
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Electrical and Electronic Engineering

2020-06-04

A Proactive-Restoration Technique for SDNs A Proactive-Restoration Technique for SDNs

Ali Malik
Technological University Dublin, ali.malik@tudublin.ie

Ruairí de Fréin
Technological University Dublin, ruairi.defrein@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart

 Part of the Digital Communications and Networking Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
Malik, A. & De Frein, R. (2020). A proactive-restoration technique for SDNs. The 25th IEEE Symposium on
Computers and Communications (ISCC), Rennes, France, June. doi:https:10.21427/nrqj-8v82

This Conference Paper is brought to you for free and
open access by the School of Electrical and Electronic
Engineering at ARROW@TU Dublin. It has been accepted
for inclusion in Conference papers by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart?utm_source=arrow.tudublin.ie%2Fengscheleart%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=arrow.tudublin.ie%2Fengscheleart%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=arrow.tudublin.ie%2Fengscheleart%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=arrow.tudublin.ie%2Fengscheleart%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

A Proactive-Restoration Technique for SDNs
Ali Malik, Ruairı́ de Fréin

School of Electrical and Electronic Engineering
Technological University Dublin

Dublin, Ireland
{ali.malik, ruairi.defrein}@tudublin.ie

Abstract—Failure incidents result in temporarily preventing
the network from delivering services properly. Such a deteri-
oration in services called service unavailability. The traditional
fault management techniques, i.e. protection and restoration,
are inevitably concerned with service unavailability due to the
convergence time that is required to achieve the recovery when a
failure occurs. However, with the global view feature of software-
defined networking a failure prediction is becoming attainable,
which in turn reduces the service interruptions that originated
by failures. In this paper, we propose a proactive restoration
technique that reconfigure the vulnerable routes which are likely
to be affected if the predicted failure indeed occurs. The proposed
approach allocates the alternative routes based on the probability
of failure. Experimental evaluation on real-world and synthetic
topologies demonstrates that the network service availability can
be improved with the proposed technique to reach up to 97%.
Based on the obtained results, further directions are suggested
towards achieving further advances in this research area.

Index Terms—SDN, openflow, proactive, restoration, recovery,
failure prediction, service availability.

I. INTRODUCTION AND BACKGROUND

Due to its programmable interfaces, Software-Defined Net-
working (SDN) offers exciting opportunities for network de-
signers to implement new routing strategies, customised traffic
engineering, dynamic allocation of network resources and
many other programmable functionalities [1]. Its adoption by
leading companies such as Google, Microsoft and Huawei,
who have employed SDNs in their data centers, underlines the
positive perception of its performance capabilities. Currently,
the concept of software-defined ”everything”– SD-{Mobile
[2], Storage [3], IoT [4], Blockchain [5], Cloud [6]}, getting
broader to become an umbrella term for wide range of modern
technologies. Furthermore, in the near future, SDN is expected
to play crucial a part in 5G [7].

Unlike the traditional IP networks, in SDN, the control
plane, i.e. controller, has been decoupled from the data plane to
construct a centralised networking system whose forwarding
elements are dump and commanded by the controller. Cur-
rently, the OpenFlow protocol [8] is commonly used to have
the data plane governed by the controller.

In fact, communication networks are prone to either planned
failures, e.g. maintenance, or unplanned failures, e.g. overload,
bugs, cable cut and disaster situations [9]. Such failures have
a negative impact on the network performance since it could
harm some of its activities such as routing. In addition, failures
could also cause a financial loss to the service providers,
for instance, the financial losses of 28 cloud providers were

estimated at approximately $285 million as a consequence of
infrastructure and application failures for the period 2007-
2013 [10]. Also, an evaluation of the susceptibility to link
failure of business critical processes in a data-centre, which
manages 75% of Europe’s flight bookings, was undertaken
in [11]. Hence, fault management and recovery is a very
necessary requirement for networking systems to ensure their
reliability and service availability. In general, failure recovery
mechanisms of carrier-grade networks can be classified into
two groups, these are: protection (proactive) and restoration
(reactive) [12]. Yet, the concept of fault management in SDNs
is inherited from the legacy networking systems, where the
previous studies were focused on proactive, reactive and hybrid
techniques [13]–[15]. On one hand, from SDN point of view,
the proactive approach is a memory space consuming tech-
nique as backups will need to be pre-planned. Therefore, the
Ternary Content Addressable Memory (TCAM) of forwarding
elements will be affected by the additional loaded information
of backups. Moreover, this technique is activated after the
occurrence of failures, which means that it cannot protect the
network from the service disruption and unavailability.

On the other hand, the reactive approach is time consuming.
Given that SDN is a centralised networking system, thus, when
a failure scenario occurs, three steps will need to be performed
by controller. First, the failure detection phase by using some
mechanisms like Loss of Signal (LoS). Second, the alternative
route computation phase by using one of the routing strategies
such as Dijkstra [16]. Third, the reconfiguration phase by
updating the network through removing the old forwarding
rules of faulty routes and installing new ones. This technique is
slower than the former and also, it cannot protect the network
from the service disruption and unavailability.

Obviously, the current recovery techniques are not capable
of preventing network from being affected by service disrup-
tion and unavailability. Therefore, we propose a proactive-
restoration technique that has the ability to reduce the ser-
vice disruption and increase the network service availability
through the use of online failure prediction mechanism, thanks
to the global view of SDN.

This paper is organised as follows. In section II, we in-
troduce our proposed method along with the network models
and framework. Our simulation and experimental results are
presented in Section III. Finally, we present our conclusions
and outline our future work in Section IV.

II. PROPOSED METHOD AND FRAMEWORK

A. Online failure prediction

Most of the previous studies that dealt with fault manage-
ment have succeeded in mitigating the failure impact such
as the downtime, however, they remain far from avoiding
its effects such as service unavailability. This issue stems
from the delay of the convergence scheme that is involved
in every recovery process. Such convergence includes three
factors, these are: failure detection, alternative path planning
and network update. For the purpose of enhancing the network
service availability, an online failure prediction is utilised to
avoid some failure incidents. In fact, the evaluation of failure
prediction by itself is beyond the scope of this paper, as
many studies with remarkable achievements have done so.
Instead, we intend to employ the online failure prediction as a
technique to realise the proactive-restoration technique. Fig. 1
illustrates a generic overview upon the online failure prediction
process and the different time periods involved with it.

Fig. 1. Real-time failure prediction, [17].

According to Fig. 1, ∆td represents the historical data used
to forecast the upcoming failure incidents. ∆tl is the lead
time in which a failure alarm is generated, which can be
also defined as the minimum duration between the prediction
and failure. ∆tw is the warning time in which the proactive-
restoration solution will need to be activated. ∆tp represents
the time, usually within few minutes, for which the prediction
will be assumed to be true.

The quality of failure prediction is typically evaluated by
two metrics: the unidentified incidents (FN) and the wrongly
identified incidents (FP). While, the overall performance is
measure by the precision, which is ratio of correctly identified
incidents (TP) to the number of both correctly plus wrongly
identified incidents, and recall, which is the ratio of correctly
identified incidents to the total number of actual incidents.

B. Network model

The network is modeled as an undirected graph, which is
widely used to model computer networks [18]. A graph G is
defined as a combination of vertices and edges, G = (V,E),
where V represents the finite set of vertices (i.e. routers) in
G that ranges over by {v1, . . . , vn} for n ∈ N, while, E
represents the finite set of bidirectional edges (i.e. links) that
connect the vertices to one another. The set of all edges in
a graph can be defined as a 2-element subset of vertices,
E ⊆ V × V . We define fij to be a demand flow traffic
between the router i and j. We also define flow to be a set
of the demand traffic flows that have to be serviced by the
network. A path pij is a route between two given routers,

i.e. vi and vj , which is defined as a sequence of vertices
(vi, . . . , vj). Pairs of vertices in a path are members of the
edge-set, (vi, vi+1) ∈ E,∀1 6 i < j. Here, vi and vj are
called the source and destination routers of pij , respectively.
We suppose that pij is a simple path if all of its routers are
distinct. The length of pij is the total weights, i.e. cost, of
its edges; that is ω(pij) =

∑
vi,vi+1∈p

ij
ω(vi, vi+1), where

the edge cost can be any additive metric such as hop count,
delay and so on. The shortest path, p̂ij , from vi to vj is the
path with minimal cost among all available paths from vi to
vj . We define p̆ij to be a shortest path instance with link
dis-joint, which could serve as an alternative path that has
no common edges with the former shortest path, such that
E(p̆ij) ∩ E(p̂ij) = ∅. We consider that pij is operational
when all its edge pairs can be traversed. Hence, we define
the following test operational function (δ) over a link, which
reflects the current state of links as follows:

δ(vi, vi+1) =

{
1 the link is operational
0 otherwise

(1)

We define fail as the failed links set as follows:

fail = {(vi, vi+1) | (vi, vi+1) ∈ E ∧ δ(vi, vi+1) = 0} (2)

We define predict to be a set that temporarily holds the
risky flows whose constructed routes encompass at least one
link with a certain level of failure probability, denoted TΩ. In
this paper, three different levels of TΩ are considered; these
are, low: when the probability of failure is less than 50%, med:
when the probability of failure around 50% and high: when
the probability of failure is over 50%.

C. Failure model

Due to the lack of a public network dataset that includes
details such as failures, we have developed and used a failure
model that generates failure events periodically. Two metrics
are considered in this model: mean-time between failure
(MTBF) and mean-time to recover (MTTR). These metrics
are important for calculating the availability and reliability of
each network repairable component [19]. MTBF is defined as
the average time a particular component functions before it
fails. It is calculated using the following equation:∑

(startdown time − startup time)

number of failures
. (3)

MTTR is the average time required to repair a failed com-
ponent. Each link is characterized by its own values of both
MTBF and MTTR, and they are commonly independent from
other components in the network. Metrics such as cable length,
i.e. `(vi, vi+1), and Cable Cut (CC), can be used as alternatives
for measuring the two availability metrics. According to [19],
MTBF can be calculated as follows:

MTBF (hours) =
CC × 365× 24

`(vi, vi+1)
(4)

Pr
oa

ct
iv

e-
R

es
to

ra
tio

n
Fr

am
ew

or
k

Network Information Center
and Global View

A
pp

lic
at

io
n

La
ye

r
C

on
tr

ol
 L

ay
er

Northbound	API

Proactive restoration

Topology discovery and parser

Southbound	API

D
at

a
Pl

an
e Network Topology

Fig. 2. Architecture of the proposed framework and its components: the
primary contribution of this paper is on the proactive restoration routing block.
OpenFlow is used on the southbound interface and POX Python APIs are used
on the northbound interface.

For instance, when CC is equal to 100 km, it means that per
100 km there will be on average one cut per year. Besides this,
the MTTR of a link is influenced by its length [20], which
expresses the fact that the longer link has a higher MTTR
value. On this basis, we have designed the following formula
for calculating the MTTR value for each link in the network.

MTTR(hours) = ψ · `(vi, vi+1) (5)

The time (per kilometer) required to fix the cable, ψ, has units
hour/kilometer format. Due to the fact that links are physically
distributed in different locations and environments, ψ differs
from one link to another. Even if some links have the same
length, their ψ could be different as it relies on the physical
location and the ambient conditions. A more comprehensive
and detailed description of failure model is given in [21].

D. Framework design

From a high level point of view, Fig. 2 illustrates the main
components of our proposed framework. In next, we discuss
the components we used and developed in this framework in
more detail.

1) SDN controller: The SDN controller represents the net-
work’s brain. It is where the intelligence and decision making
is performed by the framework. We use the POX controller
as it facilitates fast prototyping [22]. The standard OpenFlow
protocol is used as a southbound API for establishing the
communication between the data and control planes, whereas
the set of POX APIs is used on the northbound interface for
developing various network control applications.

2) Topology discovery and parser: This module is respon-
sible for fetching the underlying network topology charac-
teristics and building a topological view with the aid of the
POX OpenFlow discovery1. In order to represent the network
topology as a graph, G, we utilised the NetworkX [23] tool

1https://github.com/noxrepo/pox/

in order to be able to manipulate and simplify the underlying
network topology.

Algorithm 1: Proactive restoration
. Initialisation :

1 ∀fij ∈ flow, set p̂ij as a primary path
. Proactive restoration :

2 foreach fij ∈ predict do
3 if Probability > TΩ then
4 Replace each potential p̂ij with p̆ij
5 wait: ∆tp
6 if [∃(vi, vi+1) ∈ p̂ij ∧ δ(vi, vi+1) = 0] then
7 Mark as: correctly identified
8 else
9 Mark as: wrongly identified

10 Replace each p̆ij with p̂ij
11 end
12 end
13 end
. Recovery :

14 foreach (vi, vi+1) ∈ fail do
15 Run Dijkstra’s algorithm to find p̂ij for every

affected fij
16 end

3) Proactive restoration: In order to maintain the network
flows, the proactive restoration technique is developed and
illustrated in Algorithm 1. Firstly, the shortest path, based on
Dijkstra’s algorithm with complexity of O(|V |+|E|log|V |),
is constructed for each flow (line 1). Then, based on links
probability of failure, a disjoint path based on Bhandari’s
algorithm [24] with complexity of O((K+1).|E|+|V |log|V |),
is configured for each flow exceeds TΩ (line 2-4). After
that, the reconfiguration is considered valid if the failure is
appeared within the predefined ∆tp (line 5-7). Otherwise,
the reconfiguration is considered invalid and this will incur
another reconfiguration to set the former shortest path again
(line 8-11). Finally, in the presence of link failure that was
not predicted, an alternative path will be appointed based on
Dijkstra’s algorithm for every affected flow (line 14-16).

III. PERFORMANCE EVALUATION

A. Simulated network topologies

Both real-world and synthetic network topologies were used
to construct the data plane layer and in order to allow us to
evaluate the proposed technique. These topologies are depicted

(a) us [25] (b) german [25] (c) waxman

Fig. 3. Experimental topologies.

TABLE I
TOPOLOGY CHARACTERISTICS

Topology Nodes Edges Type
us 26 42 real-world

german 50 88 real-world
waxman 70 140 synthetic

in Fig. 3 and their characteristics are detailed in Table I. We
used the Internet topology generator Brite [26] to generate the
synthetic topology based on Waxman model [27].

B. Experiment design

The proposed framework was implemented and evaluated
by using the container-based emulator, Mininet [28]. As
evidenced in the survey [29], Mininet is a widely used
emulation system for emulating/simulating network archi-
tecture with various experimental scenarios as well as to
evaluate and prototype SDN protocols and applications. The
experiments of this paper were designed based on the out-
of-band connection mode, where the control and data data
are transmitted over a separated medium. In the emulation
environment, we employed two servers; one acted as the
OpenFlow controller and the other simulated the network
topology. For each server, we used Ubuntu v.14.04 LTS with
Intel Core-i5 CPU and 8 GB RAM. Based on the failure
event model, Sec. II-C, the general reliability theory [30] has
been applied to generate failure events using the exponential
distribution (mean = MTBF) for the next time to failure
of each link, and lognormal distribution E(µ, σ) with µ =
log(MTTR)−((0.5)×log(1+((0.6×MTTR)2/MTTR2)))
and σ =

√
log(1 + ((0.6×MTTR)2/MTTR2 for time to

recover. For failure anticipation, false and true positive have
been generated during the simulated time using the uniform
distribution following the designated threshold level.

To measure the network service availability, we first mea-
sure the unavailability. In general, the network service unavail-
ability over a specific time can be arrived at:

U =

e∑
i=1

affected fij

e × `(flow)
(6)

where, e represents the link failure incidents. To measure the
unavailability of the proactive-restoration technique, denoted
by U+, the impact of recall is considered as follows:

U+ = (1−Recall)× U (7)

Consequently, the network availability is measured by sub-
tracting the unavailability from 1.

Eventually, we measure the routing flaps, Rf , as a metric
to reflect the impact of the proposed method on network’s
stability. In fact, the main goal of proactive-restoration tech-
nique is to enhance the network service availability, however,
this would come at the price of network instability due
to the unnecessary reconfiguration that would result from

the wrongly identified incidents. The routing flaps of the
proactive-restoration, denoted by R+

f , can be arrived at:

R+
f =

∑
TP +

∑
FP +Rsdn

f (8)

where Rsdn
f represents the routing flaps of the SDN network

without using the proactive-restoration technique, which is
measured by the number of times that the network is recon-
figured due to up and down links incidents.

C. Simulation results

To evaluate our proposed method, each experimental topol-
ogy was simulated in the system for 48 hours. Fig. 4 shows
the performance of the network service availability with and
without the use of the proactive-restoration method and at three
different levels of TΩ; namely low, med and high. It can be
clearly seen that the network with proactive-restoration method
presents a better service availability than the performance of
network without using it. Despite the low recall and precision
rates, there is still a gain in service availability. One can
observe a gain in availability of 2% when TΩ is low to achieve
on average 97%, while, up to 1.5% when TΩ is medium to
gain on average 0.964% and almost 1% when TΩ is high to
obtain 0.96% on average. It can also be observed that the
precision and recall are affected by TΩ. The recall is inversely
proportional to TΩ. This is due to the fact that the amount of
captured events is increased when the probability of failure
is at low level. Therefore, the highest rate of recall can be
obtained when the number of identified events is large. In
contrast, precision decreases when recall increases since many
FP have to be accepted.

Although the network service availability is improved, the
rate of the routing flaps generated when use the proactive-
restoration is found to be higher than the case of none using
it. The routing instability, by means of unnecessary flaps, is
correlated with the value of precision. The useless flaps that
were generated during the simulation are measured here for
each topology using the three threshold levels.

The amount of useless flaps is shown in Fig. 5, which
shows the unnecessary flaps that have been reported based
on the FP rate of each topology. It can be observed that the
number of unnecessary flaps increases when TΩ decreases. The
largest amount of unnecessary flaps is reported when TΩ is at
low level, while, the smallest amount of unnecessary flaps is
reported when TΩ is at high level. Each FP event is associated
with two useless flaps, that is, one for the reconfiguration,
i.e. switch over to an alternative disjoint path, and the other
for the reversion, i.e. switch back to the primary shortest
path. Therefore, the performance of failure prediction plays an
important role in reducing the quantity of unnecessary routing
flaps. Thus, there is a trade-off to be made by the network
operators in order to determine whether or not the gain in
service availability using the approach of proactive restoration
justifies the cost.

3,000 3,500 4,000 4,500

0.95

0.955

0.96

0.965

0.97

Precision = 0.43
Recall = 0.31

Routing flaps

Se
rv

ic
e

av
ai

la
bi

lit
y

5,000 5,500 6,000 6,500 7,000

0.955

0.96

0.965

0.97

Precision = 0.45
Recall = 0.23

Routing flaps

Se
rv

ic
e

av
ai

la
bi

lit
y

TΩ is low

3,400 3,600 3,800 4,000 4,200

0.958

0.96

0.962

0.964

0.966

0.968

0.97

Precision = 0.45
Recall = 0.2

Routing flaps

Se
rv

ic
e

av
ai

la
bi

lit
y

2,800 3,000 3,200 3,400 3,600

0.95

0.952

0.954

0.956

0.958

0.96

0.962

Precision = 0.47
Recall = 0.21

Routing flaps

Se
rv

ic
e

av
ai

la
bi

lit
y

4,750 4,800 4,850 4,900 4,950

0.954

0.956

0.958

0.96

0.962

0.964

Precision = 0.49

Recall = 0.13

Routing flaps

Se
rv

ic
e

av
ai

la
bi

lit
y

TΩ is med

3,300 3,400 3,500 3,600 3,700

0.96

0.962

0.964

0.966

Precision = 0.48
Recall = 0.13

Routing flaps

Se
rv

ic
e

av
ai

la
bi

lit
y

2,750 2,800 2,850

0.952

0.954

0.956

0.958

Precision = 0.7
Recall = 0.15

Routing flaps

Se
rv

ic
e

av
ai

la
bi

lit
y

(g) us

4,750 4,800 4,850 4,900

0.956

0.958

0.96

Precision = 0.48
Recall = 0.13

Routing flaps

Se
rv

ic
e

av
ai

la
bi

lit
y

TΩ is high

(h) german

3,300 3,350 3,400 3,450 3,500 3,550

0.959

0.96

0.961

0.962

0.963

Precision = 0.48

Recall = 0.1

Routing flaps

Se
rv

ic
e

av
ai

la
bi

lit
y

(i) waxman

Fig. 4. Routing flaps and service availability of different TΩ measures based on parameter settings of ∆tl = 120s and ∆tp = 30s. The () represents the
result achieved when using the proactive-restoration technique, while the () represents the results without the proactive-restoration.

Low Medium High
0

500

1,000

1,500

2,000

TΩ

N
o.

of
un

ne
ce

ss
ar

y
fla

ps

us
german
waxman

Fig. 5. The measurements of the unnecessary routing flaps that was reported
over the three experimental topologies and by using three TΩ levels. It
indicates that the high the TΩ the less flaps rate.

IV. CONCLUSIONS

This paper demonstrated the promise of using a online
failure prediction mechanism to enhance the network service
availability in SDN environment. Despite the fact that network
fault management is a well established research area, the next-
generation networks, like SDNs, still needs further investiga-
tion. We presented a new proactive-restoration algorithm in
which the network controller will have a time window to
reconfigure the network before the anticipated failure occurs
and hence some potential interruption of service availabil-
ity becomes avoidable. We demonstrated how the proposed
method can be implemented. The performance of the proposed
approach was tested and evaluated through simulation experi-
ments on a real-world and synthetic network topologies. Two
metrics were used to examine our approach, these are: service

availability and routing flaps. The experimental findings have
shown the effectiveness of the proposed method in improving
the SDN service availability and its ability to avoid some
failure events before they take place. The service availability
gain was up to 97% and it can be further improved when use a
good prediction model. In closing, the obtained improvement
came at the cost network stability through generating an
additional routing flaps.

As part of our future work, we intend to incorporate
machine learning techniques for more precise and realistic
prediction. In addition, we will extend this study to consider
multiple-failure scenarios that, for example, could result from
disasters and cause severe disruption in service availability.

ACKNOWLEDGEMENT

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland (SFI)
under the Grant Number 15/SIRG/3459.

REFERENCES

[1] T. Koponen, S. Shenker, H. Balakrishnan, N. Feamster, I. Ganichev,
A. Ghodsi, P. Godfrey, N. McKeown, G. Parulkar, B. Raghavan et al.,
“Architecting for innovation,” ACM SIGCOMM Computer Communica-
tion Review, vol. 41, no. 3, pp. 24–36, 2011.

[2] M. Liyanage, A. Gurtov, and M. Ylianttila, Software Defined Mobile
Networks (SDMN): Beyond LTE Network Architecture. John Wiley &
Sons, 2015.

[3] J. Soumagne, R. Ross, G. Shipman, G. Amvrosiadis, N. Fortner,
D. Robinson, P. Carns, M. Dorier, R. Latham, S. Snyder et al., “Final
technical report-a software defined storage approach to exascale storage
services,” The HDF Group, Tech. Rep., 2019.

[4] P. Mishra, D. Puthal, M. Tiwary, and S. P. Mohanty, “Software defined
iot systems: Properties, state of the art, and future research,” IEEE
Wireless Communications, vol. 26, no. 6, pp. 64–71, 2019.

[5] J. Wu, M. Dong, K. Ota, J. Li, and W. Yang, “Application-aware
consensus management for software-defined intelligent blockchain in
iot,” IEEE Network, vol. 34, no. 1, pp. 69–75, 2020.

[6] Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, A. Rindos et al.,
“Software defined cloud: Survey, system and evaluation,” Future Gen-
eration Computer Systems, vol. 58, pp. 56–74, 2016.

[7] Z. Zaidi, V. Friderikos, Z. Yousaf, S. Fletcher, M. Dohler, and H. Agh-
vami, “Will sdn be part of 5g?” IEEE Communications Surveys &
Tutorials, 2018.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[9] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, “Characterization of failures in an operational
ip backbone network,” IEEE/ACM transactions on networking, vol. 16,
no. 4, pp. 749–762, 2008.

[10] C. Cérin, C. Coti, P. Delort, F. Diaz, M. Gagnaire, Q. Gaumer, N. Guil-
laume, J. Lous, S. Lubiarz, J. Raffaelli et al., “Downtime statistics
of current cloud solutions,” International Working Group on Cloud
Computing Resiliency, Tech. Rep, vol. 1, p. 2, 2013.

[11] R. de Fréin, J. Pfaff, and T. Paré, “Enterprise data center globality
measurement,” in 2015 IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence
and Computing. IEEE, 2015, pp. 1861–1869.

[12] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network recovery: Protec-
tion and Restoration of Optical, SONET-SDH, IP, and MPLS. Elsevier,
2004.

[13] P. C. da Rocha Fonseca and E. S. Mota, “A survey on fault manage-
ment in software-defined networks,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 4, pp. 2284–2321, 2017.

[14] A. Rehman, R. L. Aguiar, and J. P. Barraca, “Fault-tolerance in the
scope of software-defined networking (sdn),” IEEE Access, vol. 7, pp.
124 474–124 490, 2019.

[15] A. Malik, R. de Fréin, and B. Aziz, “Rapid restoration techniques for
software-defined networks,” Applied Sciences, vol. 10, no. 10, p. 3411,
2020.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[17] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction
methods,” ACM Computing Surveys (CSUR), vol. 42, no. 3, pp. 1–42,
2010.

[18] K. Ramarao, “A simple variant of node connectivity is np-complete,”
International journal of computer mathematics, vol. 20, no. 3-4, pp.
245–251, 1986.

[19] S. De Maesschalck, D. Colle, I. Lievens, M. Pickavet, P. Demeester,
C. Mauz, M. Jaeger, R. Inkret, B. Mikac, and J. Derkacz, “Pan-european
optical transport networks: an availability-based comparison,” Photonic
Network Communications, vol. 5, no. 3, pp. 203–225, 2003.

[20] A. J. Gonzalez and B. E. Helvik, “Characterisation of router and
link failure processes in uninett’s ip backbone network,” International
Journal of Space-Based and Situated Computing, vol. 2, no. 1, pp. 3–11,
2012.

[21] A. Malik, B. Aziz, M. Adda, and C.-H. Ke, “Smart routing: towards
proactive fault handling of software-defined networks,” Computer Net-
works, vol. 170, p. 107104, 2020.

[22] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of sdn/openflow controllers,” in Proceedings of the 9th
central & eastern european software engineering conference in russia.
ACM, 2013, p. 1.

[23] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[24] R. Bhandari, Survivable networks: algorithms for diverse routing.
Springer Science & Business Media, 1999.

[25] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “Sndlib
1.0—survivable network design library,” Networks: An International
Journal, vol. 55, no. 3, pp. 276–286, 2010.

[26] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach
to universal topology generation,” in MASCOTS 2001, Proceedings
Ninth International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. IEEE, 2001, pp. 346–353.

[27] B. M. Waxman, “Routing of multipoint connections,” IEEE journal on
selected areas in communications, vol. 6, no. 9, pp. 1617–1622, 1988.

[28] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[29] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[30] M. Ohring, Reliability and failure of electronic materials and devices.
Elsevier, 1998.

	A Proactive-Restoration Technique for SDNs
	Recommended Citation

	tmp.1591441948.pdf.R9qoj

