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Abstract: Vegetation mapping, identifying the type and distribution of plant species, is important for
analysing vegetation dynamics, quantifying spatial patterns of vegetation evolution, analysing the
effects of environmental changes and predicting spatial patterns of species diversity. Such analysis
can contribute to the development of targeted land management actions that maintain biodiversity
and ecological functions. This paper presents a methodology for 3D vegetation mapping of a coastal
dune complex using a multispectral camera mounted on an unmanned aerial system with particular
reference to the Buckroney dune complex in Co. Wicklow, Ireland. Unmanned aerial systems
(UAS), also known as unmanned aerial vehicles (UAV) or drones, have enabled high-resolution and
high-accuracy ground-based data to be gathered quickly and easily on-site. The Sequoia multispectral
sensor used in this study has green, red, red edge and near-infrared wavebands, and a regular camer
with red, green and blue wavebands (RGB camera), to capture both visible and near-infrared (NIR)
imagery of the land surface. The workflow of 3D vegetation mapping of the study site included
establishing coordinated ground control points, planning the flight mission and camera parameters,
acquiring the imagery, processing the image data and performing features classification. The data
processing outcomes included an orthomosaic model, a 3D surface model and multispectral imagery
of the study site, in the Irish Transverse Mercator (ITM) coordinate system. The planimetric resolution
of the RGB sensor-based outcomes was 0.024 m while multispectral sensor-based outcomes had a
planimetric resolution of 0.096 m. High-resolution vegetation mapping was successfully generated
from these data processing outcomes. There were 235 sample areas (1 m × 1 m) used for the accuracy
assessment of the classification of the vegetation mapping. Feature classification was conducted
using nine different classification strategies to examine the efficiency of multispectral sensor data
for vegetation and contiguous land cover mapping. The nine classification strategies included
combinations of spectral bands and vegetation indices. Results show classification accuracies, based
on the nine different classification strategies, ranging from 52% to 75%.

Keywords: coastal dune; vegetation mapping; UAS; multispectral sensor; classification strategies

1. Introduction

Coastal dune fields are at the transition between terrestrial and marine ecosystems and
are highly-valued, natural resources for providing drinking water, mineral resources, recreation,
eco-services and desirable land for development [1]. These natural resources provide food and
habitation for aquatic and terrestrial organisms and, also, offer human settlement and recreation spaces.
Activities at the coastal zone area can contribute to local and national economic development in areas
like aquaculture, fisheries and tourism, and the area also has an important function to control erosion
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and flooding, thus protecting and maintaining environmental functions [2]. In recent years, increasing
tourism and development in the coastal dune area in the southeast of Ireland have resulted in increased
pressure on the environment, resulting in issues including soil erosion, flooding and habitat loss [3].

Vegetation at coastal dune complexes has a strong impact on dune morphology and dynamics as
it can influence sand transport [4]. Vegetation is also a critical environmental component of the coastal
ecosystem for food production, resource conservation, nutrient cycling and carbon sequestration [5,6].
High-resolution vegetation mapping of coastal dune complexes, with accurate distribution and
population estimates for different functional plant species, can be used to analyse vegetation dynamics,
quantify spatial patterns of vegetation evolution, analyse the effects of environmental changes on
vegetation and predict spatial patterns of species diversity [7]. Such information can contribute to the
development of targeted land management actions that maintain biodiversity and ecological functions.

This research involved the generation of 3D vegetation mapping of a coastal dune complex at
Buckroney in Co. Wicklow, Ireland, using a multispectral sensor mounted on an unmanned aerial
system (UAS) (Figure 1). The research presents a workflow for 3D vegetation mapping of a coastal
dune complex, including establishing ground control points (GCPs), planning the flight mission and
camera parameters, acquiring the imagery, processing the image data and performing digital features
classification. The process illustrates the efficiency of image data collection and the high-resolution of
the vegetation mapping of the site using a multispectral camera mounted on a UAS. Classification
accuracy also needs to be considered and some research also quoted an overall classification accuracy
of 65% as the minimum acceptable for reliable vegetation mapping [8]. To examine the efficiency
of multispectral sensors for vegetation mapping, classification was conducted based on 10 different
classification strategies, including different combinations of wavebands and spectral indices.

Figure 1. Morphology of the Brittas-Buckroney dune complex. Photo taken by the author.

2. Background

Traditionally, field survey has been the most commonly used method for vegetation mapping [9].
However, this method is time-consuming, expensive and limited in spatial coverage [10]. Satellite
remote sensing, in contrast, offers a potentially more efficient means of obtaining data. Each vegetation
community has a unique spectral response in multispectral satellite image data which is a function of
the characteristic species composition [11,12]. Satellite-based hyperspectral data can be a useful tool
for vegetation mapping on a regional scale but, in the context of species level classification, it is limited
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to homogeneous stands of the same species because of limited spatial resolution (e.g., 30 m of EO1
Hyperion images), and low signal-to-noise ratio [13].

Airborne remote sensing provides higher spatial resolution data than satellite remote sensing for
coastal dune complexes mapping and a higher resolution is more suitable for coastal dune inspection
and monitoring [14]. Light detection and ranging (LiDAR) is an active remote sensing technique that
measures the return time of a laser pulse backscattered by a target as an echo signal whose intensity is
proportional to the reflectance properties of the target [15]. Classical LiDAR records discrete echoes
in real-time but may not distinguish targets that are too close to each other. The minimum target
separation is typically 0.4 m in airborne LiDAR [14]. LiDAR data is often available from national
mapping agencies (NMAs), such as Ordnance Survey Ireland (OSi) who quote spatial resolutions and
vertical accuracies in rural areas of 0.5 m and 0.5 m, respectively [16]. However, LiDAR data from
NMAs are of limited use for vegetation mapping of coastal dune areas because of the relatively coarse
spatial resolution, poor vegetation classification potential and fixed acquisition dates.

In recent years, there have been significant advances in exploring the capabilities of small UAS
(unmanned aerial systems) as part of vegetation research [17–20]. UAS, variously referred to as
remotely piloted aircraft systems (RPAS), unmanned aircraft vehicles (UAV), “Aerial Robots” or
simply “drones”, enable on-site data collection for vegetation mapping [21]. In comparison with other
remote sensing platforms, UAS typically have a lower operating height which enables the collection
of higher spatial resolution in a small area [22]. UAS also have flexible revisit times whereas the
availability of other remote sensing data is limited in acquisition date and coverage depending on
national commission. UAS also provide the possibility for data acquisition of inaccessible areas or
hazardous environments. The collected images are processed by specialized software, for example
Pix4D or Agisoft, which utilize structure from motion (SfM) technology and dense image matching.
Importing a wide variety of suitable imagery and control data to the software, a georeferenced 3D
model can be constructed. Figure 2 shows a workflow for photogrammetry-based 3D construction
based on Bemis’s research [23].

Structure from motion (SfM) for UAS-collected data processing is a technique that has emerged
in the last decade to construct photogrammetry-based 3D models [24]. The critical element for
implementation of photogrammetry to 3D mapping using SfM is the collection of numerous overlapping
images of the study area [25]. From each pair of overlapping pictures, SfM can calculate the unique
coordinate position (x, y, z or easting, northing, elevation) of a set of particular points presented in
both images. To maintain the accuracy of the mapping, the overlapping area for each two images
should be at least 60%, ensuring that sufficient shared points can be recognised by software for the
map construction. To generate a 3D model, many thousands of matching object and textural features
are automatically detected in multiple overlapping images of the ground surface, from which a
high-density point cloud with 3D coordinate positions is derived.

A multispectral camera mounted on a UAS allows both visible and multispectral imagery to be
captured that can be used for characterizing land features, vegetation health and function. The Parrot
Sequoia multispectral sensor has green (530–570 nm), red (640–680 nm), red edge (730–740 nm) and
near-infrared (770–810 nm) wavebands and a camera with red, green and blue wavebands (RGB
camera) (400–700 nm) [26]. Colour, structure and surface texture of different land features can influence
the reflectance pattern of the wavebands [27]. By analysing these spectral reflectance patterns, different
earth surface features can be identified. This process is known as classification and it is usually carried
out by digital image processing using a variety of classification algorithms.
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Figure 2. Photogrammetry-based 3D construction workflow of unmanned aerial systems (UAS) technology.

Image processing is also capable of discriminating vegetation by calculating different visible-based
or multispectral data-based spectral indices. For example, the Normalized Differential Vegetation
Index (NDVI), which relates the reflectance of land features at near-infrared and red wavebands, is
widely used to differentiate green vegetation areas from other land features, such as water and soil [28].
The index ranges from −1 to 1, with 0 representing the approximate value of no vegetation [29]. There
are other spectral indices that can be calculated from multispectral bands and are used for vegetation
mapping, Weil et al. listed six of these related with RGB camera-based bands and four multispectral
bands (Table 1) [20].

Table 1. Spectral indices calculated from four multispectral bands for vegetation mapping [20].

Spectral Indices Formula Explanation

Relative Green
Green

(Red + Green + Blue)
The relative component of green, red and blue
bands over the total sum of all camera bands.

Less affected from scene illumination
conditions than the original band value.

Relative Red
Red

(Red + Green + Blue)

Relative Blue
Blue

(Red + Green + Blue)

Normalized Differential
Vegetation Index (NDVI)

Near− infrared−Red
Near− infrared + Red

Relationship between the near-infrared (NIR)
and red bands indicates vegetation condition
due to chlorophyll absorption within the red
spectral range and high reflectance within the

NIR range.

gNDVI
Near− infrared−Green
Near− infrared + Green

Improvement of NDVI, accurate in assessing
chlorophyll content.

Green-Red Vegetation
Index (GRVI)

Green−Red
Green + red

Relationship between the green and red bands
is an effective index for detecting phenophases.
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Overhead imagery of natural terrain typically includes shading and weaker reflectance from
shaded areas complicates the classification of vegetation communities. Various image pre-processing
methods have been developed to minimize the effects of shadows on image classification. These
methods include band ratios (e.g., [30,31]), additional topographic data (e.g., [32]) and topographic
correction (e.g., [33,34]). Band ratios can minimize changes in solar illumination caused by variations in
slope and aspect [35]. Research has also demonstrated that simulated NDVI is resistant to topographic
effects at all illumination angles [36]. The normalized difference moisture index (NDMI) and tasselled
cap wetness have also been used to classify forest types [37]. The use of digital elevation models (DEM)
in vegetation classification in mountainous regions has also proven useful in improving classification
accuracy, if the distribution of vegetation is determined by altitude [38]. Topographic correction
models have also been applied to Landsat images and have been shown to increase classification
accuracies [39].

3. Study Site

The Brittas-Buckroney dune complex (Figure 3) is located c. 10 km south of Wicklow town on
the east coast of Ireland and comprises two main sand dune systems, viz. Brittas Bay and Buckroney
Dunes [8]. The study site for this research is Buckroney Dunes, which is managed by the Irish National
Park and Wildlife Service. The area of the Buckroney dune complex is c. 40 ha. Within this site, ten
habitats listed on the European Union (EU) Habitats Directive are present, including two priority
habitats in Ireland, viz. fixed dune and decalcified dune heath [40]. This dune system also contains
good examples of other dune types. At the northern part of Buckroney dune complex, there are some
representative parabolic dunes, while embryonic dunes mostly occur at the southern part.

Figure 3. Study site (a) general location and (b) site details.

The site is notable for the presence of well-developed plant communities as shown in Figure 4 [39].
Mosses, such as Tortula ruraliformis (Syntrichia ruralis subsp. ruraliformis), Rhytidiadelphus triquetris,
and Homalothecium lutescens and lichens (Cladonia spp., Peltigera canina), are frequently found in this
dune complex. Sharp rush (Juncus acutus L.) dominates south of the inlet stream to the fen area at
the north of the dune complexes, and in small areas elsewhere within the Buckroney dune complex.
The main dune ridges are dominated by European marram grass (Ammophila arenaria (L.) Link). Gorse
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(Ulex europaeus (L.)) is also present at the back of the dunes. To the west, a dense swamp of common
reed (Phragmites australis (Cav.) Trin. ex Steud.) is present. There are also extensive areas of rusty willow
(Salix cinerea subsp. oleifolia Macreight) scrub throughout the dune complex.

Figure 4. Plant species at site (a) mosses land; (b) sharp rush (J. acutus); (c) European marram grass
(A. arenaria); (d) gorse (U. europaeus); (e) common reed (P. australis); (f) rusty willow (S. cinerea subsp.
oleifolia). Photos taken by the author.
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With land acquisition in recent years, the marginal areas of the dune system have been reclaimed
as farmland. The increasing anthropogenic activities at the dune system, such as farming and recreation
activities, have brought pressure on the development of the dune ecosystem, with hazards like soil
erosion, flooding and habitat loss. Accurate and high-resolution 3D vegetation mapping can contribute
to an understanding of the natural processes that impact the coastal dune complex and can help with
the development of targeted land management policies.

4. Methodology

The UAS platform used was a DJI Phantom 3 Professional (Shenzhen, Guangdong, China), which
has four rotors, a central body containing the electronic components and landing gear that sustains the
entire structure (Figure 5). The UAS is powered by a lithium polymer battery that allows a flight time
up to 25 min. The multispectral sensor used in this study was a Parrot Sequoia which is comprised of
five individual cameras and a sun sensor. The cameras consist of a 16 MP RGB camera and four 1.2 MP
multispectral cameras that record in green, red, red edge and near-infrared wavebands. The camera
cluster is mounted under the central body of the UAS and a sun sensor is positioned above the central
body as seen in Figure 5. The field work for this study was conducted in February 2018.

Figure 5. Sequoia multispectral sensor mounted on a DJI Phantom 3 Pro UAS. Photo taken by the author.

4.1. Field Work

4.1.1. Ground Control Points

Field surveying with the UAS started with establishing ground control points (GCPs) across the
study site whose Irish Transverse Mercator (ITM) coordinates were determined using a Trimble Global
Navigation Satellite System (GNSS) receiver connected to the Trimble Virtual Reference Station (VRS)
Network Real Time Kinematic (NRTK) system (Figure 6). This system can reach 2 cm spatial and
5 cm vertical accuracy for point measurement [41]. These GCPs were used at the processing stage
to georeference the 3D models generated from the data. In this study, 20 GCPs, marked as white
crosses on-site, were recorded. To ensure visibility in the captured images, open, flat and relatively
bare ground locations were selected for the GCPs.
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Figure 6. Ground control points (GCPs) set on site for UAS surveying. Photo taken by the author.

4.1.2. Flight Mission Planning

Pix4DCapture (Prilly, Switzerland) software provided a solution for the flightpath design for the
UAS surveying project while separate Parrot Sequoia software was used to set the multispectral sensor
recording parameters. For this study, the parameters of the flight mission were set as shown in Tables 2
and 3.

Table 2. Parameters set for UAS flight mission.

Flight Height Overlapping
along Line

Overlapping
between Lines

Estimated Flight
Time

Maximum Flight
Speed

80 m 80% 75% 10 min 10 m/s

Table 3. Parameters set for multispectral sensor mounted on UAS.

Capture Mode Interval Distance Image Resolution Bit Depth

Global Positioning
System (GPS)-controlled 15 m 1.2 Mpx 10-bit

4.1.3. Radiometric Calibration

Radiometric calibration was required to convert the multispectral raw imagery data to absolute
surface reflectance data thereby removing the influence of different flights, dates and weather conditions.
A collection of solar irradiance data for each flight is required for radiometric calibration. Imaging of a
white balance card (Figure 7), captured before each flight, provided an accurate representation of the
amount of light reaching the ground at the time of capture. The balance card containing a grey square
and Quick Response (QR) codes around it. The large grey square in the centre of the balance card is a
calibrated “panel” that can be used to calibrate the reflectance values as every balance card has been
tested to determine its reflectance across the spectrum of light captured. The captured balance card
images provided absolute reference information which was applied to each image individually for the
collection of repeatable reflectance data over different flights, dates and weather conditions.
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Figure 7. The balance card used for radiometric calibration.

4.1.4. Other Considerations

After setting the flight parameters and reflectance calibration, a number of other items were
considered before launching the UAS to ensure a safe and effective flight. These included weather
conditions, backup battery, subscriber identification module (SIM) card for image storage and UAS
controller charge. In case of an emergency, the flight could be terminated manually from the controller.
In consideration of the maximum 25 min battery life for a single flight of the UAS, the study site of
about 40 ha was divided into three overlapping flying events.

4.2. Data Processing

Overlapping imagery data collected by the UAS was processed with Pix4D software to generate
geo-referenced orthomosaics, digital surface models (DSMs), contours, 3D point clouds and textured
mesh models in various formats. As the image database of this research was large, a computer with
seven cores (i7), 32 GB of RAM and 1.5 TB storage was used to process and save the files. The procedure
is highly automated but required over 70 processing hours for the whole study site. The RGB imagery
and multispectral imagery were processed in two separate projects. The RGB project required GCP
position information to refer the project in the ITM coordinate system. Images of the calibration target
were used for radiometric calibration and to remove the brightness difference in the multispectral
bands project. Other processing options were customized to select the proper scale and format for the
resulting data. A quality assessment report for each processing step was generated and stored.

4.3. Classification

From the orthomosaic model generated from the captured imagery, areas dominated by plant
species, including pasture, rusty willow, gorse, sharp rush, marram, common reed and mosses land,
were presented. Based on this orthomosaic map, 1 m × 1 m ground truth samples were selected for
classification of 12 different land features, including seven vegetation species plus road, beach, stream,
sand and built area. There were 280 samples identified for ground truth information. Forty-five
ground truth samples among the 280 were used as training for a supervised classification. In this
study, supervised classification using the maximum likelihood classification algorithm was used for
vegetation mapping with 12 land features identification.



Remote Sens. 2019, 11, 1814 10 of 19

To examine the efficacy of the multispectral sensor for vegetation mapping, classifications
were conducted based on the classification strategies shown in Table 4. Classifications using these
different strategies, were applied using the same training samples and the same check samples for
accuracy assessment.

Table 4. Band combination for different classification strategies.

Classification Strategy Band Combinations

Three wavebands from camera with red, green and
blue wavebands (RGB camera) 1. Red + Green + Blue

Four wavebands from multispectral sensor 2. Green + Red + Red edge + NIR

Seven available multispectral wavebands 3. Red + Green + Blue (from RGB) + Green + Red +
Red edge + NIR (from multispectral)

Eight wavebands combinations

4. Red + Green + Blue (from RGB) + Green + Red +
Red edge + NIR (from multispectral) + Relative Green
5. Red + Green + Blue (from RGB) + Green + Red +
Red edge + NIR (from multispectral) + Relative Red
6. Red + Green + Blue (from RGB) + Green + Red +
Red edge + NIR (from multispectral) + Relative Blue
7. Red + Green + Blue (from RGB) + Green + Red +
Red edge + NIR (from multispectral) + NDVI
8. Red + Green + Blue (from RGB) + Green + Red +
Red edge + NIR (from multispectral) + gNDVI
9. Red + Green + Blue (from RGB) + Green + Red +
Red edge + NIR (from multispectral) + GRVI

5. Results and Discussion

5.1. Data Processing Outcome

The imagery was processed using Pix4D software which generated a 3D point cloud (Figure 8),
an orthomosaic model (Figure 9), a DSM from the RGB imagery (Figure 10) and a NDVI index map
(Figure 11) which was generated from the multispectral imagery.

Figure 8. A sample of the 3D point cloud for the north section of study site.
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Figure 10. Digital surface model (DSM) of the study site.
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Figure 11. NDVI map of the study site.

In addition, seven individual multispectral waveband orthomosaics (red, green, blue from normal
RGB camera and red, green, red edge, near-infrared from multispectral sensor) of the site were created.
These results were all referenced to the Irish Transverse Mercator (ITM) grid coordinate system. Ground
sample distance (GSD) in a digital imagery of the ground from the air and is the distance between
pixel centres measured on the ground. Outcomes from the RGB imagery had a GSD of 0.029 m and a
georeferencing root mean square (RMS) error of 0.111 m.

Georeferencing of multispectral imagery by reference to the GCPs is not supported within the
Pix4D software. Multispectral imagery is georeferenced by reference to the on-board autonomous
GNSS data included in the imagery EXIF files. Six GCPs were identified in the outcome models
and used as check points for outcome accuracy assessment. The multispectral imagery had a spatial
resolution of 0.096 m and a georeferencing accuracy of 0.798 m.

5.2. Spectral Analysis

From the orthomosaic model generated from the captured imagery, eight dominant vegetation
areas, including pasture, rusty willow, gorse, sharp rush, marram, common reed and mosses land,
and another four significant contiguous land cover types were identified on the site, viz. road, beach,
stream, sand and built area. Spectral patterns for these 12 types were analysed in the available seven
wavebands, viz. green, red, near-infrared (NIR) and red edge from the multispectral sensor and red,
green, blue wavebands extracted from RGB imagery. Figure 12 shows the spectral patterns of the
twelve land cover types using these seven available wavebands.
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Figure 12. Response of training samples in wavebands from (a) blue, green and red wavebands
extracted from RGB camera; (b) green, red, NIR and red edge wavebands from multispectral sensor.

As can be seen in Figure 12, “sand” and “stream” have significantly different responses under
these seven available wavebands from the RGB camera and the multispectral sensor, which make them
separable in the land feature classification. “Beach” has a distinctly separate response from other land
cover types in the blue waveband extracted from the RGB camera and the red wavebands from the
multispectral sensor, which means “beach” could be classified by considering the spectral pattern in
only these two wavebands. Other land cover types have less separated responses in these available
wavebands which make it more difficult to spectrally differentiate them. Thus, separable response
value in available wavebands from the RGB camera and the multispectral sensor can only be used
to identify “sand”, “stream” and “beach”; other land cover features are hard to be classified using
response values in available wavebands.

Figure 12 also shows that vegetation land cover features have quite disparate spectral patterns in
the RGB-derived bands but similar spectral patterns in the four wavebands of the multispectral sensors.
The multispectral sensor-derived patterns all feature low responses at green and red wavebands and
relatively higher responses at NIR and red edge wavebands. Non-vegetation land cover features
do not follow this pattern and do not exhibit similar characteristic spectral patterns. Therefore, the
characteristic spectral pattern of vegetation land features in the multispectral sensor-derived bands
can be used to distinguish and separate vegetation and non-vegetation land features in the site.

In general, land cover features have characteristic spectral responses, in terms of both pattern and
response value, which can be used as a basis for land cover features classification.
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5.3. Classification Accuracy

In this study, to examine the efficiency of a multispectral sensor at vegetation mapping, accuracies
of classifications were compared using different classification strategies (as shown in Table 4), including
a combination of different multispectral wavebands and vegetation indices, calculated by multispectral
wavebands. Classification accuracy was calculated by comparing the ground truth information and
classified information in 245 samples through matrix analysis as seen in Table 5. Figure 13 shows the
vegetation map of the site as the result of classification.

Table 5. Sample matrix analysis for accuracy assessment.

Column1
Classified Data

Road Built
Area Sand Stream Beach Pasture Sharp

Rush
Common

Reed
Rusty

Willow Gorse Mosses
Land Marram

Ground
truth
data

Road 13 3 1 4 1
B_A 2 16 3
Sand 16 2 1 2
Str 1 17 2 1

Beach 1 14
Past 16
S_R 14
C_R 1 15 5 2 1
R_W 1 8
Gorse 2 1 16 1
M_L 3 1 1 17
Mar 1 1 5 5 1 2 15
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Through the matrix, the accuracies based on different classification strategies (in Table 4) were
calculated (Figure 14). 3RGB means the classification layer is the combination of red, green and blue
wavebands from the RGB camera, as seen in Table 4 (#1); 4MTB means the classification layer is the
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combination of green, red, red edge and near-infrared from multispectral sensor, as seen in Table 4
(#2); 7MTB means the classification layer is the combination of all available multispectral wavebands,
as seen in Table 4 (#3); 8MTB_DSM, 8MTB_RG, 8MTB_RR, 8MTB_RB, 8MTB_NDVI, 8MTB_gNDVI,
8MTB_GRVI and 8MTB_NI were represented by #4–9 in Table 4, respectively.

Figure 14. Classification accuracy based on different strategies.

The classification accuracy results (Figure 14) illustrate that multispectral sensor waveband data
help to improve the accuracy as, for example, the classification accuracy based on 7MTB is higher than
that based on 3RGB. Adding more wavebands from a multispectral sensor provides more reflectance
information for classification and may help to improve the classification accuracy, such as 8MTB_RG
(76%), 8MTB_RR (76%), 8MTB_RB (77%), 8MTB_NDVI (78%) and 8MTB_GRVI (77%) has higher
accuracy than 7MTB (74%).

However, adding more reflectance information from the combination of wavebands did not
always translate to an improvement in the classification accuracy. For example, 8MTB_DSM (71%) and
8MTB_gNDVI (72%) have lower accuracies than 7MTB (74%).

The classification accuracy of different classification strategies may also be influenced by image
resolution. The multispectral sensor and RGB camera have different resolutions, being 1.2 MP and
16 MP, respectively. This may lead to the classification accuracy of 4MTB (60%), from the multispectral
sensor data, being lower than 3RGB (69%) from the RGB camera data. Although a lower spatial
resolution can have a smoothing effect that can, sometimes, lead to a higher classification accuracy.

In addition, the RGB camera contains three non-discrete spectral bands, whereas the multispectral
sensor has four discrete spectral bands. As seen in Figure 15, non-discrete spectral bands have a
distinctly curved response and each band has considerable overlap in the wavelength range, whereas
the discrete spectral bands of the multispectral sensor have an even response without overlap [41,42].
This should result in the multispectral wavebands providing more reliable reflectance patterns for land
feature classification.
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Figure 15. Wavelength and response of discrete and non-discrete spectral bands.

6. Conclusions

High-resolution vegetation and contiguous land cover mapping were successfully generated from
imagery captured using a Sequoia multispectral sensor mounted on a UAS. The highest classification
accuracy (78%) was achieved using eight spectral bands which included three wavebands from the
RGB camera, four wavebands from the multispectral sensor and the NDVI index. Whereas using the
three wavebands from the RGB camera and the four wavebands from the multispectral sensor, in
combination, achieved a classification accuracy of 75%. Classification accuracy using only the four
multispectral wavebands, was lower than the accuracy using the three wavebands of the RGB camera.
Factors including image resolution, number of wavebands used, spectral separability and index type
may contribute to the observed different classification accuracies using different classification strategies.

This research also highlighted an effective option for on-site surveying, significantly reducing
the hazards and workload for the development of vegetation maps and DEMs of a study area. Using
the multispectral sensor resulted in data captured from a wider range of wavebands than an RGB
camera alone, with better resolution and accuracy than other conventional remote sensing technologies,
enabling the generation of dense 3D point clouds, and orthomosaic models, DEMs and NDVI maps. In
these outcomes, vegetation distribution and elevation changes over the Buckroney dune complex were
represented clearly. The classification results also illustrated the high accuracy achieved for identifying
different vegetation and contiguous land cover.

However, notwithstanding the many benefits and advantages of UAS and multispectral technology
in vegetation mapping, the technology still has some challenges with respect to dune complex surveying.
One issue is the permission, licensing, training required and restrictions to areas of UAS flight from
the relevant aviation authority. As different countries have varying legislation controlling UAS use,
it is recommended to be well-informed about the limitations on UAS use before the start of any
UAS project. Although the use of a UAS platform can save much time at the on-site data collecting
stage, a considerable amount of time is required for data processing. Furthermore, compared to other
conventional survey methods, UAS is less robust as it is significantly impacted by environmental
factors such as wind, precipitation and poor light conditions.
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