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BENJAMIN-ONO MODEL OF AN INTERNAL WAVE UNDER A

FLAT SURFACE

Alan Compelli

School of Mathematical Sciences
University College Cork

Cork, Ireland

Rossen Ivanov

School of Mathematical Sciences

Technological University Dublin, City Campus, Kevin Street

Dublin 8, Ireland

Abstract. A two-layer fluid system separated by a pycnocline in the form

of an internal wave is considered. The lower layer is infinitely deep, with a

higher density than the upper layer which is bounded above by a flat surface.
The fluids are incompressible and inviscid. A Hamiltonian formulation for the

dynamics in the presence of a depth-varying current is presented and it is shown

that an appropriate scaling leads to the integrable Benjamin-Ono equation.

1. Introduction. Due to the ubiquitous presence of waves on the surface of oceans
much research has been completed which attempts to explain the mechanisms re-
sponsible for such waves. However, despite many centuries of reporting, by mariners
in particular, of unexplained phenomena beneath the surface, such as the “dead wa-
ter” phenomenon coined by Fridtjof Nansen [30], it is relatively recently that some
progress of a mathematical nature has been achieved in the description of internal
waves. In many situations both the surface and the internal waves are moving in
the presence of currents. Due to the nonlinearity the wave-current interactions are
quite complex and necessitate the study of rotational fluids [8, 10, 26, 32, 34] .

The significant findings of Vladimir Zakharov in 1968 in [36] have established the
use of the Hamiltonian approach for dynamic descriptions of wave motion. For single
layer systems both irrotational [4, 19, 28, 29] and rotational [11, 12, 15, 17, 18, 33, 35]
set-ups have been examined within the Hamiltonian framework. Stratified systems
which contain a pycnocline separating two layers in the form of an internal wave
have been considered in an irrotational context in [2, 3, 5, 20, 21] and in a rotational
context, which is of most interest, in [6, 7, 13, 16].

We aim to establish a model for a system with a flat-bed, flat surface and inter-
nal wave. Our setting captures the nonlinear dynamics as influenced by both the
internal wave behaviour and the presence of a depth-varying current. In physical
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4520 ALAN COMPELLI AND ROSSEN IVANOV

terms the system can be thought of as a non-mixing oceanic environment consisting
of two discrete fluid bodies at different densities in the presence of a current such as
the case in the Pacific ocean where the EUC (Equatorial Under Current) influences
a stratified region of the ocean [23].

Perturbative techniques can be used to develop such models. In [9] the chosen
scaling regime leads to a KdV type model. We choose to adopt a similar approach,
but with a scaling which leads to a Benjamin-Ono type approximation.

2. Set-up and governing equations. The flow we consider consists of two layers,
Ω and Ω1, which have different densities, due to different salinity levels or temper-
atures. They are separated by a very thin layer termed as a pycnocline (whose
thickness is neglected), as shown in Figure 1 where the horizontal axis is x and the
vertical axis is y. The internal wave is formed at the pycnocline y = η(x, t). The
mean of η is assumed to be zero, that is∫

R

η(x, t)dx = 0 (1)

for all t so that η(x, t) measures the elevation of the internal wave with respect to
the level y = 0.

0

h1

1 (x,t)

Figure 1. The system under study.

The domains Ω and Ω1 are defined as

Ω := {(x, y) ∈ R2 : −∞ < y < η(x, t)}
and Ω1 := {(x, y) ∈ R2 : η(x, t) < y < h1}.

Throughout the paper we will use the subscript 1 to denote quantities pertaining
to the upper layer, while quantities referring to the lower layer will appear without
subscript. The domain Ω is infinitely deep and Ω1 has a flat surface. The physical
justification for this assumption of absence of surface motion is due to the small
amplitude of the surface waves in comparison to the amplitude of the internal waves.
The fluids are considered to be inviscid and incompressible with ρ and ρ1 being the
respective constant densities of the lower and upper media. Stable stratification
requires

ρ > ρ1. (2)
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The velocity fields are given by

V(x, y, t) = (u, v) and V1(x, y, t) = (u1, v1) (3)

and the incompressibility implies divV = 0 and divV1 = 0 or

ux + vy = 0 and u1,x + v1,y = 0. (4)

The Euler equations

∂

∂t
V + (V · ∇)V = −1

ρ
∇p+ g, (5)

∂

∂t
V1 + (V1 · ∇)V1 = − 1

ρ1
∇p1 + g (6)

govern the fluid dynamics in each layer, where p, p1 are the dynamic pressure terms
in the corresponding layers and g = (0,−g) is the Earth’s gravitational acceleration.

In addition, the kinematic boundary condition for the interface between the layers
(the pycnocline) must be satisfied, that is

ηt = v − ηxu = v1 − ηxu1 on y = η(x, t). (7)

Velocity potentials ϕ and ϕ1 are introduced to capture the irrotational compo-
nents of the velocity fields. These components in general include time-independent
constant currents so that the velocity potentials can be further decomposed as

ϕ ≡ ϕ̃+ κx and ϕ1 ≡ ϕ̃1 + κ1x

where κ and κ1 are the respective time-independent currents at y = 0. In this
decomposition ϕ̃ and ϕ̃1 represent the potential components related to the wave
motion. In the presence of a current with constant vorticity we can therefore rep-
resent the velocity field components in Ω via

u = ϕ̃x + γy + κ and v = ϕ̃y, (8)

and similarly for Ω1 via

u1 = ϕ̃1,x + γ1y + κ1 and v1 = ϕ̃1,y (9)

where γ = uy − vx and γ1 = u1,y − v1,x are the constant non-zero vorticities (see
[14], where the situation with a free surface is studied).

The incompressibility of the fluid (4) allows us to introduce a stream function ψ
in Ω via

u = ψy and v = −ψx (10)

and a stream function ψ1 in Ω1 via

u1 = ψ1,y and v1 = −ψ1,y. (11)

The following assumptions will be made: η(x, t) < h1 for all values of x and t;
η(x, t) and ϕ̃1(x, y, t), are in the Schwartz class S(R) with respect to the x variable
(for any y and t); ϕ̃(x, y, t) is in the Schwartz class S(R2) with respect to both the
x and y variables (for any t). Due to these assumptions for large absolute values of
x the internal wave attenuates, meaning that

lim
|x|→∞

η(x, t) = lim
|x|→∞

ϕ̃(x, y, t) = lim
|x|→∞

ϕ̃1(x, y, t) = 0. (12)

Moreover,
lim

y→−∞
ϕ̃(x, y, t) = 0 (13)

for all values of x and t. The physical reasoning for this is the absence of wave
motion at infinite depth y → −∞.
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Euler’s equations (5), (6) in terms of the introduced variables are [9]

ϕ̃t +
1

2
|∇ψ|2 − γψ1 + gy +

p

ρ
= f(t) (14)

and ϕ̃1,t +
1

2
|∇ψ1|2 − γ1ψ1 + gy +

p1
ρ1

= f1(t) (15)

where p and p1 are the dynamic pressure terms, ρ and ρ1 are the constant densities,
f and f1 are some so far arbitrary functions of time. Their presence is related to
the fact that the velocity potentials are determined up to an additive term whose
gradient is zero. For further convenience we choose ρf(t) = ρ1f1(t).

At the interface y = η(x, t) (denoted by a subscript “i”) the dynamic pressure
terms are equal giving the Bernoulli equation [25]

ρ
(

(ϕ̃t)i +
1

2
|∇ψ|2i − γχ+ gη + f(t)

)
= ρ1

(
(ϕ̃1,t)i +

1

2
|∇ψ1|2i − γ1χ1 + gη + f1(t)

)
(16)

where χ and χ1 are the interface stream functions. Furthermore, it could be shown
[6] that χ = χ1, and so the Bernoulli equation becomes

ρ
(

(ϕ̃t)i +
1

2
|∇ψ|2i − γχ+ gη

)
= ρ1

(
(ϕ̃1,t)i +

1

2
|∇ψ1|2i − γ1χ+ gη

)
(17)

or

(ρϕ̃t − ρ1ϕ̃1,t)i =
ρ1
2
|∇ψ1|2i −

ρ

2
|∇ψ|2i + (ργ − ρ1γ1)χ+ (ρ1 − ρ)gη. (18)

This form suggests the introduction of a single variable ρϕ̃−ρ1ϕ̃1 which is going
to provide one of the Hamiltonian coordinates (the momentum) in the next section.
The other one (the coordinate) is the variable η(x, t), which satisfies the kinematic
boundary condition (7)

ηt = (ϕ̃y)i − ηx
(
(ϕ̃x)i + γη + κ

)
= (ϕ̃1,y)i − ηx

(
(ϕ̃1,x)i + γ1η + κ1

)
. (19)

3. The Hamiltonian formulation. The functional H, which describes the total
energy of the system, can be written as the sum of the kinetic, K, and potential
energy, V contributions. The potential part, must be

V (η) = lim
h→−∞

ρg

∫
R

η∫
h

y dydx+ ρ1g

∫
R

h1∫
η

y dydx.

However, the potential energy is always measured from some reference value, e.g.
V (η = 0) which is the potential energy of the current (without wave motion).
Therefore, the relevant part of the potential energy, contributing to the wave motion
is

V(η) = V (η)− V (0) = ρg

∫
R

η∫
0

y dydx+ ρ1g

∫
R

0∫
η

y dydx =
1

2
(ρ− ρ1)g

∫
R

η2dx.

In order to determine the kinetic energy of the wave motion, from the total
kinetic energy of the fluid

1

2
ρ

∫
R

η∫
−∞

(u2 + v2)dydx+
1

2
ρ1

∫
R

h1∫
η

(u21 + v21)dydx (20)
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one should subtract again the constant, but infinite kinetic energy of the current
which is

1

2
ρ

∫
R

0∫
−∞

(γy + κ)2dydx+
1

2
ρ1

∫
R

h1∫
0

(γ1y + κ1)2dydx. (21)

In terms of the dependent variables η(x, t), ϕ̃(x, t) and ϕ̃1(x, t) this kinetic energy
is

K(η, ϕ̃, ϕ̃1) =
1

2
ρ

∫
R

η∫
−∞

(
(ϕ̃x + γy + κ)2 + (ϕ̃y)2

)
dydx− 1

2
ρ

∫
R

0∫
−∞

(γy + κ)2dydx

+
1

2
ρ1

∫
R

h1∫
η

(
(ϕ̃1,x + γ1y + κ1)2 + (ϕ̃1,y)2

)
dydx− 1

2
ρ1

∫
R

h1∫
0

(γ1y + κ1)2dydx

=
1

2
ρ

∫
R

η∫
−∞

(
(ϕ̃x)2 + (ϕ̃y)2 + 2ϕ̃x(γy + κ)

)
dydx

+
1

2
ρ1

∫
R

h1∫
η

(
(ϕ̃1,x)2 + (ϕ̃1,y)2 + 2ϕ̃1,x(γ1y + κ1)

)
dydx

+
1

6
(ργ2 − ρ1γ21)

∫
R

η3dx+
1

2

(
ργκ− ρ1γ1κ1

) ∫
R

η2dx. (22)

The Hamiltonian is therefore

H(η, ϕ̃, ϕ̃1) = K + V =
1

2
ρ

∫
R

η∫
−∞

(
(ϕ̃x)2 + (ϕ̃y)2 + 2ϕ̃x(γy + κ)

)
dydx

+
1

2
ρ1

∫
R

h1∫
η

(
(ϕ̃1,x)2 + (ϕ̃1,y)2 + 2ϕ̃1,x(γ1y + κ1)

)
dydx

+
1

6
(ργ2 − ρ1γ21)

∫
R

η3dx+
1

2

(
(ργκ− ρ1γ1κ1) + (ρ− ρ1)g

) ∫
R

η2dx. (23)

The assumption that ϕ̃(x, y, t) is in the Schwartz class S(R2) with respect to
both the x and y variables gives

lim
x→±∞

∫ 0

−∞
(γy + κ)ϕ̃(x, y, t)dy = 0 for any t,

and furthermore∫
R

η∫
−∞

ϕ̃x(γy + κ)dydx = −
∫
R

ϕ̃(x, η, t)(γη + κ)ηxdx.

We would like to write the Hamiltonian only in terms of the one dimensional
variables pertaining to the interface. To this end the Dirichlet-Neumann operators

G(η)φ =

(
∂ϕ̃

∂n

)
i

√
1 + η2x and G1(η)φ1 =

(
∂ϕ̃1

∂n1

)
i

√
1 + η2x (24)
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are introduced, where n and n1 are the unit exterior normals,
√

1 + (ηx)2 is a
normalisation factor and

φ(x, t) := ϕ̃(x, η(x, t), t) and φ1(x, t) := ϕ̃1(x, η(x, t), t) (25)

are the interface velocity potentials.
Since usually there is no jump in the current velocity, in what follows we take

κ = κ1.
The Hamiltonian can therefore be written in terms of conjugate variables η(x, t)

and ξ(x, t), following the procedure in [9], as

H(η, ξ) =
1

2

∫
R

ξG(η)B−1G1(η)ξ dx−1

2
ρρ1(γ−γ1)2

∫
R

ηηxB
−1ηηxdx−γ

∫
R

ξηηxdx

− κ
∫
R

ξηxdx+ ρ1(γ − γ1)

∫
R

ηηxB
−1G(η)ξ dx+

1

6
(ργ2 − ρ1γ21)

∫
R

η3dx

+
1

2

(
(ργ − ρ1γ1)κ+ g(ρ− ρ1)

) ∫
R

η2dx (26)

where

ξ(x, t) := ρφ(x, t)− ρ1φ1(x, t) (27)

and the operator B, as per [20], is introduced as

B := ρG1(η) + ρ1G(η). (28)

We point out that due to the initial assumptions on η, ϕ̃ and ϕ̃1 and (25),(27),
the Hamiltonian variables η and ξ are in S(R) with respect to the x variable for all
t.

The equations of motion (18) – (19) can be presented in the following form (see
[6] for details)

ηt =
δH

δξ
and ξt = −δH

δη
+ Γχ (29)

where

Γ := ργ − ρ1γ1. (30)

Furthermore, we can write

χ(x, t) = −
∫ x

−∞
ηt(x

′, t)dx′ = −∂−1x ηt (31)

and introducing a non-canonical Poisson bracket as [35]

{F1, F2} =

∫
R

(
δF1

δη(x)

δF2

δξ(x)
− δF1

δξ(x)

δF2

δη(x)

)
dx− Γ

∫
R

(
δF1

δξ(x)

x∫
−∞

δF2

δξ(x′)
dx′
)
dx

(32)
for functionals F1 and F2 provided at least one of the functionals in addition satisfies∫

R

δFk
δξ(x)

dx = 0,

the equations (29) can be written in the form

ξt = {ξ,H}, ηt = {η,H}.
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The canonical Hamiltonian form can be achieved under the transformation (cf.
[6, 7, 35])

ξ → ζ = ξ − Γ

2

∫ x

−∞
η(x′, t) dx′, (33)

giving the equations

ηt =
δH

δζ
and ζt = −δH

δη
. (34)

The condition (1) ensures that
∫ x
−∞ η(x′, t)dx′ ∈ S(R) and hence ζ(x, t) ∈ S(R) for

all t.

4. Scaling of the Hamiltonian. By the introduction of a small arbitrary constant
parameter, δ, defined by

δ =
h1
λ

(35)

where λ is the wavelength of the internal wave, meaning the scaled system will be
considered as having long waves, the variables will be scaled according to

η → δη, ξ → ξ and ∂ → δ∂

noting that the differential operators ∂ and D are related by

D = −i∂x (36)

and the wave number k := 2π/λ is an eigenvalue of D for the monochromatic linear
waves in the form eikx and therefore ∂ ∼ O(δ).

The (unscaled) Dirichlet-Neumann operators can be expanded in terms of orders
of η as [22]

G(η) = |D|+DηD − |D|η|D|+O(η2)

and G1(η) = D tanh(h1D)−DηD +D tanh(h1D)ηD tanh(h1D) +O(η2)

and so the expanded Dirichlet-Neumann operators are scaled as, noting from [20]
that the constant term for the infinite lower layer is |D|,

G(η; δ) = δ|D|+ δ3
(
DηD − |D|η|D|

)
+O(δ5)

and G1(η; δ) = δD tanh(δh1D)

− δ3
(
DηD −D tanh(δh1D)ηD tanh(δh1D)

)
+O(δ6).

Using the expansion for the hyperbolic tangent it can be written that

tanh(δh1D) = δh1D −
1

3
(δh1D)3 +

2

15
(δh1D)5 +O(δ7),

and therefore the Dirichlet-Neumann operators can be expanded further as

G(η; δ) = δ|D|+ δ3DηD − δ3|D|η|D|+O(δ5)

and G1(η; δ) = δ2h1D
2 − δ3DηD +O(δ5).
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The details of the calculations are provided in the Appendix. The final expression
for the Hamiltonian (26) is

H(η, ξ) =
1

2
δ2
h1
ρ1

∫
R

ξD2ξ dx− 1

2
δ3
ρh21
ρ21

∫
R

ξ|D|D2ξ dx− 1

2
δ3

1

ρ1

∫
R

ξDηDξ dx

−δ3γ1
∫
R

ξηηxdx−δ2κ
∫
R

ξηxdx+
1

6
δ3(ργ2−ρ1γ21)

∫
R

η3dx+
1

2
δ2A

∫
R

η2dx+O(δ4)

(37)

where

A := (ργ − ρ1γ1)κ+ g(ρ− ρ1). (38)

5. The Benjamin-Ono approximation. The variable

u = ξx

which assumes the role of momentum in the Hamiltonian approach (cf. [2, 3]), in a
similar fashion to η assuming the role of the generalised coordinate, is introduced.

Noting that we can rescale the Hamiltonian by a factor δ2 by the choice of a
proper time scale, the Hamiltonian (37) in terms of η and u is given by

H(η, u; δ) =
1

2

h1
ρ1

∫
R

u2 dx− 1

2
δ
ρh21
ρ21

∫
R

u|D|u dx− 1

2
δ

1

ρ1

∫
R

ηu2 dx+ δ
1

2
γ1

∫
R

η2u dx

+ κ

∫
R

ηudx+
1

6
δ(ργ2 − ρ1γ21)

∫
R

η3dx+
1

2
A

∫
R

η2dx+O(δ2). (39)

The equations of motion (29) can be rewritten as

ηt = −
(δH
δu

)
x

and ut = −
(δH
δη

)
x
− Γηt,

and so therefore

ηt = −h1
ρ1

ux + δ
ρh21
ρ21
|D|ux + δ

1

ρ1
(ηu)x − δγ1ηηx − κηx (40)

and ut = δ
1

ρ1
uux − δγ1(ηu)x − κux − δ(ργ2 − ρ1γ21)ηηx −Aηx − Γηt. (41)

In the leading order (40) – (41) give

ηt + κηx = −h1
ρ1

ux

and ut + κux = −Aηx − Γηt.

This system of linear equations has a monochromatic solution (for a fixed wave
number k) of the form

η(x, t) = η0e
ik(x−ct) and u(x, t) = u0e

ik(x−ct)
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where c = c(k) is the wave speed. The linearised equations of motion produce

−(c− κ)η = −h1
ρ1

u (42)

and − (c− κ)u = (−A+ Γc)η. (43)

Multiplying both equations by each other gives their compatibility condition

(c− κ)2 = −h1
ρ1

(−A+ Γc)

which, in turn, gives the dispersion relation

c− κ = − h1
2ρ1

Γ± 1

2

√
h21
ρ21

Γ2 + 4
h1
ρ1
g(ρ− ρ1). (44)

As usual there are two solutions for the two signs ±, which correspond to left
and right-running waves with respect to the average flow with velocity κ. Moreover,
the leading order approximation from (42) is

u =
ρ1
h1

(c− κ)η

for a known c. Our aim now is to find the next order approximation of the form

u =
ρ1
h1

(c− κ)η + δαη2 + δβ|D|η +O(δ2), (45)

for some, as yet, unknown values α and β, with a view to establishing a Benjamin-
Ono type approximation.

Equation (40) is hence written, to first order of δ, as

ηt + κηx = −h1
ρ1

[
ρ1
h1

(c− κ)η + δαη2 + δβ|D|η
]
x

+ δ
ρh21
ρ21
|D|
[
ρ1
h1

(c− κ)η

]
x

+ δ
1

ρ1

[
η

(
ρ1
h1

(c− κ)η

)]
x

− δγ1ηηx

and so

ηt + cηx + δ

[
h1
ρ1
β − ρh1

ρ1
(c− κ)

]
|D|ηx + δ

[
2
h1
ρ1
α− 2

1

h1
(c− κ) + γ1

]
ηηx = 0. (46)

Likewise, equation (41) is written as[
ρ1
h1

(c− κ)η + δαη2 + δβ|D|η
]
t

+ κ

[
ρ1
h1

(c− κ)η + δαη2 + δβ|D|η
]
x

+ Γηt =

−Aηx+δ
1

ρ1

[
ρ1
h1

(c−κ)η

][
ρ1
h1

(c−κ)η

]
x

−δγ1
[
η

(
ρ1
h1

(c−κ)η

)]
x

−δ(ργ2−ρ1γ21)ηηx.

Noting that ηt = −cηx +O(δ)

ηt +

[
κ ρ1h1

(c− κ) +A
ρ1
h1

(c− κ) + Γ

]
ηx − δ

[
β(c− κ)

ρ1
h1

(c− κ) + Γ

]
|D|ηx

+ δ

[−2α(c− κ)− ρ1
h2
1
(c− κ)2 + 2γ1

ρ1
h1

(c− κ) + ργ2 − ρ1γ21
ρ1
h1

(c− κ) + Γ

]
ηηx = 0. (47)
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It is noted that the coefficient of the ηx term

κ ρ1h1
(c− κ) +A

ρ1
h1

(c− κ) + Γ
= c.

Comparing the |D|ηx terms in (46) and (47)

δ

[
h1
ρ1
β − ρh1

ρ1
(c− κ)

]
= −δ

[
β(c− κ)

ρ1
h1

(c− κ) + Γ

]
(48)

and so

β =
ρρ1(c− κ)2 + ρh1Γ(c− κ)

2ρ1(c− κ) + h1Γ
. (49)

Comparing the ηηx terms in (46) and (47)

2
h1
ρ1
α− 2

h1
(c−κ)+γ1 =

−2α(c− κ)− ρ1
h2
1
(c− κ)2 + 2ρ1γ1h1

(c− κ) + ργ2 − ρ1γ21
ρ1
h1

(c− κ) + Γ

and so

α = ρ1

(
ρ1(c− κ)2 + 2h1Γ(c− κ)− γ1h21Γ + ρ1γ1h1(c− κ) + h21(ργ2 − ρ1γ21)

2h21
(
2ρ1(c− κ) + h1Γ

) )
.

(50)
The equation for η, from (46), is therefore given by

ηt + cηx + δ

[
h1
ρ1

(
ρρ1(c− κ)2 + ρh1Γ(c− κ)

2ρ1(c− κ) + h1Γ

)
− ρh1

ρ1
(c− κ)

]
|D|ηx

+ δ

[
ρ1

(
ρ1(c− κ)2 + 2h1Γ(c− κ)− γ1h21Γ + ρ1γ1h1(c− κ) + h21(ργ2 − ρ1γ21)

2h21 (2ρ1(c− κ) + h1Γ)

)
−2

1

h1
(c− κ) + γ1

]
ηηx = 0 (51)

which can be written as

ηt + cηx − δ
[

ρh1(c− κ)2

2ρ1(c− κ) + h1Γ

]
|D|ηx

+ δ

[
−3ρ1(c− κ)2 + 3ρ1γ1h1(c− κ) + h21(ργ2 − ρ1γ21)

h1(2ρ1(c− κ) + h1Γ)

]
ηηx = 0. (52)

The second component u can be expressed with η by (45) where now α and β
are given by (50) and (49).

We should keep in mind that there are always two sets of equations for the left
and right running waves corresponding to the different choices of the sign in (44).

The obtained equation (52) is the well known Benjamin-Ono (BO) equation
[1, 31] which is an integrable equation whose solutions can be obtained by the
Inverse Scattering method, see [24, 27] and the references therein.

Remark. In the absence of a current (κ = 0, γ = γ1 = 0) the equation becomes

ηt + cηx −
1

2
δ
ρh1c

ρ1
|D|ηx −

3

2
δ
c

h1
ηηx = 0, (53)

where

c = ±

√
h1
ρ1
g(ρ− ρ1),



BENJAMIN-ONO MODEL 4529

cf. with eq. (34) of [5].

6. Solitary wave solution. The standard form of the BO equation is

ηT + 4ηηX + |∂X |ηX = 0 (54)

for which the one-soliton solution is known,

η(X,T ) =
C0

C2
0 (X − C0T −X0)2 + 1

, (55)

where C0 and X0 are constants. Hence, the equation

ηT + 4ηηX + σ|∂X |ηX = 0, σ = ±1 (56)

has a solution

η(X,T ) =
σC0

C2
0 (X −X0 + σC0T )2 + 1

,

which is the same solution, if one replaces the arbitrary constant σC0 with C0.
Transforming X using X → X − cT gives the equation

ηT + cηX + 4ηηX + σ|∂X |ηX = 0 (57)

with a solution

η(X,T ) =
C0

C2
0 [X − (c+ C0)T −X0]2 + 1

,

and hence after a rescaling of η, X and T , equation (52) has a solution

η(x, t) =
η0

C2
0µ

2[x− x0 − (c+ C0)t]2 + 1

where the amplitude η0 and the initial displacement x0 are arbitrary constants,

C0 := η0
−3ρ1(c− κ)2 + 3ρ1γ1h1(c− κ) + h21(ργ2 − ρ1γ21)

4h1(2ρ1(c− κ) + h1Γ)
(58)

and

µ :=
2ρ1(c− κ) + h1Γ

ρh1(c− κ)2
. (59)

Expression (58) shows that the wavespeed of the soliton depends on its amplitude
η0. Also, note that the sign of C0 depends on η0 and the parameters of the system.

7. Discussion. The illustrative one-soliton solution of the BO equation (55) suf-
fers, however, from the following disadvantages. First, it is not in the Schwartz class
in the x-variable, which is not a very serious disadvantage from the physical point
of view. Second, it violates the assumption (1) for η since for the expression (55)∫

R
η(X,T )dX = π 6= 0.

This is due to the fact that the initial condition η(x, 0) for this particular solution
does not satisfy the mentioned assumptions. Therefore, extra care is needed when
the inverse scattering, or other methods are applied to the BO equation when
modelling internal waves.
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Appendix. Writing the Dirichlet-Neumann operators as

G(η; δ) =

∞∑
j=0

G[j](η; δ) and G1(η; δ) =

∞∑
j=0

G
[j]
1 (η; δ) (60)

where the superscript identifies the order of δ the relevant terms that we will be
using are:

G[1] = δ|D|, G[2] = 0, G[3] = δ3DηD − δ3|D|η|D|

G
[1]
1 = 0, G

[2]
1 = δ2h1D

2 and G
[3]
1 = −δ3DηD. (61)

Therefore noting that

ρ1G(η; δ) = δρ1|D|+ δ3ρ1DηD − δ3ρ1|D|η|D|+O(δ5)

and ρG1(η; δ) = δ2ρh1D
2 − δ3ρDηD +O(δ5)

the operator B is transformed to

B = δρ1|D|+ δ2ρh1D
2 +O(δ3).

This can be written as

B = δρ1
|D|
D2

D

{
1 + δ

ρ

ρ1
h1
D2

|D|
+O(δ2)

}
D

and so

B−1 =
1

δρ1

D2

|D|
D−1

{
1 + δ

ρ

ρ1
h1
D2

|D|
+O(δ2)

}−1
D−1.

Noting that

D2

|D|
= |D|

we can write

B−1 =
1

δρ1
|D|D−1

{
1 + δ

ρ

ρ1
h1|D|+O(δ2)

}−1
D−1.

Using the expansion

(1 + x)−1 = 1− x+O(x2)

the inverse of the operator B is given by

B−1 =
1

δρ1
|D|D−1

{
1− δ ρ

ρ1
h1|D|+O(δ2)

}
D−1.

Writing the operator as

B−1(η; δ) =

∞∑
j=0

B−1[j](η; δ) (62)

where, again, the superscript identifies the order of δ the relevant terms that we
will be using are:

B−1[−1] =
1

δρ1
|D|−1 and B−1[0] = − ρ

ρ21
h1. (63)
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The Hamiltonian can therefore be written, using components of the expanded
operators as

H(η, ξ) =
1

2

∫
R

ξG[1]B−1[−1]G
[2]
1 ξ dx+

1

2

∫
R

ξG[1]B−1[0]G
[2]
1 ξ dx

+
1

2

∫
R

ξG[1]B−1[−1]G
[3]
1 ξ dx− δ3γ

∫
R

ξηηxdx− δ2κ
∫
R

ξηxdx

+ δ3ρ1(γ − γ1)

∫
R

ηηxB
−1[−1]G[1]ξ dx+

1

6
δ3(ργ2 − ρ1γ21)

∫
R

η3dx

+
1

2
δ2[(ργ − ρ1γ1)κ+ g(ρ− ρ1)]

∫
R

η2dx+O(δ4). (64)

Replacing the expressions for G[j], G
[j]
1 and B−1[j] and using (61) and (63) in

(64) gives the Hamiltonian (37).
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