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ABSTRACT  

Sound  source  separation  refers  to  the  task  of  extracting  individual  sound  sources  from              

some  number  of  mixtures  of  those  sound  sources.  In  this  thesis,  a  novel  sound  source                

separation  algorithm  for  musical  applications  is  presented.  It  leverages  the  fact  that             

the  vast  majority  of  commercially  recorded  music  since  the  1950s  has  been  mixed              

down  for  two  channel  reproduction,  more  commonly  known  as  stereo.  The  algorithm             

presented  in  Chapter  3  in  this  thesis  requires  no  prior  knowledge  or  learning  and               

performs  the  task  of  separation  based  purely  on  azimuth  discrimination  within  the             

stereo  field.  The  algorithm  exploits  the  use  of  the  pan  pot  as  a  means  to  achieve  image                  

localisation  within  stereophonic  recordings.  As  such,  only  an  interaural  intensity           

difference  exists  between  left  and  right  channels  for  a  single  source.  We  use  gain               

scaling  and  phase  cancellation  techniques  to  expose  frequency  dependent  nulls  across            

the  azimuth  domain,  from  which  source  separation  and  resynthesis  is  carried  out.  The              

algorithm  is  demonstrated  to  be  state  of  the  art  in  the  field  of  sound  source  separation                 

but  also  to  be  a  useful  pre-process  to  other  tasks  such  as  music  segmentation  and                

surround   sound   upmixing.  
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CHAPTER   1:   INTRODUCTION  

Sound  Source  Separation  refers  to  the  task  of  extracting  individual  sound  sources             

from  some  number  of  mixtures  of  those  sound  sources.  As  an  example,  consider  the               

task  of  listening  in  humans.  We  have  two  ears  which  means  that  our  auditory  cortex                

receives  two  sound  mixtures,  one  from  each  ear.  Through  some  complex  neural             

processing,  the  brain  is  able  to  decompose  these  mixtures  into  perceptually  separate             

auditory  streams.  A  well  known  phenomenon  known  as  the  "Cocktail  Party  Effect"             

(Cherry,  1953)  illustrates  this  process  in  action.  In  the  presence  of  many  speakers,              

humans  exhibit  the  ability  to  tend  to  or  focus  on  a  single  speaker  despite  the                

surrounding  environmental  noise.  In  the  case  of  music  audition  we  exhibit  the  ability              

to  identify  the  pitch,  timbre  and  temporal  characteristics  of  individual  sound  sources             

within  an  ensemble  music  recording.  This  ability  varies  greatly  from  person  to  person              

and  can  be  improved  with  practice  but  is  present  to  some  degree  in  most  people.  Even                 

young  children  whilst  singing  along  to  a  song  on  the  radio  are  carrying  out  some  form                 

of  sound  source  separation  in  order  to  discern  which  elements  of  the  music              

correspond   to   a   singing   voice   and   which   do   not.   

 

In  engineering,  the  same  problem  exists.  A  signal  is  observed  which  is  known  to  be  a                 

mixture  of  several  other  signals.  The  goal  is  to  separate  this  observed  signal  into  the                

individual  signals  of  which  it  consists  of.  This  is  the  goal  of  this  research.  In                

particular,  this  research  is  concerned  with  separating  individual  musical  sound  sources            

from  ensemble  music  recordings  for  the  purposes  of  audition,  analysis,  transcription,            

segmentation,   remixing   and   upmixing.   
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Song   =   bass   +   guitar   +   drums   +   piano   +   voice  

 

Stated  simply:  observing  only  the  mixture(s)  of  these  instruments  -  i.e.  the  song  -  the                

aim   is   to   recover   each   individual   sound   source   or   instrument   present   in   the   song.   

 

1.1   -   APPLICATIONS   OF   SOUND   SOURCE   SEPARATION  

There  is  quite  literally  a  multitude  of  applications  where  sound  source  separation             

could   be   utilised,   here   are   but   a   few   that   appear   in   the   literature.  

 

Music  Education:  A  common  problem  for  amateur  musicians  is  identifying  exactly            

which  instrument  is  playing  which  note  or  notes  in  polyphonic  music.  A  sound  source               

separation  facility  would  allow  a  user  to  take  a  standard  musical  recording  such  as  a                

song  on  a  compact  disc,  and  extract  an  individual  instrument  part.  Inversely,  a  single               

instrument  may  be  muted.  A  tool  such  as  this  is  a  valuable  asset  in  both  the  teaching                  

and  learning  of  music.  For  instance  a  music  student  would  be  able  to  extract  an                

instrument  of  his/her  choice  in  order  to  analyse  and  learn  that  musical  part.  Or               

conversely,  the  student  could  remove  an  instrument  so  that  he  or  she  would  be  able  to                 

play   their   part   along   with   the   remaining   accompaniment.   

 

Music  Transcription:  Transcription  is  the  process  of  transforming  some  set  of  audio             

events  into  some  form  of  notation.  In  the  case  of  music,  it  typically  involves  creating                

a  musical  score  from  audio.  Traditionally,  this  task  was  carried  out  by  humans  and               

was  both  expensive  and  laborious.  Computerised  music  transcription  tools  have           

expedited  the  process  but  are  generally  limited  to  either  monophonic  transcription  or  a              
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special  case  of  polyphonic  transcription  whereby  the  overall  musical  harmony  (notes            

from  all  instruments  grouped  together)  can  be  transcribed,  but  accuracy  is  still  well              

below  that  of  a  human  expert (Benetos  et  al.  2013) .  The  inaccuracies  are  then               

corrected  by  a  human  using  a  suitable  editing  interface (Lunaverus,  2019) .  Sound             

source  separation  can  aid  this  process  by  allowing  a  polyphonic  mixture  to  be              

decomposed  into  several  monophonic  mixtures  thus  allowing  established  transcription          

techniques   to   be   applied.  

 

Music  Composition:  Computerised  compositional  tools  are  available  at  little  cost  to            

the  user  now.  Integrated  software  and  hardware  packages  have  made  it  possible  for  a               

single  desktop  computer  to  contain  almost  all  of  the  functionality  of  a  commercial              

recording  studio.  At  the  time  of  publishing  the  major  contributions  of  this  work,              

sound  source  separation  was  not  an  established  tool  in  music  composition  software.             

However,   such   features   have   become   more   common   since   2004.  

 

Audio  Analysis:  In  many  real-world  scenarios,  audio  recordings  can  often  be            

corrupted  by  unwanted  noise  from  sound  sources  which  are  proximal  to  the  source  of               

interest.  Forensic  audio  analysis  is  one  such  example.  Source  separation  would            

facilitate   the   isolation   of   particular   sounds   of   interest   within   corrupted   recordings.   

 

Remixing  and  Upmixing:  Multichannel  audio  formats  such  as  the  Dolby  and  DTS             

5.1  surround  sound  formats  have  become  a  standard  in  the  film  industry.  More              

recently,  multichannel  spatial  audio  formats  such  as  Ambisonics  have  been  adopted            

for  use  in  virtual  and  augmented  reality.  Upmixing  is  the  process  of  generating  several               
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reproduction  channels  out  of  only  one  or  two  mixtures.  Using  sound  source             

separation,  old  films  and  music,  for  which  the  multitrack  recordings  are  unavailable,             

could   be   remastered   for   today’s   common   formats.   

 

1.2   -   ORGANISATION   OF   DISSERTATION  

This  dissertation  is  being  submitted  as  part  of  the  requirements  for  the  award  of  PhD,                

under  TU  Dublin’s  academic  regulations.  Unlike  a  traditional  dissertation,  this  is  a             

PhD  by  prior  publication,  and  as  such  is  organised  differently.  Chapter  1  presents  an               

overview  of  the  document  including  the  novel  contributions  and  the  applications  of             

sound  source  separation.  Chapter  2  is  a  review  of  the  prior  art  at  the  time  the  novel                  

contributions  were  made.  Chapters  3,  4,  5,  6  and  7  present  my  novel  contributions  in                

the  field.  Each  of  these  chapters  comprises  a  previously  published  paper  in  its  entirety               

with  no  edits,  although  the  text  has  been  reformatted  for  the  purpose  of  maintaining               

document  consistency.  As  such,  each  novel  contribution  chapter  has  its  own  internal             

structure  containing  an  abstract,  background,  method  and  results  section.  Further,  the            

introductions  to  each  novel  contribution  chapter  may  overlap  in  background  content.            

Chapter  8  presents  conclusions  and  future  work.  All  of  the  references  are  presented  at               

the   end   of   this   document.  

 

1.3   -   NOVEL   CONTRIBUTIONS  

Within  this  dissertation,  I  present  one  major  novel  contribution  in  Chapter  3  and  four               

secondary  contributions  within  chapters  4,  5,  6  and  7  respectively.  The  key  novel              

contribution  is  the  Azimuth  Discrimination  and  Resynthesis  algorithm  (ADRess)          

which  is  presented  in  Chapter  3.  The  algorithm  was  first  published  in  2004  and  has                
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since  been  cited  177  times  between  its  two  published  papers  and  one  US  patent.  The                

patent  has  been  cited  by  Sony,  Samsung,  Dolby  and  NEC.  The  algorithm  was  licensed               

to  Sony  in  2006  for  use  in  SingStar  on  the  Sony  PlayStation  3,  which  went  on  to  sell                   

13m  copies.  In  2012,  the  algorithm  was  licensed  to  Riffstation,  a  company  I              

co-founded,  which  went  on  to  be  acquired  by  Fender  Musical  Instruments            

Corporation   where   it   served   millions   of   users   globally   from   2012   to   2018.  

 

The  second  novel  contribution  is  presented  in  Chapter  4  and  explores  two  alternative              

methods  of  reconstructing  the  sources  separated  using  the  ADRess  algorithm.  The            

paper  presented  in  this  chapter,  “Comparison  of  Signal  Reconstruction  Methods  for            

the  Azimuth  Discrimination  and  Resynthesis  Algorithm”,  explores Sinusoidal         

Modelling  and Magnitude  only  Reconstruction  as  alternatives  to  the  original           

reconstruction   method   presented   in   Chapter   3.   

 

The  third  novel  contribution  is  presented  in  Chapter  5  and  explores  a  novel  use  of  the                 

ADRess  algorithm  to  achieve  Music  Structure  Segmentation.  In  this  chapter  we  show             

that  an  intermediate  representation  created  by  ADRess,  the azimugram ,  can  be  further             

processed  using  Independent  Subspace  Analysis  to  segment  musical  audio  into           

contextual   sections   such   as   verses   and   choruses.   

 

The  fourth  contribution  is  presented  in  chapter  6  and  explores  a  novel  way  of  using                

the  ADRess  algorithm  to  upmix  from  stereo  to  a  5  channel  surround  presentation.              

Here,  ADRess  is  configured  to  produce  5  fully  reconstructable  audio  stems  to  serve  as               

independent  channels  in  a  surround  sound  mix.  Objective  and  subjective  testing  are             
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used  to  compare  the  stereo  upmix  generated  surround  mixes  against  true  surround             

mixes   of   the   same   content.  

 

The  fifth  and  final  contribution  is  presented  in  Chapter  7  in  which  a  single  channel                

drum  source  separation  algorithm  is  presented.  The  algorithm  was  originally  designed            

to  overcome  a  shortcoming  of  the  ADRess  algorithm.  Specifically  that  of  the  case              

where  multiple  sources  are  panned  to  the  same  azimuth,  in  which  case  ADRess              

cannot  separate  them.  The  drum  separation  algorithm  was  designed  as  a  post  process              

for  ADRess  but  it  was  also  shown  to  be  a  very  useful  preprocess  for  Prior  Subspace                 

Analysis-based   drum   transcription   algorithms.  

 

Chapters   3   -   7   of   this   dissertation   are   based   on   the   following   publications:  

1. Barry,  D.,  Lawlor,  R.,  Coyle,  E.  (2004).  Sound  Source  Separation:  Azimuth            
Discrimination  and  Resynthesis.  7th  International  Conference  on  Digital         
Audio   Effects,   DAFX   04.   Naples,   Italy.   October   5-8.  

2. Barry,  D.,  Lawlor,  R.,  Coyle,  E.  (2005).  Comparison  of  Signal  Reconstruction            
Methods  for  the  Azimuth  Discrimination  and  Resynthesis  Algorithm.  118th          
Audio   Engineering   Society   Convention.   Barcelona,   Spain.   May   28-31.   

3. Barry,  D.,  Gainza,  M.,  Coyle,  E.  (2007).  Music  Structure  Segmentation  using            
the  Azimugram  in  conjunction  with  Principal  Component  Analysis.  123rd          
Audio   Engineering   Society   Convention.   New   York,   USA.   October   1.  

4. Barry,  D.,  Kearney,  G.  (2009).  Localization  Quality  Assessment  in  Source           
Separation-based  Upmixing  Algorithms.  35th  Audio  Engineering  Conference.        
Audio   for   Games.   London.   February   1.  

5. Barry,  D.,  Fitzgerald,  D.,  Coyle,  E.,  Lawlor,  R.  (2005).  Drum  Source            
Separation  using  Percussive  Feature  Detection  and  Spectral  Modulation.  IEE          
Irish   Signals   and   Systems   Conference.   Dublin,   Ireland.   Sep   1-2.   
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The  novel  contributions,  designs  and  implementations  of  the  algorithms  from  the            

publications  listed  above  are  my  work  alone.  However,  I’d  like  to  acknowledge  Prof.              

Eugene  Coyle  and  Dr.  Bob  Lawlor  for  acting  as  supervisors,  and  Gavin  Kearney  for               

helping   conduct   subjectives   tests   in   his   dedicated   facility.  
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CHAPTER   2:   LITERATURE   REVIEW  

Sound  source  separation  as  a  field  of  study  spans  over  many  general  topics  in  the                

wider  fields  of  signal  processing,  machine  learning,  cognitive  psychology  and  the            

physiology  of  hearing.  In  this  literature  review,  I  introduce  the  foundational  concepts             

which   led   to   the   novel   contributions   presented   later   in   this   document.  

 

2.1   -   COMPUTATIONAL   AUDITORY   SCENE   ANALYSIS  

Auditory  scene  analysis  (ASA)  (Bregman,  1990)  refers  to  the  way  in  which  the              

human  auditory  system  is  capable  of  decomposing  concurrent  sounds  impinging  on            

the  ears,  into  a  set  of  perceptually  separate  sound  events  despite  the  fact  that  the                

individual  sounds  may  overlap  considerably  in  both  the  time  and  frequency  domains.             

Bregman,  a  psychologist  by  profession,  conducted  experiments  using  human  listeners           

who  were  subjected  to  various  audio  tests,  from  which  a  set  of  conclusions  were               

drawn  about  human  organisation  of  sound.  The  purpose  of  the  testing  was  to  identify               

what  mechanisms  we  as  humans  use  in  order  to  perform  sound  source  separation.  In               

other  words,  how  do  we  ‘know’  which  time  and  frequency  components  of  a  sound               

mixture  belong  to  which  of  the  individual  sounds  in  the  mixture?  Two  forms  of  such                

organisation   were   identified,   simultaneous   and   sequential   organisation.   

● Simultaneous  organisation  deals  with  the  separation  and  grouping  of  sounds           

occurring  at  the  same  time,  this  corresponds  to  grouping  across  the  frequency             

domain.   

● Sequential  organisation  is  responsible  for  grouping  similar  components  which          

occur   at   different   times,   the   simplest   example   being   that   of   a   melody   in   a   song.   
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A  tenet  of  gestalt  visual  grouping  psychology  (Palmer  2003)  known  as common  fate  is               

the  basis  of  Bregman’s  simultaneous  organisation  concept.  Common  fate  refers  to  the             

notion  that  components  behaving  in  a  similar  fashion  are  most  likely  related  in  some               

way.  If  several  components  are  seen  to  have  similar  frequency  or  amplitude             

modulation  characteristics,  it  could  be  inferred  that  they  are  related  in  some  way.              

Figure  2.1  shows  two  synthetic  sources  playing  simultaneously,  one  with  vibrato            

(frequency  modulation)  and  one  without.  No  harmonics  are  overlapping  in  the            

example.   It   is   quite   easy   to   identify   which   harmonics   belong   to   which   source.  

 

Figure   2.1   Spectrogram   of   two   sources   with   fundamentals   at   1000   Hz   and   1200   Hz.   Source  
one   contains   five   harmonics   and   frequency   modulation   at   a   depth   of   20Hz   and   rate   of   4Hz.  
Source   two   contains   four   harmonics   and   no   frequency   modulation.   The   modulated   source   is  

clearly   visible.  
 

In  a  similar  way  it  would  be  possible  to  identify  frequency  components  with              

amplitude  co-modulation.  Common  onset  and  offset  of  components  are  also  an            

element  of  the  common  fate  concept.  If  a  new  sound  enters  a  mixture,  it  will                

contribute  energy  to  the  existing  mixture  at  frequencies  where  it  has  energy.  In  a               
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similar  fashion,  a  sound  offsetting  or  leaving  the  mixture  will  result  in  decaying              

energy  in  regions  of  the  spectrum  where  it  had  influence.  The  concept  of  harmonicity               

is  another  simultaneous  grouping  mechanism.  A  set  of  frequency  components  are  said             

to  be  harmonically  related  if  they  fall  into  a  pattern  whereby  each  component  is  an                

integer  multiple  of  some  fundamental  frequency.  In  human  binaural  listening,  the            

spatial  location  of  a  sound  will  further  reinforce  grouping  since  all  frequencies             

emanating   from   a   single   sound   source   will   originate   in   the   same   location.   

 

Sequential  organisation  deals  with  grouping  sound  as  time  evolves.  Bregman  refers  to             

this  as  ‘perceptual  streaming’.  Successive  sounds  with  similar  spectra  are  likely  to             

form  a  perceptual  stream.  The  spatial  location  of  a  sound  is  also  a  sequential  grouping                

method.  In  the  sequential  case,  however,  it  is  the  sounds  emanating  from  the  same               

location  at  different  times  which  are  perceptually  grouped.  Bregman  also  suggests  that             

differences   in   intensity   and   phase   may   account   for   perceptual   streaming.   

 

This  review  of  Bregman’s  work  is  by  way  of  background  to  the  area  of  Computational                

Auditory  Scene  Analysis  (CASA)  (Brown  et  al.  1994)  and  (Ellis,  1996)  which,  as  the               

name  suggests,  uses  much  of  the  ASA  research  carried  out  by  Bregman.  CASA              

systems  use  these  perceptually  motivated  heuristics  as  the  basis  for  computerised            

sound  source  separation.  In  effect  CASA  attempts  to  model  the  way  in  which  we  as                

humans  carry  out  the  separation  task.  Furthermore  these  systems  often  incorporate            

prior  knowledge  of  instrument  characteristics  and  music  composition  rules  to  aid            

separation.  In  a  similar  way,  humans  become  more  familiar  with  the  sound  of  certain               
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instruments  due  to  repeated  exposure.  With  this  in  mind  we  move  to  the  most               

commonly   occurring   processes   within   a   CASA   system.   

 

At  the  outset,  it  may  seem  like  a  simple  task  to  computerise  ASA  because  as  humans,                 

we  all  have  an  innate  ability  to  separate  sources.  However,  when  it  comes  to               

specifying  the  problem  to  such  an  extent  that  it  may  be  programmed  as  an  algorithm                

on  a  computer,  simple  human  concepts  turn  into  significant  engineering  problems.  As             

an  example,  timbre  is  a  word  used  to  describe  the  perceptual  quality  of  a  musical                

instruments’  sound.  ‘It  sounds  bright,  and  shrill’  is  a  reasonably  generic  description  of              

how  a  human  might  describe  the  sound  of  a  trumpet  but  descriptors  like  bright  and                

shrill  are  not  easily  quantifiable.  They  are  merely  verbal  descriptions  of  a  percept  and               

so  a  direct  translation  to  computerisation  is  not  simple.  In  (Ellis,  1992),  Ellis  states,               

“ Probably  the  hardest  part  of  any  complete  source  separator  will  be  the  simulation  of               

the  functions  served  by  memory  and  experience  in  human  listeners.  It  is  not  clear  how                

well  we  would  be  able  to  organise  and  segregate  composite  sounds  if  we  did  not                

already  have  a  good  idea  of  the  character  of  the  individual  sources  based  on  previous                

examples ”.  Let  us  now  consider  some  of  the  major  building  blocks  of  a  CASA               

system.  

 

2.2   -   ONSET   DETECTION  

An  onset  can  be  defined  as  the  point  in  time  at  which  a  new  audio  event  enters  the                   

sound  mixture.  Onsets  are  often  referred  to  as  transients  or  attacks;  both  terms  convey               

specific  meaning  but  should  not  be  used  interchangeably  even  though  the  attack             

portion  of  a  note  may  be  transient  in  its  nature.  Duxbury  makes  this  distinction  by                
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saying  that  a  note  onset  characterises  the  start  of  a  new  sound  object  whereas  a                

percussive  transient  refers  to  a  burst  of  noise  (Duxbury,  2003).  He  suggests  then  that               

percussive  transients  become  a  subset  of  note  onsets.  This  distinction  is  valid  since              

the  schemes  to  detect  each  type  of  onset  vary  significantly.  A  more  detailed              

explanation  suggests  that  a  perceptual  onset  can  be  defined  as  ‘ the  perceived             

beginning  of  a  discrete  event,  determined  by  a  noticeable  increase  of  intensity ’  or  by               

‘ a  sudden  change  in  pitch  or  timbre ’  (Moelants  et  al.  1997).  Onset  detection  is  usually                

the  first  step  in  any  transcription  system  (Klapuri,  1998).  In  (Klapuri,  1998),  onset              

detecion  is  used  to  locate  the  presence  of  audio  events  first,  then  pitch  discrimination               

and  musical  grouping  heuristics  are  applied.  A  simple  form  of  onset  detection  can  be               

attained  by  first  differentiating  and  rectifying  a  time  domain  signal  followed  by             

applying  some  form  of  envelope  tracking  technique.  Convolution  with  a  hanning            

window  is  usually  the  method  applied  or  a  simple  low-pass  operation.  An  onset              

candidate  is  then  considered  as  anything  which  exceeds  a  given  threshold.  Peak             

picking  is  then  used  to  locate  the  instant  of  the  onset.  Figure  2.2  illustrates  the  action                 

of  the  onset  detector.  Equation  2.1  produces  the  envelope  plot  seen  in  figure  2.2  and                

equation   2.2   is   a   simple   thresholded   peak   picker   which   produces   the   onset   plot.  

 

(t)  H(t)  | x (t)  E =   *   ′ |  (2.1)  

 

where   (t)   is   the   absolute   value   of   the   derivative   of   the   time   domain   signal,    H (t)   is | x′ |  

a   suitable   hanning   window   and   *   denotes   convolution.    E (t)   is   the   resulting   energy  

envelope.   
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Figure   2.2   shows   the   detection   of   onsets   within   a   short   monophonic   piano   excerpt.   
 

O (t)    =   E (t)   for:       E (t-1)     <    E (t)     >    E (t+1)            and     E (t) t     >   Threshold 

O (t)    =   0   elsewhere (2.2)  

 

O t is  the  resulting  onset  plot.  This  is  a  rudimentary  form  of  onset  detection  used  for                 

illustration  purposes.  It  would  be  reasonably  well  suited  to  the  detection  of  transients              

but  less  effective  for  the  detection  of  softer  onsets  such  as  those  produced  by  bowed                

string  and  some  wind  instruments.  As  such,  many  variations  of  onset  detection  exist,              

some  more  successful  than  others (Bello  et  al.  2005) .  Frequency-domain  onset            

detectors  as  opposed  to  time  domain  approaches  such  as  that  described  above  have              

both  advantages  and  disadvantages.  They  allow  more  complex  onset  detection           

schemes  which  can  be  localised  within  certain  frequency  bands  or  even  discontinuous             
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groups  of  bands.  The  main  disadvantage  of  these  systems  is  that  the  time  resolution  is                

significantly  reduced  due  to  the  time  windowing  requirements  of  time-frequency           

transforms  such  as  the  short  time  Fourier  transform  (STFT)  (Allen,  1977).  In             

(Masri, 1996)  such  an  approach  is  presented.  This  approach  is  based  on  the  idea  that               

during  the  attack  portion  of  a  note,  i.e.  the  onset,  an  increase  in  high-frequency  energy                

is  usually  observed.  This  is  especially  true  of  hard  transient-like  onsets  but  not              

necessarily  the  case  for  softer  onsets  such  as  those  of  certain  wind  instruments.  The               

general  technique  involves  applying  a  biased  linear  weighting  function  to  the            

short-time  magnitude  spectrum  of  the  audio.  The  biasing  is  in  favour  of  high              

frequencies.  It  is  achieved  simply  by  multiplying  the  square  of  the  magnitude  of  the               

k th    frequency   bin   by   the   bin   number    k .   Equations   2.3,   2.4   and   2.5   describe   this   action.  

 

(2.3)  

 

where    E    is   the   computed   energy   of   the   fourier   frame    X(k)    of   length    N    samples.  

 

(2.4)  

 
 

where  HFC  means  ‘high  frequency  content’.  Simply  multiplying  each  bin  magnitude            

by  its  bin  index  inherently  gives  more  weight  to  the  higher  frequencies  resulting  in  an                

energy  measure,  HFC,  which  relates  more  to  the  presence  of  high  frequencies.  Masri’s              

approach  takes  the  energy  from  two  consecutive  frames  into  account  when  deciding             
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whether  or  not  an  onset  is  present.  An  onset  is  then  considered  present  if  the                

following   condition   is   met,   equation 2.5.  

 

(2.5)  

 

where  the  subscript r represents  the  frame  number  and T D  is  a  threshold  above  which                

an  onset  is  detected.  Both  (Scheirer,  1998)  and  (Klapuri,  1998)  went  on  to  develop               

multiband  onset  detection  systems.  Their  schemes  involve  partitioning  the  audio  into            

6  sub-bands.  In  Scheirer’s  case,  each  sub-band  is  one  octave  wide.  The  amplitude              

envelope  of  each  is  extracted  and  smoothed.  The  first  order  difference  function  is  then               

calculated,  from  which  a  local  rise  in  energy  in  each  band  is  gauged.  Klapuri  does                

much  the  same  except  he  uses  the  relative  difference  function  in  order  to  more               

accurately  locate  the  position  of  the  onset.  An  onset  candidate  is  then  considered  as               

anything  exceeding  a  threshold.  The  actual  onsets  are  then  found  as  the  candidates              

exhibiting  the  largest  magnitude  within  a  50 ms  sliding  time  window.  Both  of  these              

approaches  address  the  issue  of  soft  onsets  in  that  onsets  are  localised  within  bands               

and  can  be  observed  independently  of  energy  present  in  other  bands.  Furthermore,  it              

provides  a  starting  point  for  pitch  estimation  in  the  case  of  soft  onsetting  instruments.               

Aside  from  these  energy-based  approaches  there  are  also  phase-based  approaches           

such  as  that  of  Bello  and  Sandler  (Bello,  2003).  The  phase  vocoder  is  a  well  known                 

technique  for  audio  manipulation  such  as  time  scale  modification  (see  section  2.2).             

Based  on  the  short-time  Fourier  transform  (STFT),  the  phase  vocoder  uses  the  phase              

information  of  two  consecutive  frames  of  audio  separated  by  some  distance  referred             

to  as  the  hop  size  to  calculate  what  the  phases  for  the  next  frame  should  be.  Stated                  
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simply,  for  a  sinusoidal  component  of  frequency f  at  time  τ  and  with  phase  Φ,  it  will                  

be  possible  to  estimate  what  the  phase  at  time  τ  + t  will  be.  Of  course,  this  is  only  the                     

case  if  the  sinusoid  continues  to  be  present  into  the  next  frame.  An  onset  with  energy                 

at  frequency f  will  be  observed  as  a  discontinuity  in  the  sinusoidal  track.  Using  this                

logic  it  would  be  possible  to  detect  onsets  based  on  the  difference  between  the  actual                

phases  of  a  frame  and  the  estimated  phases  of  the  same  frame.  If  the  two  do  not  fall                   

within  a  reasonable  range  of  each  other,  then  it  could  be  ascertained  that  an  onset                

occurred.   

 

Although  not  a  complete  review,  the  above  approaches  represent  the  foundation  of             

any  onset  detection  scheme  as  it  may  be  employed  within  a  CASA  system              

(Ellis, 1996).  Assuming  the  onsets  have  been  detected  correctly,  it  would  then  be             

necessary  to  use  some  form  of  pitch  detection  in  order  to  begin  to  separate  out                

individual  sources.  This  will  be  dealt  with  in  greater  detail  in  section  2.5  and  a  review                 

of  general  pitch  detection  techniques  can  be  found  in  (Ryynanen,  2004).  In  Chapter  7,               

novel  work  is  presented  to  achieve  drum  source  separation  using  a  spectral-based             

onset   detection   method.  

 

2.3   -   BINAURAL   PROCESSORS  

Binaural  processors,  sometimes  referred  to  as  ‘cocktail  party  processors’,  aim  to            

perform  sound  source  separation  based  principally  on  the  localisation  cue.  The            

localisation  cue  is  responsible  for  our  ability  to  know  ‘where’  a  sound  is  coming  from                

in  the  physical  space  around  us;  the  cocktail  party  effect  illustrates  this.  This  cue  is                

particularly  powerful  when  considering  the  problem  of  sound  source  separation  for            
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music.  Most  CASA  systems  are  concerned  with  tracking  the  ever-changing  pitches  of             

instruments  which  come  and  go  throughout  the  duration  of  a  composition,  thus             

making  grouping  a  very  difficult  task.  On  the  other  hand,  the  position  of  a  musician                

on  stage  rarely  changes.  Even  during  artificial  playback  a  single  source  will  usually              

remain  in  the  same  position  throughout  the  length  of  a  song.  With  this  in  mind,                

research  has  been  carried  out  on  the  possibility  of  separating  sound  sources  based              

primarily  on  their  spatial  location.  The  main  localisation  cues  are  interaural  intensity             

difference  (IID)  which  is  predominant  for  frequencies  above  1.5 kHz  and  interaural            

time  difference  (ITD)  which  is  predominant  at  frequencies  lower  than  1.5 kHz.  The             

ITD  cue  gives  rise  to  what  is  known  as  the  Haas  effect,  sometimes  called  the                

precedence  effect  (Haas,  1972).  This  psychoacoustic  phenomenon  refers  to  the  fact            

that  reflections  of  a  sound  impulse  which  occur  within  30-40  ms  of  the  direct  sound                

will  be  perceptually  fused  as  one  event.  This  in  turn  gives  rise  to  the  law  of  ‘the  first                   

arriving  wavefront’  which  refers  to  the  fact  that  a  sound  will  generally  be  localised  at                

the  position  corresponding  to  the  origin  of  the  direct  sound.  The  angle  of  incidence  of                

a  sound,  often  called  azimuth,  is  then  derived  from  the  time  of  arrival  difference  at                

each  ear.  This  time  difference  is  as  a  direct  result  of  the  fact  that  the  path  length  of  a                    

single  source  will  be  different  for  each  ear  unless  of  course  the  source  is  directly  in                 

front  or  0  degrees  in  the  lateral  plane.  In  a  similar  way,  IIDs  contribute  to  localisation                 

due  to  the  fact  that  a  sound  will  be  perceived  as  being  louder  in  the  ear  which  is                   

closest  to  the  source.  This  is  true  due  to  the  inverse  square  law  which  would  indicate                 

that  a  longer  path  length  will  result  in  greater  attenuation  of  the  sound.  This  is  further                 

affected  by  head  shadowing  effects  which  will  further  attenuate  frequencies  with            

wavelengths  less  than  the  dimension  of  the  human  head.  These  phenomena  would             
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suggest  that  the  localisation  cue  could  form  the  foundations  of  a  robust  sound  source               

separation  system.  (Blauert,  1998)  presents  such  a  system.  Most  binaural  models            

attempt  to  simulate  the  effects  of  the  outer,  middle  and  inner  ear.  The  outer  ear,  called                 

the  pinna  is  particularly  difficult  to  model  due  to  the  fact  that  they  vary  from  person  to                  

person (Middlebrooks  et  al.  1991) .  In  fact  the  left  and  right  pinnae  on  a  human  head                 

show  slight  differences.  This  too  aids  localisation,  since  the  folds  in  the  cartilage  will               

accentuate  and  attenuate  certain  frequencies  depending  on  the  angle  of  incidence  of             

sound.  In  general,  the  response  of  the  pinna  is  usually  modelled  as  a  direction               

dependent  linear  filter  (Blauert,  1998).  The  middle  ear  is  usually  just  modelled  as  a               

bandpass  filter  in  the  range  20  Hz  -  20  kHz.  The  inner  ear  and  in  particular  the  basilar                   

membrane  is  modelled  here  as  a  bank  of  adjacent  bandpass  filters  with  critical              

bandwidths  (Plomp,  1965).  The  neural  excitation  pattern  caused  by  hair  cell  firing  on              

the  basilar  membrane  is  simulated  by  rectifying  and  lowpass  filtering  (800  Hz  cut  off)               

the  bandpass  signals.  The  firing  intensity  in  each  critical  band  is  then  proportional  to               

the  obtained  time  functions.  The  binaural  processor  in  this  case  is  implemented  as  a               

cross-correlation  between  the  left  and  right  inputs  of  the  system.  This  is  done  for  each                

band.  The  maximum  output  of  the  cross-correlation  function  then  corresponds  to  the             

time  lag  of  either  the  left  or  right  input.  Also  included  in  this  model  is  a  mechanism                  

called  ‘contralateral  inhibition’  which  attempts  to  model  the  Haas  effect  by            

suspending  the  system  output  for  some  milliseconds  after  a  steep  onset  is             

encountered.  In  this  way,  reverberant  reflections  are  suppressed  and  false  directional            

information  is  omitted.  The  output  from  each  processing  band  is  considered  to  be              

what  Blauert  calls  a  binaural  excitation  pattern.  The  results  of  the  cross  correlation  for               

each  band  can  be  converted  to  azimuth,  after  which  the  bands  are  weighted  and               
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summed.  The  output  of  this  model,  a  binaural  excitation  pattern,  does  indeed  show  the               

lateral  displacement  of  sources  but  it  offers  no  actual  source  separation  as  such.              

Furthermore,  localisation  in  this  model  is  based  on  the  ITD  cue  which  is  valid  for                

real-world  listening,  and  in  fact  the  inputs  to  this  system  are  derived  from              

dummy-head  recordings  in  real  environments,  but  in  the  case  of  music  it  is  likely  that                

the  signals  requiring  separation  have  come  from  a  recording  studio  and  such  signals              

rarely  have  discernable  ITDs.  (Roman,  2001)  extended  this  research  to  produce  a             

system  capable  of  segregating  speech  from  a  noise  mixture.  In  this  instance,  the  inner               

ear  was  modelled  using  a  128-band  gammatone  filter.  The  bands  are  then  weighted  in               

accordance  with  the  equal  loudness  curves (Fletcher,  1933) .  The  output  of  each  band              

is  then  processed  in  much  the  same  way  as  (Blauert,  1998)  using  half  wave               

rectification  to  simulate  firing  probabilities  of  the  nerves.  The  azimuth  locator  was             

again  based  on  the  cross-correlation  technique  (Jeffress,  1948)  except  that  in  this             

model  the  function  is  limited  to  a  range  of  ±1  ms  since  the  maximum  possible  delay                 

will  correspond  to  the  width  of  the  human  head.  This  model  is  extended  by  the                

formation  of  a  binary  mask  based  on  the  ITDs  extrapolated  from  the  cross  correlation               

and  the  energy  ratios  for  each  signal.  For  frequency  components  below  1.5  kHz  the               

binary  mask  is  set  to  1  when  the  ITD  for  a  given  frame  and  frequency  channel                 

exceeds  a  threshold  and  for  frequencies  above  1.5 kHz  when  the  energy  ratio  exceeds              

a  certain  threshold.  This  binary  mask  is  then  applied  to  the  channel  in  which  the                

source  of  interest  has  greatest  magnitude.  The  result  is  that  the  outputs  of  the               

gammatone  filter  bank  are  ‘switching’  on  and  off  as  the  binary  mask  evolves  through               

time.   
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This  may  be  acceptable  for  the  case  of  a  speech  noise  mixture  but  in  the  case  of                  

music,  there  will  typically  be  multiple  sources  present  overlapping  in  both  time  and              

frequency.  In  this  case  the  simple  ‘all  or  nothing’  binary  mask  would  not  suffice  in  the                 

case  where  the  magnitude  in  a  single  frequency  bin  may  be  the  sum  of  several                

instruments  contributing  energy  at  that  frequency.  A  similar  model  is  presented  in             

(Bodden,   1996)   and   an   overview   of   binaural   models   can   be   found   in   (Stern,   1985).  

 

Figure   2.3   Schematic   diagram   of   Roman’s   model.   Binaural   signals   are   obtained   by   convolving  
input   signals   with   head-related   impulse   responses   (HRIR).   A   model   of   the   auditory   periphery  

is   employed.   Azimuth   localization   for   all   the   sources   is   based   on   a   cross-correlation  
mechanism.   ITD   and   IID   are   computed   independently   for   different   frequency   channels.   A  
pattern   analysis   block   produces   an   estimation   of   an   ideal   binary   mask,   which   enables   the  

reconstruction   of   the   target   signal   and   the   interfering   sound.  
 

Binaural  separation  models  form  the  foundations  of  the  novel  contributions  presented            

in   Chapter   3.  

  

2.4   -   SINUSOIDAL   MODELING   AND   THE   PHASE   VOCODER  

Sinusoidal  modelling  is  a  well  known  technique  for  the  analysis  and  synthesis  of              

harmonic  signals  such  as  speech  and  music.  First  proposed  by  McAulay  and  Quatieri              

(McAulay,  1986),  the  technique  describes  how  such  signals  can  be  represented  as  the              

sum  of  a  set  of  quasi  sinusoidal  waveforms  and  a  noise  component  each  with  time                

varying  characteristics.  The  sinusoidal  part  of  the  signal  is  referred  to  as  deterministic              
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whilst  the  noise  part  is  considered  as  stochastic.  Both  the  deterministic  and  stochastic              

elements  of  speech  and  music  can  be  considered  stationary  over  short  periods  of  time.               

The  assumption  then  is  that  the  deterministic  part  of  a  sound  can  be  resynthesised  by                

extracting  the  instantaneous  amplitudes,  phases  and  frequencies  from  short  time           

frames  after  which  the  values  can  be  interpolated  to  form  ‘tracks’  which  can  be               

resynthesised.  The  stochastic  part  is  then  found  by  subtracting  the  deterministic  part             

from  the  original  signal  resulting  in  a  noise  residual.  This  is  then  modelled  as  white                

noise  convolved  with  a  time  varying  filter  after  which  it  is  added  back  to  the                

deterministic  signal  to  yield  a  representation  of  the  original  sound.  Prior  to             

resynthesis,  the  parameters  can  be  manipulated  in  order  to  achieve  some  desired  effect              

such  as  time  scale  modification (Flanagan  et  al.  1966)  or  indeed  sound  source              

separation  such  as  in  (Virtanen,  2002).  The  model  for  sinusoidal  modelling  can  be              

described   by:  

(t)  (t) (t))x =   ∑
N

n=1
a (t) cos(2πfn n + Φn (2.6)  

 

where a n (t) , f n (t)  and  Φ n (t) represent  the  amplitude  frequency  and  phase  of  the n th               

harmonic  at  time t . r(t)  is  the  stochastic  or  residual  noise  part  of  the  signal  and  can  be                   

described   as:  

 

(2.7)  
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where  is  white  noise  and  is  the  response  of  a  time  varying  filter  to  an                  

impulse  at  time t .  In  other  words  the  residual  is  modeled  by  convolving  white  noise                

with   a   time   varying   filter.  

 

The  process  starts  with  a  frequency  analysis  such  as  that  of  the  STFT  (Allen,  1977)                

which  results  in  a  short  time  phase  and  magnitude  spectrum  for  each  STFT  frame.               

Strong  sinusoidal  components  will  be  seen  as  peaks  in  the  magnitude  spectrum.  A              

peak  is  considered  as  any  bin  with  a  magnitude  greater  than  that  of  its  two  nearest                 

neighbours.  Peaks  below  a  certain  threshold  are  discarded  and  considered  as            

belonging  to  the  stochastic  part  of  the  signal.  Once  the  peaks  have  been  identified,               

parameter  estimation  occurs  which  involves  estimating  the  frequency  amplitude  and           

phase  of  the  peak.  Due  to  the  time-frequency  resolution  trade-off  as  a  result  of  the                

STFT,  the  amplitudes  and  frequencies  of  the  peaks  are  usually  estimated  by  fitting  a               

parabola  to  the  3  bins  around  a  peak.  The  true  maximum  of  this  function  is  then  taken                  

to  be  the  amplitude  and  its  position  is  used  to  calculate  the  true  frequency  of  the                 

sinusoid.  The  phase  can  be  derived  directly  from  the  phase  spectrum  of  the  frame.               

Once  the  parameters  for  each  frame  have  been  calculated,  a  peak-continuation            

algorithm  attempts  to  link  peaks  from  frame  to  frame  resulting  in  a  set  of  partial                

tracks.  Generally,  the  algorithm  tries  to  link  each  peak  in  a  frame  to  a  corresponding                

peak  in  the  next  frame.  Linking  occurs  if  the  frequency  of  a  peak  in  the  next  frame                  

lies  within  a  certain  range  of  the  frequency  of  a  peak  in  the  current  frame.  If  a  suitable                   

match  is  not  found,  the  track  is  said  to  have  ‘died’  and  its  amplitude  is  set  to  zero  in                    

the  next  frame.  Subsequently,  there  will  be  ‘new’  peaks  in  the  next  frame  which  have                

33  

 



 

 

 

not  been  matched  to  peaks  in  the  previous  frame,  these  tracks  are  said  to  have  been                 

‘born’  and  the  amplitudes  of  those  peaks  in  the  previous  frame  are  set  to  zero.  For  the                  

resynthesis,  linear  interpolation  is  used  for  the  amplitudes  while  cubic  interpolation  is             

used  for  the  phase  for  each  partial  track  after  which  all  components  are  summed  as  in                 

equation 2.8.  

(t)  (t) (t))d = ∑
N

n=1
a (t) cos(2πfn n + Φn (2.8)  

 

where a n (t) , f n (t)  and  Φ n (t) represent  the  amplitude  frequency  and  phase  of  the n th               

harmonic  at  time t . d(t)  represents  the  deterministic  part  of  the  signal.  The  stochastic               

signal,    r(t) ,   is   synthesised   such   that:  

 

(2.9)  

 

where x(t), in  this  case,  is  the  original  signal.  The  deterministic  part  of  the  signal, d(t),                 

is  subtracted  from x(t)  to  give r(t) which  is  then  modeled  by  convolving  white  noise                

with  a  suitable  filter.  An  alternative  method  for  resynthesis  involves  creating  complex             

arrays  filled  with  the  amplitude  and  phase  parameters  corresponding  to  each  partial             

frequency  after  which  an  IFFT  is  used  to  generate  short  time  frames  corresponding  to               

the  original  audio.  The  frames  would  need  to  be  overlapped  in  accordance  with  the               

method  used  during  the  analysis  stage.  This  method,  although  faster,  is  significantly             

less  accurate  since  the  parameter  values  are  fixed  for  the  duration  of  a  frame  thus                

resulting  in  a  quantised  time  resolution.  Figures  2.5  and  2.6  show  the  analysis  and               

synthesis   process   of   sinusoidal   modelling   (Serra,   1997).  
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Figure   2.4   Schematic   diagram   of   the   analysis   section   of   Serra’s   sinusoids   +   noise   model.  
Image   reproduced   from   (Serra,   1997)  

 

 

Figure   2.5   Schematic   diagram   of   the   synthesis   section   of   Serra’s   sinusoids   +   noise   model.   Image  
reproduced   from   (Serra,   1997)  
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Referring  to  figure  2.4,  the  analysis  process  starts  with  a  windowed  fast  fourier              

transform  from  which  magnitudes  and  phases  are  estimated.  Peak  detection  is  then             

carried  out  followed  by  pitch  detection.  The  fundamental  frequency  in  turn  informs             

the  window  generator  at  the  input.  Next  a  peak  continuation  algorithm  generates             

sinusoidal  tracks  comprising  of  deterministic  frequencies,  magnitudes  and  phases.          

Additive  synthesis  is  used  to  create  the  deterministic  signal  which  is  subtracted  from              

the  input  signal  to  calculate  the  stochastic  or  residual  signal.  This  signal  is  then               

modeled  as  spectrally  filtered  white  noise.  Figure  2.5  shows  how  the  deterministic             

and  stochastic  coefficients  from  the  analysis  stage  can  be  subjected  to  musical             

transformations   before   resynthesis.  

 

In  Chapter  4,  I  explore  the  use  of  sinusoidal  modelling  as  an  alternative  method  for                

reconstructing   sources   separated   using   the   ADRess   algorithm   (Barry   et   al.   2005).  

 

2.4.1   -   The   Phase   Vocoder   

The  phase  vocoder  (Flanagan,  1966)  in  itself  is  not  generally  associated  with  sound              

source  separation  but  elements  of  it  have  appeared  in  such  applications  as  the              

phase-based  onset  detector  in  (Bello,  2003).  Furthermore  the  phase  vocoder  provides            

an  introduction  to  the  STFT.  The  short-time  Fourier  transform  operates  on  a             

time-domain  signal  and  produces  a  time-frequency  representation  of  that  signal.  If            

parameters  are  chosen  correctly,  an  inverse  Fourier  transform  may  reproduce  the            

original  signal  faithfully.  In  order  to  obtain  the  STFT  of  a  signal,  it  is  first  broken  up                  

into  short  time  frames  of N  points,  usually  in  the  order  of  10-100  ms  in  length,  where                  

t s =N/Fs  (time  in  seconds  equals  the  number  of  sample  points  divided  by  the  sample               
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frequency).  A  discrete  Fourier  transform  (DFT)  is  then  applied  to  each  frame.  This              

results  in  an N- point  complex  frequency  array,  the  absolute  value  of  which  represents              

the  magnitude  spectrum  of  the  current  analysis  frame.  This  is  done  successively  for              

each  frame.  In  order  to  obtain  any  information  about  the  frequency  content  of  a               

signal,  the  frame  length  must  be  greater  than  1  and  typically  is  greater  than  256  to                 

acquire  any  reasonable  frequency  resolution  for  a  nominal  sample  frequency  of  44.1             

Khz.  Commonly,  the  frame  length  is  a  power  of  2  which  allows  for  the               

computationally  efficient  Fast  Fourier  Transform  (FFT)  to  be  used  instead  of  the  DFT.              

The  frequency  resolution  will  rise  as  a  function  of  frame  length,  but  the  time               

resolution  decreases.  This  results  in  a  tradeoff  between  time  and  frequency  resolution,             

since  good  frequency  resolution  is  required  to  distinguish  close  frequency           

components  and  good  time  resolution  is  required  to  encapsulate  rapid  changes  in  the              

time  domain.  One  partial  solution  to  this  problem  involves  overlapping  the  analysis             

frames  which  corresponds  to  having  an  analysis  step  size,  usually  called  the  hop  size,               

which  is  less  than  the  length  of  the  frame.  A  50%  overlap  with  a  4096-point  frame                 

relates  to  a  hop  size  of  2048  points.  This  means  that  the  last  2048  points  of  the  first                   

frame  is  the  same  as  the  first  2048  points  of  the  second  frame.  On  resynthesis  this  will                  

produce  amplitude  modulation.  The  solution  to  this  problem  is  to  multiply  the             

time-domain  frame  by  a  windowing  function  such  that  the  overlapping  portions  of  the              

frame  always  sum  to  1.  The  Hanning  window  is  such  a  window.  Windowing  serves  a                

second  purpose.  Rectangular  windows  will  usually  have  discontinuities  at  the  start            

and  the  end  of  the  window,  this  leads  to  the  presence  of  high  frequency  components  in                 

the  frequency  transform  which  are  not  actually  present  in  the  signal.  The  Hanning              

window  or  any  raised  cosine  window  for  that  matter  causes  the  signal  to  be  faded  in                 
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gradually  and  faded  out  again,  thus  avoiding  any  discontinuities  at  the  frame             

boundaries.  The  side  effect  of  this  is  that  the  energy  is  slightly  smeared  in  the                

frequency  domain  leading  to  attenuated  wider  main  lobes  and  the  presence  of  side              

lobes.  However,  the  smearing  is  still  less  significant  than  using  a  rectangular  window.              

The  Hanning  window  is  described  by  equation  2.10  and  the  DFT  is  given  by  equation                

2.11  

(n)  0.5 (1 os(2π ))  h =    c n
N1 n=0,…,N-1 (2.10)  

where    N    is   the   window   length   and    n    is   an   index   into    N .  

 

(k)  (n)e X =   ∑
N1

n=0
x jΩkn (2.11)  

where     and     is   the   angular   frequency   in   the    k th    frequency   bin. k πk N  Ω = 2 / kΩ   

 

The  resulting X(k)  contains  a  complex  frequency  array.  Only  the  first N/2  points  are               

required  due  to  the  fact  that  anything  above  that  point  corresponds  to  frequencies              

above  the  Nyquist  ( Fs/2 ).  The  magnitude  spectrum  can  be  obtained  as  | X(k) |  and  the               

wrapped  phases  can  be  obtained  from .  In  the  context  of  the  phase  vocoder,  the                

STFT   is   given   as:  

 

(2.12)  

 

where x  is  the  original  signal, h(n)  is  the  windowing  function  and  is  the                

centre  frequency  of  the k th  vocoder  channel  in  radians  per  sample.  where  u               
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is  the  frame  number  and Ra  is  the  analysis  hop  size.  One  use  of  the  phase  vocoder  is                   

to  carry  out  time  scale  modification  of  audio  (Barry  et  al.  2008).  The  phase  vocoder                

does  this  by  using  a  resynthesis  hop  size  ( Rs )  different  to  that  of  the  analysis.  If  the                  

Rs >Ra ,  the  audio  will  be  time  scale  expanded  and  vice  versa.  Either  the  analysis  or                

the  synthesis  hop  size  may  be  varied  in  order  to  achieve  time  scale  modification.  The                

time  scaling  factor  is  calculated  as:  𝞪= Rs/Ra  .  In  order  for  the  new  time  scaled  frames                 

to  overlap  synchronously,  the  frame  phases  must  be  updated  according  to  the  phase              

propagation   formula   in   equation   2.13.  

 

(2.13)  

where     is   the   instantaneous   frequency   given   by   equation   2.14.  

 

Figure   2.6   The   STFT   –   short   overlapped   time   frames   are   multiplied   by   a   suitable   hanning  
window   after   which   a   DFT   is   carried   out   on   each   resulting   in   a   time-frequency   representation  

of   the   audio.   
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(2.14)  

 

where     is   the   principal   argument   of   the   heterodyned   phase   increment   given   by:  

 

Φ X(t , ) X(t , ) Ω  Δp
u
k = ∠ u

a Ωk ∠ a
u1 Ωk + R a k (2.15)  

 

The  new  updated  phases  for  each  synthesis  frame  are  given  by  equation  2.13  and  the                

magnitudes  are  simply  obtained  by  setting  where .         

Resynthesis  is  then  carried  out  using  an  inverse  Fourier  transform  on  each  frame              

using  the  new  phase  and  magnitude  values  along  with  the  synthesis  hop  size, R s ,               

instead   of   the   analysis   hop   size,    R a .   

 

2.5   -   STATISTICAL   METHODS  

Several  statistical  methods  have  gained  popularity  in  the  field  of  blind  source             

separation  beginning  in  the  early  2000s  (Hyvarinen,  2000), (Smaragdis  et  al.  2003),             

(Fitzgerald,  2004) .  Originally  referred  to  as  statistical  signal  processing  or           

information  theoretic  approaches,  these  techniques  are  now  more  commonly  classed           

as  machine  learning  techniques  and  more  specifically  unsupervised  learning          

approaches.  The  most  common  approaches  used  in  blind  source  separation  are            

discussed   in   the   following   sections.  
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2.5.1   -   Independent   Component   Analysis  

Independent  component  analysis  (ICA)  is  a  statistical  method  for  discovering  the            

latent  variables  which  underlie  some  observable  data  which  is  a  mixture  of  such  latent               

variables  (Hyvarinen,  2000).  For  example,  imagine  four  different  mixtures  of  four            

different  people  speaking.  Theoretically,  ICA  should  be  able  to  recover  each            

individual  speaker  given  only  the  four  mixtures.  However,  in  the  ICA  model,  each              

mixture  is  assumed  to  be  linear  and  non-convolutive.  This  means  that  each  individual              

source  should  be  phase  coherent  across  all  mixtures  and  that  each  individual  source  is               

subjected  to  the  same  convolution  conditions  within  any  mixture.  The  mixing  model             

can   then   be   defined   as:  

 

(2.16)  

where  is  a  matrix  of  observed  mixtures  and ,  is  the             

unknown  matrix  of  independent  components  or  sources. A is  an  invertible             

matrix  called  the  mixing  matrix  which  is  also  initially  unknown.  The  idea  is  to  find  an                 

‘un-mixing’   matrix    W    such   that:  

 

(2.17)  

 

where .  This  matrix y  should  contain  the  independent  components  of x            

assuming  that  the  variables  are  non-gaussian  and  mutually  independent.  Variables  are            

considered  statistically  independent  if  and  only  if  the  product  of  their  marginal             
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densities  is  equal  to  the  joint  density  of  the  same  variables  as  in  equation  2.18                

(Hyvarinen,   2000)  

 

(2.18)  

 

ICA  requires  that  at  least  as  many  observation  mixtures  as  sources  are  present  in  order                

for  ICA  to  successfully  separate  each  source.  In  the  case  of  consumer  music  media,               

there  are  generally  only  two-channel  mixtures  corresponding  to  the  left  and  right             

channels  of  a  stereo  mix.  This  effectively  means  that  ICA  is  limited  to  separating  only                

mixtures  containing  at  most  two  linearly  mixed  sources.  Furthermore,  the  independent            

components  are  randomly  ordered  and  usually  scaled  by  some  unknown  factor.  ICA  is              

best  suited  to  blind  source  separation  problems  where  the  observed  data  have  been              

acquired  using  multi-sensor  arrays  unlike  the  case  of  musical  sound  source  separation             

where  typically  there  are  only  2  observation  mixtures.  In  (Barry  et  al.  2005  b),  an                

attempt  is  made  to  overcome  the  limitation  of  needing  at  least  as  many  observation               

mixtures  as  sources  present.  In  that  paper,  standard  ICA  techniques  were  applied  to              

contiguous  magnitude  frames  of  the  short-time  Fourier  transform  of  the  mixture.            

Provided  that  the  amplitude  envelopes  of  each  source  are  sufficiently  different,  it  can              

be  seen  that  it  is  possible  to  recover  the  independent  short-time  power  spectrum  of               

each  source.  A  simple  scoring  scheme  based  on  auditory  scene  analysis  cues  is  then               

used  to  overcome  the  source  ordering  problem  ultimately  allowing  each  of  the             

independent  spectra  to  be  assigned  to  the  correct  source.  A  final  stage  of  adaptive               

filtering  is  then  applied  which  forces  each  of  the  spectra  to  become  more  independent.               

Each  of  the  sources  is  then  resynthesised  using  the  standard  inverse  short-time  Fourier              

42  

 



 

 

 

transform  with  an  overlap  add  scheme.  The  algorithm  was  capable  of  source             

separation   in   very   limited   cases.   

 

ICA  was  also  applied  to  the  task  of  music  transcription  with  promising  results  in               

(Abdallah  et  al.  2003).  In  this  case,  the  limitation  of  needing  as  many  sensors  as                

sources  was  overcome  by  considering  the  spectrogram  to  be  the  sum  of  individual              

note  spectra  which  were  assumed  to  be  sparse  (mainly  zero  entries  in  the  matrix).  As                

we  will  see  in  the  following  sections,  these  techniques  often  perform  better  at  the  task                

of  transcription  than  source  separation.  It  should  be  noted  that  the  two  overlap              

considerably  in  terms  of  the  approaches  taken.  In  general,  these  statistical  techniques             

tend  to  be  good  at  modeling  note  spectra  and  therefore  good  at  transcription,  but  less                

capable  of  attributing  the  detected  notes  to  the  instrument  of  origin  which  would  be               

required   for   instrument   separation.  

 

2.5.2   -   Principal   Component   Analysis  

Principal  component  analysis  (PCA)  is  a  dimensionality  reduction  technique  which  is            

sometimes  referred  to  as  eigenvalue  decomposition  or  singular  value  decomposition           

(SVD).  In  the  case  of  a  matrix,  the  model  assumes  that  the  information  contained               

within  that  matrix  can  be  represented  by  lower  dimensional  subspaces,  the  sum  of              

which  approximates  the  original  matrix.  Each  subspace  is  the  result  of  the  outer              

product  of  a  latent  basis  function, W,  a  vector  of  dimension m  ×  1  and  a  time                  

activation  function, H,  a  vector  of  dimension n × 1 ,  where m  ×  n  is  the  dimension  of                 

the  original  data X, a  matrix.  Formally  stated,  it  is  assumed  that  the  matrix X  can  be                  

decomposed   into   a   sum   of   outer   products   as   in   equation   2.19.  
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(2.19)  

 

 
where T  denotes  the  transpose  of  the  matrix.  In  matrix  notation, X  is  represented  as                

the  sum  of J  subspaces V j ,  each  one  corresponding  to  a  particular  latent  “feature”  of                 

the   original   data.  

 

These  basis  functions  are  obtained  by  carrying  out  singular  value  decomposition,            

more  commonly  known  as  PCA,  on  the  matrix.  This  essentially  transforms  a             

high-dimensional  set  of  correlated  variables  into  some  number  of  lower  dimensional            

sets  of  uncorrelated  variables  which  are  known  as  the  principal  components.  The             

principal  components  are  ranked  in  order  of  variance,  so  the  first  principal  component              

contains  the  maximum  amount  of  total  variance  present  in  the  data  and  each              

subsequent  principal  component  represents  the  maximum  remaining  variance  in  the           

data.   

 

In  the  context  of  source  separation  for  musical  applications,  our  audio  signal  is  first               

represented  as  a  matrix.  A  time  frequency  representation  such  as  the  spectrogram  is              

typically  used  in  the  literature.  In  (Fitzgerald  et  al.  2002),  the  spectrogram  of  a  signal                

which  contains  a  mixture  of  drums  is  represented  by X using  the  notation  of  equation                

2.19. They  postulate  that X can  theoretically  be  represented  as  the  sum  of J               

independent spectrograms, V j  ,  where  each  one  contains  a  single  drum  (kick,  snare,              

hat  etc.).  Discovering  the  independent  spectrograms, V j , directly  is  a  difficult  task  but               
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applying  PCA  to  the  mixture  spectrogram  reduces  the  dimensionality  of  the  data  in              

some  logical  way.  Given  that  the  drums  are  pitch  stationary,  their  individual  spectra              

will  be  broadly  similar  throughout  the  duration  of  the  drum  hit  and  further,  drum  hits                

on  the  same  drum  should  be  similar  in  each  case.  As  a  result,  it  is  generally  the  case                   

that  applying  PCA  to  a  drum  mixture  results  in  the  discovery  of  a  latent  principal                

component  and  time  activation  function  for  each  drum.  Referring  to  equation  2.19,  the              

principal  components  are  represented  by W j  and H j .  By  getting  the  outer  product  of  a                

single  basis  function  and  its  time  activation  function,  an  approximate  spectrogram  for             

each  drum  can  be  constructed.  Figure  2.7  shows  the  time  activation  functions  and              

frequency  basis  functions  obtained  from  a  piece  of  music  using  Independent  Subspace             

Analysis   (ISA).  
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Figure   2.7    Top    -   A   spectrogram   of   a   short   song   passage   .    Middle    -   The   time   activation  
functions   obtained   from   ISA.    Bottom    -   The   frequency   basis   function   obtained   from   ISA.  

(Fitzgerald   2004)  
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2.5.3   -   Independent   Subspace   Analysis  

PCA  on  its  own  does  not  in  general  return  a  set  of  statistically  independent  basis                

functions  as  its  purpose  is  to  generate  uncorrelated  basis  functions.  As  a  result  of  both                

time  and  frequency  overlap,  the  time  activations  for  each  drum  may  have  a              

considerable  amount  of  activity  from  other  drums  present.  One  way  to  address  this  is               

to  perform  ICA  on  the  time  activation  functions.  ICA  optimises  for  independence,  and              

therefore  forces  the  time  activations  to  be  as  independent  as  possible.  Performing             

PCA  followed  by  ICA  is  known  as  independent  subspace  analysis  (ISA)  and  was  first               

introduced   by   (Casey   et   al.   2000).   

 

Another  point  of  note  within  (Fitzgerald  et  al.  2002)  is  that  the  ISA  method  is                

performed  on  a  sub-band  basis.  This  helps  with  cases  where  two  drums  with  minimal               

frequency  overlap  are  hit  at  the  same  time.  Take  the  case  of  a  hi  hat  for  example.                  

Common  beats  will  contain  a  hi  hat  strike  at  every  down  beat.  This  means  there  is  a                  

high   probability   that   they   will   overlap   with   the   kick   and   the   snare   on   a   regular   basis.  

 

One  issue  with  using  PCA  or  ISA  is  that  of  choosing  how  many  principal  components                

to  use  to  represent  the  data  (Fitzgerald  et  al.  2002).  In  the  drum  separation  application,                

the  number  of  components, J  ,  is  set  to  the  expected  number  of  recurring  drums  within                 

the  song.  For  example,  if  one  expects  to  separate  a  kick,  snare  and  hi  hat,  and  those                  

sources  contribute  to  the  most  variance  in  the  spectrogram,  then  a  good  place  to  start                

would   be   to   set    J   =    3.   

However,  it  is  rarely  the  case  that  setting J equal  to  the  number  of  expected  sources                 

will  suffice  (Fitzgerald  et  al.  2002).  In  general,  some  greater  number  of  principal              
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components  must  be  recovered  to  faithfully  capture  the  audio  characteristics  of  the             

underlying  sources.  To  address  this  Fitzgerald  extended  the  work  in  (Fitzgerald  et  al.              

2003)  where  Locally  Linear  Embedding  (LLE)  is  used  instead  of  PCA  within  an  ISA               

framework.  There  it  is  shown  that  LLE  is  able  to  characterise  sources  with  fewer               

numbers  of  components  than  are  required  using  PCA.  This,  according  to  Fitzgerald,  is              

because  LLE  makes  use  of  local  geometry  to  embed  high  dimensional  data  in  a  lower                

dimensional   space.  

 

In  practice,  these  techniques  work  well  when  separating  individual  drums  within  a             

mixture  of  drums  but  are  not  robust  enough  to  reliably  separate  drums  from              

polyphonic  mixtures  with  the  same  accuracy.  Furthermore,  because  of  the  pitch            

stationary  limitation,  the  technique  doesn’t  work  well  for  polyphonic  mixtures  of            

pitched  sources.  As  a  result  of  these  limitations,  these  techniques  have  been  more              

successful  at  the  task  of  transcription  than  at  the  task  of  separation.  To  that  end,  the                 

work  was  extended  further  in  (Fitzgerald  et  al.  2005)  where  a  technique  known  as               

prior  subspace  analysis (PSA)  was  used  to  achieve  pitched  instrument  transcription.            

The  method  can  work  with  polyphonic  instruments  such  as  guitar  and  piano  but  in  the                

case  where  there  is  more  than  one  instrument  playing,  the  algorithm  is  not  able  to                

attribute  notes  to  specific  instruments,  instead  giving  the  overall  harmonic           

transcription.  The  transcription  algorithm  in  (Fitzgerald  et  al.  2002)  was  further            

improved  by  using  a  novel  drum  source  separation  step  as  preprocess  in  (Barry  et  al.                

2005)   which   is   presented   as   a   novel   contribution   in   Chapter   7.  
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2.5.4   -   Non-negative   Matrix   Factorisation  

Non-negative  Matrix  Factorisation  (NMF)  is  a  numerical  technique  popularised  by           

(Lee  et  al.  1999)  but  based  on  the  work  presented  in  (Paatero  et  al.  1994,  1997).  It  is                   

used  to  decompose  a  matrix  into  subspaces  based  on  the  premise  that  the  matrix  is                

composed  of  the  sum  of  underlying  low  rank  matrices  often  called parts  or topics               

depending  on  the  application.  Thus  it  is  often  referred  to  as  a  linear  parts-based               

decomposition.  Although  similar  to  PCA  in  terms  of  the  goal,  it  differs  considerably              

in  terms  of  its  non-negativity  constraint  and  computational  method.  This  means  that             

the  model  only  allows  for  additive  combinations,  not  subtractive  combinations.  In            

(Lee  et  al.  1999),  NMF  was  applied  to  images  of  faces.  There,  they  show  that  NMF                 

performs  a  parts-based  decomposition  of  the  image  such  that  the  parts  correspond  to              

features  of  face  such  as  eyes,  ears,  mouth  etc.  It  has  been  shown  to  work  considerably                 

better  than  PCA  for  image  decomposition  (Lee  et  al.  1999).  Figure  2.8  shows  a               

comparison   of   face   decomposition   between   PCA   and   NMF.   

 

V    ≈    W     ×     H  (2.20)  

 

In  the  case  of  sound  source  separation,  a  spectrogram is  used as  the  input  matrix. For                 

the  spectrogram V,  of  dimension m  ×  n, where  each  element  of V  ≥ 0,  NMF                 

decomposes  it  into  two  matrices W  and H of  dimension m  ×  j  and j  ×  n respectively,                   

where  each  element  of W ≥ 0  and H  ≥ 0  and  where J is  the  desired  rank  of  the                      

factorisation.   The   NMF   model   is   summarised   in   equation   2.20   above.  
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Figure   2.8.   Adapted   from   (Lee   et   al.   1999)   NMF   learns   a   parts-based   representation   of   a   face  
but   PCA   learns   a   holistic   representation.   Looking   at   the   NMF   example,   it   can   be   seen   that  

each   learned   feature   closely   resembles   individual   parts   of   a   face   such   as   eyes,   nose   and  
mouth.   PCA   on   the   other   hand   has   learned   how   to   approximate   abstract   variants   of   whole  

faces   which   when   combined   linearly   approximate   the   target   face.  
 

Referring  to  Figure  2.9,  the  simplified  spectrogram V ,  contains n time  frames  each              

containing m frequency  bins.  The  decomposition  then  gives  us W ,  which  is  a  set  of J                 

frequency  “parts”  (similar  to  basis  functions  in  PCA)  where  each  part,  represented  in              

each  column  of W ,  models  certain  repeating  characteristics  of  the  music  such  as  a               

specific  note  pitch,  a  specific  pitch  stationary  instrument  or  a  spectral  feature  of  some               

kind.  It  should  be  noted  that J refers  to  the  rank  which  the  user  wishes  to  achieve.  So                   

if  you  expect  to  recover  all  instances  of  72  unique  pitched  notes  from  the  spectrogram                

you   can   expect   to   set    J    to   at   least   72.  
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Figure   2.9.   NMF   decomposes   a   simplified    spectrogram   V   into   a   set   of   spectral   parts,   W,   and   a  
set   of   time   activation   sequences   for   those   parts  

 

H  is  a  set  of J time  activation  sequences  corresponding  to  each  of  the J spectral                 

objects  represented  in W .  Similar  to  PCA,  the  product  of W  and H  approximates  the                

original  matrix.  And  similarly  the  outer  product  of W ( m,j )  and H ( j,n ) approximates  the              

spectrogram   of   the    J th    spectral   object.   

 

Obtaining   the   values   for    W    and    H    involves   a   number   of   iterative   steps:  

1. Initialise    W    and    H    with   random   positive   entries.  

2. At  each  iteration,  a  suitable  cost  function  is  used  to  measure  the  distance  or               

divergence   between    V    and    WH  

3. A  suitable  update  equation  is  used  to  update  the  values  of W or H  in  each                 

iteration  such  that  the  cost  function  is  iteratively  minimising.  This  amounts  to             

non-negative   linear   regression.  

4. Steps   2   and   3   are   iterated   until   the   cost   function   reaches   a   local   minima.   

 

51  

 



 

 

 

The  most  common  cost  functions  identified  in  (Lee  et  al.  2001)  are  the  square               

Euclidean  distance  shown  in  equation  2.21  and  the  Kullback-Leibler  divergence           

(KLD)   shown   in   equation   2.22.  

 

||A ||   (A   )  B 2 =  ∑
 

ij
ij  Bij

2
 

(2.21)  

(A||B)  (A  log   A ) D = ∑
 

ij
ij

Aij
Bij
   ij + Bij (2.22)  

  

where A  and B  are V  and WH  respectively  and i  and j represent  the  column  and  row                   

indices.  

 

NMF  can  be  stated  as  an  optimisation  problem  with  respect  to  equation  2.21  as               

follows:   

 

Minimize  || V  -  WH || 2  with  respect  to W and H ,  subject  to  the  constraints  that  all                 

elements  of W ≥  0  and  all  elements  of H ≥  0.  Note  that  the  function  is  convex  only  in                     

W  or H independently  and  not  in  both  variables  together  and  so  only  a  local  minimum                 

will  be  found.  This  means  that  NMF  may  arrive  at  different  solutions  for  the  same                

problem  on  repeated  factorisations  depending  on  the  random  values  set  at  matrix             

initialisation.  Gradient  descent  provides  a  solution  to  arrive  at  local  minima  but  may              

require  several  hundred  iterations  to  converge.  In  (Lee  et  al.  2001)  a  multiplicative              

update   method   was   proposed,   shown   in   equation   2.23.  
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        WH←H (W   V )T

(W   WH)T ←W (V H   )T

(WHH   )T
(2.23)  

 

where    T    denotes   the   transpose   of   the   matrix  

 

As  mentioned  above,  a  spectral  object  could  be  a  note  of  a  certain  pitch  or  a                 

pitch-stationary  instrument  such  as  a  drum,  but  is  unlikely  to  be  a  source  in  its  own                 

right.  The  reason  for  this  is  that  all  pitched  instruments  can  produce  pitched  notes               

within  their  frequency  range  and  many  instruments  overlap  in  range  as  shown  in              

Figure  2.10.  The  same  notes  produced  by  different  instruments  will  generally  have  the              

same  harmonic  relationships,  i.e.  integer  multiples  of  the  fundamental  frequency,  but            

the  relative  amplitude  of  those  harmonics  will  be  different  for  each  instrument.             

Further,  the  dynamic  variation  of  those  harmonic  amplitudes  over  time  will  differ             

between  instruments.  However,  despite  this,  the  parts-based  decomposition  nature  of           

NMF  in  its  raw  form  is  far  more  predisposed  to  discovering  notes  than  instruments  or                

sources.  For  this  reason  it  has  been  successfully  applied  to  the  task  of  polyphonic               

transcription  than  that  of  sound  source  separation  (Smaragdis  et  al.  2003)(Fitzgerald            

et   al.   2005   b).   

 

Polyphonic  transcription  using  NMF  was  first  proposed  in  (Smaragdis  et  al.  2003).  In              

Figure  2.11  below,  the  vertical  plot  on  the  left  depicts  the  individual  note  spectra W                

and  the  bottom  plot  depicts  the  activations  for  each  note  spectrum  in H .  In  this                

example    J   =   4.  
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Figure   2.10.   Pitch   range   of   various   instruments.   Reproduced   from   James   Husted,   Symetrix  
http://educypedia.karadimov.info/library/PIANO.pdf  

 

In  (Fitzgerald  et  al.  2005  b),  an  NMF  system  to  achieve  instrument  separation  as               

opposed  to  note  separation  is  presented.  The  approach  overcomes  the  problem  of             

attributing  notes  to  the  correct  source  by  assuming  that  all  notes  belonging  to  a  single                

source  can  be  represented  as  a  single  frequency  basis  function  which  is  translated  to               

achieve   different   pitches.   

 

This  frequency  basis  function  aims  to  capture  the  spectral  characteristics  of  the  source              

so  that  the  same  note  played  on  different  instruments  can  be  attributed  to  the  correct                

instrument.  In  order  to  be  able  to  translate  the  basis  function,  a  constant  Q  transform                

(CQT)  is  used  instead  of  a  spectrogram.  Using  a  CQT  allows  for  the  logarithmic               

nature  of  the  harmonic  spectra  to  be  translated  as  an  integer  shift  in  the  matrix.  Thus                 

allowing  for  a  single  basis  be  used  for  all  notes  for  a  single  instrument.  The  technique                 
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overcomes  the  note  grouping  limitation  of  previous  work  but  fails  to  produce  results              

that  merit  further  investigation  (Fitzgerald  et  al.  2005  b).  Figure  2.12  shows  the              

separated   spectrograms   of   a   piano   and   flute   using   this   technique.  

 

Figure   2.11:   NMF   decomposition   of   a   polyphonic   spectrogram   (Smaragdis   2013)  
 

 

Figure   2.12   NMF-based   separation   of   2   source   mixture.   A:   Mixture   Spectrogram   of   Flute   and  
Piano.   B:   Spectrogram   of   separated   piano.   C:   Spectrogram   separated   flute.   Reproduced   from  

(Fitzgerald   et   al.   2005   b)   
 

This  work  was  extended  further  in  (Fitzgerald  et  al.  2005  c)  where  the  above               

technique  was  used  on  2  channel  mixtures  instead  of  single  channel  mixtures.  It  is               
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based  on  the  observation  that  the  majority  of  commercial  music  is  mixed  to  two               

channels,  whereby  a  single  source  may  exist  in  both  channels  with  a  different              

intensity  in  each.  The  process,  known  as panning ,  simply  positions  a  source  between              

the  two  channels  by  distributing  the  source  to  both  channels  using  an  intensity  ratio.               

The  work  then  utilises  the  fact  that  this  intensity  ratio  can  be  used  to  group  note                 

spectra  extracted  using  NMF.  In  other  words,  all  notes  with  the  same  intensity  ratio               

across  both  channels  are  assumed  to  derive  from  the  same  instrument.  This  improves              

upon  the  previous  work  but  Fitzgerald  concludes  that  objectionable  artefacts  still  exist             

in  the  resynthesis  as  a  result  of  the  approximate  nature  of  mapping  the  CQT               

log-frequency  spectrograms  back  to  linear-frequency  spectrograms  to  allow  for          

resynthesis.  As  we  will  see  in  the  following  sections,  the  concept  of  using  2-channel               

mixtures  proves  particularly  useful  when  it  comes  to  grouping  separated  frequency            

components   by   source.  

 

2.6   -   DEGENERATE   UNMIXING   ESTIMATION   TECHNIQUE   –   DUET  

The  DUET  algorithm  (Jourjine  et  al.  2000)  was  designed  for  degenerate  source             

separation  of  an  arbitrary  number  of  W-disjoint  orthogonal  (W-DO)  sources  using            

only  two  mixtures  of  those  sources.  Two  sources  are  said  to  be  W-disjoint  orthogonal               

if  the  time-frequency  representations  of  each  source  do  not  overlap  significantly.  It             

has  been  shown  that  this  is  approximately  true  in  the  case  of  speech  (Rickard,  2002).                

This  being  the  case,  source  separation  can  be  achieved  by  creating  a  time-frequency              

binary  mask  for  each  source  and  applying  it  to  the  spectrogram  of  either  mixture.  The                

algorithm  operates  by  estimating  the  amplitude  ratio  of  each  time-frequency  point            

between  the  two  mixtures  and  the  time  delay  of  each  time-frequency  point  between              
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the  two  mixtures.  The  resultant  delays  and  amplitude  ratios  are  then  used  to  create  a                

two  dimensional  smoothed  histogram  where  it  can  be  seen  that  the  values  cluster  into               

localised  peaks  as  in  Figure  2.13.  These  peaks  are  representative  of  source  activity  by               

virtue  of  the  fact  that  for  a  single  source  remaining  at  the  same  location  in  space,  we                  

would  expect  to  see  the  majority  of  its  time-frequency  points  share  the  same              

amplitude  ratios  and  delay  coefficients.  The  mixing  model  for  DUET  can  be  defined              

as:  

(t) s (t ),   k ,xk = ∑
J

j=1
akj j  δkj   = 1 2 (2.24)  

where x k ( t ) is  the k th receiver  mixture, a kj  and δ kj  are  the  attenuation  coefficients  and                

time  delays  related  to  the  path  from  the j th source  to  the k th receiver  for J sources.                  

Moving   to   the   time-frequency   domain   via   the   STFT   we   get:  

(m, ) S (m, ) Φ (m, )),   k ,Xk n = ∑
J

j=1
(akj j n + Δ kj n   = 1 2 (2.25)  

where  is  a  frequency  dependent  phase  shift  and  where m and n are  the  Φ (m, )Δ kj n               

time   frame   and   frequency   bin   indices   respectively.   

 

For  simplicity  sake  it  is  considered  that  the  receiver  closest  to  the j th  source  is  used  as                  

a  ‘reference’  and  so  its  amplitude  coefficient  can  be  set  to  1  and  delay  coefficient  set                 

to  0.  This  is  simply  because  we  only  need  the  inter-receiver  time  delay  as  opposed  to                 

the  individual  path  length  delays  and  similarly  for  the  amplitudes.  As  a  result  we  can                

represent    X 1 ( m , n )   and    X 2 ( m , n )   as:  
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(m, ) (m, )X1 n = ∑
J

j=1
Sj n (2.26)  

(m, ) S (m, ) Φ (m, ))X2 n = ∑
J

j=1
(aj j n + Δ j n (2.27)  

The   inter-receiver   attenuation   coefficients   for   each   bin   are   found   using   equation   2.28.  

(2.28)  

The   inter   inter-receiver   delay   coefficients   are   then   found   using   equation   2.29.  

(2.29)  

where  ∠  implies  the  taking  the  phase  angle  in  radians  of  the  complex  number               

resulting   from   the   last   term   of   equation   2.29.  

 

Figure   2.13    2D   Histogram   showing   5   distinct   peaks   along   normalised   axes   with   different  
delay    ( δ j     )    and     attenuation    ( a j )    coefficients   indicating   the   presence   of   5   sources.   Reproduced  

from   (Jourjine   et   al.   2000)  
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The  result  is  that  we  now  have  both  delay  and  attenuation  estimates  for  each               

time-frequency  point  of  the  mixture.  If  each  source  is  perfectly  W-DO  and  the              

mixtures  have  been  obtained  under  anechoic  conditions,  all  frequency  components           

belonging  to  one  of  the  sources  will  have  exactly  the  same  attenuation  and  delay               

coefficients.  This  is  rarely  the  case  in  the  real  world  and  what  happens  instead  is  that                 

the  parameter  estimates  obtained  above  are  close  to  the  ideal  amplitude  and  delay              

coefficients.  In  order  to  identify  the  mixing  parameters  for  each  source,  a  2-D              

smoothed  and  weighed  histogram  of  delay  against  attenuation  summed  over  time  is             

created.  Large  peaks  are  seen  in  areas  where  several  time-frequency  points  posses  the              

same  delay  and  attenuation  coefficients.  This  is  an  indication  that  a  single  source              

relates  to  the  mixing  parameters  which  have  caused  the  peak.  Figure  2.13  shows  such               

a  histogram  illustrating  the  presence  of  5  sources.  The  coordinates  of  a  peak  in  the                

histogram  correspond  to  delay  and  attenuation  coefficients  which  are  present  in  many             

frequency   channels.   

 

Returning  to  the  STFT,  the  source  corresponding  to  a  peak  is  extracted  by  creating  a                

binary  mask  which  sets  all  frequency  bins  with  delay  and  attenuation  coefficients,             

proximal  to  that  of  the  peak,  to  ‘1’  and  all  others  to  ‘0’.  The  mask  for  the j th source  can                     

be   defined   as:  

(2.30)  
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where  AΔ j are  the  ideal  attenuation  and  delay  coefficients  for  the j th source  derived               

from  a  peak  in  the  histogram.  And  where are  the  attenuation  and  delay         δ(m, )α n      

estimates  for  frequency  bin n at  time m ;  and  R  is  a  user  defined  range.  Typical  values                  

for  R  would  be  0.1  to  0.3  in  the  context  of  the  normalised  delay  axis  depicted  in  figure                   

2.13.  If  the  estimates  fall  outside  this  range,  those  frequency  components  are  set  to  0.                

The  source  is  then  extracted  by  multiplying  the  binary  mask  by  the  original              

time-frequency   representation   as   in   equation   2.31:  

 

(m, ) (m, )X (m, )Sj n = M j n k n (2.31)  

 

Experiments  have  shown  that  DUET  is  capable  of  very  good  results  in  separating  an               

arbitrary  number  of  speakers  from  only  two  mixtures  obtained  in  real-world            

environments (Jourjine  et  al.  2000) .  It  is  the  case  that  reverberant  environments  will              

deteriorate  results  significantly.  There  are  limitations  to  the  DUET  algorithm:  firstly            

the  mixtures  must  be  obtained  from  a  pair  of  microphones  which  are  no  more  than  a                 

few  centimetres  apart.  In  fact  the  maximum  distance  between  the  microphones  is             

dependent  on  the  frequency  content  of  the  signal  being  captured.  The  distance  should              

be  no  greater  than  the  wavelength  of  the  highest  occurring  frequency  within  the              

signal.  The  reason  for  this  can  be  attributed  to  the  delay  estimation  technique  which               

uses  the  phase  difference  between  each  mixture.  The  phase  returned  in  equation  2.29              

is  a  wrapped  phase  which  is  always  in  the  range  +𝜋  to  -𝜋  radians,  and  so  if  any                   

frequency  component  were  to  go  through  a  full  phase  rotation  before  being  received              
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at  the  lagging  microphone,  it  would  cause  a  delay  estimate  error  as  a  result  of  phase                 

wrapping.   The   distance   between   the   mics   will   be   limited   by   the   following   condition;  

 

d   =   δ j    max c (2.32)  

 

 

where  (2.33)  

 

where c  is  the  speed  of  sound  in  air  and ω s is  the  sampling  frequency  in  radians  per                   

second.  

 

The  condition  that  sources  must  be  W-DO  for  separation  makes  DUET  unsuitable  for              

the  separation  of  musical  signals  since  the  basis  of  western  tonal  music  is  harmony.               

Harmony  embodies  the  notion  that  when  certain  notes’  spectra  overlap,  they  produce             

richer  combined  spectra  which  can  be  pleasing  to  the  ear.  This  is  referred  to  as tonal                 

consonance .  It  can  be  shown  that  the  most  consonant  musical  intervals  correspond  to              

the  largest  amount  of  frequency  overlap  (Howard,  2001).  Attempts  have  been  made             

such  as  that  in  (Master,  2003)  to  modify  DUET  for  use  with  music  but  no  results  were                  

presented.   

 

2.7   -   SOURCE   SEPARATION   IN   LINEAR   STEREO   RECORDINGS  

In  (Avendano,  2003)  a  method  for  source  identification  and  manipulation  is  described.             

The  approach  is  based  on  the  standard  studio  or  artificial  recording  model  which  is               

largely  linear.  In  a  recording  studio,  each  sound  source  is  usually  recorded             
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individually  and  summed  across  two  channels  with  continuously  varying  intensity           

ratios.   The   model   can   be   described   by:  

 

(t) s (t),   k ,xk = ∑
J

j=1
akj j   = 1 2 (2.34)  

 

where x k ( t )  is  either  the  left  or  right  mixture  channel  in  the  time  domain, a ij  represents                 

the   attenuation   factor   for   the    j th    source   in   the    k th    channel   for   each   of    J    sources    s j    .  

 

Converting   to   the   frequency   domain   using   the   STFT   we   get:  

 

(m, ) S (m, ),   k ,Xk n = ∑
J

j=1
akj j n   = 1 2 (2.35)  

 

where m  and n  are  time  frame  and  frequency  bin  indices  respectively.  A  similarity               

measure  of  the  input  signals  is  used  to  identify  time-frequency  points  occupied  by              

each  source  based  on  the panning  coefficient  applied  during  mix  down.  The  panning              

coefficient  is  similar  to  the  amplitude  coefficient  in  DUET;  it  is  a  ratio  of  energy                

between  the  left  and  right  mixtures.  Individual  sources  are  identified  and  manipulated             

by  clustering  time-frequency  components  with  similar  panning  coefficients.  The          

similarity   measure   used   is   as   follows:  

 

(2.36)  
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where X 1 and X 2 are  complex  time-frequency  domain  representations  of  the  left  and              

right  mixture  channels  respectively  and  where m and n  are  the  time  frame  and               

frequency  bin  indices  respectively. This  similarity  measure φ ( m , n )  gives  values           

proportional  to  the  panning  coefficients  of  each  source  provided  that  they  do  not              

overlap  significantly  in  the  time-frequency  transform  domain.  This  effectively  means           

each  source  needs  to  have  a  different  panning  coefficient.  The  problem  with  this              

function  is  that  it  returns  all  positive  values.  This  leads  to  “lateral  ambiguity”,              

meaning  that  the  lateral  direction  of  the  source  is  unknown,  i.e.  a  source  panned  60 ०                

left  will  give  an  identical  similarity  measure  to  the  one  panned  60 ०  right.  To  overcome                

this  ambiguity,  Avendano  uses  a  partial  similarity  measure  and  a  difference  function             

defined   respectively   as,  

(2.37)  

and  

 (2.38)  

 

Now,  positive  values  of  Δ( m , n )  correspond  to  sources  panned  towards  the  left  and              

negative  values  correspond  to  sources  panned  towards  the  right.  Values  of  zero             

correspond  to  non-overlapping  time-frequency  regions  of  sources  panned  to  the           

centre.   Avendano   then   defines   an   ambiguity   resolving   function   as,  

(2.39)  
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The  panning  index  map  is  then  obtained  by  applying  the  above  ambiguity  resolving              

function   to   the   similarity   function   as   follows,  

 

(2.40)  

 

Now  time-frequency  bins  with  similar  panning  indices  can  be  clustered.  In            

Avendano’s  case  he  uses  a  Gaussian  window  to  scale  bin  magnitudes  which  are              

proximal  to  a  specific  panning  index.  A  soft  mask  is  constructed  and  applied  to  the                

short-time  magnitude  spectrum  in  order  to  separate  a  particular  source.  As  with             

DUET,  the  bin  magnitudes  used  for  resynthesis  are  taken  directly  from  the  analysis              

STFT,  thus  the  model  assumes  that  all  energy  at  a  specific  frequency  corresponds  to               

only  one  source.  Furthermore  the  model  is  symmetrical  in  that  sources  which  are              

panned  by  the  same  amounts  in  opposite  directions  will  interfere  with  each  other              

significantly.  This  effectively  means  that  the  separation  quality  deteriorates  as  the            

source  moves  away  from  the  centre.  Also  of  interest  is  that  this  approach  uses               

absolutely  none  of  the  grouping  heuristics  of  ASA,  instead  it  takes  advantage  of  the               

stereo   audio   format   and   the   way   in   which   stereo   mixes   are   created.  

 

The  general  approach  of  clustering  frequency  bins  according  to  their  IIDs,  followed             

by  binary  masking  of  the  clustered  components  within  the  STFT,  has  become  a              

popular  approach  in  recent  years.  In  the  2007  Source  Separation  Evaluation            

Campaign (Vincent  et  al.  2007),  all  ten  algorithms  entered  in  the instantaneous             

mixture  category  used  some  variation  IID  or  IPD  clustering  and  STFT  masking.  In              
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(Bofill  et  al.  2001)  the  number  of  sources  and  the  mixing  coefficients  are  estimated               

from  clustered  peaks  in  an  IID  representation.  STFT  bins  are  selected  as  described  in               

(Xiao  et  al.  2005).  Source  estimation  is  then  achieved  by  minimising  the l 1  norm  of                

the  real  and  imaginary  parts  of  the  source  STFTs.  In  (Gowreesunker  et  al.  2007)  peak                

picking  and  mixing  coefficient  estimation  is  carried  out  on  a  thresholded  IID             

histogram.  An  MDCT  is  then  used  to  resynthesise  the  source  signals.  The  approach  in               

(Kleffner  et  al.  2007)  uses  peak  picking  on  a  thresholded  IID  histogram  in  a  similar                

fashion  to  (Mohan  et  al.  2003)  and  the  STFT  bins  are  selected  similar  to  that  of                 

(Arberet  et  al.  2006).  The  source  estimation  is  then  carried  out  using  minimum              

variance  beamforming  (Lockwood  et  al.  2004).  In  (Mitianoudis  at  al.  2007),  it  is              

assumed  that  the  number  of  sources  is  already  known.  Here,  ITD  clustering  is  used  in                

conjunction  with  an  MDCT  for  source  estimation.  In  (Vincent,  2007  b),  manual  peak              

picking  was  carried  out  on  a  weighted  IID  histogram  similarly  to  (Arberet  et  al.  2006)                

followed  by  an l 0 norm  minimisation  of  the  source  STFTs.  The  approach  in  (Xiao  et                

al.  2005  b)  also  uses  IID  clustering  but  is  designed  to  extract  only  2  sources  per  time                  

frame.  In  (Mandel  et  al.  2007),  both  IID  and  IPD  clustering  are  used  assuming  the                

number  of  sources  is  known.  Distance  weighted  masking  is  then  applied  to  the  STFTs               

to  reproduce  the  sources.  In  chapter  3.10,  ADRess  is  objectively  compared  with  all  of               

the   algorithms   which   took   part   in   the   2007   Source   Separation   Evaluation   Campaign.  

 

2.8   -   REVIEW   CONCLUSIONS  

In  general,  the  techniques  outlined  above  have  not  been  able  to  provide  a  complete               

solution  to  the  problem  of  sound  source  separation  for  musical  instruments.  However,             

each  has  merits  and  forms  a  partial  solution  to  the  problem.  The  author  notes  that                
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CASA  approaches  are  not  wholly  concerned  with  solving  the  sound  source  separation             

problem  in  the  signal  processing  sense;  instead  the  motivation  is  towards  building             

systems  which  mimic  the  way  in  which  the  human  auditory  system  works.  The  human               

analogy  is  often  used  for  the  sound  source  separation  problem,  whereby  our  ability  to               

focus  on  particular  sounds  of  interest  is  considered  to  be  sound  source  separation.  In               

actual  fact,  humans  do  not  possess  the  ability  to  do  sound  source  separation  in  any                

real  sense.  As  an  example,  if  many  speakers  are  speaking  in  a  room  simultaneously,               

we  cannot  selectively  hear  only  one  speaker  and  suppress  all  interference  from  other              

speakers,  we  can  however  ‘listen’  to  one  speaker  which  involves  focusing  our             

attention.  Hearing  is  a  passive  subconscious  activity  whereas  listening  is  a  conscious             

activity  involving  attention,  memory  and  context.  It  would  seem  that  the  broadest  goal              

of  CASA  is  that  of  artificially  intelligent  machine  listening.  This  said,  many  aspects              

of   CASA   research   prove   very   useful   for   the   problem   at   hand.  

 

Of  particular  interest  in  CASA  research  is  the  binaural  processor  technique  in  which              

concurrent  sounds  are  separated  purely  on  the  basis  of  their  location  in  physical  space.               

This  model  is  immediately  applicable  to  the  general  sound  source  separation  problem.             

DUET (Jourjine  et  al.  2000)  is  effectively  a  realisation  of  the  binaural  model  without               

the  physiological  modelling  of  the  outer,  middle  and  inner  ear.  It  also  seems  to  be  one                 

of  the  most  effective  techniques  to  date  for  sound  source  separation  using  only  two               

sensors.  The  most  significant  limitation  of  DUET  is  the  condition  of  W-disjoint             

orthogonality  which  states  that  the  sources  must  not  have  significant  overlap  in  the              

time  or  frequency  domain.  This  makes  DUET  suboptimal  for  musical  source            

separation  since  musical  sources  will  by  nature  have  significant  amounts  of  overlap.             
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Statistical  methods  such  as  ICA  are  applicable  only  in  cases  where  multiple  mixtures              

can  be  observed.  It  is  the  case  that  the  number  of  mixtures  must  equal  the  number  of                  

sources   present   in   order   for   ICA   to   be   successful.   

 

The  primary  research  carried  out  in  this  thesis  concerns  sound  source  separation  of              

musical  sources  and  further  applications  of  the  same.  The  goal  is  to  successfully              

separate  an  arbitrary  number  of  source  signals  from  at  most  two  observation  mixtures              

corresponding  to  that  of  current  musical  media.  The  model  presented  in  the  next              

section  finds  its  foundations  in  binaural  processor  techniques  and  draws  on  elements             

of  ASA  and  DUET.  The  key  difference  is  that  the  novel  research  presented  in  the                

coming   chapters   specifically   optimises   for   the   linear   stereo   recording   mixing   model.    
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CHAPTER   3:   SOUND   SOURCE   SEPARATION:   AZIMUTH  
DISCRIMINATION   AND   RESYNTHESIS  

This  chapter  presents  the  principal  novel  contribution  of  this  dissertation,  the  Azimuth             

Discrimination  and  Resynthesis  algorithm  (ADRess).  It  was  originally  published  at           

the  Digital  Audio  Effects  Conference  in  2004  (DAFX  04)  and  is  presented  here  in  its                

entirety  in  accordance  with  TU  Dublin  regulations  (Barry  et  al.  2004).  Sections  3.1  to               

3.8  constitute  the  original  publication,  section  3.9  is  additional  work  around  real-time             

implementation  and  section  3.10  shows  comparative  test  results  against  10  other            

algorithms.  The  paper  included  co-authors  Eugene  Coyle  and  Bob  Lawlor  who  acted             

as  my  PhD  supervisors  at  the  time.  A  second  paper  with  some  real-time  additions               

published  in  the  117th  Audio  Engineering  Society  Convention  proceedings  later  in            

2004  (Barry  et  al.  2004  b)  which  is  not  reproduced  here  but  the  algorithm  has  since                 

been  cited  177  times  between  its  two  published  papers  and  one  US  patent  (Barry  et  al.                 

2011).  The  patent  has  been  cited  by  Sony,  Samsung,  Dolby  and  NEC.  The  algorithm               

was  licensed  to  Sony  in  2006  for  use  in  SingStar  on  the  Sony  PlayStation  3  which                 

went  on  to  sell  13m  copies.  In  2012,  the  algorithm  was  licensed  to  Riffstation,  a                

company  I  co-founded,  which  went  on  to  be  acquired  by  guitar  manufacturer  Fender              

and  served  millions  of  users  globally  from  2012  to  2018.  In  2019,  the  patent  was                

licensed  to  VRX  Audio  which  plans  to  use  the  algorithm  as  part  of  a  spatial  audio                 

engine.  
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3.1   -   ABSTRACT  

In  this  paper  we  present  a  novel  sound  source  separation  algorithm  which  requires  no               

prior  knowledge,  no  learning,  assisted  or  otherwise,  and  performs  the  task  of             

separation  based  purely  on  azimuth  discrimination  within  the  stereo  field.  The            

algorithm  exploits  the  use  of  the  pan  pot  as  a  means  to  achieve  image  localisation                

within  stereophonic  recordings.  As  such,  only  an  interaural  intensity  difference  exists            

between  left  and  right  channels  for  a  single  source.  We  use  gain  scaling  and  phase                

cancellation  techniques  to  expose  frequency  dependent  nulls  across  the  azimuth           

domain,  from  which  source  separation  and  resynthesis  is  carried  out.  We  present             

results  obtained  from  real  recordings,  and  show  that  for  musical  recordings,  the             

algorithm   improves   upon   the   output   quality   of   current   source   separation   schemes.  

 

3.2   -   INTRODUCTION  

Our  research  is  concerned  with  extracting  sound  sources  from  stereo  music  recordings             

for  the  purposes  of  audition  and  analysis.  This  is  termed  sound  source  separation  and               

has  been  the  topic  of  extensive  research  in  recent  years.  In  general,  the  task  is  to                 

extract  individual  sound  sources  from  some  number  of  source  mixtures.  Currently,  the             

most  prevalent  approaches  to  this  problem  fall  into  one  of  two  categories,             

Independent  Component  Analysis,  (ICA)  (Hyvarinen  et  al.  2000),(Casey  et  al.  2000)            

and  Computational  Auditory  Scene  Analysis,  (CASA)  (Rosenthal  et  al.  1998).  ICA  is             

a   statistical   source   separation   method   which   operates   under   the   assumption   that   the   
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latent  sources  have  the  property  of  mutual  statistical  independence  and  are            

non-gaussian.  In  addition  to  this,  ICA  assumes  that  there  are  at  least  as  many               

observation  mixtures  as  there  are  independent  sources.  Since  we  are  concerned  with             

musical  recordings,  we  will  have  at  most  only  2  observation  mixtures,  the  left  and               

right  channels.  This  makes  pure  ICA  unsuitable  for  the  problem  where  more  than  two               

sources  exist.  One  solution  to  the  degenerate  case  where  sources  outnumber  mixtures             

is  the  DUET  algorithm  (Jourjine  et  al.  2000),  (Rickard  et  al.  2001).  Unfortunately  this               

approach  has  restrictions  which  make  it  unsuitable  for  use  with  music.  CASA             

methods  on  the  other  hand,  attempt  to  decompose  a  sound  mixture  into  auditory              

events  which  are  then  grouped  according  to  perceptually  motivated  heuristics           

(Bregman,  1990),  such  as  common  onset  and  offset  of  harmonically  related            

components,  or  frequency  and  amplitude  co-modulation  of  components.  We  present  a            

novel  approach  which  we  term  Azimuth  Discrimination  and  Resynthesis,  (ADRess).           

The  approach  we  describe  is  a  fast  and  efficient  way  to  perform  sound  source               

separation   on   the   majority   of   stereophonic   recordings.  

 

3.3   -   BACKGROUND  

Since  the  advent  of  multichannel  recording  systems  in  the  early  1960’s,  most  musical              

recordings  are  made  in  such  a  fashion  whereby N  sources  are  recorded  individually,              

then  electrically  summed  and  distributed  across  2  channels  using  a  mixing  console.             

Image  localisation,  referring  to  the  apparent  position  of  a  particular  instrument  in  the              

stereo   field,   is   achieved   by   using   a   panoramic   potentiometer.    

70  

 



 

 

 

Digital   Audio   Effects   Conference   2004  

 

This  device  allows  a  single  sound  source  to  be  divided  into  two  channels  with               

continuously  variable  intensity  ratios  (Eargle,  1969).  By  virtue  of  this,  a  single  source              

may  be  virtually  positioned  at  any  point  between  the  speakers.  So  localisation  is              

achieved  by  creating  an  interaural  intensity  difference,  (IID).  This  is  a  well  known              

phenomenon  (Rayleigh,  1907).  The  pan  pot  was  devised  to  simulate  IID’s  by             

attenuating  the  source  signal  fed  to  one  reproduction  channel,  causing  it  to  be              

localised  more  in  the  opposite  channel.  This  means  that  for  any  single  source  in  such                

a  recording,  the  phase  of  a  source  is  coherent  between  left  and  right,  and  only  its                 

intensity  differs.  It  is  precisely  this  that  allows  us  to  perform  our  separation.  A  similar                

mixing  model  is  assumed  in  (Avendano  et  al.  2002)  and  (Avendano  et  al.  2003).  It                

must  be  noted  then,  that  our  method  is  only  applicable  to  recordings  such  as  described                

above.  Binaural,  Mid-Side,  or  Stereo  Pair  recordings  will  not  respond  as  well  to  this               

method   although   we   have   had   some   success   in   these   cases   also.  

 

3.4   -   METHOD  

Gain-scaling  is  applied  to  one  channel  so  that  a  source’s  intensity  becomes  equal  in               

both  left  and  right  channels.  A  simple  subtraction  of  the  channels  will  cause  that               

source  to  cancel  out  due  to  phase  cancellation.  The  cancelled  source  is  then  recovered               

by  creating  a  “frequency-azimuth”  plane,  which  is  analyzed  for  local  minima  along             

the  azimuth  axis.  These  local  minima  represent  points  at  which  some  gain  scalar              

caused   phase   cancellation.    
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It  is  observed  that  at  some  point  where  an  instrument  cancels,  only  the  frequencies               

which  it  contained  will  show  a  local  minima.  The  magnitude  and  phase  of  these               

minima  are  then  estimated  and  an  IFFT  in  conjunction  with  an  overlap  add  scheme  is                

used   to   resynthesise   the   cancelled   instrument.  

 

3.5   -   AZIMUTH   DISCRIMINATION  

The   mixing   process   we   have   described   can   be   expressed   as:  

 

    (3.1a)  

 

    (3.1b)  

 

where S j  are  the J  independent  sources, Pl j  and Pr j  are  the  left  and  right  panning                 

coefficients  for  the j th source,  and L  and R  are  the  resultant  left  and  right  channel                 

mixtures.  Our  algorithm  takes L ( t )  and R ( t )  as  it’s  inputs  and  attempts  to  recover S j ,                

the  sources.  We  can  see  from  equation  3.1a  and  3.1b  that  the  intensity  ratio  of  the j th                  

source,    g ( j ),   between   the   left   and   right   channels   can   be   expressed   as,  

 

 (3.2)  
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This  implies  that Pl j =  g ( j ) .Pr j .  So,  multiplying  the  right  channel, R ,  by g ( j )  will  make                  

the  intensity  of  the j th source  equal  in  left  and  right.  And  since L  and R  are  simply  the                    

superposition  of  the  scaled  sources,  then  will  cause  the j th source  to  cancel               

out. In  practice  we  use, ,  if  the j th source  is  predominant  in  the  right  channel                 

and, ,  if  the j th  source  is  predominant  in  the  left  channel.  This  serves  two                

purposes,  firstly  it  gives  us  a  range  for g ( j )  such  that: 0  ≤  g ( j )  ≤  1 .  Secondly,  it                   

ensures  that  we  are  always  scaling  one  channel  down  in  order  to  match  the  intensity                

of  a  particular  source,  thus  avoiding  distortion  caused  by  large  scaling  factors.  So  far               

we  have  only  described  how  it  is  possible  to  cancel  a  source  assuming  the  mixing                

model  we  have  presented.  In  order  to  utilise  this  data,  we  move  to  the  frequency                

domain.  We  divide  the  stereo  mixture  into  short  time  frames  and  carry  out  an  FFT  on                 

each,   

f (k) (n)WL = ∑
N1

n=0
L N

kn   (3.3a)  

f (k) (n)WR = ∑
N1

n=0
R N

kn   (3.3b)  

 

where and Lf  and Rf  are  short  time  frequency  domain  representations  W   e 
N =   j2π N/

            

of  the  left  and  right  channels  respectively.  In  practice  we  use  a  4096  point  FFT  with  a                  

Hanning  window  and  an  overlap  of  1024  points  at  a  sampling  frequency  of  44.1  KHz.                

We   create   a   frequency-azimuth   plane   for   left   and   right   channels   individually   as   in   
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figure  3.1.  The  azimuth  resolution, ß ,  refers  to  how  many  equally  spaced  gain  scaling               

values  of g  we  will  use  to  construct  the  frequency-azimuth  plane.  We  relate g  and ß  as                  

follows,  

 

  (3.4)  

 

for   all    i     where,    0   ≤    i    ≤    ß ,   and   where    i    and    ß    are   integer   values.  

 

Large  values  of ß  will  lead  to  more  accurate  azimuth  discrimination  but  will  increase               

the  computational  load.  Assuming  an N  point  FFT,  our  frequency-azimuth  plane  will             

be  an N   ×  ß  array  for  each  channel.  The  right  and  left  frequency-azimuth  plane  are                

then   constructed   using,  

 

 (3.5a)  

 (3.5b)  

 

for   all    i    and    k    where,    0   ≤    i    ≤    ß    ,   and    1   ≤    k   ≤    N .  

 

It  must  be  stated  that  we  are  using  the  term  “azimuth”  loosely.  We  are  not  dealing                 

with  angles  of  incidence.  The  azimuth  we  speak  of  is  purely  a  function  of  the  intensity                 

ratio,   created   by   the   pan   pot.  
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Figure   3.1:   The   Frequency-Azimuth   Spectrogram   for   the   right   channel.   We   used   2  
synthetic   sources   each   comprising   of   5   non-overlapping   partials.   The   arrows  

indicate   frequency   dependent   nulls   caused   by   phase   cancelation.  
 

 

Figure   3.2:   The   Frequency-Azimuth   Plane   for   the   right   channel.   The   magnitude   of  
the   frequency   dependent   nulls   are   estimated.   The   harmonic   structure   of   each  

source   is   now   clearly   visible   as   is   their   spatial   distribution.   In   order   to   estimate  
the   magnitude   of   these   nulls   we   redefine   equation   3.5a   and   3.5b:  
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In  order  to  illustrate  how  this  process  reveals  frequency  dependent  nulls,  we  generated              

two  test  signals,  each  with  5  unique  partials.  A  stereo  mix  was  created  such  that  both                 

sources  were  panned  to  the  right,  but  each  with  a  different  intensity  ratio.  Using  this                

test  signal,  the  frequency-azimuth  spectrogram  in  figure  3.1  was  created  using            

equation  3.5a,  with, ß =  100  and N =  1024.  It  can  clearly  be  seen  that  frequencies  have                   

separated   themselves   out   along   the   azimuth   plane   in   figure   3.1   and   3.2.  

 

      (3.6a)  

 

    (3.6b)  

 

Effectively,  we  are  turning  nulls  into  peaks  as  can  be  seen  in  figure  3.2.  However,  the                 

test  signal  described,  represents  the  ideal  case  where  there  is  no  harmonic  overlap              

between  2  sources.  This  is  almost  never  the  case  when  it  comes  to  tonal  music.                

Harmony  is  one  of  the  fundamentals  of  music  creation,  and  as  such  instruments  will               

more  often  than  not  be  playing  harmonically  related  notes  simultaneously  which            

implies  that  there  will  be  significant  harmonic  overlap  with  real  musical  signals.  The              

result  of  this  is  that  frequencies  will  not  group  themselves  as  neatly  across  the               

azimuth  plane  as  in  figure  3.2.  Instead,  we  observe frequency-azimuth  smearing ,            

whereby  the  frequency  components  from  a  single  source  will  cluster  loosely  around  a              

point  in  the  azimuth  plane  as  opposed  to  being  perfectly  positioned  at  precisely  one               

point.   This   occurs   when   two   or   more   sources   contain   energy   in   a   single   frequency   bin.   
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The  apparent  frequency  dependent  null  drifts  away  from  a  source  position  and  may  be               

at  a  minimum  at  a  position  where  there  is  no  source  at  all.  For  instance,  if  two  sources                   

in  different  positions,  contained  equal  energy  at  a  particular  frequency,  the  apparent             

null  will  appear  mid  way  between  the  two  sources.  It  is  the  case  that  only  sources                 

predominant  in  the  same  channel  will  affect  each  other.  A  source  in  the  left  channel                

will   not   have   an   effect   on   a   source   in   the   right   channel.   

 

To  overcome  this  problem,  we  define  a  user  specified  parameter,  the azimuth             

subspace  width , H ,  such  that .  This  allows  peaks  within  a  given             

neighbourhood  to  be  recovered.  These  azimuth  subspaces  can  be  overlapped  if  two             

sources  are  active  in  a  single  frequency  bin.  Peaks  that  drift  away  from  their  source                

positions  can  now  be  re-included  for  resynthesis.  A  wide  azimuth  subspace  will  result              

in  worse  rejection  of  nearby  sources.  On  the  other  hand  a  narrow  azimuth  subspace               

will  lead  to  poor  resynthesis  and  missing  frequency  components.  This  parameter  is             

varied  by  the  user  depending  on  the  proximity  of  neighbouring  sources.  Figure  3.3              

shows  the  same  two  test  signals  as  before  only  each  includes  one  extra  partial  of  the                 

same  frequency.  It  can  clearly  be  seen  that  the  common  frequency  component  is  now               

apparent  between  the  two  sources.  In  order  to  recover  it,  the  azimuth  subspace              

boundary  of  the  source  must  extend  beyond  it.  This  is  shown  for  source  one.  At  this                 

point  we  introduce  the  “discrimination  index”, d .  Where, 0  ≤  d  ≤  ß .  This  index, d ,                 

along  with  the  azimuth  subspace  width, H ,  will  define  what  portion  of  the              

frequency-azimuth   plane   is   extracted   for   resynthesis.  
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Figure   3.3:   The   Frequency-Azimuth   Plane.   The   common   partial   is   apparent  
between   the   2   sources.   The   azimuth   subspace   width   for   source   1,   H,   is   set   to  

include   the   common   partial.  
 

3.6   -   RESYNTHESIS  

In  order  to  resynthesise  only  one  source,  we  set  the  discrimination  index, d ,  to  the                

apparent  position  of  the  source.  In  figure  3.3,  there  are  2  sources,  one  at               

approximately  85  points  along  the  azimuth  axis,  and  the  other  at  33.  The  azimuth               

subspace  width, H ,  is  then  set  such  that  the  best  perceived  resynthesis  quality  is               

achieved.  In  practice,  we  centre  the  azimuth  subspace  over  the  discrimination  index             

such  that  the  subspace  spans  from d-H/2  to d+H/2 .  The  peaks  for  resynthesis  are  then                

extracted   using,   

 (3.7a)  

   

                       (3.7b)  
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The  resultant YR  and YL  are 1  x  N  arrays  containing  only  the  bin  magnitudes                

pertaining  to  a  particular  azimuth  subspace  as  defined  by d  and H .  At  this  point  it                 

should  be  noted  that,  if  two  sources  have  the  same  intensity  ratio,  i.e.  they  share  the                 

same  pan  position,  both  will  be  present  in  the  extracted  subspace.  This  is  particularly               

true  of  the  “centre”  position.  It  is  common  practice  in  audio  mixing  to  place  a  number                 

of  instruments  here,  usually  voice  and  very  often  bass  guitar  and  elements  of  the  drum                

kit  too.  In  this  instance,  band  limiting  can  be  used  to  further  isolate  the  source  of                 

interest.   

 

The  bin  phases  from  the  original  FFT  are  used  to  resynthesise  the  extracted  source,               

equation  3.8a  and  3.8b.  Once  we  have  bin  phases  and  magnitudes  we  can  convert               

from  polar  to  complex  form  using  equation  3.9.  The  azimuth  subspace  is  then              

resynthesised   using   the   IFFT,   equation   3.10.  

 

(3.8a)   

(3.8b)   

 

Returning   to   the   complex   form   using   equation   3.9.  

 

 (3.9)  

 

 

 

79  

 



 

 

 

Digital   Audio   Effects   Conference   2004  

 

We   resynthesise   our   short   time   signal   using   the   IFFT,   equation   3.10  

  

  (3.10)  

 

where   W   e 
n =   j2π N/

   

 

The  resynthesised  time  frames  are  then  recombined  using  a  standard  overlap  and  add              

scheme.  Due  to  the  fact  that  the  magnitude  spectrum  for  each  frame  and  source  is  an                 

estimate,  the  resynthesis  is  not  perfect.  The  windowing  function  is  not  preserved  and              

therefore  the  frames  at  the  output  do  not  tail  off  to  zero  as  you  might  expect.  As  a                   

result,  some  audible  distortion  may  be  present  at  the  frame  boundaries  in  the  form  of                

‘clicking’.  This  distortion  arises  from  the  fact  that  a  small  discontinuity  will  be              

present  at  the  frame  boundaries  arising  from  the  imperfect  preservation  of  the  window              

function.  This  was  resolved  by  multiplying  the  output  frames  by  a  suitable             

windowing  function  which  results  in  smoother  frame  transitions.  The  side  effect  of             

this  solution  is  that  an  overlap  of  75%  must  be  used  to  avoid  amplitude  modulation  in                 

the  output  signal.  It  is  intended  that  this  algorithm  will  run  in  real  time  and  that  the                  

control  parameters d  and H  be  set  subjectively  until  the  required  separation  is              

achieved.  In  effect,  the  user  sweeps  through  the  stereo  space  until  the  desired  source  is                

encountered.  In  much  the  same  way  as  a  pan  pot  places  a  source  at  some  position                 

between  left  and  right,  the  ADRess  algorithm  will  extract  a  source  from  some  position               

between   left   and   right.  
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3.7   -   TESTING   AND   RESULTS  

We  have  applied  the  ADRess  algorithm  to  a  number  of  commercial  recordings.  The              

degree  of  separation  achieved  depends  on  the  amount  of  sources,  the  source  proximity              

and  the  source  level.  If  sources  are  proximate,  it  is  likely  that  multiple  sources  may                

get  extracted.  If  there  is  a  large  number  of  sources,  partials  may  go  missing.  If  the                 

source  level  is  too  low,  the  resynthesis  may  have  a  bad  signal  to  noise  ratio.  In  general                  

though,  some  degree  of  separation  is  possible.  We  generated  a  synthetic  stereo  signal,              

using  5  general  midi  instruments;  bass,  piano,  drums,  vibraphone  and  French  horn.             

They   were   panned   to   5   unique   positions   as   in   Figure   3.4.  

 

 

Figure   3.4:   5   sources   panned   to   different   positions.   1=bass,   2=vibraphone,  
3=drums,   4=piano,   5=horn.  

 

The  piece  of  music  in  figure  3.5  was  generated  in  a  midi  editor  using  these  5                 

instruments.  The  polyphony  varies  throughout  the  2  bar  segment  with  up  to  9  notes               

sounding  at  once.  In  some  cases  2  instruments  are  playing  the  same  note  at  once.  This                 

poses  no  problem  for  ADRess  since  it  depends  only  on  a  positional  cue  for  separation.                

A  stereo  .wav  file  (figure  3.6)  was  then  created  using  the  score,  instruments  and               

panning  parameters  from  above.  This  file  was  then  processed  by  ADRess,  with  the              

relevant  parameters  set.  The  azimuth  resolution, ß ,  was  set  to  10  points  for  each  side                

giving  a  total  of  20  discrete  pan  locations  between  left  and  right.  Higher  values  of ß                 

will   give   greater   azimuth   resolution   but   it   is   largely   unnecessary   since   source   
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components  spread  out  across  the  azimuth  plane  and  will  need  an  increased  subspace              

width  to  recover  the  entire  source.  The  azimuth  subspace  width, H ,  was  set  to  2  in  all                  

cases,  corresponding  to  20%  of  the  entire  azimuth  subspace  width  of  the  channel              

being  processed.  The  discrimination  index, d ,  was  set  for  each  source  position.  A  high               

quality   of   separation   was   achieved   for   all   sources.   

 

Figure   3.5:   The   score   which   was   generated   for   the   5   instruments.  
 

 

Figure   3.6:   The   Stereo   Mixture   containing   5   panned   sources.  
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Figure   3.7:   The   5   original   sources   before   mixing   and   after   separation.  

 

The  resulting  separations  are  of  reasonably  high  quality.  There  are  some  obvious             

visual  differences  between  the  input  and  output  time  domain  plots  and  there  are  some               

obvious  audible  artefacts  but  the  quality  is  significantly  high.  Furthermore  when  the             

separations  are  ‘remixed’,  the  resultant  mixture  is  almost  free  from  artifacts.  These             

audio   examples   and   others   can   be   accessed   in   (Barry   2019).   

 

3.8   -   CONCLUSIONS  

We  have  presented  an  algorithm  which  is  able  to  perform  sound  source  separation  by               

decomposing  stereo  recordings  into  frequency-azimuth  subspaces.  These  subspaces         

can  then  be  resynthesised  individually,  resulting  in  source  separation.  The  only            

constraints   are   that   the   recording   is   made   in   the   fashion   described   in   Section   2,   and   
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that  the  sources  do  not  move  position  within  the  stereo  field.  We  feel  that  ADRess  is                 

applicable   to   a   large   percentage   of   commercial   recordings.  

 
Figure   3.8:   The   spectrogram   here   contains   the   original   horn   part   on   top   and   the   separated   horn   part  

using   ADRess   on   the   bottom.  
 

Figure  3.8  compares  the  spectrogram  of  the  horn  from  prior  to  mixing  (top)  and  after                

separation  (bottom).  It  should  be  clear  to  see  that  the  general  features  of  the  horn  have                 

been  captured  well  but  there  are  visible  and  audible  artefacts  from  other  sources              

included   in   the   separation.  

 

3.8.1   -   Future   Work  

It  is  apparent  when  listening  to  the  audio  separations  from  ADRess  that  transients  are               

often  smeared.  This  results  from  the  fact  that  the  window  length  of  4096  samples  is                

chosen  in  order  to  give  adequate  frequency  resolution  for  lower  octaves.  However,             

this  window  size  does  not  afford  adequate  time  resolution  for  higher  frequencies  and              

transients.  A  multi-resolution  approach  could  mitigate  this  problem.  By  splitting  the            
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audio  into  2  or  more  bands,  different  window  sizes  could  be  applied  in  order  to                

achieve   better   transient   response   without   affecting   lower   frequencies.   

 

Also  worthy  of  further  investigation  is  the  possibility  of  automatically  choosing  the             

best  algorithm  parameters  (azimuth  and  width)  based  on  the  observed  properties  of             

the   frequency   azimuth   plane.   
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3.9   -   REAL-TIME   ADDITIONS  

The  paper  above  alluded  to  the  ability  to  operate  in  real  time  but  omitted  the  details  of                  

how  this  could  be  achieved.  The  specific  real-time  buffering  scheme  used  was             

published  later  in  (Barry  et  al.  2008).  What  follows  is  an  excerpt  from  that  article                

describing   the   scheme.  

 

Real-time   Buffer   Scheme  

One  of  the  key  issues  in  a  real-time  implementation  is  the  choice  of  buffer  scheme                

and  for  completeness  sake  we  suggest  a  suitable  scheme  here.  In  offline  processing,              

the  entire  signal  is  overlapped  and  concatenated  before  playback.  However,  in  a             

real-time  environment,  a  constant  stream  of  processed  audio  must  be  outputted  and             

consecutive  output  frames  must  be  continuous.  In  order  for  seamless  concatenation,            

the  boundaries  of  each  output  frame  must  be  at  the  constant  gain  associated  with  the                

overlap  factor  in  order  to  avoid  modulation.  The  method  presented  below  addresses             

this  concern.  For  reasons  discussed  in  previous  sections,  a  75%  overlap  is             

recommended.  This  effectively  means  that  at  any  one  time  instant,  4  analysis  frames              

are   actively   contributing   to   the   current   output   frame.  

 

In  Figure  3.9,  the  audio  to  be  processed  is  divided  into  overlapping  frames  of  length                

N .  In  order  to  output  a  processed  frame,  4  full  frames  would  need  to  be  processed  and                  

overlapped.  This  leads  to  considerable  latency  from  the  time  a  parameter  change  is              

affected   to   the   time   when   its   effects   are   audible   at   the   output.  
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Figure   3.9.   The   relationship   between   input   and   output   frames   for   α   =1  
 

However,  given  that  the  synthesis  hop  size  is  fixed  at R s = R a ,  we  can  load  and  process                 

a  single  frame  of  length N ,  output  ¼  of  the  frame,  and  retain  the  rest  in  a  buffer  to                    

overlap  with  audio  in  successive  output  frames.  To  do  this,  a  buffer  of  length N  is                 

required  in  which  the  current  processed  frame  (with  synthesis  window  applied)  is             

placed.  Three  additional  buffers  of  length , and will  also  be  required  to  store              

remaining  segments  from  the  three  previously  processed  frames.  Each  output  frame  of             

length     is   then   generated   by   summing   samples   from   each   of   these   four   buffers.   

 

Figure  3.10  shows  how  the  buffer  scheme  works.  On  each  iteration u ,  a  full  frame, F u ,                 

of  length N  is  processed  and  placed  in  buffer  1.  The  remaining  samples  from  the  three                 

previous  frames  occupy  buffers  2,  3  and  4.  The  required  output  frame  of  length ,                

S u ,   is   generated   as   defined   in   equation   3.11.  

(3.11)  
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Figure   3.10.   Real-time   output   buffer   scheme   using   a   75%   overlap.   The   gray   arrows   indicate   how  
each   segment   of   each   buffer   is   shifted   after   the   output   frame   has   been   generated.   

 

From  equation  3.11,  it  can  be  seen  that  the  output  frame, ,  is  generated  by                

summing  the  first  samples  form  each  buffer.  Once  the  output  frame  has  been               

generated  and  outputted,  the  first  samples  in  each  buffer  can  be  discarded.  The               

data  in  all  buffers  must  now  be  shifted  in  order  to  prepare  for  the  next  iteration.  The                  

gray  arrows  in  Figure  3.10  illustrate  how  each  segment  of  each  buffer  is  shifted  in                

order  to  accommodate  a  newly  processed  frame  in  the  next  iteration.  The  order  in               

which  the  buffers  are  shifted  is  vital.  Buffer  4  is  filled  with  the  remaining  samples                 

from  buffer  3,  buffer  3  is  then  filled  with  the  remaining  samples  from  buffer  2,                 

and  finally  buffer  2  is  filled  with  the  remaining  samples  from  buffer  1.  Buffer  1                 

is  now  empty  and  ready  to  receive  the  next  processed  frame  of  length N .  The  result  of                  

this  scheme,  is  that  ¼  of  a  processed  frame  will  be  outputted  at  time  intervals  of R s ,                  

which  is  equal  to  samples.  Using  the  suggested  frame  size  of  4096  samples,  the                

output  will  be  updated  every  1024  samples  which  is  approximately  equal  to  23.2              

milliseconds.  The  audio  will  be  processed  with  newly  updated  parameters  every  23.2             

milliseconds,  but  the  latency  will  be  larger  than  this  and  depends  on  the  time  required                
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to  access  and  write  to  hardware  buffers  in  the  audio  interface.  In  general,  it  is  possible                 

to   achieve   latencies   <   40ms.  

 

3.10   COMPARATIVE   TESTING  

A  set  of  objective  testing  measures  to  compare  source  separation  algorithms  was             

proposed  in (Vincent  et  al.  2006) .  The  following  year,  an  open  blind  source  separation               

evaluation  campaign  was  undertaken  and  the  results  were  published  in  (Vincent  et  al.              

2007).  Within  this  campaign,  ADRess  was  compared  against  10  other  algorithms            

using  four  objective  measures  across  4  audio  mixtures  with  various  numbers  and             

types  of  sources.  The  four  objective  measures  detailed  in  (Vincent  et  al.  2006  and               

2007)   are   as   follows:  

● Source   Image   to   Spatial   distortion   Ratio   (ISR)  

● Source   to   Interference   Ratio   (SIR)  

● Sources   to   Artifacts   Ratio   (SAR)  

● Source  to  Distortion  Ratio  (SDR)  which  is  a  weighted  average  of  the  previous              

3   metrics  

The   four   audio   mixtures   are   described   as   follows:  

● Female :  Four  female  voices  speaking  simultaneously  in  different  languages,          

panned   to   different   locations   in   the   stereo   mixture.  

● Male: Four  male  voices  speaking  simultaneously  in  different  languages,          

panned   to   different   locations   in   the   stereo   mixture.  
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● No  Drums: Electric  Guitar,  Acoustic  Guitar  and  Bass  panned  to  different            

locations   in   the   stereo   mixture.  

● With  Drums: Bass,  kick,  snare  and  hi  hat  panned  to  different  locations  in  the               

stereo   mixture.   For   clarity   the   kick   and   snare   are   panned   to   the   same   location.  

Each  of  the  algorithms  tested  in  the  evaluation  campaign  is  summarised  in  Table  3.1               

below.  

 

Table   3.1   -   Summary   of   algorithms   compared   in   the   2007   BSS   Evaluation   Campaign.  
Reproduced   from   (Vincent   et   al.   2007)  

 

The  original  published  results  ranked  ADRess  in  6th  place  out  of  11  algorithms  with               

respect  to  the  overall  SDR  measure.  However,  the  authors  noted  that  the  submitted              

test  results  from  ADRess  were  hampered  due  to  the  fact  that  they  contained “strong               

time-localized  interference  within  the  last  100  ms  of  each  estimated  source  image             

signal” (Vincent  et  al.  2007  b).  This  led  to  degradation  of  the  objective  results  for  the                 
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ADRess  algorithm,  the  cause  of  which  was  an  error  on  my  part  when  processing  the                

test  material.  After  the  fact,  the  ADRess  algorithm  was  retested  with  the  processing              

error  corrected.  Table  3.2  shows  the  results  as  published  in  (Vincent  et  al.  2007)  but                

with  the  retested  results  for  ADRess  once  the  error  had  been  corrected.  The  results               

show  that  ADRess  ranked  number  2  in  11  out  of  14  examples  for  the  SDR                

measurement.  ADRess  was  outperformed  by  Vincent’s  own  algorithm  (Vincent  2007)           

in  12  of  the  examples.  However,  ADRess  did  rank  first  for  average  ISR  performance.               

Table  3.2  below  uses  a  colour  key  to  indicate  how  ADRess  ranked  for  SDR  in  each                 

individual  example.  Although  it  was  not  the  focus  of  the  evaluation  campaign,  the              

authors  noted  that  ADRess  was  the  only  algorithm  operating  in  real  time  or  faster.               

Figure  3.11  and  3.12  depict  waveform  comparisons  between  separations  produced  by            

ADRess  and  (Vincent  2007)  for  all  14  sources  across  all  4  mixtures.  Column  A  shows                

all  of  the  original  mixtures  prior  to  mixing,  column  B  shows  all  the  separations  from                

ADRess  and  column  C  shows  all  the  separations  from  (Vincent  2007).  From             

inspection,  it  can  be  seen  that  the  separations  produced  by  ADRess  and  (Vincent              

2007)  are  broadly  similar  in  a  visual  sense.  Generally,  they  tend  to  succeed  and  fail  in                 

capturing  the  original  waveforms  on  the  same  examples.  For  example,  in “No  Drums              

1  -  Bass”  in  Figure  3.12,  it  can  be  seen  that  both  ADRess  and  (Vincent  2007)                 

captured  the  waveform  characteristics  well  but  in “No  Drums  2  -  Electric  Guitar”,              

both  algorithms  failed  to  capture  the  waveform  in  a  visual  sense.  However,  there  are               

some  examples  where  one  captures  the  original  waveform  better  than  the  other.  In              

“With  Drums  -  Hi  hat” in  Figure  3.12,  ADRess  appears  to  capture  the  waveform               

characteristics   better   than   (Vincent   2007).  
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Table   3.2   -   Blind   Source   Separation   Evaluation   Campaign   results   (Vincent   et   al.   2007)   with  
retested   ADRess   results.   Ranking   key:   Red   =   1   ,   Yellow   =   2,   Blue   =   3,   Green   =   4  
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Figure   3.11   -   Waveform   comparisons   for   speech   separation   between    A :   Original   sources   prior  
to   mixing,    B :   ADRess   separations   and    C :   (Vincent   2007)   separations   

93  

 



 

 

 

           A        B                  C  

 

Figure   3.12   -   Waveform   comparisons   for   music   separations   between    A :   Original   sources   prior  
to   mixing,    B :   ADRess   separations   and    C :   (Vincent   2007)   separations  

 

 

Audio  examples  for  all  of  the  test  material  described  above  can  be  accessed  at  (Barry                

2019).  
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3.10.1   Subjective   Audio   Quality  

Subjective  testing  was  not  conducted  as  part  of  the  open  evaluation  campaign             

described  in  the  previous  section  but  I  would  encourage  the  reader  to  compare  the               

audio  results  available  at  the  website  accompanying  this  document  (Barry  2019).            

Here,  I  would  like  to  describe  the  subjective  quality  of  separated  sources  using  the               

ADRess  algorithm.  Firstly,  it  should  be  noted  that  both  the  subjective  and  objective              

quality   achievable   will   depend   greatly   on   the   following   characteristics   of   the   mixture:  

 

1. The  number  of  sources  in  the  mixture.  The  more  sources  present,  the  worse              

any   single   separated   source   is   likely   to   be   in   terms   of   subjective   audio   quality.  

2. The  pan  position  of  the  sources  in  the  mixture.  If  sources  are  panned  to  the                

same  position  in  the  mix,  they  cannot  be  separated.  Unique  and  maximally             

distant   pan   positions   will   lead   to   greater   flexibility   for   separation  

3. The  amount  of  time-frequency  overlap  between  the  sources.  If  sources  occupy            

the  same  time-frequency  bins  in  the  STFT,  sub-optimal  separation  will  result.            

W-DO  sources  will  separate  optimally  given  that  they  do  not  overlap            

significantly   in   a   time-frequency   representation.  

4. The  algorithm  parameter  settings.  Minimising  neighbouring  source        

interference  through  narrow  azimuth  subspace  width  settings  will  usually  lead           

to   more   separation   but   at   the   cost   of   timbral   fidelity.   

 

The  limitations  described  above  lead  to  the  following  subjective  artefacts  in  the             

separated   sources.  
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Interference  from  neighbouring  sources: The  most  common  artefact  associated          

with  the  source  separation  process  is  interference  from  neighbouring  sources.  This            

interference  can  range  from  clearly  audible  traces  of  other  sources  down  to  barely              

noticeable  residual  noise  which  manifests  as  gurgle  or  bell  type  sounds.  In  general,              

smaller  values  for  the  azimuth  subspace  width  will  lead  to  more  gurgle/bell  artefacts              

but  with  greater  suppression  of  neighbouring  sources.  Larger  values,  will  lead  to  a              

higher  fidelity  reproduction  of  a  single  source  but  with  very  audible  traces  of              

neighbouring   sources.  

 

Phasiness  artefacts: Phasiness  is  normally  associated  with  the  phase  vocoder  but  is             

common  in  many  processes  which  modify  either  the  magnitude  spectrum  or  phase             

spectrum.  It  is  sometimes  described  as  sounding  like  reverberation  or  a  swishing             

sound  in  the  background.  It  is  generally  caused  by  the  fact  that  the  phase  values  are  no                  

longer  valid  for  the  modified  magnitude  spectrum  (or  vice  versa)  during  the  inversion              

process.  In  the  case  of  ADRess,  only  the  magnitude  spectrum  is  modified  and  the               

original  phases  are  used.  As  a  result,  the  separated  source  is  forced  to  use  the  values                 

obtained  from  the  mixture  of  all  sources.  This  is  intuitively  suboptimal  and  leads  to               

the   phasey   artefacts   described.   

  

Transient  Smearing: In  order  to  achieve  good  frequency  resolution  in  lower  octaves,             

we  use  an  analysis  window  size  of  4096  samples  at  44100  Hz.  This  gives  an                

approximate  bin  width  of  10.71  Hz  which  is  required  for  separation  of  low  bass  notes.                

Although  it  gives  a  suitable  frequency  resolution,  this  window  size  is  too  large  to  give                

good  temporal  resolution.  Because  of  this,  rapidly  changing  temporal  events  such  as             
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transients  are  poorly  represented  in  the  time-frequency  domain  and  when  subjected  to             

the  source  separation  process  are  often  badly  corrupted.  Effectively,  the  same  transient             

ends  up  being  processed  slightly  differently  in  four  consecutive  frames  (due  to  75%              

overlap)  which  results  in  transient  smearing  upon  resynthesis.  Timbrally,  it  sounds  as             

if  the  sharp  attacks  of  transients  have  been  softened.  The  degree  to  which  this  happens                

depends   largely   on   the   four   factors   listed   above.  

 

Despite  the  artefacts  described  above,  the  subjective  quality  of  ADRess  is  adequate             

for  many  of  its  uses  including  music  education  and  upmixing.  In  chapter  6,  we               

illustrate  that  these  artefacts  can  be  masked  when  ADRess  is  used  for  the  task  of                

upmixing.  

 

In  this  chapter  my  principal  novel  contribution  has  been  presented  -  the  ADRess              

algorithm.  The  following  four  chapters  present  further  contributions  built  upon  the            

ADRess  algorithm.  The  next  chapter  explores  two  alternative  signal  reconstruction           

methods  for  the  ADRess  algorithm  which  ordinarily  uses  an  inverse  fast  fourier             

transform  to  synthesise  the  separated  source(s).  The  two  alternative  algorithms           

explored  in  the  following  chapter  are  “ Magnitude  Only  Reconstruction ”  and           

“ Sinusoidal  Modeling ”.  The  former  was  chosen  because  the  ADRess  algorithm  makes            

no  attempt  to  do  phase  reconstruction,  only  magnitude  reconstruction.  The  latter  was             

chosen  to  mitigate  some  of  the  frequency  domain  artefacts  which  can  be  present  in  the                

ADRess   outputs.  
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CHAPTER   4:   COMPARISON   OF   SIGNAL   RECONSTRUCTION   METHODS  

FOR   THE   AZIMUTH   DISCRIMINATION   AND   RESYNTHESIS  

ALGORITHM  

This  chapter  presents  a  minor  contribution  of  this  dissertation  which  extends  my  work              

on  the  Azimuth  Discrimination  and  Resynthesis  algorithm  (ADRess).  It  was           

originally  published  at  the  Audio  Engineering  Society  Convention  in  2005  (AES  118)             

and  is  presented  here  in  its  entirety.  The  paper  included  co-authors  Eugene  Coyle  and               

Bob   Lawlor   who   acted   as   my   PhD   supervisors   at   the   time.   
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4.1   -   ABSTRACT  

The  Azimuth  Discrimination  and  Resynthesis  algorithm,  (ADRess),  has  been  shown           

to  produce  high  quality  sound  source  separation  results  for  intensity  panned  stereo             

recordings.  There  are  however,  artifacts  such  as  phasiness  which  become  apparent  in             

the  separated  signals  under  certain  conditions.  This  is  largely  due  to  the  fact  that  only                

the  magnitude  spectra  for  the  separated  sources  are  estimated.  Each  source  is  then              

resynthesised  using  the  phase  information  obtained  from  the  original  mixture.  This            

paper  describes  the  nature  and  origin  of  the  associated  artifacts  and  proposes             

alternative  techniques  for  resynthesising  the  separated  signals.  A  comparison  of  each            

technique   is   then   presented  

 

4.2   -   INTRODUCTION  

The  ADRess  algorithm  (Barry  et  al.  2004)  and  (Barry  et  al.  2004  b)  performs  the  task                 

of  source  separation  based  on  the  lateral  displacement  of  a  source  within  the  stereo               

field.  The  algorithm  exploits  the  use  of  the  “pan  pot”  as  a  means  to  achieve  image                 

localisation  within  stereophonic  recordings.  As  such,  only  an  interaural  intensity           

difference  exists  between  left  and  right  channels  for  a  single  source.  Gain  scaling  and               

phase  cancellation  techniques  are  used  in  the  frequency  domain  to  expose  frequency             

dependent  nulls  across  the  azimuth  plane.  The  position  of  these  nulls  in  conjunction              

with  magnitude  estimation  and  grouping  techniques  are  then  used  to  estimate  the             

spectra   of   the   separated   sources.   
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Although  the  magnitude  spectra  are  good  approximations  of  the  original  source            

spectra,  the  algorithm  makes  no  attempt  at  finding  a  set  of  phase  approximations  for               

source  resynthesis.  Instead,  the  phase  information  taken  from  the  original  mixture  is             

used  for  all  sources.  This  is  shown  to  be  acceptable  in  the  majority  of  cases  but                 

artifacts  such  as  phasiness  can  exist.  This  is  particularly  noticeable  in  percussive  or              

transient  audio.  Other  artifacts  can  arise  when  two  sources  overlapping  in  the             

time-frequency  domain  are  positioned  in  close  proximity  to  each  other  in  stereo  space.              

These  artifacts  are  the  result  of  what  is  identified  as  ‘frequency-azimuth  smearing’  in              

(Barry  et  al.  2004  b).  Effectively,  low  energy  sources  can  be  significantly  degraded  by               

high  energy  sources  in  the  stereo  mixture.  For  example,  a  sustained  note  within  one               

separation  may  contain  amplitude  modulation  or  even  complete  dropouts  due  to  the             

onset   of   a   drum   which   has   been   panned   to   a   similar   position.   

 

The  signal  reconstruction  in  the  original  ADRess  algorithm  is  achieved  by  inverting             

the  short-time  Fourier  Transform  (STFT)  of  the  separated  source  spectra  with  the             

original  mixture  phases.  In  this  paper  we  explore  the  use  of  alternate  signal              

reconstruction  methods.  Since  there  is  no  method  for  determining  the  original  phase             

contributions  of  each  source  in  a  mixture,  we  must  rely  solely  on  the  magnitude               

spectra  of  the  separated  sources.  For  this  reason,  the  “magnitude-only”  reconstruction            

technique  in  (Griffin  et  al.  1984)  is  proposed.  A  Sinusoidal  Model  (McAuley  et  al.               

1986)   resynthesis   is   also   presented   here   as   an   alternative   reconstruction   method.  
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The  separated  spectra  produced  by  ADRess  are  simply  estimates  of  the  actual  source              

spectra  and  as  such  may  be  distorted,  i.e.  the  lobes  associated  with  peaks  in  the                

frequency  domain  can  become  smeared  which  would  lead  to  artifacts  on  resynthesis.             

A  sinusoidal  model  reconstruction  may  provide  better  results  on  the  basis  that  only              

the   peaks   in   the   frequency   domain   are   extracted   for   resynthesis.   

 

4.3   -   BACKGROUND  

The  ADRess  algorithm  achieves  source  separation  by  taking  advantage  of  destructive            

phase  cancellation  in  the  frequency  domain.  One  channel  is  iteratively  gain  scaled  and              

subtracted  from  the  other  in  the  complex  frequency  domain  after  which  the  modulus              

is  taken.  The  resulting  array  is  of  dimension N ×  ß ,  where N  is  the  number  of                  

frequency  points  and ß ,  the  azimuth  resolution,  is  the  number  of  equally  spaced  gain               

scalars  between  0  and  1.  The  operation  reveals  local  minima,  due  to  phase              

cancellation,  across  the  azimuth  plane  for  each  frequency  component.  Components           

belonging  to  a  single  source  are  seen  to  have  their  minima  in  a  localised  region  about                 

some  gain  scalar  which  ultimately  refers  to  the  pan  position  of  the  source  in  stereo                

space.  

  

The  process  can  be  described  as  follows;  firstly  we  take  the  fast  Fourier  transform               

(FFT)  of  a  windowed  (typically  raised  cosine)  short  time  segment  of  length N  of  each                

channel,  
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(4.1)  

 

where and  similarly  for  the  right  channel  yielding Lf(k)  and Rf(k)  which             

represent  short  time  complex  frequency  representations  of  the  left  and  right  signal.             

The  iterative  gain  scaling  process  results  in  what  is  termed  a  ‘frequency-azimuth             

plane’   and   is   constructed   using   equation   4.2,   

 

 (4.2)  

 

where 1  ≤  k  ≤  N  and  where g(i)=i/ß ,  for  all i  where, 0  ≤  i  ≤  ß ,  and  where i  and ß  are                         

integer   values.  

 

Figure   4.1:   One   channel   is   iteratively   gain   scaled   and   subtracted   from   the   other   in   the   complex  
frequency   domain   for   each   bin.   A   local   minimum   in   this   function   occurs   at   the   point   of   maximum   phase  

cancelation.   This   point   is   deemed   to   be   the   azimuth   location   of   that   frequency   component.   
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ß  refers  to  the  number  of  gain  scalars  to  be  used  and  ultimately  gives  rise  to  the                   

resolution  achieved  in  the  azimuth  plane.  For  example, ß =10,  will  result  in  10  discrete               

azimuth  positions  for  each  channel,  i.e.  20  positions  from  left  to  right.  equation  4.2               

represents  the  left  half  of  the  azimuth  plane, AzL(k,i) ;  the  right  half  is  created  by                

changing  the  positions  of  the  left  and  right  variables  above.  figure  4.1  shows  the  result                

of   the   above   function   for   one   frequency   component,    k =110.  

 

In  figure  4.2,  it  can  be  seen  that  the  minima  for  multiple  components  from  two                

sources  align  along  the  relevant  source  positions.  These  local  minima  represent  the             

points  at  which  frequency  components  experience  a  drop  in  energy  due  to  destructive              

phase  cancellation.  This  energy  drop  is  directly  proportional  to  the  amount  of  energy              

which  the  cancelled  source  had  contributed  to  the  overall  mixture  and  so  to  invert               

these  minima  around  a  single  azimuth  point  should  yield  short-time  magnitude  spectra             

of  the  individual  sources.  To  do  this  inversion  we  simply  subtract  the  minimum  from               

the   maximum   of   the   function   as   shown   in   figure   4.1   and   described   by   equation   4.3.   

 

To   invert   the   minima   we   use   equation   4.3.  

 

        (4.3)  
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Figure   4.2:   Local   minima   for   2   complex   sources.  

 

The  effect  of  this  operation  is  to  turn  the  minima  or  nulls  into  peaks.  equation  4.3                 

must  be  performed  for  both  left  and  right  frequency  azimuth  planes.  At  this  point  we                

have  separated  out  all  frequency  components  according  to  the  azimuth  positions  at             

which  they  cancelled.  It  is  the  case  that  frequency  components  and  their  relative              

magnitudes  relating  to  a  single  source  will  be  grouped  around  a  single  azimuth              

position  which  corresponds  to  the  pan  position  of  the  source.  In  order  to  resynthesise               

a  source,  we  simply  extract  the  portion  of  the  frequency  azimuth  plane  around  an               

azimuth   position   using   equation   4.4,  

 

   (4.4)  
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where d  is  the  azimuth  index,  i.e.  the  azimuth  position  of  the  source  for  separation  and                 

H  is  the  azimuth  subspace  width  which  is  simply  a  neighborhood  around  the  azimuth               

index. YR(k)  is  now  an N  x  1  array  containing  the  short-time  magnitude  spectrum  of  a                 

single  source  or  azimuth  subspace.  Typically  at  this  point,  we  use  an  IFFT  with  the                

original  mixture  phases  and  a  standard  overlap  add  technique  to  resynthesise  the             

signal.  One  problem  is  that  the  estimated  spectra  no  longer  have  the  windowed              

characteristics  of  the  signal  due  to  the  ADRess  process.  For  this  reason  a  synthesis               

window  must  also  be  applied  to  avoid  discontinuities  in  the  resynthesised  signal.             

Furthermore,  the  overlap  is  set  at  3/4  the  frame  size  (75%)  to  avoid  modulation  in  the                 

resynthesis  since  we  have  effectively  windowed  the  data  twice.  This  reconstruction            

method  gives  satisfactory  results  even  though  no  phase  estimates  are  provided  for  the              

separated  sources.  In  the  next  section,  we  attempt  a  reconstruction  with  only  the              

magnitude   spectra   which   ADRess   produces.   

 

4.4   -   MAGNITUDE   ONLY   RECONSTRUCTION  

In  (Griffin  et  al.  1984),  the  authors  propose  an  iterative  technique  which  allows  a               

signal  to  be  reconstructed,  given  only  the  modified  short-time  Fourier  transform            

magnitudes  (MSTFTM)  and  a  set  of  initial,  or  even  random  phases.  The  approach  is               

based  on  the  fact  that  not  all  STFTs  are  ‘valid’  in  the  sense  that  there  may  not  exist  a                    

sequence  of  time  values  which  would  yield  a  given  STFT.  This  is  the  case  with  many                 

frequency-domain techniques   for   sound   source   separation,   in   that,   typically   only   the   
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magnitude  spectra  of  the  sources  are  estimated.  These  estimated  spectra  do  not             

correspond  to  any  ’real’  signal.  The  algorithm  in  (Griffin  et  al.  1984)  attempts  to  find                

a  real  signal  whose  STFT  is  closest  in  a  least  squared  error  sense  to  the  MSTFTM                 

which  is  provided.  Using  a  standard  windowed  overlap  add  procedure,  the  algorithm             

iterates  between  the  time  and  frequency  domain.  During  each  iteration  the  phases  are              

altered  due  to  the  influence  of  two  consecutive  frames  overlapping,  however,  the             

re-synthesis  for  any  given  iteration  always  uses  the  original  MSTFTM  and  the             

updated  phases.  It  is  shown  by  the  distance  measure  described  by  equation  4.5,  that               

the  squared  error  between  the  STFT  of  the  real  signal  and  the  MSTFTM  is  reduced  in                 

each  iteration.  Through  this  process  a  set  of  phase  approximations  can  be  arrived  at.               

As  the  iterations  increase,  the  phase  estimates  become  more  accurate  until  a  critical              

point   is   reached,   after   which   no   significant   improvement   is   achieved.   

 

 (4.5)  

 

D i  represents  the  distance  between  the  STFT  of  the  resynthesised  signal  after  the i th               

iteration,  |   |,  and  the  given  MSTFTM,  | |,  where m  is  a  frame            

index  and S  is  the  hopsize.  In  equation  4.5,          ,  is  notated  as  such  to  emphasize        

the  fact  that is  a  valid  STFT,  whereas may  not  be.  For  the i th               

iteration   then,   the   resynthesised   signal   is   given   by   equation   4.6.  

 

 (4.6)  
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For  the  first  iteration, i=1 ,  a  set  of  random  phases  are  chosen.  The  purpose  of  using                 

this  algorithm  as  a  resynthesis  method  for  ADRess  was  to  determine  whether  a  better               

set  of  phase  approximations  could  be  arrived  at  than  simply  using  the  original  mixture               

phases.  The  distance  measure ,  given  by  equation  4.5,  was  used  to  ascertain  which              

set  of  phase  estimates  give  the  best  resynthesis  in  a  least  squared  error  sense.               

Furthermore,  the  original  mixture  phases  were  used  as  the  initial  phase  estimates  for  a               

magnitude  only  reconstruction  to  see  if  the  algorithm  would  converge  to  even  better              

phase  estimates  with  fewer  iterations.  Figure  4.3  shows  that  the  distance  is  reduced              

for  each  iteration  where  the  initial  phase  estimates  are  random,  but  the  error  is  never                

less   than   that   of   simply   using   the   original   phases,   even   after   100   iterations.   

 

 

Figure   4.3:   The   error   reduction   as   a   result   of   several   iterations.   Note   that   the   iterative   phase   estimates  
never   improve   on   the   original   mixture   phase   estimates.   
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Informal  listening  tests  suggest  that  there  is  no  perceivable  advantage  to  using  a              

magnitude  only  reconstruction  and  that  the  original  mixture  phases  provide  better            

results  without  any  iteration  than  a  magnitude  only  reconstruction  with  several            

iterations.  An  improved  version  of  the  above  technique  was  employed  by  Slaney  for              

correlogram  inversion  (Slaney  et  al.  1994).  The  principal  difference  here  is  that  a              

synchronized  overlap-add  procedure (Roucos  et  al.  1985)  is  used  to  obtain  the  optimal              

frame  overlap  position  to  ensure  horizontal  phase  coherence.  Ultimately  this           

procedure  causes  the  algorithm  to  converge  with  fewer  iterations  but  no  perceptual             

improvement   is   achieved.   

 

4.5   -   SINUSOIDAL   MODEL   RECONSTRUCTION  

Sinusoidal  modeling  is  a  well  known  analysis/synthesis  technique  for  sound  modeling            

and  manipulation  (McAuley  et  al.  1986)  and  (Serra,  1997).  The  technique  is  based  on               

the  fact  that  complex  musical  signals  can  be  represented  as  a  sum  of  sinusoids  with                

time  varying  amplitudes,  phases  and  frequencies.  These  parameters  are  generally           

extracted  from  a  time-frequency  representation  such  as  the  STFT  where  a  sinusoid  is              

represented  by  a  well  defined  peak  with  a  predictable  lobe  according  to  the              

windowing  parameters  used  in  the  analysis  stage.  A  peak  is  usually  regarded  as  any               

bin  with  a  magnitude  greater  than  that  of  its  two  nearest  neighbors.  The  true               

frequency  of  the  peak  can  be  calculated  using  either  the  phase  derivative  or  by  using                

parabolic  interpolation.  The  magnitude  is  then  taken  to  be  the  true  maximum  of  the               

interpolated   curve.   A   peak   continuation   algorithm   tracks   peaks   from   frame   to   frame   to   
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form  trajectories.  It  attempts  to  find  a  peak  in  the  next  frame  with  a  similar  amplitude                 

and  frequency  to  a  peak  in  the  previous  frame  within  some  threshold  of  frequency               

deviation.  These  frequency,  amplitude  and  phase  values  are  then  interpolated  to  create             

sinusoidal  tracks  with  time  varying  amplitudes  and  frequencies  which  can  easily  be             

synthesized.  This  is  referred  to  as  the  deterministic  synthesis  which  corresponds  to  the              

steady  state  harmonic  portions  of  a  signal.  The  deterministic  signal  can  be  accurately              

modeled  using  only  the  frequency  and  amplitude  parameters  of  the  interpolated            

tracks.  The  ‘noise  like’  or  stochastic  parts  of  the  signal  can  be  estimated  by               

subtracting  the  deterministic  signal  from  the  original  signal.  In  this  case  however,  the              

deterministic  synthesis  must  contain  the  instantaneous  phase  values  obtained  in  the            

analysis  stage.  The  residual  which  is  assumed  to  be  stochastic,  is  then  usually              

modeled  as  time  varying  filtered  noise.  The  basic  sinusoidal  model  architecture  has             

been  described  here  but  there  are  many  heuristics  which  control  the  behavior  of  the               

peak  continuation  algorithm.  One  such  heuristic  gives  us  the  ability  to  discard             

sinusoidal  tracks  which  are  shorter  than  a  specified  duration.  This  is  of  particular              

interest  to  us  since  the  separations  achieved  with  the  ADRess  algorithm  are  subject  to               

brief  interference  from  neighboring  sources.  This  sort  of  interference  as  well  as  noise,              

appears  as  ‘speckling’  on  the  spectrogram  of  the  separated  source.  The  ability  to              

remove  trajectories  with  such  short  duration  should  allow  a  cleaner  resynthesis  of  the              

deterministic  parts  of  the  signal.  Here  we  use  a  modified  sinusoidal  model             

implemented  by  Ellis  (Ellis,  2003)  to  carry  out  the  resynthesis  of  the  separated  source               

spectra   generated   by   the   ADRess   algorithm.   The   sinusoidal   modeling   technique   is   
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quite  flexible,  but  this  flexibility  comes  at  a  cost;  adjusting  the  algorithm  parameters              

for  optimal  performance  depends  largely  on  the  signal  characteristics  and  so            

configuring  the  algorithm  can  be  quite  tedious.  For  the  example  shown  in  Figure  4.4,               

the  algorithm  was  configured  in  such  a  way  as  to  reject  as  much  noise  and                

neighboring  source  interference  as  possible.  Trajectories  with  durations  less  than  6            

frames  were  also  discarded.  The  source  in  this  case  was  a  saxophone  which  has  been                

separated  from  a  mixture  of  piano,  bass,  saxophone  and  drums.  The  sinusoidal  model              

resynthesis  although  cleaner  in  the  pitched  regions  suffers  from  artifacts  when            

parameters  are  incorrectly  set.  The  task  of  determining  how  much  of  the  residual              

signal  belongs  to  the  signal  and  how  much  is  unwanted  noise  can  be  difficult, making                

threshold  setting  very  much  a  trial  and  error  procedure.  However,  the  results  are              

compelling,  and  the  sinusoidal  model  could  be  adapted  for  the  purposes  of  an  offline               

resynthesis.  

 

Figure   4.4:   Trajectories   (shown   in   white)   formed   by   the   peak   continuation   algorithm  
superimposed   over   the   spectrogram   returned   by   the   ADRess   algorithm.  
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Figure   4.5:   Close   up   on   the   spectrogram   of   a   pitched   region   of   the   saxophone   separation   with  
the   standard   iSTFT   method   shown   on   top   and   the   sinusoidal   model   on   bottom.  

 

Figure  4.5  compares  the  spectrograms  of  a  separated  saxophone  resynthesised  with            

the  standard  iSTFT  method  (top)  and  the  sinusoidal  modelling  method  (bottom).            

Visibly  the  the  sinusoidal  modelling  method  looks  cleaner  but  it  requires  significant             

manual   parameter   experimentation   to   make   it   sound   natural.  

 

4.6   -   CONCLUSIONS  

We  have  explored  the  use  of  two  alternative  reconstruction  techniques  for  the  ADRess              

algorithm.  Firstly  the  magnitude  only  reconstruction  technique  was  applied  to  the            

separation  spectra  produced  by  ADRess  in  an  attempt  to  arrive  at  a  set  of  suitable                

phase  estimates.  Although  the  error  is  reduced  significantly  after  50  iterations  or  so              

using  random  phase  estimates,  the  error  between  the  initial  spectrogram  and  the  final              

spectrogram   is   never   less   than   that   when   the   original   mixture   phases   are   used.   We   
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believe  that  the  reason  for  this  is  linked  to  a  condition  identified  by  (Rickard  et  al.                 

2002)  known  as  W-disjoint  orthogonality;  two  sources  are  said  to  be  W-disjoint             

orthogonal  if  there  is  no  significant  overlap  between  the  sources  time-frequency            

representations.  In  the  case  of  musical  signals  there  is  usually  quite  significant  overlap              

in  frequency  and  time,  this  overlap  is  the  cause  of  what  is  identified  as               

‘frequency-azimuth  smearing’  in  (Barry  et  al.  2004).  Effectively  when  multiple           

sources  contribute  to  a  single  frequency  component,  their  phase  contributions  cause            

phase  cancellation  errors  in  the  ADRess  algorithm;  this  in  turn  causes  the  frequency              

dependent  nulls  to  drift  away  from  the  apparent  azimuth  position  of  a  particular              

source.  Sources  with  the  highest  intensity  will  have  the  most  influence  over  the              

resultant  phases  when  sources  are  mixed,  and  as  such  will  be  separated  better  by               

ADRess.  Furthermore,  the  phases  for  any  time-frequency  point  of  a  mixture  of             

sources  will  be  closest  to  the  phase  of  the  source  with  the  greatest  magnitude  at  that                 

time-  frequency  point.  This  leads  us  to  the  assumption  that  there  is  a  variable               

W-disjoint  orthogonality  associated  with  musical  mixtures  which  is  purely  dependent           

on  the  mixture  at  any  given  point  in  time.  So  for  points  in  time  where  the  sources  do                   

not  overlap  significantly  in  the  frequency  domain,  the  original  mixture  phases  are  a              

close   approximation   to   the   source   phases.  

 
A  sinusoidal  model  was  also  applied  as  a  resynthesis  technique  for  the  separated              

source  spectra.  The  technique  does  offer  some  advantages  for  the  synthesis  of             

deterministic  signals  in  that  some  noise  and  source  interference  can  be  rejected             

resulting   in   cleaner   resynthesis   of   pitched   regions   of   the   signal.   The   primary   
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disadvantage  is  that  the  technique  requires  that  the  operational  parameters  of  the             

algorithm   need   to   be   adjusted   accordingly   depending   on   the   signal.   

 

The  ADRess  algorithm  has  been  implemented  to  run  in  real  time  and  so              

computational  efficiency  is  particularly  important.  Although  the  reconstruction         

methods  explored  here  are  useful,  the  method  of  using  the  original  mixture  phases              

with  a  standard  inverse  STFT  is  still  the  preferred  option  as  it  gives  the  best  trade-off                 

between   quality   and   efficiency.  

 

4.6.1   -   Future   Work  

The  main  issue  associated  with  resynthesising  a  modified  spectrogram  in  this  manner             

is  estimating  what  the  necessary  phase  information  should  be.  Here,  phase            

propagation  theory  from  the  phase  vocoder (Flanagan  et  al.  1966)  could  be  used  to               

ensure  phase  continuity  between  adjacent  frames  of  audio.  The  phase  continuity  for             

any  single  source  in  the  mixture  is  inherently  disrupted  by  the  phase  contributions  of               

all  the  other  sources  so  using  some  phase  propagation  techniques  may  mitigate  this.              

Furthermore,  there  is  an  expected  relationship  between  a  sinusoidal  peak  and  its             

neighbouring  bins  in  a  magnitude  spectrum  generated  from  a  windowed  fourier            

transform.  In  the  source  separation  process,  a  peak  may  be  recovered  without  its              

neighbouring  bins  and  as  such  the  peak  lobe  is  not  correctly  formed.  Further              

processing  could  be  applied  to  ensure  that  all  peaks  in  the  magnitude  spectrum  have               

suitable   neighbouring   bins   with   suitable   phases.   
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CHAPTER   5:   MUSIC   STRUCTURE   SEGMENTATION   USING   THE  

AZIMUGRAM   IN   CONJUNCTION   WITH   PRINCIPAL   COMPONENT  

ANALYSIS  
 

This  chapter  presents  the  third  contribution  of  this  dissertation.  Here  we  show  how  the               

azimugram ,  a  byproduct  of  the  ADRess  algorithm,  can  be  used  in  conjunction  with              

unsupervised  machine  learning  to  perform  music  structure  segmentation.  It  was           

originally  published  at  the  Audio  Engineering  Society  Convention  in  2007  (AES  123)             

and  is  presented  here  in  its  entirety.  The  paper  included  co-authors  Mikel  Gainza,  my               

research  colleague  who  offered  advice  on  formatting  and  presentation,  and  Eugene            

Coyle   who   acted   as   my   PhD   supervisor   at   the   time.  
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5.1   -   ABSTRACT  

A  novel  method  to  segment  stereo  music  recordings  into  formal  musical  structures             

such  as  verses  and  choruses  is  presented.  The  method  performs  dimensional  reduction             

on  a  time-azimuth  representation  of  audio  which  results  in  a  set  of  time  activation               

sequences,  each  of  which  corresponds  to  a  repeating  structural  segment.  This  is  based              

on  the  assumption  that  each  segment  type  such  as  verse  or  chorus  has  a  unique  energy                 

distribution  across  the  stereo  field.  It  can  be  shown  that  these  unique  energy              

distributions  along  with  their  time  activation  sequences  are  the  latent  principal            

components  of  the  time-azimuth  representation.  It  can  be  shown  that  each  time             

activation   sequence   represents   a   structural   segment   such   as   a   verse   or   chorus.  

 
5.2   -   BACKGROUND  

Music  information  retrieval  is  concerned  with  the  automatic  extraction  of  multi-level            

features  from  audio  for  the  purposes  of  classification,  comparison  and  segmentation.            

In  particular,  musical  segmentation  algorithms  attempt  to  segment  the  audio  timeline            

into  perceptually  salient  events,  such  as  the  onset  of  a  particular  instrument  within  the               

piece,  or  a  key,  rhythm  or  tempo  change  for  example.  In  (Foote,  2000),  Foote  utilises                

an  audio  similarity  matrix  in  order  to  find  the  boundaries  between  different             

consecutive  self-similar  segments.  Other  methods  utilise  Hidden  Markov  Models  to           

segment  the  audio  by  clustering  sequences  of  timbre  states  obtained  from  a             

dimensionally  reduced  constant  Q  representation  of  the  audio  (Levy  et  al.  2006).  Goto              

presents   a   method   which   detects   the   chorus   of   a   song   by   using   a   chromagram  
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representation  (Goto,  2003).  The  method  aims  to  find  the  chroma  vector  which             

repeats  most  often  in  the  song.  In  (Logan  et  al.  2000),  the  similar  segments  are                

detected  by  using  MFCC  features  from  overlapped  audio  frames.  Perhaps  one  of  the              

most  useful  forms  of  segmentation  would  allow  the  identification  of  the  formal             

structural  units  of  a  musical  piece,  such  as  verses,  choruses  and  bridges  for  example.               

Segmentation  in  this  form  would  have  applications  in  audio  thumbnailing  as  well  as              

fast  audio  browsing.  Significantly  fewer  algorithms  exist  for  this  level  of            

segmentation   although   (Levy   et   al.   2006)   and   (Goto,   2003)   do   approach   this.  

 

5.3   -   METHOD  

In  this  paper,  a  novel  approach  to  structural  segmentation  is  proposed,  using  the              

“azimugram”  as  the  mid-level  feature  representation  from  which  segmentation  is           

derived.  The  azimugram  is  a  time-azimuth  representation  of  stereo  audio  which            

effectively  shows  the  distribution  of  energy  across  the  stereo  field  with  respect  to              

time.  In  this  highly  condensed  domain,  source  location  and  intensity  are  clearly             

identifiable.  Common  music  composition  and  production  techniques  often  use          

additional  or  reduced  instrumentation  to  herald  a  section  transition  in  a  song.  This              

would  suggest  that  source  location  and  intensity  will  be  highly  correlated  in  similar              

sections  within  a  given  song.  The  distinct  advantage  of  using  the  azimugram  is  the               

fact  that  it  is  invariant  to  both  key  changes  and  melodic  variation  within  similar               

sections.   
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Dimensional  reduction  in  the  form  of  PCA  (principal  component  analysis)  followed            

by  ICA  (independent  component  analysis)  (Hyvarinen  et  al.  2001)  is  then  applied  to              

the  azimugram.  This  combination  of  PCA  followed  by  ICA  is  commonly  referred  to              

as  ISA  (independent  subspace  analysis).  ISA  has  traditionally  been  used  in  source             

separation  problems  (Casey  et  al.  2000)  and  (Fitzgerald  et  al.  2002)  but  we  show  here                

that  the  technique  has  uses  in  segmentation  also.  Performing  ISA  on  the  azimugram              

results  in  a  set  of J  independent  basis  function  pairs  where J  is  an  estimation  of  the                  

number  of  unique  structural  components  present  in  the  song,  typically J  <  5.  Each  of                

the J  basis  function  pairs  consists  of  one  azimuth  basis  function  and  one  time               

activation  function  of  dimension r  ×  1  and t  ×  1  respectively,  where r  × t  is  the                   

dimension  of  the  azimugram.  Taking  the  first  pair  as  an  example;  the  azimuth  basis               

function  corresponds  to  the  most  recurring  energy  distribution  profile  over  time.  The             

corresponding  time  activation  function  shows  the  activation  sequence  of  this  azimuth            

basis  function.  Each  successive  pair  of  basis  functions  will  correspond  to  a  unique              

energy  distribution  and  time  activation  sequence.  This  will  be  illustrated  in  section             

5.3.2.  Only  the  time  activation  functions  are  retained  for  further  processing.  Each  time              

activation  function  is  then  smoothed  using  a  low-pass  filter.  At  this  stage,  each  time               

activation  function  already  exhibits  a  significant  amount  of  structural  information,           

whereby  each  one  clearly  represents  a  particular  structural  unit  of  the  song  such  as  a                

verse  or  a  chorus.  A  final  process  is  then  applied  whereby  for  any  time  instant,  only                 

the   single   largest   value   amongst   all    J    time   activation   functions   is   assigned   a   value  
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of  one  and  all  others  a  value  of  zero.  This  effectively  enforces  orthogonality  between               

the  functions  which  ensures  that  only  one  segment  is  active  at  any  given  point  in  time.                 

Each  of  the J  functions  is  now  an  independent  binary  sequence  which  represents  the               

on/off  sequence  of  a  particular  structural  component  of  the  song  such  as  a  verse,               

chorus,   bridge   or   solo   for   example.  

 

Figure   5.1:   Block   diagram   of   the   music   structure   segmentation   system.   
 

5.3.1   -   The   Azimugram  

Here,  we  coin  the  term azimugram  to  refer  to  any  time-azimuth  representation  of  an               

audio  signal.  Such  a  representation  shows  the  distribution  of  energy  across  the  stereo              

field  with  respect  to  time.  Azimugram  representations  can  be  created  in  various  ways              

depending  on  the  mixing  model  assumed.  Much  of  the  early  work  concerning  azimuth              

calculation  was  based  on  models  of  binaural  perception,  whereby  the  azimugram  is             

calculated  by  carrying  out  a  cross  correlation  between  the  left  and  right  inputs  of  the                

system  on  a  multiband  basis.  The  maximum  output  of  the  cross  correlation  functions              

correspond  to  the  time  lag  of  either  the  left  or  right  input  which  can  be  resolved  as  an                   

angle   of   incidence.   
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An  overview  of  binaural  processors  can  be  found  in  (Stern,  1988).  Later  work  in               

sound  source  separation  (Barry  et  al.  2004  b)  and  (Jourjine  et  al.  2000),  although  not                

explicit, constructed  azimugram  variants  from  the  short-time  Fourier  transform  of           

stereo  signals.  Equations  5.1  to  5.3  below  outline  a  basic  technique  to  calculate  an               

azimugram  assuming  an  intensity  stereo  mixing  model.  Firstly,  the  log  ratio  of  the  left               

and  right  magnitude  spectra  is  calculated  resulting  in  a  matrix  of  mixing  coefficients             

as  in  equation  5.1,  where ,  and N  is  the  analysis  frame  size.  These              

mixing  coefficients  are  in  dB  format,  whereby  positive  values  refer  to  components             

which  are  dominant  in  the  left  channel  and  negative  values  refer  to  components  which               

are   dominant   in   the   right   channel.  

  

(5.1)  

 

where, and  are  the  complex  short  time  Fourier  transforms  of  the  left             

and  right  channels  respectively.  Theoretically, will  have  values  in  the  range  of            

-96  dB  to  +96  dB  for  a  16  bit  recording  where  all  the  positive  and  negative  values                  

correspond  to  source  components  dominant  in  the  left  and  right  channel  respectively.             

Following  this,  a  weighted  histogram  of  the  mixing  coefficients  is  created  on  a  frame               

by  frame  basis.  Firstly,  the  resolution, R ,  of  the  histogram  is  defined,  where R               

specifies  how  many  histogram  bins  are  used  to  represent  each  half  (left  and  right)  of                

the   histogram.   

  

119  

 



 

 

 

Audio   Engineering   Society   AES   123   2007  

For  example,  if R  =  32,  this  will  result  in  2 x R  discrete  azimuth  locations  between  far                   

left  and  far  right.  Equation  5.2  below,  converts  the  log  spaced  dB  values  into  linear                

spaced  discrete  bin  values  which  are  used  to  populate  the  histogram  created  in              

equation   5.3.   

 

 (5.2)  

 

 

where,  2 R  is  the  resultant  histogram  resolution  and  where,  ⎡  ⎤  denotes  rounding  up  to                

the  nearest  integer.  In  equation  5.2  above,  the  term  in  brackets,  preceded  by ,               ±  

assumes  the  same  sign  as  the  current  value  of .  The  matrix now  contains             

the  mixing  coefficients  in  a  normalised  integer  format  such  that, .  Using             

equation  5.3,  each  bin  of  the  histogram, ,  is  then  populated  by  accumulating             

only   the   elements,    n ,   of   where   .  

 

  (5.3)   

 

 

where    

 
where, ,  and  where k  represents  the  left  or  right  channel  indexed  by  1  and  2,                 

respectively.   
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A  more  accurate  way  to  calculate  the  azimugram  can  be  found  in  (Barry  et  al.  2004                 

b).  This  method  uses  phase  information  in  addition  to  magnitudes  resulting  in  slightly              

better   localisation   for   concurrent   sources   overlapping   in   time   and   frequency.   

  
For  segmentation  purposes,  the  time  resolution  of  the  azimugram  must  be  coarse             

enough  to  capture  a  representative  energy  distribution  for  a  segment.  Typically  we  use              

a  frame  size  in  excess  of  3  seconds  with  a  50%  overlap.  Having  a  finer  temporal                 

resolution  leads  to  details  of  instrument  dynamics  being  exposed  which  can  have             

adverse   effects   on   the   PCA   stage   used   next.   

 

The  assumption  is  that  a  similar  stereo  energy  distribution  can  be  observed  over  the               

course  of  a  single  segment,  and  that  the  same  energy  distribution  should  be  apparent               

whenever  that  segment  is  active.  In  essence,  verse  1  is  assumed  to  have  a  similar                

stereo  field  energy  distribution  to  verse  2  for  example,  and  likewise  with  all  other               

segments.   

 
Figure   5.2:   Azimugram   of   Romeo   and   Juliet   –   Dire   Straits  
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As  stated  previously,  the  distinct  advantage  of  using  the  azimugram  representation  is             

the  fact  that  it  is  invariant  to  both  key  changes  and  melodic  variation  within  similar                

sections.  Typical  values  for R  are  in  the  region  of  20  to  30  points,  resulting  in  an                  

azimuth  resolution  of  2  × R .  With  this  time  and  azimuth  resolution,  the  azimugram  for                

a  4  minute  song  would  be  of  dimension  40  ×  160.  Such  a  compact  representation                

facilitates   fast   segmentation   in   the   following   stages.  

 

5.3.2   -   Independent   Subspace   Analysis  

The  next  stage  involves  performing  Independent  Subspace  Analysis  on  the           

azimugram.  ISA  is  a  technique  used  for  dimensional  reduction  which  involves            

performing  PCA  followed  by  ICA.  The  model  assumes  that  the  information  contained             

within  a  data  set,  in  this  case  the  azimugram,  can  be  represented  by  lower  dimensional                

subspaces,  the  sum  of  which  approximates  the  original  data  set.  In  the  case  of  the                

azimugram,  each  subspace  is  the  result  of  the  product  of  two  latent  basis  functions  of                

dimension r ×  1  and t ×  1  respectively,  where r ×  t  is  the  dimension  of  the  azimugram.                    

Formally  stated,  it  is  assumed  that  the  azimugram  can  be  decomposed  into  a  sum  of                

outer   products   as   in   equation   5.4.  

 (5.4)  

 
 

where   T   indicates   the   transpose   of   the   matrix.  
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In  matrix  notation,  the  azimugram Az ,  is  represented  as  the  sum  of J  independent               

azimugrams,   each   one   corresponding   to   a   particular   structural   segment   of   the   song.  

 

The  basis  functions  are  obtained  by  carrying  out  singular  value  decomposition,            

commonly  known  as  PCA,  on  the  azimugram.  This  essentially  transforms  a  high             

dimensional  set  of  correlated  variables  into  some  number  of  lower  dimensional  sets  of              

uncorrelated  variables  which  are  known  as  the  principal  components.  The  principal            

components  are  ranked  in  order  of  variance,  so  the  first  principal  component  contains              

the  maximum  amount  of  total  variance  present  in  the  azimugram  and  each  subsequent              

principal  component  represents  the  maximum  remaining  variance  in  the  azimugram.           

Referring  to  equation  5.4,  the  principal  components  are  represented  by and .            

These  basis  function  pairs  represent  the  stereo  field  energy  distributions  and  the  time              

activations  of  each  distribution  respectively.  One  of  the  known  issues  with  using  PCA              

is  that  of  choosing  how  many  principal  components  to  use  to  represent  the  data.  In                

this  application,  the  number  of  components, J  ,  is  set  to  be  the  expected  number  of                 

recurring  structures  within  the  song.  Typically,  we  use  3  principal  components,            

expecting  that  there  will  be  verses,  choruses  and  other,  where  other  will  represent              

anything  which  is  not  a  verse  or  chorus.  Of  course  many  other  possibilities  exist  in                

musical  composition,  but  3  components  should  be  sufficient  to  express  the  general             

structure   of   a   typical   pop/rock   song    (Covach,   2005) .  
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In  order  to  perform  segmentation,  only  the  time  activation  functions, ,  are  retained.             

At  this  stage,  the  time  activation  functions  are  decorrelated  but  not  independent.  A              

limited  amount  of  structure  is  already  apparent  within  the  time  activation  functions,             

but  there  is  still  activation  overlap  between  the  components.  Logically,  only  one             

structural  segment  such  as  a  verse  or  chorus  should  be  active  at  once,  and  so                

theoretically,  the  basis  functions  should  be  mutually  exclusive.  In  order  to  approach             

this,  ICA  is  now  performed  on  the  time  activation  functions  which  results  in  a  set  of                 

independent  components  as  opposed  to  just  decorrelated  components.  Figure  5.3           

below   shows   the   first   3   basis   function   pairs   after   PCA   and   ICA.   

 

A  known  issue  with  the  use  of  ICA  is  that  the  independent  components  returned  can                

be  arbitrarily  scaled  and/or  sign  inverted.  For  this  reason,  the  independent  components             

are  normalised  and  positively  oriented  before  proceeding  to  the  next  stage  of             

processing.  Following  this,  a  lowpass  filter  is  applied  to  each  of  the  time  activation               

functions  in  order  to  avoid  the  detection  of  short  segments  in  the  next  processing               

stage.  Another  issue  associated  with  the  use  of  ICA  is  that  the  components  could  be                

returned  in  any  order.  For  segmentation  purposes,  the  components  are  ordered            

chronologically,  i.e.  in  the  order  of  time  activation.  We  will  refer  to  these  normalised               

and   lowpassed   independent   components   as, .  
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Figure   5.3:   The   decomposition   of   the   azimugram   in   figure   5.2   into   its   first   3   independent   subspaces.  
Here,   r   and   t   are   the   latent   azimuth   and   time   activation   functions   respectively.   The   independent  
subspaces   are   the   result   of   the   outer   products   of   each   basis   function   pair   obtained   using   ISA.   

 

5.3.3   -   Forcing   Orthogonality  

At  this  stage,  some  structure  is  apparent  from  the  independent  components  whereby             

each  component  effectively  represents  the  activation  of  a  particular  structure  such  as  a              

verse  or  chorus  but  the  boundaries  between  the  segments  are  still  unclear.  In  order  to                

locate  the  segment  boundaries  more  precisely,  the  independent  components  are           

converted  into  a  set  of  binary  functions  by  employing  an  ‘all  or  nothing’  scheme               

whereby  for  any  time  instant,  the  time  activation  function  with  the  maximum  energy              

is   assigned   a   value   of   1   and   all   others   a   value   of   0   as   in   equation   5.5.  
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 (5.5)  

 
 
 

for ,  where J  is  the  number  of  basis  functions.  This  effectively  enforces             

mutual  exclusivity.  The  binary  time  activation  functions  now  represent  the  on/off            

sequence  for  each  structure  such  as  a  verse  or  a  chorus.  Figure  5.4  illustrates  how                

each   stage   of   processing   leads   to   the   resulting   structural   segmentation.  

 

5.4   -   RESULTS  

Referring  to  the  example  in  figure  5.4  above,  the  frame  size  was  set  to  approximately                

6  seconds  with  an  overlap  of  50%  resulting  in  a  time  resolution  of  3  seconds.  This                 

essentially  means  that  if  a  segmentation  point  is  correctly  detected  within  a  frame,  it               

will  only  be  accurate  to  within  3  seconds  of  the  actual  segment  onset.  Analysing               

Figure  5.4,  it  can  be  seen  that  using  PCA  alone  leaves  a  significant  amount  of  mutual                 

information  in  the  last  20  frames  of  the  first  2  principal  components.  Performing  ICA               

in  the  following  stage  clearly  disambiguates  this  segment.  For  this  example,  the             

algorithm  achieves  a  high  degree  of  accuracy,  correctly  identifying  the  presence  of  all              

segmentation  points  with  a  maximum  error  of  -6  seconds,  corresponding  to  the  early              

detection   of   the   second   chorus.   

 

This  is  attributed  to  the  fact  that  the  build  up  into  the  second  chorus  is  quite                 

prolonged.  The  instruments  are  layered  more  gradually  prior  to  the  actual  onset  of  the               

second   chorus.  
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Figure   5.4:   First   3   time   activation   functions   after   PCA,   ICA,   lowpassing   and   binary   selection.  
Note   how   the   functions   attain   more   structure   after   each   stage   of   processing.   Labeling   was  

achieved   manually.   
 

This  is  identifiable  from  the  chorus  plot  in  figure  5.4.  Essentially  the  stereo  field               

distribution  at  the  end  of  verse  2  is  more  similar  to  the  distributions  observed  in  the                 

choruses  and  so  has  been  grouped  as  such  during  the  PCA  stage.  The  table  below                

shows  the  automatically  generated  segment  onset  times  along  with  the  deviation  from             

the  manually  annotated  results.  Given  that  the  time  resolution  used  in  this  example  is               

3  seconds  per  frame,  the  maximum  error  from  the  table  above,  -6  seconds,              

corresponds   to   only   a   single   frame   error.  
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Table   5.1:   Comparison   of   manually   annotated   segment   onset   times   (Actual)   with   automatically  
generated   segment   onset   times   (Algorithm).   Also   indicated   is   the   manually   annotated   segment   name.   T  

indicates   the   basis   function   in   which   the   segment   was   active.   

 
All  other  segmentation  points  have  been  identified  within  the  correct  frame  with  the              

exception  of  one  false  detection  at  4:42  which  does  not  correspond  to  any  major               

structural  change.  This  false  detection  can  be  explained  by  the  momentary  addition  of              

an  ornamental  guitar  line  at  that  point  in  the  song.  The  position  of  this  guitar  in  the                  

stereo   field   is   such   that   the   algorithm   incorrectly   attributes   it   to   a   chorus   activation.   

 

The  algorithm  was  also  applied  to  a  limited  test  corpus  of  popular  recordings.  The               

segment  onset  times  for  each  recording  were  manually  annotated.  The  automatic            

segmentation  algorithm  was  then  applied  to  each  example  and  the  results  were             

compared.  A  correct  detection  was  deemed  to  be  within  6  seconds  (2  analysis  frames)               

of  the  manually  annotated  segment  onset.  A  detection  outside  this  range  was             

considered   as   an   incorrect   detection.  
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Artist  Song  

Total  
Manually  
Annotated  

Correct  
Detections  

Incorrect  
Detections  

Percent  
Correct  

Jimi   Hendrix  Castles   Made   of   Sand  8  6  2  75  

Busta   Rhymes  What’s   it   Gonna   Be  7  4  3  57  

Whitesnake  Day   Tripper  12  8  4  67  

Foo   Fighters  Everlong  14  10  4  71  

AC/DC  Highway   to   Hell  12  9  3  75  

Led   Zeppelin  No   Quarter  7  5  2  71  

Metallica  Nothing   Else   Matters  9  4  5  44  

Fugazi  No   Surprise  11  7  4  64  

Frank   Zappa  Peaches   En   Regalia  7  4  3  57  

Total   87  57  30  65  

Table   5.2:   Automatically   generated   segment   onset   times   compared   to   manually   annotated   segment  
onsets.  

 
In  this  limited  test  case,  the  algorithm  was  able  to  achieve  acceptable  segmentation              

results   65%   of   the   time.   Table   5.2   summerises   the   results   obtained.  

 

Although  not  the  focus  of  this  paper,  some  consideration  should  be  given  to  the               

presentation  of  segmentation  data  to  the  user.  Figure  5.5  below  shows  the  time              

alignment  of  the  time  domain  waveform,  the  azimugram  and  a  suggested  visual             

representation  of  structural  segmentation.  Such  a  representation  gives  a  user  the            

ability   to   quickly   navigate   to   important   points   within   the   musical   piece.  

 

5.5   -   CONCLUSIONS  

An  algorithm  capable  of  achieving  automatic  structural  segmentation  on  stereo  audio            

signals   has   been   presented.   
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Figure   5.5:   Time   domain,   azimugram   and   automatic   segmentation   of   Romeo   and   Juliet   from   Dire  
Straits.  

 

The  approach  is  shown  to  work  well  on  intensity  stereo  recordings  and  to  a  lesser                

degree  on  convolutive  recordings.  The  clear  advantage  of  using  the  azimugram  as  the              

mid-level  representation,  is  that  it  is  invariant  to  key  and  melodic  modulation  which  is               

common  in  music  composition.  Several  problems  still  exist  with  the  technique            

however.  There  is  still  a  difficulty  in  knowing  the  exact  number  of  principal              

components  to  use  in  the  PCA  stage.  Added  to  this,  the  parameters  of  the  lowpass                

operation   after   the   ICA   stage   are   still   set   manually.   
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5.5.1   -   Future   Work  

Other  approaches  for  matrix  decomposition  such  as  locally  linear  embedding  and            

non-negative  matrix  factorisation  may  be  used  instead  of  PCA.  Although  the  current             

formulation  is  not  applicable  to  mono  recordings  the  same  segmentation  technique            

may  also  be  applicable  to  other  mid-level  representations  such  as  the  chromagram  for              

example.  At  present,  the  automatically  generated  segmentation  points  are  near  to  the             

actual  segment  onsets  but  as  yet  are  not  perfectly  aligned  with  lower  level  musical               

events   such   as   bar   lines   or   beats.   This   will   be   the   topic   of   further   work.   
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CHAPTER   6:   LOCALISATION   QUALITY   ASSESSMENT   IN   SOURCE  

SEPARATION   BASED   UPMIXING   ALGORITHMS  

This  chapter  presents  the  fourth  contribution  of  this  dissertation.  Here  we  show  how              

the  ADRess  algorithm  can  be  used  to  generate  5.1  Surround  Sound  mixes  using  only               

stereo  content  as  input.  It  was  originally  published  in  the  Audio  Engineering  Society              

35th  International  Conference  in  2009  and  is  presented  here  in  its  entirety.  The  paper               

included  co-author  Gavin  Kearney  who  designed  the  perceptual  test  software  used            

and   helped   conduct   the   listening   tests   in   his   dedicated   facility   in   Trinity   College   .   
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ABSTRACT  

In  this  paper  we  explore  the  source  localisation  accuracy  and  perceived  spatial             

distortion  of  a  source  separation-based  upmix  algorithm  for  2  to  5  channel  conversion.              

Unlike  traditional  upmixing  techniques,  source  separation-based  techniques  allow         

individual  sources  to  be  separated  from  the  mixture  and  repositioned  independently            

within  the  surround  sound  field.  Generally,  spectral  artefacts  and  source  interference            

generated  during  the  source  separation  process  are  masked  when  the  upmixed  sound             

field  is  presented  in  its  entirety;  however,  this  can  lead  to  perceived  spatial  distortion               

and  ambiguous  source  localisation.  Here,  we  use  subjective  testing  to  compare  the             

localisation  perceived  on  a  purposely  generated  discrete  presentation  and  an  upmix  (2             

to  5  channel)  of  the  same  source  material  using  a  source  separation-based  upmix              

algorithm.  

 

6.1   -   INTRODUCTION  

Surround  Sound  technology  has  become  commonplace  in  modern  gaming  and           

entertainment  applications.  Whilst  a  large  proportion  of  audio  content  is  authored            

specifically  for  multichannel  reproduction,  some  pre-existing  content  is  often          

repurposed  for  surround  sound  presentation.  Upmixing  techniques  are  typically  used           

to  generate  several  reproduction  channels  from  a  limited  number  of  source  channels.             

Traditional  approaches  often  involve  ambiance  extraction,  typically  through  mid-side          

processing  and  channel  delay  schemes  to  increase  immersion  in  the  resultant  sound             

field.    
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Although  these  approaches  do  provide  a  greater  sense  of  spatialisation,  they  do  not              

facilitate  localisation  of  discrete  sound  sources  within  the  surround  sound  field.            

Upmixing  techniques  based  on  sound  source  separation  algorithms  afford  the           

possibility  of  repositioning  sources  discretely  within  the  surround  field  offering           

greater   upmix   flexibility.   

 

This  study  is  not  concerned  with  comparing  existing  separation  algorithms  for  the             

purposes  of  upmixing,  rather,  the  purpose  of  the  experiment  proposed  here,  is  to              

subjectively  compare  the  localisation  perceived  on  a  purposely  generated  5  channel            

presentation  and  an  upmix  of  the  same  source  material  using  a  source             

separation-based  upmix  algorithm.  Purpose  generated  multi-track  recordings  are  used          

to  create  both  a  5  channel  mix  and  a  2  channel  mix.  Using  the  source  separation-based                 

upmix  algorithm,  the  2  channel  mix  is  then  upmixed  to  emulate  the  discrete  5  channel                

mix.  Using  subjective  testing,  it  is  then  possible  to  directly  compare  the  localisation              

achievable  between  the  purpose  generated  5  channel  mix  and  that  of  the  2  channel               

upmix.  For  the  experiments  we  use  a  modification  of  the  ADRess  algorithm  (Barry  et               

al.  2004)  as  the  basis  for  our  upmixing  model.  The  algorithm  uses  a  novel  spatial                

clustering  and  adaptive  filtering  technique  to  identify  and  separate  sources  in  real  time              

based  on  their  location  within  the  stereo  field.  The  sources  can  then  be  remixed  and/or                

re-authored   with   relative   ease.   

  

134  

 



 

 

 

Audio   Engineering   Society   AES   35   2009  

 

6.2   -   BACKGROUND   

6.2.1   -   Traditional   Upmixing   Techniques   

The  origin  of  up/down-mixing  techniques  can  be  traced  back  as  far  as  the              

Quadraphonic  era,  where  four  discrete  channels  of  audio  were  encoded  onto  two             

channel  vinyl  discs  (Eargle,  1971).  The  discs  accommodated  playback  on  standard            

stereophonic  record  players  or  four  channel  playback  with  dedicated  Quadraphonic           

decoders.  Unfortunately,  due  to  competing  technologies,  increased  production  costs,          

and  a  confused  public,  the  Quadraphonic  era  ended  in  a  complete  commercial  failure.              

However,  by  the  end  of  its  demise,  the  principles  of  ‘matrix’  encoding  and  decoding               

on  which  Quadraphonics  was  founded  had  already  migrated  from  the  domestic            

environment  to  the  cinematic  world.  In  1975,  Dolby  Systems  introduced  ‘Dolby            

Stereo’  (Hull,  1994),  a  method  of  encoding  four  cinematic  audio  channels  onto  the              

two  optical  channels  found  at  the  side  of  35mm  cinematic  film.  The  original  studio               

master  reproduction  channels, L , R , C ,  and S  (the  left,  right,  centre  and  surround               

channels  respectively)  are  encoded  onto  the L T  and R T  channels  of  the  optical              

soundtrack.  Decoding  of  the S  and C  channels  involves  the  sum  and  difference  of  the                

two  optical L T  and R T  channels,  such  that  phase  shifted  surround  components  will              

cancel  each  other  out  in  the  decoded  centre  channel,  and  that  the  centre  channel  will                

be  removed  from  the  decoded  surround  channel.  This  is  achieved  by  several  matrix              

operations  as  outlined  in  (Dressier,  1993).  A  major  consequence  of  such  matrixing  is              

the   crosstalk   inherent   in   each   channel.   
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Both  the  surround  and  centre  channel  components  in  the  decoded L Front  channel  are              

each  only  3dB  down  from  the  original L  component.  This  is  the  same  for  the R Front                 

channel.  Crosstalk  in  the  surround  channel  is  overcome  by  delaying  the  surround  feed              

such   that   localisation   precedence   is   maintained   towards   the   three   frontal   channels.   

 

Pro-Logic,  the  consumer  version  of  Dolby  Stereo,  improves  image  stability  somewhat            

by  including  active  ‘logic  steering’  circuitry  which  attempts  to  steer  images  towards             

one  speaker.  The  control  circuit  looks  at  the  relative  levels  and  phases  of  the  input                

signals  in  order  to  control  a  group  of  VCAs  which  govern  the  antiphase  signals  in  the                 

output  matrix.  However,  in  a  5  speaker  setup,  the  VCAs  do  not  control  steering  in  the                 

Left-Right  axis  and  the  Front-Back  axis  separately.  In  Pro-Logic  II  (Dolby,  2004  ),              

each  axis  operates  individually  through  inclusion  of  a  feedback  servo  control  system             

that  adjusts  the  levels  of  the  VCAs  controlling  the L T , R T , L T +R T  and L T -R T  signals                

such   that   better   channel   separation   can   be   achieved.  

 

Such  matrix  encoding  and  decoding  has  received  marketplace  acceptance  as  the            

standard  for  cinematic  upmixing,  but  we  must  bear  in  mind  that  the  majority  of               

stereophonic music  presentations  are  not  matrix  encoded.  This  leads  to  distinct            

differences  between  how  Pro-Logic  systems  handle  cinematic  and  music  program           

material.  Music  mode  in  Pro-Logic  II  systems  includes  a  high-shelf  filter  in  the              

surround   channels,   whereas   movie   mode   does   not.  
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There  is  also  no  delay  component  for  the  rear  channels,  which  although  desirable  for               

coincident  arrival  wavefronts  at  the  centre  listening  position  (in  particular  transients),            

can   lead   to   a   perceived   reduction   in   channel   separation   (Dolby   2004)  

 

It  is  clear  that  although  matrix  systems  have  significantly  developed  from  their             

beginnings  as  humble  passive  decoders  into  sophisticated  solutions  for  up-mixing           

from  two-channel  material,  their  application  to  all  types  of  program  material  is  not              

fully  satisfactory.  Furthermore,  the  fact  remains,  that  in  order  to  obtain  optimal             

performance  from  any  matrix  system,  the  two  channel  material  needs  be  properly             

preconditioned   (encoded)   beforehand   (Dolby   2004).   

 

6.2.2   -   Source   Separation   And   Upmixing  

Sound  source  separation  refers  to  the  task  of  extracting  individual  sound  sources  from              

some  number  of  mixtures  of  those  sound  sources.  Unlike  matrixing  technology,  the             

source  material  does  not  have  to  be  pre-encoded  for  effective  upmixing  to  be              

achieved.  In  recent  years,  advances  in  dual  channel  sound  source  separation            

technology  such  as  the  DUET  algorithm  (Jourjine  et  al.  2000)  and  the  ADRess              

algorithm  (Barry  et  al.  2004)  have  made  it  possible  to  achieve  high  quality  separation               

of  individual  sources  from  stereophonic  mixtures.  The  former  is  applicable  for  speech             

separation  in  spaced  sensor  convolutive  mixtures  whereas  the  latter  is  designed  for             

separating   or   ‘de-mixing’   intensity   panned   (linear   mixed)   stereophonic   music   content.  
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The  primary  focus  in  development  and  application  of  (Jourjine  et  al.  2000)  and  (Barry               

et  al.  2004)  above  was  purely  that  of  sound  source  separation.  However,  prior  to               

(Barry  et  al.  2004),  the  application  of  similar  techniques  specifically  for  the  purposes              

of  upmixing  had  been  developed  in  Creative  Labs  (Avendano  et  al.  2002)  where  it               

was  shown  that  the  use  of  weighted  time-frequency  masking  could  be  applied             

effectively  in  multichannel  upmixing.  More  recently,  the  same  algorithms  have  been            

applied   to   upmixing   for   Wave   Field   Synthesis   applications   (Cobos   et   al.   2008).  

 

It  has  been  shown  in  the  past  that  these  algorithms  are  capable  of  adequate  source                

separation  but  at  the  cost  of  both  temporal  and  spectral  artefacts  when  the  sources  are                

reproduced  in  isolation.  Objective  comparisons  of  a  number  of  source  separation            

algorithms  are  presented  in  (Vincent  et  al.  2006)  and  (Vincent  et  al.  2007).  In  general                

however,  such  artefacts  are  perceptually  masked  when  the  sound  field  is  reconstructed             

even  after  manipulation  of  individual  sources.  However,  if  the  content  is  repurposed             

for  surround  presentations,  the  same  artefacts  can  theoretically  manifest  themselves           

through  spatial  distortion  and  localisation  ambiguity.  This  can  be  appreciated  if  one             

considers  that  using  the  aforementioned  separation  algorithms;  a  separated  source  will            

often  contain  time  varying  interference  from  overlapping  sources  within  the  mix.            

When  the  separated  sources  are  then  relocated  in  a  multichannel  presentation,  this             

interference  becomes  apparent  as  channel  crosstalk  which  inherently  leads  to  image            

shifts   in   the   surround   field.  
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The  purpose  of  this  paper  is  to  explore  the  subjective  effects  of  this  image  shifting  by                 

directly   comparing   a   discrete   5   channel   mix   and   an   upmix   of   the   same   material.  

 

6.3   -   UPMIXING   MODEL  

For  this  experiment  we  use  the  ADRess  algorithm  (Barry  et  al.  2004)  with  the               

addition  of  an  azimuth  windowing  function  which  was  suggested  in  (Avendano  et  al.              

2002).  The  ADRess  algorithm  achieves  source  separation  by  taking  advantage  of            

destructive  phase  cancellation  in  the  frequency  domain.  For  each  frame, m ,  of  a              

short-time  Fourier  representation  of  the  signal,  one  channel  is  iteratively  gain  scaled             

and  subtracted  from  the  other  in  the  complex  frequency  domain  after  which  the              

absolute  value  is  taken.  The  resulting  array  is  of  dimension N  x  ß ,  where N  is  the                  

number  of  frequency  points  and ß ,  the  azimuth  resolution,  is  the  number  of  equally               

spaced  gain  scalars  between  0  and  1.  The  operation  reveals  local  minima,  due  to               

phase  cancellation  across  the  azimuth  plane  for  each  frequency  component.  Using  a             

simple  clustering  technique,  components  belonging  to  a  single  source  are  seen  to  have              

their  minima  in  a  localised  region  about  some  gain  scalar  which  ultimately  refers  to               

the  intensity  ratio  between  each  channel,  i.e.,  the  pan  position  of  the  source  in  stereo                

space.  By  estimating  the  magnitude  of  each  of  the  time-frequency  minima  and  only              

resynthesising  those  with  a  desired  intensity  ratio,  a  single  source  may  be             

reconstructed.  The  original  mixture  phase  information  may  be  used  as  was  shown  in              

(Barry   et   al.   2005   c).  
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The  process  can  be  summarised  as  follows  with  the  iterative  gain  scaling  process              

achieved  using  equation  6.1  where is  a  complex  frequency  domain           

representation   of   the    m th    frame   of   the    j th    channel   (left   or   right).  

 
(6.1)  

 
 

  
where 1  ≤  k  ≤ N,  N being  the  Fourier  transform  length,  and  where g (i)  =  i/ß ,  for  all i                     

where, 0  ≤  i  ≤  ß, and where i  and ß  are  integer  values. ß refers  to  the  number  of  gain                      

scalars  to  be  used  and  ultimately  gives  rise  to  the  resolution  achieved  in  the  azimuth                

plane.  The  resulting  matrix, Az j (k,m,i),  represents  the  frequency-azimuth  plane  for  the            

m th  frame  of  the j th  channel.  Each  of k  frequency  bins  will  exhibit  a  local  minimum  at                  

some  index i.  It  can  be  observed  that  the  majority  of  frequency  bins  pertaining  to  a                 

single  source  should  exhibit  their  minima  around  a  singular  value  for i. These  local               

minima  represent  the  points  at  which  frequency  components  experience  a  reduction  in             

energy   due   to   destructive   phase   cancellation   between   the   left   and   right   channel.   

This  energy  reduction  is  directly  proportional  to  the  amount  of  energy  which  the              

cancelled  source  had  contributed  to  the  overall  mixture  and  so  to  invert  these  minima               

around  a  single  azimuth  point  should  yield  short-time  magnitude  spectra  of  the             

individual   sources.  

 

To  achieve  this  inversion,  we  simply  subtract  the  minimum  from  the  maximum  of  the               

function   in   equation   6.1   for   each   of    k    frequency   bins   as   described   in   equation   6.2.  
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(6.2)  

 

where  ‘min’  and  ‘max’  refers  to  the  global  minimum  and  maximum  of  the k th               

frequency-azimuth  function.  Note  that  the  inverted  frequency-azimuth  plane  for          

channel  2  is  created  in  an  identical  fashion.  Now,  the  instantaneous  magnitude             

spectrum  of  a  single  source  or  subspace  at  pan  position d,  predominant  in  the j th                

channel   can   be   approximated   as   in   equation   6.3.  

 

(6.3)  

 

where d  is  the  azimuth  index,  i.e.  the  pan  position  of  the  source  for  separation  and H                  

is  the  azimuth  subspace  width  which  is  simply  a  neighbourhood  around  the  azimuth              

index.   

 

The  second  term  in  equation  6.3  simply  creates  a  linear  weighting  function  such  that               

components  further  from  the  azimuth  index  are  scaled  down.  This  essentially  creates  a              

triangular  separation  window  along  the  azimuth  axis.  As  we  will  see,  the  properties  of               

this  window  will  allow  adjacent  azimuth  subspaces  to  be  overlapped  in  such  a  way  as                

to   allow   the   extraction   of,   in   this   case,   5   discrete   subspaces   for   surround   presentation.   
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Y(k,m)  is  now  an N  ×  1  array  containing  the  short-time  magnitude  spectrum  of  a                

single  source  or  azimuth  subspace.  For  a  detailed  description  of  the  ADRess             

algorithm,   refer   to   (Barry   et   al.   2004).   

 

6.4   -   OBJECTIVE   TESTING  

Although  the  algorithms  described  here  and  in  (Hyvarinen  et  al.  2001)  and  (Fitzgerald              

et  al.  2002)  are  capable  of  perceptually  acceptable  separations,  a  certain  degree  of              

signal  interference  from  other  sources  in  the  mixture  is  inevitable  in  each  separation.              

This  section  describes  the  theoretical  errors  which  are  known  to  occur  in  such              

algorithms.  The  material  objectively  evaluated  here  is  the  same  as  that  used  for              

subjective  testing  in  section  6.5.  In  the  case  of  the  algorithm  described  above  and  used                

in  this  experiment,  increasing  the  value  of  H  will  result  in  capturing  more  of  the                

desired  source  for  resynthesis  but  will  also  lead  to  a  lower  signal  to  interference  ratio                

due  to  time-frequency  (TF)  overlap  between  sources.  Theoretically,  if  the  sources  do             

not  exhibit  TF  overlap,  near  perfect  recovery  of  all  sources  is  possible.  However,              

where  western  tonal  music  is  concerned,  a  significant  amount  of  overlap  can  be              

assumed.  Given  that  equations  6.1  and  6.2  use  both  phase  and  magnitude  information              

to  estimate  the  location  of  each  TF  point,  the  inherent  TF  overlap  between  sources               

causes  the  local  minima  to  spread  out  from  the  true  source  locations.  This  is  referred                

to  as  frequency  azimuth  smearing  in  (Barry  et  al.  2004).  This  can  be  observed  in                

Figure  6.1,  where  the  inverted  frequency-azimuth  plane  (N=4096,  β=100)  for  a  single             

frame   of   the   stereo   audio   is   shown.   
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The  audio  used  here  is  described  in  greater  detail  in  section  6.5.1  The  audio  frame                

contains  5  sources  (guitar,  bass,  drums,  vocals  and  piano)  distributed  equally  across             

the  stereo  field.  Referring  to  Figure  6.1,  each  frequency  component  has  been  resolved              

to  a  location  within  the  stereo  field.  Components  naturally  cluster  close  to  the              

theoretical  source  locations  but  it  can  be  seen  that  some  components  are  incorrectly              

localised  and  so  wider  subspace  widths  ( H )  would  be  required  to  faithfully             

approximate   sources   at   the   cost   of   unwanted   interference.  

 

This  ultimately  means  that  the  source  estimates, Ŝ j ( t ),  are  not  equal  to  the  true  sources                

S j ( t )  but  the  sum  of  the  source  estimates  should  be  approximately  equal  to  the  sum  of                 

the  true  sources  as  in  equation  6.4.  This  is  a  known  shortcoming  of  such  separation                

algorithms.  Nevertheless,  in  the  case  where  the  stereo  presentation  is  reconstructed,            

even  with  individual  source  manipulation,  the  artifacts  are  generally  not  discernable            

(Avendano  et  al.  2003)  but  the  same  artefacts  could  theoretically  lead  to  noticeable              

localisation  ambiguity  when  reproduced  for  surround  presentation.  Section  6.4.2          

explores   this   issue   further.   

 (6.4)  

   

6.4.1   -   Reconstruction   Errors  

The  frequency-azimuth  smearing  illustrated  in  Figure  6.1  essentially  leads  to           

reconstruction   errors   in   each   of   the   individual   source   estimates.   
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Figure   6.1:   Inverted   frequency-azimuth   plane   for   a   single   audio   frame   as   described   by   equation   6.3.  
Five   sources   are   clearly   present,   distributed   equally   from   far   left   (-inf)   to   far   right   (+inf)   as   indicated  

by   the   red   arrows.   Note   the   smearing   of   frequency   components   across   the   azimuth   plane.    

 

This  reconstruction  error  will  depend  ultimately  on  the  number  of  instantaneously            

active  sources  and  their  relative  TF  overlap.  In  (Vincent  et  al.  2007),  a  set  of  objective                 

measurement  criteria  were  presented  in  order  to  compare  the  reconstruction  quality  of             

a   number   of   source   separation   algorithms.   The   criteria   proposed   were   as   follows:  

● ISR   –   Image   to   Spatial   distortion   Ratio   (dB)  

This  measurement  assesses  the  algorithms  ability  to  estimate  the  individual           

source   contributions   to   each   channel   in   the   mixture   signal.   
  

144  

 



 

 

 

Audio   Engineering   Society   AES   35   2009  

  

● SIR   –   Source   to   Interference   Ratio   (dB)  

Here,  the  presence  of  unwanted  interference  from  other  sources  in  the  mixture             

is   measured   as   a   function   of   the   source   estimate   itself.  

● SAR   –   Source   to   Artifact   Ratio   (dB)  

Additional  algorithm  specific  artifacts  are  also  measured  as  a  function  of  the             

source   estimates.   

● SDR   –   Signal   to   Distortion   Ratio   (dB)  

This  measurement  conveniently  combines  all  error  measurements  described         

above.  Refer  to  (Vincent  et  al.  2007)  for  a  detailed  description  of  the              

derivation   of   these   measures.  

 

In  order  to  have  some  objective  measures  to  refer  to  for  comparison  purposes,  the               

subjective  test  material  used  in  section  6.5  has  been  processed  using  the  blind  source               

separation  evaluation  toolbox  (Févotte  et  al.  2008)  which  implements  the  error            

measurements  described  above.  Figure  6.2  presents  the  error  measurement  criteria  for            

each  of  5  source  estimates  separated  from  the  stereo  mix.  These  5  source  estimates               

will  ultimately  comprise  the  5  channel  upmix  in  section  6.5.  Note,  the  original              

implementation  uses  the  10log 10  power  law  for  error  measurement  but  here  we  use  the               

20log 10    power   law   given   its   prevalence   in   the   audio   domain.  

 

Referring  to  Figure  6.2,  it  can  be  seen  that  the  vocal  has  achieved  the  greatest  amount                 

of  separation  owing  to  the  fact  that  it  is  the  most  prevalent  source  in  the  stereo  mix.                  

Subsequently,   the   bass,   the   lowest   source   in   the   stereo   mix   achieves   the   poorest   SIR.  
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Figure   6.2:   SDR,   ISR,   SIR   and   SAR   for   each   of   the   five   separated   sources   from   stereo   mixture   from  
which   the   experimental   upmix   will   be   generated.   Sources   positioned   from   far   left   to   far   right   as   follows:  

guitar,   bass,   drums,   vocals   and   piano .  

 

This  is  a  property  of  almost  all  separation  algorithms,  whereby  the  loudest  sources              

will  generally  have  the  greatest  influence  during  clustering  stages.  Both  guitar  and             

piano  exhibit  similar  error  values  owing  to  the  fact  that  they  exhibit  significant  TF               

overlap  (between  each  other)  and  are  of  similar  amplitude  in  the  stereo  mix.  In               

general  however,  it  can  be  seen  that  in  this  example,  an  average  SIR  of  30dB  can  be                  

achieved   with   a   minimum   of   17dB   in   the   case   of   the   bass.  

6.4.2   -   Image   Shifting  

Given  that  source  separation  is  generally  the  task  of  solving  an  underdetermined             

problem,  theoretical  errors  are  inevitable  as  discussed  above.  As  such,  we  consider  the              

effects   of   such   errors   when   separation   algorithms   are   used   for   multichannel   upmix.  
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As  described  above,  interference  from  nearby  sources  is  the  most  prevalent  problem,             

whereby  an  individual  source  estimate  will  invariably  contain  some  unwanted           

components  from  other  sources.  Consider  the  upmix  task,  where  in  this  case  5  virtual               

sources  from  the  stereo  mixture  will  be  repurposed  as  5  discrete  sources  for  a  5                

channel  presentation.  This  source  interference  becomes  channel  crosstalk  which          

should  theoretically  result  in  image  shifting  within  the  surround  presentation.           

Subjectively,   this   should   lead   to   localisation   errors.  

 

In  order  to  illustrate  how  TF  overlap  causes  localisation  errors  in  the  separation              

algorithm  we  derive  the  azimugram  (time-azimuth  representation)  of  the  stereo  mix            

used  for  upmixing  in  this  experiment.  Essentially  each  column  in  Figure  6.3  is  the               

transposed  column  sum  of  a  frame  such  as  that  presented  in  Figure  6.1.  Referring  to                

Figure  6.3,  note  the  encircled  area,  where  it  can  be  clearly  seen  that  source  overlap                

has  caused  the  source  image  to  temporarily  shift  towards  the  centre.  This  theoretical              

error   will   result   in   channel   crosstalk   in   any   subsequent   upmix   of   the   material.  

 

6.5   -   SUBJECTIVE   TESTING  

A  subjective  experiment  was  designed  to  compare  the  localisation  accuracy  of  a  5              

channel  musical  presentation  created  from  an  upmix  using  ADRess  against  a  discrete             

5  channel  presentation.  The  aim  of  this  test  was  to  quantify  the  extent  of  localisation                

shifts  due  to  the  source  interference  in  the  upmixing  algorithm.  The  test  was              

performed  in  accordance  with  the  ITU  BS.1284-1  recommendations  for  listening  tests            

(ITU,   2002)     and   conducted   on   a   standard   ITU   5-channel   layout.  
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Bass  management  (where  low-frequency  content  from  the  main  surround  channels  is            

routed  to  a  subwoofer)  was  omitted  from  this  experiment  on  the  grounds  that  it  may                

bias  localisation  of  lower  frequency  range  sources.  In  the  context  of  this  experiment,              

we  would  expect  SIR  and  ISR  to  be  the  most  useful  indicators  of  spatial  distortion  in                 

the  5  channel  upmix  of  the  source  material  because  they  are  each  a  proxy  measure  for                 

how   much   the   sources   have   overlapped   in   the   time-frequency   domain.   

 

6.5.1   -   Material   Preparation   and   Stereo   Mix  

For  the  tests,  a  dedicated  2  channel  stereophonic  recording  of  a  jazz  ensemble  was               

created.  The  recording  consisted  of  5  discretely  recorded  sources;  Piano,  drums,            

vocals,  electric  guitar  and  bass.  The  recordings  are  of  studio  quality  and  were  taken  at                

96kHz,  16-bit.  A  stereo  mix  of  the  sources  was  generated  such  that  the  5  sources  were                 

distributed  equally  across  the  stereo  stage  giving  5  equal  width  source  subspaces  that              

could  be  separated  to  produce  the  5  channel  upmix.  The  mixing  criteria  for  the  stereo                

mix   is   shown   in   Table   6.1.  

 

The  spectral  contribution  and  relative  mix  intensity  of  each  source  can  be  seen  in               

Figure  6.4.  The  drums  are  the  most  spectrally  dense  source,  whilst  the  vocals  contain               

the  most  significant  energy  in  the  mix.  The  bass  guitar  has  the  most  limited  frequency                

range   with   prominent   spectral   components   below   300Hz.  
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Figure   6.3:   The   time-azimuth   representation   of   several   hundred   audio   frames.   Source   activity   is   clearly  
visible   as   is   source   overlap   leading   to   localisation   errors   in   the   source   separation   algorithm.  

 
 

Instrument  Level  Pan   Position  

Guitar  -5.8   dB  Left   (100%)  

Bass  -8.7   dB  Left   (50%)  

Drums  -7.2   dB  Centre  

Vocals  0   dB  Right   (50%)  

Piano  -6.4   dB  Right   (100%)  

 

Table   6.1:   Mixing   parameters   for   stereo   mix.   Level   measurements   are   normalised   and   averaged   over  
200mS   frames   where   all   5   sources   are   present   simultaneously.    
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6.5.2   -   Upmixing   

In  any  5  channel  upmix,  there  are  two-main  methods  of  placing  the  audio  sources               

(Avendano  et  al.  2002).  These  are  ‘audience-view’  (where  the  sources  are  kept  at  the               

front  of  the  surround  array  and  the  rear  speakers  are  used  for  lateral  spatial               

enhancement),  and  ‘ensemble  view’  (where  the  listener  is  put  in  the  centre  of  the               

musical  presentation,  surrounded  by  the  musical  sources).  The  first  approach  is  akin             

to   ambience   extraction,   which   is   not   the   focus   of   this   work.  

 

Here  we  adopt  the  latter  approach,  where  we  attempt  to  separate  5  equal  width,               

overlapping,  azimuth  subspaces  from  the  stereo  field  (see  Figure  6.5)  so  that  each              

source  might  be  uniquely  mapped  to  a  single  loudspeaker  in  the  5  channel  upmix.  The                

modified   ADRess   algorithm   described   in   section   6.3   was   used   for   this   purpose.  

 

6.5.3   -   Experimental   Procedure  

It  was  the  task  of  each  participant  to  attempt  to  identify  the  direction  of  the  upmixed                 

sources.  For  the  upmix,  there  are  120  possible  permutations  by  which  all  5  sources               

can  be  mapped  to  the  loudspeakers.  However,  we  can  limit  the  number  of  tests  such                

that  we  are  only  interested  in  permutations  where  we  can  test  localisation  of  each               

source  uniquely  mapped  to  each  loudspeaker.  Thus  we  only  need  to  construct  25              

different  tests.  This  can  be  further  reduced  if  we  consider  the  symmetry  of  the  array,                

since   symmetrically   equivalent   tests   should   give   identical   results.   
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This  results  in  15  unique  tests  with  which  to  describe  the  localisation  accuracy  of  the                

upmix.  Also,  for  each  upmix,  there  is  then  an  exact  discrete  channel  mix  with  which                

to  compare  the  localisation  accuracy,  giving  a  total  of  30  localisation  tests  for  each               

participant.  In  total,  10  listeners  were  chosen  for  the  tests,  each  under  35  years  of  age,                 

of  excellent  hearing,  and  well  experienced  in  musical  production.  The  setup  illustrated             

in  Figure  6.6  consists  of  5  Genelec  1029A  loudspeakers  each  calibrated  to  79  dBC  at                

the  centre  listening  position.  A  MOTU  896-HD  audio  interface  was  used  to  route  the               

audio  to  each  of  the  loudspeakers  and  the  test  was  controlled  by  the  participant  via  a                 

PC  laptop.  The  listening  room  is  a  good  monitoring  environment  with  a  spatially              

averaged   reverberation   time   of   0.3   seconds   at   1kHz.   

 

Figure   6.5:   Stereo   energy   histogram   illustrating   the   energy   distribution   across   the   stereo   field   from   left  
(-inf)   to   right(+inf)   within   the   stereo   mix.   ADRess   is   configured   to   separate   5   equal   width   overlapped  

subspaces   for   upmixing   purposes.   
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.  
 

Figure   6.4:   Spectrograms   of   discrete   source   contributions   over   5   seconds   of   the   two   channel  
mix.  

 

 

Figure   6.6:   Right:   Listening   Test   Configuration.   Left:   Participant   in   the   listening   environment  
conducting   the   perceptual   experiment   with   dedicated   test   software.  
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6.5.4   -   Data   Acquisition  

A  dedicated  software  pointer,  shown  in  Figure  6.7  was  developed  to  perform  the  tests.               

The  software  gave  each  participant  complete  control  over  the  test,  allowing  them  to              

initiate  the  audio,  stop  the  presentation  or  move  on  to  the  next  presentation.  For  each                

test,  the  software  asks  the  subject  to  identify  the  direction  of  one  of  the  musical                

sources  (shown  in  large  yellow  letters).  The  user  can  play  the  test  presentation  as               

many  times  as  they  desire,  before  they  decide  on  the  direction  of  localisation  using  the                

software  pointer.  The  pointing  tool  consists  of  a  circle  displaying  the  ITU  5  channel               

layout  with  a  moveable  blue  ball  for  choosing  the  source  orientation.  Given  the              

diameter  of  the  ball,  there  is  a  1 o  margin  of  error  in  the  test  software  and  the                  

loudspeaker  markers  are  +/-3  o  wide.  The  sequence  in  which  each  of  the  30  samples  is                 

played   is   completely   random   and   different   for   each   participant.  

 

Figure   6.7:   Custom   software   designed   for   listening   test.  
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6.6   -   RESULTS  

Observing  the  results  of  the  subjective  testing,  it  is  apparent  that  the  theoretical              

reconstruction  errors  discussed  in  section  6.4.1  have  manifested  themselves  as  image            

shifts  within  the  upmix  reproduction.  This  leads  to  localisation  errors  during            

subjective  audition.  However,  the  magnitudes  of  the  errors  are  dependent  on  both  the              

instrument  and  the  channel  in  which  it  is  reproduced.  Firstly,  we  present  the  data  for                

each  reproduction  channel  (or  symmetric  pair)  as  the  localisation  error  from  the             

theoretical  source  position  for  each  instrument  in  both  the  upmix  and  the  discrete  mix.               

Figure  6.8,  6.9  and  6.10  illustrate  the  perceived  localisation  error  for  the  center,              

left/right,  and  left/right  surround  channels  respectively.  Both  the  discrete  5  channel            

mix  and  upmix  errors  are  presented  for  comparison  purposes.  Note  that  0  degrees              

refers   to   the   normalised   on   axis   angle   for   each   reproduction   channel.   

6.6.1   -   Center   Channel   Localisation  

Referring  to  Figure  6.8,  it  is  apparent  that  the  center  channel  localisation  achievable              

within  the  upmix  is  largely  similar  to  that  of  the  discrete  mix.  Here,  the  mean                

localisation  error  is  less  than  5  degrees  for  drums,  guitar,  piano  and  vocals.  The               

exception  in  both  discrete  and  upmix  presentations  is  the  bass  instrument,  where  a              

mean  localisation  error  of  41  degrees  and  25  degrees  is  apparent  for  the  discrete  mix                

and  upmix  respectively.  In  general,  poor  localisation  of  low  frequency  content  is             

expected  (Theile  et  al.  1980).  Note  also  that  there  is  an  image  shift  away  from  the                 

discrete   presentation   toward   the   theoretical   location.  
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As  a  consideration,  the  SIR  for  the  bass  is  poorest  as  indicated  in  Figure  6.2.  This                 

suggests  that  a  substantial  number  of  spectral  components  from  the  bass  have  ‘leaked’              

into  other  separations.  This  of  course  translates  to  channel  crosstalk  in  the  upmix.              

Thus  we  postulate  that  in  this  case,  the  crosstalk  has  affected  the  perceived              

localisation  of  bass  within  the  upmix  to  positive  effect.  The  complex  channel             

interactions  could  just  as  easily  result  in  the  opposite  effect,  shifting  the  source  away               

from   the   intended   location.  

 

Figure   6.8:   Perceived   localisation   deviations   for   discrete   and   upmixed   sources   positioned   in  
the   center   channel   with   theoretical   position   0   degrees.   (95%   Confidence   Interval')  

 

6.6.2   -   Left   and   Right   Channel   Localisation  

Referring  to  Figure  6.9,  for  left  and  right  channels  a  noticeable  image  shift  is  apparent                

between   the   discrete   mix   and   the   upmix.  
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In  this  case,  localisation  achievable  is  clearly  poorer  for  the  upmix  but  the  error               

remains  below  10  degrees  for  drums,  guitar,  piano  and  vocals.  The  bass,  as  expected,               

achieves  poorest  localisation  in  both  cases  but  a  similar  situation  has  occurred             

whereby  the  upmix  image  has  been  shifted  toward  the  theoretical  source  location.             

This  has  been  discussed  in  the  previous  section.  Note  that  the  vocal  has  achieved  the                

best  localisation.  This  can  be  attributed  to  the  fact  that  it  was  the  loudest  source  in  the                  

stereo  mix  and  achieved  the  greatest  SIR  (Figure  6.2)  which  inherently  means  that  it               

will  generate  the  least  amount  of  crosstalk  in  the  upmix  leading  to  greater  image               

stability.   

 

Figure   6.9:   Perceived   localisation   deviations   for   discrete   and   upmixed   sources   positioned   in   the   left   or  
right   channels   with   theoretical   positions   30   degrees.   (95%   Confidence   Interval')  
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6.6.3   -   Left   and   Right   Surround   Channel   Localisation  

In  general,  auditory  events  presented  laterally  to  a  listener  are  subject  to  the  greatest               

localisation  blur.  Blauert  (Blauert  et  al.  1996)  shows  that  sources  presented  to  the              

sides  of  a  listener  undergo,  on  average,  a  localisation  blur  of  +/-10  degrees. Both  the                

discrete  and  upmix  presentations  illustrate  this  trait.  However,  the  upmix  performs            

considerably  poorer  than  the  discrete  mix  for  rear  channels  although  the  trend  for  each               

is   similar.   

 
Figure   6.10:   Perceived   localisation   deviations   for   discrete   and   upmixed   sources   positioned   in   the   rear  

channels   with   theoretical   positions   110   degrees.   (95%   Confidence   Interval')  

 

Note  that  on  average,  the  upmixed  images  have  shifted  40  degrees  from  the              

theoretical  positions;  however,  the  shift  from  the  subjective  discrete  source  locations            

is   significantly   less,   in   the   region   of   25   degrees   on   average.  
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Given  that  the  experiment  is  conducted  in  a  real  listening  room  as  opposed  to  an                

anechoic  chamber,  the  room  acoustics  impose  constraints  on  the  experiment.  We            

therefore  consider  the  discrete  localisation  results  to  be  the  ground  truths  as  opposed              

to  the  theoretical  source  positions.  With  this  in  mind,  Figure  6.11  presents  the  mean               

image  shift  of  the  upmixed  source  locations  as  a  function  of  the  discrete  source               

locations.  

 

Figure   6.11:   The   mean   image   shift   observed   within   the   upmix   material.   (95%   Confidence   Interval')  

 

6.6.4   -   Discussion  

In  general,  the  vocal  has  been  localised  most  accurately  in  the  upmixes  with  minimum               

image  shifts  in  the  frontal  channels.  Although  the  image  shift  from  ground  truth  is               

considerable  in  the  surround  channels,  it  remains  closer  to  the  theoretical  source             

position   than   other   sources   (Figure   6.10).  
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Subsequently,  the  vocal  also  achieves  the  highest  SIR  (Figure  6.2)  of  all  sources              

which  implies  that  it  will  exhibit  less  crosstalk  upon  upmixing.  This  can  be  attributed               

to  the  fact  that  the  source  is  almost  6dB  louder  than  any  other  source  in  the  mix  which                   

is  advantageous  for  source  separation.  Referring  to  Figure  6.2,  the  drums  achieve  the              

poorest  SIR  but  localisation  accuracy  remains  strong  in  subjective  testing.  In  general,             

transients  are  easier  to  localise  due  to  the  broadband  nature  of  the  instruments  attack.               

Secondly,  although  the  drums  don’t  exhibit  sustained  loudness,  they  may  frequently            

but  briefly  become  the  dominant  source  in  the  mixture  upon  their  onset.  This  aids               

localisation  and  would  inherently  lead  to  a  higher instantaneous  SIR  value.  As             

discussed,  bass  is  difficult  to  localise  in  most  circumstances.  This  is  evident  in  both               

the  discrete  and  upmix  presentations.  In  the  case  of  piano  and  guitar,  they  achieve               

similar  localisation  accuracy  with  guitar  localisation  slightly  outperforming  that  of  the            

piano.  This  is  also  supported  by  the  objective  measurements  where  the  SIR  for  guitar               

is   slightly   better   than   that   of   piano.   

 

In  addition  to  localisation  errors,  some  subjects  noted,  in  rare  cases,  additional             

artifacts  which  were  later  attributed  to  upmixed  material.  Occasionally,  some           

transients  were  perceived  as  ‘dulled’  with  respect  to  the  discrete  mix  although  not              

objectionable.  In  general,  however,  many  subjects  reported  that  they  were  often            

unable   to   identify   which   of   the   two   presentations   they   were   listening   to   in   a   given   test.  

Finally,  it  should  be  noted  that  in  a  real-world  scenario,  the  listener  has  no  prior                

expectation   of   source   locations   and   so   localisation   errors   are   not   detrimental   to   the  
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effective  application  of  source  separation  to  upmixing,  provided  that  the  artifacts            

known  to  exist  in  individual  reproduction  channels  (separations)  are  masked  when  the             

full   presentation   is   recreated.   

 

6.7   -   CONCLUSIONS   AND   FUTURE   WORK  

In  this  paper,  the  source  localisation  accuracy  and  perceived  spatial  distortion  of  a              

source  separation-based  upmix  algorithm  for  2  to  5  channel  conversion  was            

investigated.  Subjective  and  objective  testing  methodologies  were  presented  in  order           

to  assess  the  localisation  accuracy.  It  was  shown  that  theoretical  reconstruction  errors             

associated  with  the  source  separation  process  manifest  themselves  as  image  shifts  in             

the  upmix  presentation  and  thus  led  to  perceived  localisation  distortion.  However,  the             

localisation  error  is  acceptable  in  center,  left  and  right  channels  but  significant  in  the               

surround  channels,  yet  still  below  30  degrees.  The  tests  carried  out  here  are  not               

intended  to  be  comprehensive,  but  rather,  indicative  that  separation  algorithms  are            

suitable  for  upmix  applications,  particularly  for  audience  view/ensemble  view          

conversion.   

This  research  focused  specifically  on  assessing  the  localisation  quality  of  source            

separation  based  upmixing  presented  over  a  discrete  loudspeaker  configuration          

similar  to  5.1  surround.  Other  forms  of  spatial  audio  presentation  could  also  be              

investigated  such  as  wavefield  systems  and  binaural  surround  presented  over           

headphones.  The  latter  could  be  assessed  for  both  head-tracked  and  static            

presentation.  
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CHAPTER   7:   DRUM   SOURCE   SEPARATION   USING   PERCUSSIVE  
FEATURE   DETECTION   AND   SPECTRAL   MODULATION   

This  chapter  presents  the  fifth  and  final  contribution  of  this  dissertation.  Here  we              

present  a  single  channel  drum  separation  algorithm  which  can  be  used  as  a              

post-process  to  the  ADRess  algorithm  (Barry  et  al.  2004)  or  as  a  pre-process  to  drum                

transcription  algorithms  such  as  (Fitzgerald  et  al.  2002).  It  was  originally  published  in              

the  IET  Irish  Signals  and  Systems  Conference  in  2005  and  is  presented  here  in  its                

entirety.  The  paper  included  co-author  Derry  Fitzgerald  who  provided  the  tests  on  the              

drum   transcription   application.  
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7.1   -   ABSTRACT  

We  present  a  method  for  the  separation  and  resynthesis  of  drum  sources  from  single               

channel  polyphonic  mixtures.  The  frequency  domain  technique  involves  identifying          

the  presence  of  a  drum  using  a  novel  percussive  feature  detection  function,  after              

which  the  short-time  magnitude  spectrum  is  estimated  and  scaled  according  to  an             

estimated  time-amplitude  function  derived  from  the  percussive  measure.  In  addition           

to  producing  high  quality  separation  results,  the  method  we  describe  is  also  a  useful               

pre-process  for  drum  transcription  techniques  such  as  Prior  Subspace  Analysis  in  the             

presence   of   pitched   instruments.  

 

7.2   -   INTRODUCTION   

In  recent  years,  some  focus  has  shifted  from  pitched  instrument  transcription  to  drum              

transcription;  and  likewise  in  the  field  of  sound  source  separation,  some  particular             

attention  has  been  given  to  drum  separation  in  the  presence  of  pitched  instruments              

(Helen  et  al.  2005  ).  Where  metadata  generation  for  music  archive  and  retrieval              

systems  is  concerned,  rhythm  analysis  is  particularly  important  since  broad  genre            

categorization  can  be  ascertained  from  simplistic  aspects  of  rhythm  such  as  tempo  and              

meter.  Automatic  drum  separation  would  facilitate  more  accurate  transcription,  thus           

giving  access  to  the  finer  temporal  aspects  of  rhythm  such  as  polyrhythm  and              

syncopation.  Quite  apart  from  this,  drum  separation  and  transcription  is  in  itself  a              

useful   tool   in   such   applications   as   computerised   music   education.   
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Where  the  music  consists  of  drums  only,  some  existing  algorithms  give  reasonably             

accurate  results  (Fitzgerald  et  al.  2002),  however,  in  the  presence  of  pitched             

instruments,  the  algorithms  become  less  robust  and  less  accurate  by  way  of  false  beat               

detection  and  indeed  missing  beats  altogether  (Fitzgerald  et  al.  2003  b).  A  drum              

separation  algorithm  in  this  case  would  be  a  viable  pre-process  in  order  to  overcome               

some  of  the  problems  associated  with  drum  transcription  in  the  presence  of  pitched              

instruments.  Algorithms  such  as  ADRess  (Barry  et  al.  2004  b)  and  those  described  in               

(Avendano  et  al.  2003)  are  capable  of  drum  separation  in  stereo  signals  if  certain               

constraints  are  met.  In  particular,  the  drums  must  occupy  a  unique  position  within  the               

stereo  field.  This  condition  of  course  is  not  always  met  and  it  is  usually  the  case  in                  

popular  music  that  elements  of  the  drum  kit  share  a  stereo  field  position  with  other                

instruments.  Other  algorithms  such  as  (Zils  et  al.  2002)  and  (Uhle  et  al.  2003)  have                

attempted  drum  separation  from  single  polyphonic  mixture  signals  with  varying           

results.  The  quality  in  these  cases  is  usually  described  as  tolerable  for  the  purposes  of                

rhythmic  signature  analysis.  We  present  a  fast  and  efficient  way  to  decompose  a              

spectrogram  using  a  simple  technique  which  involves  percussive  feature  detection  and            

spectral  modulation  which  results  in  the  extraction  of  the  drum  parts  from  a              

polyphonic  mixture.  The  algorithm  is  applicable  for  the  separation  of  almost  any             

audio  features  which  exhibit  rapid  broadband  fluctuations  such  as  drums  in  music  or              

plosives,   fricatives   and   transients   in   speech.   
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7.2   -   METHOD   OVERVIEW  

Most  of  the  drums  used  in  popular  music  can  be  characterised  by  a  rapid  broadband                

rise  in  energy  followed  by  a  fast  decay.  This  is  particularly  true  of  the  kick  and  snare                  

drum  which  could  be  considered  as  the  most  common  drums  found  in  modern  music.               

Pitched  instruments  on  the  other  hand  will  generally  only  exhibit  energy  at  integer              

multiples  of  some  fundamentals  which  correspond  to  the  notes  played  in  the  music.              

There  are  of  course  exceptions  in  the  case  of  mallet  and  hammer  instruments  which               

may  exhibit  drum  like  onsets  prior  to  the  stable  harmonic  regions  of  the  note.  With                

this  in  mind  we  develop  an  onset  detector  which  is  not  concerned  with  measuring  the                

rapid  rises  in  energy;  but  rather  an  onset  detector  that  measures  the  broadband  nature               

or percussivity  of  the  onset,  independent  of  the  actual  energy  present.  In  this  way               

drum  hits  of  varying  velocity  will  be  detected  equally.  A  percussive  temporal  profile              

is  derived  by  analysing  each  frame  of  a  short-time  Fourier  transform  (STFT)  of  the               

signal  and  assigning  a  percussive  measure  to  it.  The  frame  is  then  scaled  according  to                

this  measure.  It  should  be  seen  then  that  regions  of  the  spectrogram  with  low               

percussive  measures  will  be  scaled  down  significantly.  Upon  resynthesis,  only  the            

percussive  regions  remain.  Effectively  the  spectrogram  is  modulated  by  an  envelope            

corresponding   to   the   percussion   detected   within   the   signal.  

 

Figure  7.1  illustrates  the  general  operation  of  the  algorithm.  The  magnitude  STFT  of              

the  signal  is  taken  and  the  phase  information  is  retained  for  resynthesis  purposes  later               

on.  
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Figure   7.1:   System   Overview.  

 

The  log  difference  of  each  frequency  component  between  consecutive  frames  is  then             

calculated.  This  measure  effectively  tells  us  how  rapidly  the  spectrogram  is            

fluctuating.  If  the  log  difference  exceeds  a  user  specified  threshold,  it  is  deemed  to               

belong  to  a  percussive  onset  and  a  counter  is  incremented.  The  final  value  of  this                

counter,  once  each  frequency  bin  has  been  analysed,  is  then  taken  to  be  the  measure  of                 

percussivity  of  the  current  frame.  Once  all  frames  have  been  processed,  we  have  a               

temporal  profile  which  describes  the  percussion  characteristics  of  the  signal.  This            

profile  is  then  used  to  modulate  the  spectrogram  before  resynthesis.  Some  specific             

options   for   resynthesis   are   discussed   in   the   next   section.   
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7.3   -TEMPORAL   ESTIMATION  

Firstly   we   take   an   STFT   of   the   signal   given   by:  

 

(7.1)  

 

where X ( k,m ) is  the  absolute  value  of  the  complex  STFT  given  in  equation  7.1  and                

where m  is  the  time  frame  index, k  is  the  frequency  bin  index, H  is  the  hopsize                  

between  frames  and N  is  the  FFT  window  size  and  where w ( n )  is  a  suitable  window  of                  

length N  also.  Next  we  take  the  log  difference  of  the  spectrogram  with  respect  to  time                 

as   in   equation   7.2.  

 

 (7.2)  

 
 

for   all    m    and   

In  order  to  detect  the  presence  of  a  drum  we  define  a  percussive  measure  given  in                 

equation   7.3.  

(7.3)  

 
 

where, T  is  a  threshold  which  signifies  the  rise  in  energy  measured  in  dB  which  must                 

be  detected  within  a  frequency  channel  before  it  is  deemed  to  be  a  percussive  onset.                

Effectively   equation   7.3   acts   like   a   counter;    Pe(m)    is   simply   a   count   of   how   many   bins   
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are  positive  going  and  exceed  the  threshold. P(k,m) contains  a  ‘1’  if  the  threshold               

condition  is  met  and  ‘0’  otherwise.  Note  that  the  actual  energy  present  in  the  signal  is                 

not  significant  here;  we  simply  want  a  measure  of  how  “broadband”  or  percussive  the               

onset  is.  The  figure  below  shows  the  effectiveness  of  this  approach.  Standard             

energy-based  onset  detectors  such  as  (Masri  et  al.  1996)  will  not  be  able  to  distinguish                

between  narrowband  and  broadband  onsets.  In  these  systems  the  level  of  detection             

will  be  intrinsically  linked  to  the  energy  of  the  signal  at  any  given  time.  The  detection                 

function  we  have  described  is  independent  of  energy  and  so  can  deal  with  low  energy                

onsets   as   long   as   they   are   broadband   in   nature.  

 

Figure   7.2:   The   top   plot   shows   the   original   audio   clip.   Plot   2   shows   our   percussive   onset   detector.   The  
third   plot   shows   the   standard   energy   detector   and   the   bottom   plot   shows   Masri’s   high   frequency  

weighted   detection   function   (Masri   et   al.   1996)  

Note  that  the  percussive  feature  detection  function  we  have  described  even  manages             

to   detect   the   low   amplitude   hi   hat   strikes   between   the   kick   and   snare   events.  
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7.4   -   SPECTRAL   MODULATION  

By  weighting  each  frame  by  the  percussive  measure Pe(m)  ,  the  spectrogram             

modulates  in  sympathy  with  the  percussion.  This  results  in  the  output  of  the  algorithm               

only  becoming  active  in  the  presence  of  a  drum  sound.  There  are  some  options  when                

it  comes  to  resynthesis;  the  simplest  is  to  simply  multiply  the  original  frame  by  the                

percussive   measure:  

 
   (7.4)  

 
for   all    m    and   

In  order  to  control  the  decay  characteristics  of  the  percussive  envelope  we  simply              

raise  the  percussive  measure, Pe(m) ,  to  the  power  of  Ψ.  Larger  values  of  Ψ  will  lead                 

to  faster  decay.  The  parameter  is  set  by  the  user  such  that  satisfactory  results  are                

achieved  upon  audition.  Equation  7.4  results  in  a  time  separation  of  the  drum  signals               

but  not  a  frequency  separation.  Other  sources  which  were  present  at  the  same  time               

instant  as  the  drums  will  also  be  present  but  will  decay  as  the  drum  decays.  This                 

method  is  particularly  useful  for  varying  the  level  of  the  drums  within  a  mixture               

signal.  For  this  the  separated  drum  signal  is  added  back  to  the  original  signal  in  some                 

ratio.  This  process  allows  for  far  greater  control  over  the  dynamic  range  of  a  signal                

than   standard   dynamic   compression   techniques.  

 

The  other  option  for  resynthesis  which  does  decouple  the  drums  from  the  mixture  in               

both   the   time   and   frequency   domain   is   as   follows:   
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(7.5)  

 

By  multiplying  the  frame  by  the  binary  mask P(k,m) ,  we  are  only  resynthesising              

frequency  components  which  were  present  during  the  percussive  onset.  This  alters  the             

timbre   somewhat   but   it   effectively   suppresses   non   percussive   sources   in   the   mixture.   

 

The  separated  drum  signal  is  then  resynthesised  using  the  modulated  magnitude            

spectrum  with  the  original  phase  information,  equation  7.6.  It  has  been  shown  in              

(Barry  et  al.  2005  c)  that  using  the  original  mixture  phase  information  is  more               

accurate  than  using  a  least  squared  error  approximation  such  as  that  in  (Griffin  et  al.                

1984).   

 

(7.6)  

 
 
The  output  must  be  normalised  due  to  the  fact  that  magnitude  frames  have  been               

scaled  according  to  the  percussive  measure. w(n)  is  a  synthesis  windowing  function             

which  is  required  to  maintain  smooth  transitions  at  the  frame  boundaries  since  the              

process  will  alter  the  short-time  magnitude  spectrum.  Since  there  is  both  an  analysis              

and  synthesis  window,  it  is  necessary  to  use  a  75%  overlap  in  order  to  have  a  constant                  

sum  reconstruction.  The  algorithm  has  been  applied  to  many  popular  recordings  and             

achieves  high  quality  separations  in  most  cases.  The  figure  below  shows  the             

separation   which   has   resulted   from   a   typical   piece   of   rock   music.  
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7.5   -   RESULTS   

The  drums  are  barely  distinguishable  by  visual  inspection  in  the  time  domain  plot  on               

top.  However,  the  percussive  feature  detector  has  accurately  discriminated  between           

drum  events  and  non  drum  events.  The  output  of  the  feature  detector  is  then  used  to                 

modulate  the  spectrogram  which  is  inverted  to  produce  the  bottom  plot  which  is  a               

time   domain   reconstruction   of   the   drum   events   present   in   the   signal.   

 

Figure   7.3:   The   plot   shows   the   original   input   file   and   the   drum   separation   which   resulted.   
 

To  demonstrate  the  utility  of  the  algorithm  as  a  pre-processing  stage  before  attempting              

drum  transcription,  an  informal  test  was  carried  out  on  a  highly  compressed  piece  of               

audio  which  is  a  “worse  case  scenario”  for  drum  transcription  algorithms.  The             

compression  we  speak  of  is  dynamic  range  compression  as  opposed  to  bit  rate              

reduction  compression.  This  sort  of  compression  is  used  to  increase  the  average  level              

of  the  audio  and  is  applied  to  many  modern  recordings  in  a  stage  known  as                

‘mastering’.  

170  

 



 

 

 

IET   Irish   Signals   and   Systems   Conference   in   2005  

 

It  effectively  reduces  peak  levels  and  increases  RMS  levels  dynamically,  making  it             

particularly  difficult  for  variance-based  transcription  techniques  such  as  those  in           

(Fitzgerald  et  al.  2002)  and  (Fitzgerald  et  al.  2003  b)  to  distinguish  the  drums  at  all.                 

The   separation   algorithm   was   applied   to   this   recording.   

 

Prior  Subspace  Analysis  (PSA)  (Fitzgerald  et  al.  2003  b),  a  technique  for  transcribing              

drums  was  then  applied  to  both  the  unprocessed  and  separated  spectrograms.  The             

results  obtained  are  shown  in  Tables  7.1  and  7.2.  It  can  be  seen  that  the  use  of  the                   

separation  algorithm  has  substantially  increased  the  performance  of  the  PSA           

algorithm  in  transcribing  drums  in  the  presence  of  pitched  instruments.  The            

percentages   are   obtained   using   the   following   measure:  

 

 
 
 

 

Table   7.1:   Drum   Transcription   obtained   using   PSA   on   the   unprocessed   signal  

 

 

Table   7.2:   Drum   Transcription   obtained   using   PSA   after   the   drum   separation   algorithm  
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Figure   7.4:   ISA   was   applied   directly   to   the   same   audio   clip   shown   in   figure   7.3.   

 
Figure   7.5:   ISA   after   the   separation   algorithm   has   been   applied  

 

In  Table  7.1,  the  percentage  of  detection  overall  is  -9%  (minus  9%).  This  was  due  to                 

the  fact  that  the  PSA  algorithm  made  several  false  positives,  i.e.  detected  events              

which  did  not  correspond  to  drum  events.  2  out  of  5  snares  were  missed  and  1  out  of  6                    

kicks   were   missed   along   with   several   false   positives   for   both.  
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The  results  in  table  2  clearly  show  that  the  PSA  algorithm  has  benefited  greatly  from                

the  separation  technique  described  in  this  paper.  No  events  were  missed  and  there  was               

only   one   false   positive   in   the   case   of   the   kick   drum.  

 

Independent  Subspace  Analysis  (ISA)  techniques  (Fitzgerald  et  al.  2002)  also  benefit            

greatly  when  the  separation  algorithm  presented  here  is  used  as  a  pre-process.  The              

plot  in  figure  7.4  shows  the  differences  between  applying  ISA  directly  to  the              

unprocessed   audio,   and   applying   ISA   to   the   separated   spectrogram,   figure   7.5.  

 

7.6   -   CONCLUSIONS  

A  system  capable  of  separating  drum  sources  from  a  single  polyphonic  mixture  has              

been  presented.  The  algorithm  is  useful  in  the  context  of  audio  processing  for  music               

production  and  education.  It  has  also  been  illustrated  that  the  use  of  this  algorithm  as                

a  pre-processing  step  for  drum  transcription  algorithms  greatly  improves  the           

transcription   results.   

 

7.6.1   -   Future   Work  

Although  the  audio  quality  of  the  separations  is  of  a  high  enough  standard  to  be  used                 

in  the  context  of  transient  processing  in  professional  audio  applications,  the            

separations  played  in  isolation  clearly  contain  artefacts  from  other  sources  active  in             

the  non-zeroed  time  frames.  This  could  be  mitigated  by  trying  to  estimate  the  drum               

spectra  more  accurately  by  utilising  the  fact  that  the  output  now  contains  many              
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frames,  spread  across  time,  which  represent  a  single  drum.  Given  that  different             

melodic  events  are  likely  to  be  playing  on  each  drum  hit  (kick  for  example),  one                

could  estimate  the  commonalities  and  differences  across  all  instances  of  frames            

containing  a  kick  drum  for  example.  This  could  be  approached  procedurally  or  using              

a  learning  algorithm  such  as  ISA  for  example (Casey  et  al.  2000)  to  extract  only  the                 

spectral   profile   of   the   desired   drum.   
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CHAPTER   8:   CONCLUSIONS   AND   FUTURE   WORK  

In  chapter  2  of  this  dissertation,  a  review  is  presented  of  the  existing  sound  source                

separation  techniques  at  the  time  that  the  contributions  in  chapters  3-7  were             

published.  The  advantages  and  disadvantages  of  each  technique  are  discussed.           

Surrounding  fields  of  study  such  as  psychoacoustics  and  cognitive  psychology  are            

also  explored.  Based  on  this  review,  a  novel  algorithm  for  performing  human-assisted             

sound  source  separation  for  music  applications,  the  ADRess  algorithm,  is  presented  in             

Chapter  3.  The  algorithm  is  designed  specifically  to  take  advantage  of  the  linear              

stereo  mixing  model  which  is  sometimes  referred  to  as  the  intensity  panned  stereo              

model.  This  is  the  model  used  by  the  vast  majority  of  professionally  recorded  music.               

Prior  to  this,  most  approaches  had  focused  solely  on  more  general  cases  such  as  dual                

or  multi  microphone  source  separation  or  monaural  separation.  By  starting  with  the             

desired  mixing  model  we  wish  to  deconstruct,  it  was  possible  to  tailor  an  algorithm               

for  that  specific  purpose.  Furthermore,  the  algorithm  is  designed  to  run  in  real  time,  a                

feat  that  had  not  yet  been  achieved  at  the  time  of  publication.  Since  its  publication  in                 

2004,  the  ADRess  algorithm  has  had  significant  impact  academically  and           

commercially.  The  initial  two  papers  and  patent  have  had  a  total  of  177  citations               

between  them  and  the  patent  has  been  cited  as  prior  art  by  Sony,  Samsung,  Dolby  and                 

NEC  on  subsequent  patents.  The  algorithm  was  licensed  to  Sony  in  2006  for  use  in                

SingStar  on  the  Sony  PlayStation  3  which  went  on  to  sell  13m  copies.  In  2012,  the                 

algorithm  was  licensed  to  Riffstation,  a  company  I  co-founded,  which  went  on  to  be               

acquired  by  Fender  and  was  used  by  millions  of  users  globally  from  2012  to  2018.                

Also   presented   are   several   secondary   contributions.   
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In  Chapter  4,  an  exploration  of  alternate  reconstruction  techniques  including           

magnitude-only   estimation   and   sinusoidal   modelling   were   presented.  

 

In  Chapter  5,  a  novel  use  of  the  azimugram  from  ADRess  was  presented.  Here,  it  is                 

shown  that  the  azimugram  can  be  used,  in  conjunction  with  PCA  and  ICA,  to  achieve                

coarse  musical  structure  segmentation.  Results  are  presented  for  a  number  of  popular             

recordings.   

 

In  Chapter  6,  the  ADRess  algorithm  was  applied  to  the  task  of  upmixing.  Here,  I                

explored  the  source  localisation  accuracy  and  perceived  spatial  distortion  of  an  upmix             

created  by  the  ADRess  algorithm.  ADRess  was  configured  to  carry  out  a  2  to  5                

channel  conversion  and  subjective  and  objective  testing  was  used  to  compare  the             

upmix  against  a  dedicated  surround  mix  of  the  same  material.  The  results  show  that               

the  typical  spectral  artefacts  that  affect  single-source  separations  are  not  perceivable            

when  all  sources  are  presented  over  a  multichannel  playback  system  such  as  a  5.1               

surround  system.  However,  spatial  distortion  is  perceived  but  not  to  an  objectionable             

degree.  

 

In  Chapter  7,  a  novel  algorithm  for  drum  source  separation  is  presented.  It  was               

originally  designed  to  overcome  a  shortcoming  of  the  ADRess  algorithm;  specifically            

that  case  where  multiple  sources  are  panned  to  the  same  location,  in  which  case               

ADRess  cannot  separate  them.  This  problem  is  most  apparent  in  the  centre  pan              

position  which  often  contains  drums,  bass  and  vocals  together.  The  drum  separation             

algorithm  was  designed  as  a  post  process  for  ADRess  but  as  shown  in  Chapter  7,  it                 
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was  also  a  very  useful  preprocess  for  PSA  and  ISA-based  drum  transcription             

algorithms.  

 

The  combined  work  above  was  cited  237  times  and  represented  an  advance  in  the               

field  of  real-time  sound  source  separation  for  music  applications.  This  work  continues             

to   be   extended   for   other   applications   today   and   there   is   much   yet   to   explore.  

 

8.1   -   FUTURE   WORK  

There  are  still  many  avenues  to  investigate  in  terms  of  extending  or  improving  the               

ADRess  algorithm  directly.  Some  of  those  ideas  were  suggested  at  the  end  of              

chapters   3   and   4   but   are   elaborated   on   here.  

 

8.1.1   Multiresolution   ADRess  

The  analysis  frame  size  for  ADRess  is  chosen  to  be  4096  samples  at  44.1  KHz  or                 

approximately  92  ms.  This  gives  an  approximate  frequency  resolution  (bin  width)  of             

10.71  Hz.  It  should  be  appreciated  that  this  would  just  about  allow  the  separation  of                

notes  spaced  1  semitone  apart  in  lower  bass  octaves.  So  in  theory,  this  is  quite  coarse                 

resolution  for  low  frequencies  but  more  than  adequate  for  high  frequencies  as  the              

absolute  frequency  difference  between  the  semitones  increases  as  the  fundamental           

frequency  increases.  Conversely,  this  large  frame  size  which  accommodates  frequency           

resolution,  is  detrimental  for  time  resolution.  As  a  result,  rapidly  changing  signals             

such  as  transients  or  other  high  frequency  content  will  suffer.  This  is  sometimes              

noticed  when  drums  are  separated.  Artefacts  such  as  phasiness  and  transient  smearing             

can  often  be  heard.  This  happens  because  the  ADRess  algorithm  seeks  to  attribute              
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each  frequency  component  to  a  dominant  source  location  at  any  given  point  in  time.  It                

does  this  by  clustering  all  frequency  components  within  a  user  defined  distance  of  a               

specific  azimuth.  In  the  case  of  a  transient,  it  will  almost  definitely  be  the  dominant                

source  for  a  very  short  period  of  time  (significantly  shorter  than  4096  samples)  and               

should  have  many  frequency  components  attributed  to  it  by  the  algorithm  but  the              

frame  size  means  that  the  transient  will  compete  with  many  other  sources  which  may               

have  dominance  at  an  instant  in  time  either  before  or  after  the  transient,  but  within  the                 

4096-sample  window.  In  summary,  the  time  resolution  afforded  to  transients  by  using             

a  4096-sample  frame  size  is  not  sufficient  for  predictably  high-fidelity  reconstruction            

but  a  smaller  window  size  hinders  low  frequency  reconstruction.  The  logical  solution             

is  to  use  a  multiresolution  approach  which  would  split  the  signal  into  two  or  more                

frequency  bands  and  process  each  band  with  a  more  suitable  window  size.  The              

processed  bands  would  then  be  recombined  to  create  the  final  output.  The  benefit  of               

this  is  that  the  audio  fidelity  should  in  theory  be  perceptually  better  but  the               

computational   requirements   will   certainly   increase.  

 

8.1.2   Inpainting  

Inpainting  is  a  concept  more  often  related  to  image  signal  processing.  It  is  used  to                

recreate  missing  or  corrupted  data  in  images  and  it  can  even  be  used  to  synthesise                

additional  content  that  wasn’t  present  in  the  original  image.  Figure  8.1  shows  an              

example  of  what  is  possible  using  machine  learning  algorithms  such  as  those             

presented  in  (Yu  et  al.  2018)  and  there  are  several  many  more  similar  algorithms               

designed   for   more   specific   use   cases.   
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Figure   8.1   Example   of   inpainting   results   of   the   method   presented   in   (Yu   et   al.   2018)   on   images  
of   natural   scene,   a   face   and   a   texture.   Missing   regions   are   shown   in   white.  

 

Given  that  audio  can  easily  be  represented  as  a  2-dimensional  image  in  the  form  of  a                 

spectrogram,  it  is  entirely  possible  to  use  or  at  least  gain  some  inspiration  from  these                

image-based  techniques  to  fill  in  missing  or  corrupted  data  in  audio  signals.  The              

inpainting  concept  would  be  very  applicable  to  the  sorts  of  artefacts  which  appear  in               

the  ADRess  outputs.  Prior  to  the  overlap  add  process  in  ADRress,  it  is  easily  observed                

that  many  of  the  frequency  bins  will  be  zero  valued.  This  is  due  to  the  central                 

operation  of  the  algorithm  whereby  some  frequency  components  will  be  localised            

near  the  source  of  interest  and  therefore  resynthesised,  and  some  will  not.  Those              

frequency  components  which  are  not  localised  with  the  source  of  interest  are  set  to               

zero  in  order  to  minimise  interference  from  other  sources.  In  theory,  any  natural              

source  will  have  some  energy  at  all  frequencies  (noise  at  the  very  least)  so  estimating                

those  values  should  contribute  to  a  more  natural  resynthesis  than  is  currently  being              

achieved.  Inpainting  could  use  temporally  and  spectrally  proximate  data  in  the            

resynthesised  spectrogram  in  order  to  “guess”  at  a  better  approximation  for  the  zero              

values.  This  was  explored  briefly  for  the  ADRess  algorithm  in  (Fitzgerald  et  al.              

2012).  Here,  NMF  was  used  to  achieve  inpaintinging.  NMF  allows  for  a  linear              

parts-based  decomposition  of  the  spectrogram  which  effectively  captures  repeating          
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parts  across  the  whole  signal  and  represents  them  as  a  set  of  global  time  activation                

and  frequency  basis  functions.  This  NMF  decomposition  was  applied  to  the  ADRess             

outputs  in  order  to  achieve  inpainting.  The  idea  here  is  that  if  certain  events  recur                

throughout  the  signal,  each  occurrence  will  have  slightly  different  artefacts  due  to  the              

interfering  sources  at  that  time.  By  applying  NMF,  the  goal  is  to  generalise  the  audio                

events  so  that  parts  of  the  event  which  were  missing  at  one  point  in  time  can  be                  

recovered  from  another  point  in  time  where  they  were  not  missing  through  the  matrix               

factorisation  process.  The  results  provided  minor  benefits  in  some  cases  but            

introduced  new  artefacts  in  other  cases.  Although  the  NMF  method  may  not  have              

been  as  successful  as  desired  at  achieving  inpainting,  I  would  strongly  encourage             

exploring  similar  machine  learning  methods  to  achieve  the  ultimate  goal  of  estimating             

the   data   which   was   not   recovered   by   ADRess.  

 

8.1.3   Peak   Lobe   Reconstruction  

This  can  be  considered  as  a  special  case  of  contextual  inpainting.  The  ADRess              

algorithm  treats  each  frequency  component  independently  and  assumes  no          

mathematical  relationship  between  them.  This  works  surprisingly  well,  but  consider           

the  case  of  a  sinusoidal  peak:  typically,  a  sinusoidal  peak  in  the  Fourier  domain               

consists  of  a  peak  magnitude  value  in  a  single  bin  surrounded  by  flanking  values  in                

neighbouring  bins  which  constitute  the  lobes  of  the  peak.  The  lobes  also  have  a               

specific  phase  relationship  with  the  peak.  If  you  try  to  resynthesise  a  sinusoid  from  its                

Fourier  representation  without  its  lobes,  artefacts  will  be  present.  By  its  nature,  the              

ADRess  algorithm  does  this  regularly.  It  would  be  possible  to  include  some  logic              

which  would  attempt  to  decide  if  the  current  frequency  component  is  a  sinusoidal              
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peak,  and  if  so,  resynthesise  the  whole  peak  including  its  lobes.  This  would  be  worthy                

of   further   exploration.  

 

8.1.4   Better   Phase   Estimation  

Chapter  4  explored  two  alternative  phase  reconstruction  techniques  but  they  are            

shown  to  be  inferior  to  the  original  mixture  phases  for  all  its  resynthesized  sources.               

This  is  adequate  for  a  satisfactory  result  in  most  cases  but  it  is  almost  certainly  not                 

theoretically  accurate.  i.e.,  the  mixture  phases  are  not  what  the  individual  contributing             

source  phases  would  have  been  prior  to  mixing.  Using  the  nomenclature  of  the  DUET               

algorithm,  if  the  sources  were  W-disjoint  orthogonal  at  any  point  in  time,  then  yes  the                

mixture  phase  would  be  a  good,  if  not  precise,  approximation  of  the  individual  source               

phases,  but  music  is  rarely  W-disjoint  orthogonal  (WDO).  However,  it  may  be             

possible  to  tell  which  frequency  bins  belong  to  WDO  sources  by  analysing  the              

azimuth  histogram  for  each  time  frame.  The  azimuth  histogram  shows  a  distinctive             

peak  for  each  source  where  the  L/R  channel  intensity  ratio  is  identical  for  many               

frequency  components.  Intuitively,  we  would  imagine  that  it  is  highly  unlikely  for             

many  frequency  components  to  share  exactly  the  same  channel  intensity  ratio  unless             

they  were  related.  Further,  if  those  frequency  components  had  been  the  result  of              

additive  energy  from  multiple  sources  combining,  both  the  phase  and  amplitude            

contributions  would  almost  certainly  change  the  channel  intensity  ratio  for  that            

frequency  component.  Therefore,  we  could  intuit  that  only  those  frequency           

components  with  a  channel  intensity  ratio  at  exactly  the  source  location  peak  in  the               

azimuth  histogram  are  belonging  to  W-disjoint  orthogonal  sources.  And  therefore,           

only  for  those  frequency  components  could  we  expect  the  original  mixture  phases  to              
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be  accurate.  For  all  other  frequency  components  within  our  azimuth  window,  we             

should  expect  the  original  mixture  phases  to  be  a  suboptimal  estimate  of  the  source               

phase.   For   these   components,   it   is   worth   exploring   better   phase   estimation   techniques.   

 

8.1.5   Post   Processing   

Most  of  the  suggested  techniques  above  aim  to  modify  the  operation  of  the  ADRess               

algorithm  internally  before  resynthesis  but  there  are  post  processes  worthy  of            

exploration.  Firstly,  it  should  be  reiterated  that  ADRess  separates  a  source  based  on  its               

pan  position  in  stereo  mix  and  so  in  many  cases,  more  than  one  source  might  be                 

present  in  an  ADRess  separation  due  to  the  fact  that  multiple  sources  were  panned  to                

the  same  location.  For  this  common  case,  it  should  be  obvious  that  monaural  source               

separation  techniques  could  be  used  as  a  post  process  to  the  ADRess  algorithm.              

Beyond  that  however,  other  techniques  which  avail  of  multichannel  data  can  also  be              

used  as  a  post  process.  For  example,  ADRess  could  be  used  to  convert  a  2-channel                

stereo  mix  to  5  individual  sources  or  a  stem  mix.  This  multichannel  representation              

could   then   be   post   processed   by   ICA   or   NMF   for   example.   

 

8.1.6   Machine   Learning  

Despite  the  suggested  future  work  above,  I  would  expect  that  the  future  of  sound               

source  separation  is  in  machine  learning.  At  the  time  this  research  was  taking  place,               

machine  learning  was  not  nearly  as  practical  as  it  is  today,  although  unsupervised              

learning  algorithms  such  as  PCA  and  ICA  were  gaining  traction.  It  was  impractical  in               

terms  of  published  material,  public  datasets  and  source  code,  but  also  in  terms  of  the                

development  infrastructure  supporting  it.  Now,  a  TensorFlow  model  can  be  trained            
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and  run  without  the  need  to  install  any  complex  development  environment  or  acquire              

GPUs  for  optimised  processing.  The  entire  service  is  conveniently  supplied  in  the             

cloud  including  public  training  data  sets  in  many  cases.  Many  algorithms  already  in              

widespread  use  in  the  area  of  image  signal  processing  could  be  modified  to  process               

audio  in  either  the  time  domain  or  the  time-frequency  domain.  Particularly  in  the  field               

of  monaural  source  separation,  machine  learning  techniques  such  as variational           

autoencoders , convolutional  neural  networks  and recurrent  neural  networks  can  all  be            

used  to  great  avail  in  the  time-frequency  domain.  DeepMind’s  Wavenets  algorithm            

has  also  been  applied  to  sound  source  separation  directly  on  the  time-domain             

representation  of  the  signal  (Lluis  et  al.  2018).  Although  these  techniques  are  still              

only  producing  comparable  results  to  traditional  signal  processing  techniques,  they           

seem  to  be  advancing  faster  than  the  field  has  ever  done  in  the  past.  My  intuition  is                  

that  traditional  signal  processing  algorithms  like  ADRess  could  be  used  as  a  very              

effective   preprocessing   step   for   machine   learning   techniques   to   really   excel.  
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