of the dataset that we are using for this study, and then
go on to explore some of the important aspects of the model and
present the speci�cs of the training and evaluation methodology.

2.1 Data
For this study, we make use of the data provided by the MediaEval
2019 competition. Here one of the competition tasks, Multimedia-
Satellite, was to identify �ood in time series data from Sentinal-2
images [1]. The data consists of 335 sets with 267 as development
sets and 68 as test sets. Each set consists of varying 1 to 24 day
time series images of before and after �ood events; this provides a
total 2770 images. The images are of 512 X 512 pixels in size and
o�er 12 bands of sentinel-2 data. The data comes in two di�erent
sets of resolutions. The bands with 20m resolution are up-scaled
to 10m resolution images. For this work we leveraged only the
development set, as test set labelled data is not available. We thus
applied our own splits to the development data as described later.
Labels for the development set are binary - indicating the presence
or otherwise of a �ood in the given image.

Since the data provided does include information across a range
of wavebands, we can immediately apply a number of water in-
dices directly to the data to attempt to identify �ooded regions.
Resultant images for each of NDWI, MNDWI and AWEI, as well
as the index proposed by Mishra & Prasad [20] and Li et al.’s [17]
three-dimensional feature space , can be seen in Figure 1. As noted
earlier, cloud coverage and cloud shadow are two of the major prob-
lems when dealing with remote sensing images. Speci�cally, they
are sometimes misinterpreted as actual water, while other times
clouds and shallow water can have the same index value. As seen in
Figures 1b, 1c, 1e, shallow water (Flood Water) is similar to partial
clouds. In Figure1d only some clouds are showing, and some clouds
mix with water values. Though in Figure 1f clearly di�erentiates
between shallow water and cloud.

2.2 Our Proposed Approach
Our proposed model below can be described as a linear hybridi-
sation of the classical index based approach with the CNNs. The
approach attempts to combine a sensible index that is specialised for
the speci�cs of �ood identi�cation with the generalisable features
provided by a pre-trained CNN.

To provide a sensible baseline index, let us consider the speci�c
performance of a number of indices when benchmarked against the
sample image shown in �gure 1. Here we show the histograms in
�gure 3 for index values calculated across all pixels in the image for
Figure 4a. The histogram in �gure 4c shows less noise and smooth
as compare to histograms for other indices in �gure 3, due to the
fact that the index count reduces when water image is cloudy while
pikes increases when it is cloud free as in �gure 4d. Mostly cloudy
part remains at ± zero value, but stays separated from water pixels,
which gives good separation to water values from all other objects.

Given the relatively good performance of threshold based models
such as [20], we apply this model as a baseline for our proposed
index. However, considering the cloud coverage problem in remote
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(a) Original Image (b) NDWI [18] (c) MNDWI [29]

(d) AWEI [5] (e) Mishra et al. [20] (f) Li et al. [17]

Figure 1: Di�erent Water Index Techniques

Figure 2: Convolutional Neural Network

sensing satellite images, it is good to look for its modi�cation in
indexing technique. As SWIR and Blue band are both helpful for
images that present clouds, snow and penetration of thin clouds.
Therefore, in our approach we replaced NDWI [18] with MNDWI
[29]. Also it has been seen that blue and green bands provide the
largest di�erence between the re�ectance of water and shadow [5],
which resolve the shadow issues. The resultant proposed index (PI)
is as follows:

PI =
Green � SW IR

Green + SW IR
+
Blue � NIR

Blue + NIR
(7)

By using SWIR instead of NIR, the amount of noise in the image is
reduced [20], apart from that due to cloud coverage the overall index
values count reduces. This can be seen in �gure 4c, our approach
has the lowest count index that remains positive. This is because
it keeps only water pixels positive and all other as negative. In
contrast all the indices in �gure 3, except Li et al. [17], show water

pixels above 0 value which can be variable due to atmospheric or
brightness e�ects. Moreover, while Li et al. [17] had a threshold that
lies near 0.4, we didn’t change the axis to retain their original range
in order to di�erentiate between water and non-water pixels. For
the proposed index we also see that, for cloud free images the pixels
increased in positive side as water is clearly visible. We argue that
this shows our method is capable of reducing the overall impact of
clouds in the image.

While our hybrid model does make use of an altered index func-
tion to provide raw data to the �ood classi�er, the resultant index im-
age is also processed via a convolutional network. In particular we
have made use of the VGGNet Networks that have shown great per-
formance in ILSVRC-2014 task [24]. The VGGNet networks are one
of the most popular deep CNNs for image classi�cation and object
detection. Two versions of the VGGNet are widely used: (i) VGG16
which contains 13 convolutional layers and 3 fully-connected lay-
ers, and (ii) VGG19 which consist of 16 convolutional layers and 3
fully-connected layers. This network uses 3×3 convolutional layers
stacked to others to increase depth. Max pooling is used to handle
the reduction of volume size. Two fully-connected layers, each with
4096 nodes, are then followed by a softmax classi�er.

As noted earlier the amount of data available for tasks such as
satellite based classi�cation of �ooding is limited relative to the
amount of data required to trainmodels such as VGG16 from scratch.
Therefore we make use of a pre-trained network that has previously
been trained on large image datasets such as ImageNet [2]. This
is a form of Transfer Learning where the knowledge originally
acquired for training VGGNet for the ImageNet corpus is re-used
in building a classi�er for a domain speci�c task such as our own.
In such an approach the initial layers of the network usually learn
very general features, while task-speci�c features are learned only
in later layers of the network. Thus, for transferring a network to a
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(a) NDWI[18] (b) MNDWI [29]

(c) AWEI [5] (d) Mishra et al. [20]

(e) Li et al. [17]

Figure 3: Each histogram shows the count of indices in cor-
responding image in �gure 1, and dotted vertical line shows
approximate threshold to separate water and non-water in-
dices. Figure 3a, 3b, 3c, and 3d, water indices are above zero
while for �gure 3e its above 0.4.

speci�c task, we freeze the initial layers of the network and retain
the later layers for our own work.

2.3 Experimental Setup
In our experiment setup, data pre-processing consisted of taking
each dataset and for each collection of spectral images in that
dataset we generate a series of water index maps. Each of these
water index maps consist of a 512 x 512 array that contain the
water index as calculated for each of the 6 index types we are
investigating, namely, NDWI, MNDWI and AWEI, as well as the
index proposed by Mishra & Prasad [20], and Li et al.’s [17] three-
dimensional feature space, and our own proposed index. We split
2,208 images of the development dataset into Validation (10%), Dev-
test (10%), and 80% of data as training data. In order to increase our

(a) Clouded Image (b) Cloud Free Image

(c) Clouded Histogram (d) Cloud Free Histogram

Figure 4: Proposed Approach

training dataset we also performed image augmentation by shifting,
rotating, and �ipping the image with batch size of 32.

VGGNets like other pre-trained image processing neural net-
works are typically trained to work on 3 channel image data, i.e.,
Red Green and Blue. However in our case with water index maps
are individually essentially single channel images – similar to a
greyscale image but representing individual water indices. The one
exception to this is Li et al.’s [17] as they used 3 dimensional feature
space of water and vegetation indices such as NDWI, NDVI, and RE-
NDWI. To work around this issue we split our single channels three
ways assuming identical values for each input channel. While this
is not an ideal situation given low-level features have been trained
assuming colour based di�erences across channels, we argue that
it nevertheless provides excellent performance in our tiered model.

For our work, we used model architecture with VGG16 network
and fully connected layer as shown in �gure 5. During training
we froze the initial layers until Block 4 in the VGG16 model. Block
5 was left trainable to allow task speci�c features to be learned.
Global average pooling was used to reduce the over�tting of the
model by reducing the total parameters. After the VGG16 blocks, we
used a fully connected layers of size 128 units followed by dropout
layer with a dropout parameter of 0.5, and �nally a softmax layer.
Recti�ed linear unit (ReLU) has been used as activation function
and we applied the Adam optimiser to guide the training process.
As our problem was a binary classi�cation problem we used the
binary cross entropy loss function to calculate the loss. For training
of the model we used a learning rate of 5e-6 and trained the model
for 55± 5 epochs depending on each index best performance
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Figure 5: Network Architecture

Table 1: Evaluation of all the water indexes

Index Type TP TN F1 Kappa
NDWI [18] 0.84 0.78 0.80 0.59
MNDWI [29] 0.76 0.96 0.88 0.74
AWEI [5] 0.74 0.90 0.83 0.66
Mishra et al.[20] 0.83 0.94 0.90 0.79
Li et al.[17] 0.92 0.84 0.87 0.71
Proposed 0.93 0.98 0.96 0.92

3 RESULTS
The �ood identi�cation problem is a binary classi�cation task.
Therefore for evaluation we make use of the F1 score and Kappa. F1
score is a harmonic mean of the precision and recall performance
metrics. As a harmonic mean it is thus a conservative estimate and
only provides a good mean estimate if both precision and recall
values are performing well. Cohen’s Kappa meanwhile compares
observed accuracy with expected accuracy. Kappa provides the fair
comparison when the classes are imbalance or multi-class. As the
data had imbalance class, it is good to look further with Kappa apart
from F1 for the fairness of the results.

F1 = 2 ⇥ Precision ⇥ Recall

Precision + Recall
(8)

where Precision = TP/(TP + FP) and Recall = TP/(TP + FN ).
TP, FP, and FN are true positive, false positive, and false negative
respectively.

Kappa =
po � pe
1 � pe

(9)

where p0 is observed accuracy and pe is expected accuracy i.e.
hypothetical expected probability of agreement.

Results from the table 1 shows that our proposed index outper-
forms the other index techniques when trained on VGG16 network
with freezing all layers except the last one. As our approach outper-
formed all other index performance and index by Mishra & Prasad
[20], performed the second best. It can be said that combination of
indexes can be the good idea in order to enhance the performance.
For that matter Green/SWIR and Blue/NIR performed best in our
case with VGG16 network architecture.

4 DISCUSSION
As �ood mapping and monitoring is a vital aspect to organize any
rescue program, automatic �ood detection also carries signi�cant

importance, as it reduces manual e�orts. The relatively good per-
formance of several water index techniques, and the very strong
performance of CNN based architectures such as VGGNet moti-
vated us to systematically investigate the combination of these
methods for the task of automatic �ood detection. In this paper we
explore di�erent aspects of water indexing techniques and propose
a modi�cation in combining an index technique originally proposed
by Mishra & Prasad [20]. We evaluate our suggested index com-
pared to several previously proposed approaches using supervised
learning and found that our approach outperformed other indexing
techniques.

Our work shows that the idea of detecting �oods in real-time
can be achievable when an appropriate water indexing technique
is combined with the high performance deep CNN models. Mishra
& Prasad [20] originated the idea of combining two indexes to
leverage bene�t from both of them. As the �ood water is di�erent
from normal water body, it is di�cult to map shallow water. But
due to recent advancement in the deep CNN models and their
outstanding performance in several practical application, we can
automate the �ood detection process.

As deep CNNs, extract features on the go, it is important to
provide them right water index. Most of the water indices showed
great result in mapping but not all necessarily work well with CNNs.
Considering that we replaced NDWI in Mishra & Prasad [20] with
Modi�ed NDWI by Xu [29]. Our approach outperformed all other
indices, which shows that Green/SWIR and Blue/NIR works well
with deep learning and automatic detection in sentinel-2 satellite
images. With a manual inspection, we also saw that our approach
reduces the noise in the images and clearly distinguish between
clouded and cloud free water images. In particular our index makes
the water area positive but count of indexes reduces when the
water image is clouded and increases when it is cloud-free. This
reduces the likelihood of mis-classi�cation of water area due to
either built-up area or cloud shadow.

Having outstanding performance of water index with deep CNN
models, motivates us to explore the method with other recent deep
CNNs like DenseNet. As shallow water mapping can be further
improvised by exploring more about the band combination. As
Sentinel-2 also provides another SWIR band at 2190nm and Cirrus
SWIR band, it would be interesting to explore their impact on water
index and cirrus clouds separation respectively. It would also be
interesting to forgo the pre-calculation of water indices and instead
supply all data to the deep neural network – i.e., all 12 channels
– and allow the network to directly learn appropriate index like
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functions from the full data set. Similarly we expect that providing
a learning function with information on the geographical area is
likely to boost predictive performance.

5 CONCLUSION
In this paper we proposed an automatic �ood detection technique
by fusing a modi�ed water index technique and deep CNNmodel to
train and test against labelled sentinel-2 high resolution images. The
modi�ed water index is the combination of two indices, green/SWIR
and blue/NIR in order to reduce the impact of clouds and cloud
shadow for shallow water detection. The result showed that in
compare to 5 other indices that is NDWI, MNDWI, AWEI, Mishra &
Prasad’s [20] and Li et al.’s [17], our index performed the best, when
trained with the VGG16 model. The outstanding results also shows
that automatic �ood detection is possible when an appropriate
water index technique is being used. In our later work, we would
also like to extend our approach with �ood water segmentation, in
order to have better �ood mapping along with �ood detection.
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