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Abstract—Accurate traffic classification is fundamentally im-
portant for various network activities such as fine-grained
network management and resource utilisation. Port-based ap-
proaches, deep packet inspection and machine learning are
widely used techniques to classify and analyze network traffic
flows. However, over the past several years, the growth of
Internet traffic has been explosive due to the greatly increased
number of Internet users. Therefore, both port-based and deep
packet inspection approaches have become inefficient due to the
exponential growth of the Internet applications that incurs high
computational cost. The emerging paradigm of software-defined
networking has reshaped the network architecture by detaching
the control plane from the data plane to result in a centralised
network controller that maintains a global view over the whole
network on its domain. In this paper, we propose a new deep
learning model for software-defined networks that can accurately
identify a wide range of traffic applications in a short time,
called Deep-SDN. The performance of the proposed model was
compared against the state-of-the-art and better results were
reported in terms of accuracy, precision, recall, and f-measure.
It has been found that 96% as an overall accuracy can be
achieved with the proposed model. Based on the obtained results,
some further directions are suggested towards achieving further
advances in this research area.

Index Terms—SDN, deep learning, big data, traffic analysis,
traffic classification, network management.

I. INTRODUCTION

The massive growth of the Internet users over the past years
has been accompanied with a rapid evolution of networking
systems, e.g. cloud computing and network virtualisation,
along with the flourish of communication technologies, e.g.
Internet of Things and smart cities [1]. This has led to an
exponential growth in data traffic over the heterogeneous
networks of the Internet [2].

On one hand, identifying the traffic application types is an
essential function of networking systems that facilitates fine-
grained management through classifying the network traffic
flows. Currently, there are some widely-used approaches to
identify and predict the networks traffic, such as: port-based
approaches, deep packet inspection and machine learning [3].
Port-based approaches, which are also known as payload-
based approaches, are no longer effective due to the dynamic

This publication has emanated from research conducted with the finan-
cial support of Science Foundation Ireland (SFI) under the Grant Number
15/SIRG/3459.

usage of port numbers by applications nowadays [4]. Deep
packet inspection is an expensive approach due to its high
computational cost [5] in addition to its inability to inspect
encrypted traffic. Therefore, in order to cope with these chal-
lenges, more intelligence needs to be deployed into networking
appliances for learning purposes.

On the other hand, traditional computer networks are com-
posed of a multitude of forwarding elements, i.e. routers and/or
switches, that aer governed by a multitude of protocols and
run a wide range of applications. Such a heterogeneity in
the infrastructure increases the complexity of the network
management and performance optimisation. However, tradi-
tional networks are inherently distributed systems where each
forwarding element maintains a local view over the whole
network. Therefore, applying machine learning techniques on
a system whose elements have a limited view is another big
challenge [6].

The emerging paradigm of Software-Defined Networking
(SDN) provides a clean-slate approach to redesigning the
network architecture [7], in which the control plane, i.e.
controller, is decoupled from the data plane, i.e. forwarding
elements. In this new architecture, the logically centralised
controller maintains a global view of the entire network. SDN
provides a great opportunity for machine learning techniques
to be applied, to learn from network traffic data. In this paper,
we exploit the advantage of SDN’s architecture and propose a
new framework that utilises Deep Learning (DL) with the aim
of identifying the applications that give rise to network traffic.
DL is a promising approach in dealing with significant massive
data towards extracting the hidden patterns such as traffic
features for classification and prediction purposes. Our goal
is to build a SDN network model that is capable of achieving
high prediction accuracy in terms of application types within
a short time scale.

This paper is organised as follows. Related works are
presented in Section II. In Section III, we introduce our
proposed method and framework. Performance evaluation and
simulation results are presented in Section IV. Finally, the
conclusion and future work are presented in Section V.



II. RELATED WORK

Recently, DL has gained a surge of interest due to its proven
efficacy in solving complex problems in various areas such as
networking, robotics, computer vision and speech recognition
[8]. Network traffic analysis in SDNs has motivated the
application of a number of machine learning applications. We
discuss related studies that have utilised machine/DL in traffic
classification in this section.

In [9] the authors introduced SBAR, a SDN flow-based
monitoring and application recognition framework, as a com-
bination of deep packet inspection and machine learning.
SBAR classifies the network traffic load at two levels: (1) ap-
plication protocol based classification for the monitored traffic
and (2) deep packet inspection to identify the application of
web and encrypted flows. Compared with traditional machine
learning and DNS classifiers, the performance of SBAR was
much better in terms of classification accuracy.

The authors in [10] proposed DL as a hybrid deep neural
network–based application classification method for SDNs.
The proposed model is composed of two components, namely
stacked autoencoder and softmax regression layer. The experi-
ment results showed that DL outperformed the Support Vector
Machine (SVM) where the overall accuracy was up to 91.2%.

In [11] the authors proposed a QoS-aware traffic classifica-
tion framework for SDNs. The proposed framework utilised
both deep packet inspection and semi-supervised machine
learning to classify the network traffic into different classes
based on the QoS requirements. The accuracy of the proposed
method outperformed the K-means algorithm by accurately
classify more than 90% of the traffic classes.

The authors in [12] investigated both SVM and K-means
for the purpose of traffic classification in SDNs. The study
showed that up to 95% overall accuracy can be achieved.

The authors in [13] presented vTC as a virtual network
functions framework that capable of selecting the most suit-
able machine learning classifiers and the most effective flow
features at run time. The experimental results of the study,
which have been conducted on KDD [14], showed that the
flow classification accuracy can be improved by up to 13%,
where the reported overall accuracy was 95.6%.

Utilising machine learning techniques to classify the traffic
flows towards developing an application-aware multipath rout-
ing method for SDNs was investigated in [15]. The authors
presented AMPS framework to automatically classify the
incoming traffic flows and apply QoS policy to each flow
based on its requirements. A small experimental dataset was
created based on 10 clients only where each of them used
to run a different application type such as Skype, Facebook,
YouTube and Dropbox. The experimental classification results
showed that C4.5 DT algorithm obtained the highest accuracy
with 98%, however, no precision, recall and f-measure were
reported.

The authors in [16] presented a simple architecture that col-
lects the network traffic flows through the standard OpenFlow
protocol [17]. For the purpose of classifying the collected data,
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Fig. 1. The architecture of the proposed framework. Openflow is used on
the southbound interface and the controller APIs, e.g. POX, are used on the
northbound interface.

several machine learning algorithms such as random forest and
stochastic gradient boosting were performed. The experimental
evaluation, which was conducted over individual application
classes, showed that the classification accuracy could reach
up to 96%. The study lacks the exploration of the other
performance metrics, i.e. precision, recall and f-measure.

These works provide important insights into how future
intelligent computer networks might function, however, the use
of DL for SDNs is still in its infancy. There exist challenges
that limit its real-world applicability. With a view to addressing
this challenge a new DL model with less computation time and
better accuracy is developed as a step towards building smart
SDN system that are able to reconfigure the network auto-
matically based on the learning model. In order to conduct a
fair comparison, we compare tour work with the DL approach
in [10] using the same experimental dataset and evaluation
metrics.

III. THE PROPOSED FRAMEWORK

In this section we discuss our proposed framework and its
components. Figure 1 illustrates the main components of the
proposed framework where the application layer components
represent the main contribution. In the subsections below, we
discuss the components of this framework in detail.

A. Learning phase

This component highlights the main contribution of this
paper. In this phase, the data collection, feature extraction
and classification are made available for the next phase to
perform some necessary actions. In the following we describe
the modules of this component.



TABLE I
MOORE DATASET APPLICATION CLASSIFICATION.

Traffic class Representative application/s

WWW HTTP and HTTPS
Mail Pop2/3,smtp, and imap
FTP-control FTP
FTP-pasv FTP
FTP-data FTP
Attack Worm and Virus
P2P Kazaa, BitTorrent and Gnutella
Database Postgres, sqlnet, oracle and ingres
Multimedia Voice and video streaming
Services X11, dns, ident and ntp

1) Historical Data: This is designed to store almost all
the data plane historical information of the underlay topology,
e.g. events and incidents, network users and their associated
application profiles. The refined data is a filtered dataset that
can be used for special purposes. In our case, the refined
data is specified for traffic classification where the stored
information represents the network traffic flow features such
as destination address, destination port, protocol type, packet
size and the application class. Such information is selected
in order to train the proposed DL model. At this stage of
our work, we have utilised Moore dataset [18], which is a
real-world traffic, to evaluate the proposed DL model. The
dataset contains 10 separate sub-datasets of TCP traffic flows
that were collected during different time periods. Each flow
sample is comprised of 248 features such as flow size, duration
time and the corresponding application class label. Due to
the few samples of both interactive and game samples, we
have removed them from the refined dataset. The experimental
dataset have been categorised into 10 classes as shown in Table
I. Finally, a random sample data of 10 samples were selected
to get more accurate simulation results.

2) Monitoring and statistical gathering: This module is
responsible for collecting information about the network traffic
flow periodically which is then stored in the historical data
component. The standard OpenFlow protocol is widely used
to transfer the collected data from the data plane to the control
plane.

3) Flow pattern analysis and feature extraction: This mod-
ule is responsible for extracting flow features and flow labels
in order to construct the refined database. Then, the training
dataset is constructed randomly for learning purposes and the
testing dataset is constructed for evaluation purposes.

4) DL classifier: We train the DL classifier using randomly
selected samples of data, which we call the training set. We
then test the classifier on the remaining data, the test dataset.
The traffic flow feature set consists of D-dimensional vectors
fi ∈ RD, where i = 1, . . . N . A label li is associated with each
feature vector. There are K distinct classes of traffic. These
different classes correspond to different applications. A score
function, f : RD 7→ RK maps the traffic flow features to the
classes using a linear mapping,

f(fi,W,b) = Wfi + b. (1)

The parameters that we fit to train our classifier are the weights
W ∈ RK×D and the bias vector b ∈ RK×1 for a given set of
training data features and labels. We optimize W and b such
that the function f : RD 7→ RK produces scores that match
with the true labels, li, over the whole training set. Once W
and b have been learned we can then apply f(fi,W, b) to the
test data and assign the traffic features in the test data set to
labels.

One way to measure how consistent the predictions made
using the training data are with the ground truth labels is by
using a multi-class support vector machine as the loss function
with a squared hinge loss function. A second approach is to
generalize binary Logistic Regression to multiple classes, an
approach typically classed softmax classification. We favour
this second approach as it yields a more intuitive interpretation
of the classifier, e.g. a set of normalized class probabilities as
its output, and a probabilistic interpretation of the problem.
The term fj(z) = ezj∑

k ezk is called the softmax function. It
takes a vector of real-valued inputs and maps it to a vector
of values between zero and one that sum to one. The softmax
classifier minimizes the cross-entropy between the estimated
class probabilities and the true distribution (where all of the
probability mass is at the correct class and this function is
zero elsewhere). The probabilistic interpretation of the softmax
function is that

P (li|fi;W) =
efli∑
j e

fj
(2)

is the normalized probability assigned to the correct label
li given the feature set fi and the weights W, where we
have used the bias trick to incorporate b into W. A more
traditional way of viewing this set-up is a Maximum Likeli-
hood Estimation problem. If a regularization side-function is
used this becomes Maximum A Posterior estimation, where
the choice of a Gaussian is common. Our classifier’s pre-
diction is the class corresponding to the largest probability
l? = maxi P (li|fi;W).
The architecture of the proposed learning method, which we
call Deep-SDN, includes 12 deep sequential layers in addition
to the two standard layers, i.e. input and output. Moreover, the
architecture has 3 repetitive blocks where each block includes
4 layers as follow:

(i) A batch normalisation [19] is used to accelerate the
process of training as well as to achieve more stable
distribution of activation values throughout training.

(ii) A regular densely connected neural-network layer with a
number of units, N , is formed as follow:

N = t/(ψ + `)× α (3)

Where, t represents the number of tensors, ψ represents
the application types, ` represents the length of tensor
and α ranges over the interval [1,10).

(iii) The Rectifier Linear Unit (ReLU) [20], which is used
as an activation function for the connected hidden layer.
This function is formed as follow:



TABLE II
THE ARCHITECTURE OF DEEP-SDN THAT SHOWS THE DIFFERENT TYPES

OF HIDDEN LAYER IN ADDITION TO THE INPUT AND OUTPUT LAYER.

Layer (type) Output Shape Param #

Input (None, 248) 61752
Batch normalisation 1 (None, 248) 992

Activation 1 (Activation) (None, 248) 0
Dropout 1 (Dropout) (None, 248) 0

Dense 2 (Dense) (None, 100) 24900
Batch normalisation 2 (None, 100) 400

Activation 2 (Activation) (None, 100) 0
Dropout 2 (Dropout) (None, 100) 0

Dense 3 (Dense) (None, 50) 5050
Batch normalisation 3 (None, 50) 200

Activation 3 (Activation) (None, 50) 0
Dropout 3 (Dropout) (None, 50) 0

Output (None, 10) 561

Total params: 93,855
Trainable params: 93,059

Non-trainable params: 796

f(x) = max(0, x), s.t. f(x) = {x ∈ R|x > 0} (4)

where x represents as an input value to a neuron. The
function f(x) receives thresholding values at 0. The
output is 0 when the value of x is less than 0, while,
the output is a linear function when x > 0. The ReLU
activation function is illustrated in Figure 2.

f(y)=0

f(y)

f(
y)
=y

y

Fig. 2. ReLU function where f(x) is either 0 when x < 0, or a linear when
x > 0.

(iv) Towards better regularisation and avoiding the over fit-
ting, a dropout layer with 20% dropping rate is adopted
[21]. As an illustrative example, Figure 3 (a) shows
multi-layer neural network without dropout, while, in
Figure 3 (b) a multi-layer neural network with dropout is
demonstrated. The model schema architecture of Deep-
SDN is given in Table II.

Subsequently, the three architectural blocks are connected to
dense Softmax layer as a final step before the classification.

B. Action phase

This phase is responsible for exploiting and adopting the
learned information, which is subsequently utilised in high-
level processes such as load balancing, routing, resource
allocation, with the aim of improving network performance.
These high-level processes are out of scope of the current
submission, but warrant investigation in future work.

(a) Without dropout

X

X

X

X

X

(b) With dropout

Fig. 3. Deep neural network example that shows the network with and without
dropout.

C. SDN controller

The SDN controller represents the network’s brain. It is
responsible for routing updates, constructing the forwarding
rules, optimising the network’s performance and classifying
the network traffic based on the learned traffic information.
There are different types of SDN controllers such as POX,
NOX, OpenDayLight with different specifications and charac-
teristics. We will employ the POX controller as it facilitates
fast prototyping [22]. The standard OpenFlow protocol is
used as a southbound API for establishing the communication
between the data and control planes, whereas the set of POX
APIs is used on the northbound interface for developing
various network control applications.

IV. PERFORMANCE EVALUATION AND SIMULATION
RESULTS

We evaluate our approach using Moore’s dataset under
two headings: (1) the efficiency and (2) the applicability of
the approach. The efficiency is concerned with gauging the
overall performance of the proposed DL approach while the
applicability attempts to gauge to what extent the proposed
model can be employed in a real-world SDN environment.

A. Efficiency measurements

To measure the efficiency of the proposed model, we
consider the following commonly used performance evalua-
tion metrics: accuracy, precision, recall and f-measure. Then
we compare the performance of the proposed model, Deep-
SDN, against the DL model proposed in [10]. This part of
evaluation is divided into two parts. The first experiment was
conducted on the 10 datasets, where each dataset represents
a period of time captured within a day, where the purpose
of this experiment is to obtain the overall efficiency measure.
While, the second experiment was conducted on the combined
datasets, i.e. 10, and it has been designed in order to measure
the performance over each individual application type. Figure
4 shows the first experimental evaluation results. With 96%
overall accuracy, it can be clearly seen that Deep-SDN out-
performed DL by achieving higher performance with respect
to all measurements metrics, i.e. accuracy, precision, recall and
f-measure. Figure 6 shows the second experimental evaluation
results. Again, Deep-SDN showed its ability to obtain higher
performance compared to DL. Such efficiency improvement
comes as an advantage of using both batch normalisation
and dropout layers in the architecture of Deep-SDN. These
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Fig. 4. Performance measurements over 10 different Moore datasets. The
performance of Deep-SDN over the four metrics is better than the performance
of DL.

Fig. 5. Receiver operating characteristic (ROC) analysis for the application
types/classes of the 10 experimental datasets.

two layers have brought more robustness to the proposed
model, which results in enhancing the performance efficiency.
Moreover, we include the receiver operating characteristic
(ROC) curve in Figure 5, which shows the true and false
positive rates of each application class that obtained by the
Deep-SDN.

B. Applicability measurements

Given that the controller is responsible for dealing with the
newly arrived traffic flow to a SDN network, therefore, as a
control application, it is necessary for the classification module
to be able to process the arrived traffic in real time fashion.
Thus, measuring the required time to classify a number of
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Fig. 6. Performance measurements over the individual applications of Moore
datasets. Deep-SDN performs better than DL across the different type of
applications.

TABLE III
TIME REQUIRED TO CLASSIFY DIFFERENT TRAFFIC FLOW REQUESTS AT

ONCE.

Requests Time (ms)

100 1.938
1000 2.38
10000 6.371
100000 11.341

flows, i.e. requests, is necessary to provide an indication about
the speed of the classification process. To do so, random traffic
flows with different sizes, i.e. 100–100000, were selected from
the experimental dataset. Then, we report the classification
latency of each traffic as shown in Table III. According to
Table III, one can observe is that the processing time is directly
proportional to the number of requests, also, a large number
of requests can be classified within a reasonable time where
it took only 11.3ms to classify 100000 requests.

V. CONCLUSION

This paper demonstrated the promise of using DL in the
problem of network traffic classification. A new application-
aware classification framework for SDNs is introduced. The
proposed framework consists of two main parts, namely learn-
ing and action. In this ongoing study, we have implemented



the first part, i.e. learning, through implementing a new DL
model, called Deep-SDN. The proposed model is able to iden-
tify the network traffic application types with high accuracy
and high speed, which makes it applicable for online traffic
identification. The performance of Deep-SDN was tested and
evaluated through extensive simulation experiments on a real-
world traffic dataset. Four metrics were used to examine our
model, these were: accuracy, precision, recall and f-measure.
The experimental findings have shown the effectiveness of
Deep-SDN in identifying the traffic application types. The
overall performance of Deep-SDN is compared against the
proposed model in [10]. It has been found that Deep-SDN
exhibits better performance by reporting 96% overall accuracy.

As part of our future work, we intend to implement the
remaining part of our framework, i.e. action, in order to use
the useful information that obtained from the learning phase
in different network aspects such as resource allocation and
routing. Also, we are planning to extend our proposed Deep-
SDN to be able to predict the network traffic by considering
some approaches like [23], [24].
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