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the abundance of Akkermansia 
muciniphila and its relationship 
with sulphated colonic mucins in 
health and ulcerative colitis
Helen earley1,2,5*, Grainne Lennon1,2,5, Áine Balfe4, J. Calvin Coffey3, Desmond C. Winter2 & 
P. Ronan o’connell  1,2

Akkermansia muciniphila utilises colonic mucin as its substrate. Abundance is reduced in ulcerative 
colitis (UC), as is the relative proportion of sulphated mucin in the mucus gel layer (MGL). It is unknown 
if these phenomena are related, however reduced sulphated mucins could contribute to reduced 
abundance, owing to a lack of substrate. The aim of this study was to quantify A. muciniphila within 
the MGL and to relate these findings with markers of inflammation and the relative proportion of 
sulphomucin present. Colonic biopsies and mucus brushings were obtained from 20 patients with 
active UC (AC), 14 with quiescent UC (QUC) and 20 healthy controls (HC). A. muciniphila abundance 
was determined by RT-PCR. High iron diamine alcian-blue staining was performed for histological 
analysis. Patients with AC had reduced abundance of A. muciniphila compared to HC and QUC. A 
positive association was found between A. muciniphila abundance and higher percentage of sulphated 
mucin (ρ 0.546, p = 0.000). Lower abundances of A. muciniphila correlated with higher inflammatory 
scores (ρ = 0.294 (p = 0.001)). This study confirms an inverse relationship between A. muciniphila and 
inflammation and a positive association between A. muciniphila abundance and percentage of sulfated 
mucin in the MGL.

The Akkermansia genus is present abundantly in the human gastrointestinal tract where it is believed to be a key 
symbiont member of the microbiota1–5. Since its discovery, evidence is accumulating suggesting a beneficial role 
for A. muciniphila4,6–9. The species has the ability to modulate host immune responses and may play a role in 
immune-tolerance to commensal microbes6.

Significant reductions in A. muciniphila have been demonstrated in both faecal samples and mucosal biopsies 
of patients with UC8,10–12. Germ free mice colonised with A. muciniphila do not develop microscopically visible 
inflammation, strengthening the argument for a protective role of this microbe in the setting of UC6. To date, the 
potential factors contributing to the reduced abundance of this species in UC have not been explored.

The mucus gel layer (MGL), comprised predominantly of mucins, represents the host microbial interface in 
the human colon. It is composed of a loosely adherent outer layer, which is home to the resident microbiota and a 
densely adherent inner layer which prevent bacterial penetration to the epithelium13. Quantitative and qualitative 
changes occur within the MGL in UC, including depletion of the layer, altered glycosylation and alterations of 
the proportions of sulphated and sialyated mucin14–16. Such changes alter the microenvironment in which the 
commensal microbiota resides, which may have implications for their survival. A. muciniphila utilises mucin as 
its substrate and the species has the propensity to produce several mucolytic enzymes, one of which is a sulfatase, 
which cleaves the terminal sulfate moiety of mucin17. Biochemical alterations in mucin such as in UC may there-
fore impact bacterial growth.

To date, published data pertaining to A. muciniphila abundance have derived from studies employing either 
faecal samples or whole mucosal biopsies. A degree of spatial variation exists across the cross sectional axis of 
the human colon, with distinct microbial communities residing in the luminal contents, mucus and mucosa18–20. 
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Therefore, neither of these sampling methods reflect the microbial composition at the host microbial interface. 
Brushings of the MGL facilitate optimum study of the innate microbiota that is stable over space and time, owing 
to the fact that the layer is enriched with microbial DNA and communities within it are less susceptible to changes 
related to dietary factors when compared with other sampling methods20,21.

The aim of this study was to perform quantitative analysis of A. muciniphila within the MGL in health and in 
patients with UC and to correlate these findings with markers of colonic inflammation and the relative proportion 
of sulphated mucin present within the MGL.

Materials and Methods
Ethical approval, patient recruitment and sample collection. Ethical approval was obtained from 
the St. Vincent’s University Hospital Ethics and Medical Research Committee Version 7, 2012. All methods were 
carried out in accordance with this. All participants were over 18 years of age and gave written informed consent. 
Three patient cohorts were established for this study: healthy controls (HC), patients with quiescent UC (QUC) 
and patients with active UC (AC).

Healthy volunteers were recruited before undergoing routine diagnostic day case colonoscopy. No macro-
scopic evidence of mucosal pathology was evident in these individuals. Patients were excluded from the study if 
they had a history of antibiotic usage or hospital admission in the six weeks prior to colonoscopy, personal his-
tory of irritable bowel syndrome (IBS), indeterminate colitis, gastrointestinal malignancy or previous colorectal 
surgery.

Patients with quiescent UC were identified as having been previously diagnosed with histologically confirmed 
UC and who were undergoing surveillance colonoscopy. Exclusion criteria were as above or evidence of UC 
associated dysplasia. The bowel preparations received by all patients undergoing colonoscopy were polyethylene 
glycol and sodium picosulphate based.

Patients in the AC cohort were recruited prior to undergoing surgical resection for disease refractory to med-
ical management or those with AC failing to respond to rescue therapy (intravenous steroids, biologics or cyclo-
sporine). Patients had not received bowel preparation prior to undergoing surgery, but had received a single dose 
of intravenous antibiotics prior to induction of anaesthesia, as per Hospital protocol. MAYO scores of disease 
severity22 were available for all patients included in the study. These were calculated as outlined in Supplementary 
Table 1.

Patients were excluded from further consideration if they had been prescribed oral or intravenous antibiotics 
in the previous 3 months, had a history of colon cancer, colonic resection or active GI bleeding, were residents of 
a long-term care facility or had been a hospital inpatient within the previous 6 weeks.

To obtain mucus brushings, a Hobbs’ Microbiological Protected Specimen Brush (PSB) (Hobbs Medical 
Inc., CT 06076, U.S.A,) was advanced at colonoscopy in a protective sheath, deployed under direct vision and 
brushed multiple times until coated, as previously described20. It was closed under direct vision and retracted 
through the colonoscope port. Radial Jaw® 3 biopsy forceps (Boston Scientific, Cork, Ireland) were used to target 
a region immediately adjacent to that which had been directly sampled by the PSB and a whole mucosal biopsy 
retrieved for histological analysis. Samples were stored in sterile 1.5 ml micro-centrifuge tubes on dry ice until 
DNA extraction.

DNA extracts were isolated from colonic mucus brushings and stored in sterile micro-centrifuge tubes at 
−20 °C. DNA was extracted using a Qiagen DNA mini kit (Qiagen, Hilden, Germany). Paired formalin-fixed 
and paraffin-embedded mucosal biopsies were also obtained for histological analysis. The biobank of samples 
consisted of DNA from 20 HCs, 14 patients with QUC and 20 patients with AC. For each patient, samples were 
collected from four areas of the colon; caecum, transverse colon, left colon and rectum.

Histological analysis of specimens. Formalin fixed, paraffin embedded mucosal biopsy specimens for 
each mucin sample were stained using Haematoxylin and eosin stain (H&E) and High Iron Diamine-Alcian 
Blue (HID-AB) staining to quantify degree of inflammation and percentage sulphation respectively as previously 
described15,23 (Fig. 1). For each specimen, the quantity of sulphated mucin was determined and results expressed 
as the percentage relative to the total mucin content for a given specimen. For histological analysis, UC specimens 
were scored as mild, moderate or severe inflammation, according to the system described by Geboes et al.24.

Construction of plasmid DNA standards. A series of plasmid DNA standards was generated to ena-
ble calculation of A. muciniphila copy number in each sample. In brief, freeze dried cultures of A. muciniph-
ila reference strain ATCC®BAA-835 (American Type Culture Collection, Manassas, VA, U.S.A.) were cultured 
according to manufacturer’s instructions in Brain Heart Infusion (BHI) medium (Sigma Aldrich®, Dublin, 
Ireland). Cultures were placed in a shaking incubator at 200 rpm at 37 °C for 16 hours under anaerobic condi-
tions achieved by the use of AnaeroGen™ anaerobic gas packs (Oxoid, Basingstoke, UK). DNA was extracted 
using a series of four heat freeze cycles at −80 °C and 100 °C. Conventional PCR targeting the 16S rRNA gene 
of A. muciniphila was performed using oligonucleotide primers targeting A. muciniphila (forward primer 5′- 
CAGCACGTGAAGGTGGGGAC – 3′ reverse primer 5′- CCTTGCGGTTGGCTTCAGAT-3′)10. All PCR reac-
tions contained 1X My Taq™ Red Mix (Bioline, London, UK), forward primer and reverse primer at a final 
concentration of 200 nM. The 327 bp amplicon generated and cloned into a TOPO vector using the TOPO TA 
cloning system. DNA from the recombinant plasmid mini-preps was purified using the QIAprep Spin MiniPrep 
kit (Qiagen). The total weight per recombinant plasmid was calculated and this was used to generate a series of 
DNA standards of known copy number of the target sequence.
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Quantification of A. muciniphila in mucus brushings. For each clinical sample the total copy number 
of bacteria per mg of mucus had previously been determined by quantitative RT-PCR. Conventional PCR analy-
sis targeted the bacterial 16S rRNA gene (forward primer 5′-TCCTACGGGAGGCAGCAGT-3′, reverse primer 
5′-GGACTACCAGGGATCT AATCCTGTT-3′) (Eurofins MWG)25.

RT PCR using an assay specific for the 16S rRNA gene of A. muciniphila was performed using primers detailed 
above. All reactions were carried out on an Applied Biosystems® 7900HT Fast Real-Time PCR machine (Applied 
Biosystems® Foster City, CA, USA.). Each reaction was performed in duplicate and carried out in an optical grade 
384-well plate at a final volume of 20 µl. Each reaction consisted of 1X Syber®Green PCR Master Mix (Applied 
Biosystems), forward and reverse primers at final concentration of 200 nM and 4 µl of template Standard cycling 
conditions and melt curve analysis were employed, plus an additional annealing stage at 79 °C for 10 sec.

Data analysis. Data analysis for PCR assays performed on the Applied Biosystems platform was performed using 
SDS 2.4 software (Applied Biosystems®). Target copy number in each sample was determined based on the fold change 
(2−∆Ct) relative to the 107 DNA standard. Copy numbers were normalised for dilution volume, elution volume, DNA 
concentration and sample weight. Normalised data were exported to SPSS statistics, version 20.0 (SPSS statistics, IBM®, 
London, U.K.) for statistical analysis. Data were tested for normality of distribution, and statistical comparisons were 
performed based on Mann-Whitney U test, Spearman-Rho and Kruskal-Wallis comparisons.

Results
Total bacterial abundance in the mucus gel layer. Data pertaining to the total bacterial counts in the mucus 
brush sample were generated using RT-PCR and primers targeting pan-bacterial 16S rRNA gene20. Median copy num-
bers of total bacterial 16S rRNA expressed per mg of mucus are given in Table 1. Subsequent inter-cohort statistical 
analysis was performed based on the Mann Whitney U test, revealing a reduction in total bacterial copy numbers in 
AC compared to HC (Fig. 2a, Table 1.) A significant reduction was also observed in AC compared to QUC. No differ-
ence was observed between the HC and QUC cohorts. Loco-regional analysis of four colonic areas; caecum, left colon, 
transverse colon and rectum revealed the same trend (Table 2). These data were used for normalisation of RT-PCR data 
for A. muciniphila, in order to determine the proportional abundance of this microbe in mucus brush samples.

Analysis of paired mucosal biopsy samples for the percentage sulphated mucin and inflam-
matory cell infiltrate. Median values for the percentage sulphated mucin present in each of the three 
patient cohorts are outlined in Table 3. The proportion of sulphated mucin was reduced in AC compared to HC 
(p < 0.005) and patients with QUC (p < 0.005).

Figure 1. Section of healthy mucosal biopsy stained by HID/AB at magnification 20X. Sulphated mucins are 
mahogany in colour and sialyated mucins are turquoise blue. The resulting hue, saturation and brightness are 
used by ImageJ software for colour thresholding23.

Cohort n
Median Copy 
Number IQR

Cohort 
Comparison p-value

HC 20 4.25E + 7 1.26E + 8 HC vs QUC 0.176

QUC 13 1.20E + 7 5.68E + 7 HC vs AC 0.000

AC 20 3.97E + 4 9.99E + 5 QUC vs AC 0.000

Table 1. Median total bacterial copy number/mg of mucus for each patient cohort. p-values of statistical 
comparisons of total bacterial counts between patient cohorts.

https://doi.org/10.1038/s41598-019-51878-3
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Inflammatory scores were grouped into three categories according to their histological scores: no inflamma-
tion, mild to moderate inflammation and severe inflammation according to a modified version of the scoring 
system by Geobes et al. A score of 0–1 was deemed none/mild inflammation, a score of 2–3.3 moderate inflam-
mation and 4–4.5 severe inflammation (Table 3).

Analysis of A. muciniphila in the colonic mucus gel layer. Relative quantitation was performed using 
RT-PCR to determine the copy numbers of the mucolytic species A. muciniphila in AC and QUC compared to 
HC. A. muciniphila was detected in all individuals in the AC and HC cohorts and in 13 out of the 14 individuals 
in the QUC cohort. No difference in A. muciniphila raw copy number was observed between the four colonic 
regions sampled (Kruskall-Wallis p = 0.079).

Statistical comparisons between cohorts were performed using the non-parametric Mann-Whitney U test. 
A. muciniphila was significantly less abundant in the AC patient cohort than in the HC or QUC patient cohort 
(Fig. 2b, Table 4). No difference was observed between the HC cohort and the QUC patient cohort. Data were 
normalised against total bacterial copy number. After normalisation, the same trend was observed (Table 4).

The reduction in abundance of A. muciniphila in the AC cohort compared to HC and QUC was observed in all 
four areas of the colon, caecum, transverse colon, left colon and rectum (Fig. 2c, Table 2).

Figure 2. (a) Boxplots representing the total bacterial copy number in each cohort. (b) Boxplots representing 
Inter-cohort comparisons of A. muciniphila abundance. Patients with acute UC are represented by red, 
quiescent UC in orange and healthy controls in green. *represents a significant difference (p < 0.05) (c) 
Comparison of A. muciniphila copy number across the longitudinal axis of the colon in the three patient 
cohorts.

n

HC

IQR n

QUC

IQR n

AC

IQR

Inter-cohort Comparisons

QUC-ACMedian Median Median HC-QUC HC-AC

Total Bacterial Copy number

Caecum 20 5.07E + 7 1.17E + 8 13 1.54E + 7 2.65E + 7 19 1.47E + 5 1.07E + 6 0.065 0.000 0.002

Transverse 19 4.24E + 6 1.94E + 8 13 7.45E + 6 9.61E + 7 19 9.22E + 4 5.40E + 6 0.001 0.001 0.011

Left 19 6.20E + 7 2.12E + 8 13 1.53E + 7 4.21E + 8 19 2.11E + 5 2.68E + 6 0.935 0.001 0.002

Rectum 20 1.74E + 7 6.39E + 7 13 1.27E + 7 6.44E + 6 18 1.24E + 4 3.41E + 5 0.845 0.000 0.000

A. muciniphila Copy number

n
HC

IQR n
QUC

IQR n
AC

IQR HC-QUC HC-AC QUC-AC
Median Median Median

Caecum 20 8.12E + 03 1.94E + 05 11 2.46E + 03 1.14E + 04 16 1.84E + 00 2.35E + 00 0.364 0.100 0.000

Transverse 18 7.74E + 03 3.87E + 04 11 1.72E + 03 4.70E + 04 13 7.15E-01 2.08E + 00 0.620 0.000 0.000

Left 16 5.44E + 03 3.66E + 04 12 2.40E + 03 3.25E + 04 18 2.74E + 00 3.02E + 00 0.516 0.000 0.000

Rectum 20 2.99E + 03 8.29E + 04 12 2.82E + 03 2.03E + 04 17 1.46E + 00 3.79E + 00 0.640 0.000 0.000

Normalised A. muciniphila Copy number

n
HC

IQR n
QUC

IQR n
AC

IQR HC-QUC HC-AC QUC-AC
Median Median Median

Caecum 20 1.45E-04 1.21E-02 11 1.85E-04 9.51E-03 16 3.24E-06 1.40E-04 0.741 0.010 0.103

Transverse 18 5.18E-04 7.85E-03 11 2.58E-04 5.45E-04 13 1.29E-06 1.61E-04 0.393 0.028 0.077

Left 16 9.38E-05 8.45E-03 12 8.20E-05 1.67E-03 18 2.08E-05 9.14E-04 0.486 0.190 0.703

Rectum 20 8.12E-04 7.51E-03 12 1.25E-04 2.18E-03 17 2.82E-95 1.72E-03 0.259 0.072 0.425

Table 2. Total bacterial and A. muciniphila copy numbers compared on a Loco-regional basis across the 
longitudinal axis of the colon. Comparison of A. muciniphila copy number on a Loco-regional basis before and 
after normalisation against total bacterial copy number.

https://doi.org/10.1038/s41598-019-51878-3
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After normalisation of data against total bacterial copy number, a significant reduction in A. muciniphila was 
noted in the AC cohort compared to HC in the caecum and transverse colon only (Table 2).

Correlations between A. muciniphila abundance and inflammatory cell infiltrates and percent-
age of sulphated mucin. To determine whether the reduction in abundance of A. muciniphila in UC was 
associated with inflammation, correlations with inflammatory scores were performed. These were grouped into 
three categories according to their histological scores: no inflammation, mild to moderate inflammation and 
severe inflammation.

Lower abundances of A. muciniphila correlated strongly with higher inflammatory scores, as determined by 
the Spearman Rho correlation (ρ = −0.639 (p < 0.005)). After normalisation of the data against total bacterial 
copy number a weaker negative correlation was observed (ρ = 0.294 (p = 0.001)).

To determine whether the altered abundance of A. muciniphila in the inflamed colon was associated with 
changes in the proportion of sulphated mucin present, correlations between A. muciniphila copy number and the 
percentage sulphated mucin were performed.

The proportion of sulphated mucin was reduced in the AC cohort compared to healthy controls (p < 0.005) 
(Fig. 3a). This significant reduction in the acute UC cohort was observed across all four colonic regions examined 
(Fig. 3a). The distribution of sulfomucin was uniform along the longitudinal axis of the colon (Kruskal Wallis 
p = 0.174).

The effect of inflammation on degree of mucin sulphation was assessed. Non-inflamed mucosa was asso-
ciated with the highest percentage of sulphated mucin (Table 5). A significant reduction in the percentage sul-
phated mucin was observed in mucosa with moderate or severe inflammation compared to no inflammation 
(p < 0.005) (Fig. 3b, Table 5). No difference was observed in the sulphomucin content between moderate and 
severely inflamed mucosa (p = 1.00).

Correlations between mucin sulphation and A. muciniphila abundance. A positive association was 
found between the abundance of A. muciniphila and a higher percentage of sulphated mucin (ρ 0.546, p = 0.000) 
(Fig. 4, Table 6). This association was lost after normalisation of the data (ρ 0.164, p = 0.058).

predictors of A. muciniphila abundance in health and ulcerative colitis. A summary of patient 
characteristics is included in supplementary data. Details pertaining to patient demographics are outlined in 
Supplementary Table 2. To determine whether patient demographic factors influenced A. muciniphila abundance, 
multiple linear regression analysis was performed on all three patient cohorts (Supplementary Table 3). Data were 

Cohort None (n)
Mild/
moderate(n)

Severe 
(n)

Median 
Sulphomucin (%) IQR (%)

HC

Caecum 15 0 0

91.31 14.9
Transverse 16 0 0

Left 9 0 0

Rectum 18 0 0

QUC

Caecum 2 2 0

80.39 29.39
Transverse 0 5 2

Left 0 2 2

Rectum 0 4 1

AC

Caecum 1 3 7

47.57 23.49
Transverse 1 4 7

Left 0 5 9

Rectum 0 4 8

Table 3. Median percentage sulphomucin and inflammatory scores in each of the three patient cohorts.

Cohort n Median Copy No. IQR Cohort Comparison p value

HC 20 5.73E + 03 4.56E + 04 HC-QUC 0.190

QUC 14 1.74E + 03 2.92E + 04 HC-AC 0.000

AC 20 1.80E + 00 2.89E + 00 QUC - AC 0.000

Cohort n Median Normalised 
Copy No. IQR Cohort Comparison p value

HC 20 2.58E-03 6.69E-04 HC-QUC 0.175

QUC 14 1.86E-04 9.77E-04 HC-AC 0.000

AC 20 2.04E-05 2.17E-04 QUC - AC 0.020

Table 4. Median copy number/mg and relative abundance of A. muciniphila after normalisation for pan 
bacterial copy number in each patient cohort. p values for inter-cohort comparisons. Significant values are 
highlighted in bold text.

https://doi.org/10.1038/s41598-019-51878-3
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log10 transformed prior to analysis to ensure the assumptions of linearity, homoscedasticity and normality were 
met. Variables assessed included age, gender, smoking status (current, previous, non-smoker) and appendectomy 
(yes, no). None of the variables examined were predictive of A. muciniphila abundance (F = 0.767, p = 0.558). 
Regression coefficients and p values are outlined in Supplementary data.

Figure 3. (a) Boxplots representing the reduction in the proportion of sulphated mucin present in AC 
compared to HC across four colonic regions. * indicates a p value of < 0.005 as determined by the Mann 
Whitney U test. (b) Boxplots representing the proportion of sulphomucin present in mucosal samples based on 
degree of inflammation.

Inflammatory cell infiltrate
Median % 
sulphomucin IQR

None 9.14E + 2 1.55E + 2

Mild-Moderate 5.68E + 2 2.80E + 2

Severe 5.76E + 2 3.33E + 2

Correlation with A. 
muciniphila abundance

Correlation 
coefficient (ρ) P value

0.546 <0.005

Table 5. Median percentage sulphomucin in inflamed and non-inflamed mucosa and Spearman Rho 
correlations with A. muciniphila abundance.

Figure 4. Scatterplot depicting the relationship between A. muciniphila abundance and percentage sulphated 
mucin present in samples. The acute UC cohort is represented by red, quiescent UC by orange and healthy 
controls in green

https://doi.org/10.1038/s41598-019-51878-3
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A separate analysis was performed on all patients with UC, combining the AC and QUC cohorts, to determine 
whether drug treatment or Mayo score predicted A. muciniphila abundance. Using Spearman Rho correlation, a 
negative correlation was noted between Mayo score and A. muciniphila abundance (ρ = −0.706, p < 0.005).

Multiple linear regression analysis was then performed to predict A. muciniphila abundance based on drug 
treatments (aminosalicylates, biologics, steroids and antibiotics) and Mayo score (F = 7.487, p = 0.001). Mayo 
score predicted lower A. muciniphila abundance (Supplementary Table 3). Abundance did not vary with treat-
ment modality (Supplementary Table 3).

Discussion
A high rate of colonisation with A. muciniphila was observed in all three patient cohorts, indicating that this spe-
cies is a common commensal inhabiting the MGL of the human colon. A. muciniphila has been widely detected 
in faecal samples and mucosal biopsies1,3,26, however to the authors’ knowledge, this is the first study to quantita-
tively analyse this species in mucus brushings of the colonic mucus. No trend in A. muciniphila abundance was 
evident along the longitudinal axis of the colon, in keeping with current literature supporting spatial homogeneity 
of the commensal microbiota extending from caecum to rectum19.

These data indicate a reduction in the abundance of A. muciniphila within the MGL in AC compared to health 
and are in keeping with the published literature10. In QUC, the abundance returns towards levels observed in the 
healthy colon, suggesting that the reduced abundance is related to the inflammatory process, rather than being a 
feature of the microbial signature of individuals suffering from UC. Normalisation of data against total bacterial 
copy number reduced potential reporting errors by minimising the effect of between-sample variation and taking 
the efficiency of the quantification procedure into account. These data are more representative of the actual bur-
den of the target in the MGL. However, normalisation negated the significant difference in abundance observed 
between health and acute UC when analysis was based on raw copy numbers. This is likely due to the fact that 
A. muciniphila accounts for a small proportion (thought to be 1–3%) of the overall bacterial load in the colon1,3. 
These estimates from the literature were based on analysis of faecal samples. The normalised data presented here 
suggest that the overall abundance of this species in the MGL is lower than this.

The present study uses protected specimen brushings (PSB) of the colonic mucosa as the sampling method, 
reducing potential contamination from luminal contents or mucosal associated bacteria during insertion and 
withdrawal20, therefore the findings are likely to represent the true burden of these species within the MGL. It is 
possible that the use of bowel preparation may have resulted in a loss of some loosely adherent microbes in the 
patients undergoing colonscopy (healthy controls and quiescent cohorts), however, this would not account for the 
low colonisation rates in patients with acute UC, as this cohort did not receive bowel preparation prior to surgery. 
Despite the fact that the true burden of A. muciniphila in the colon is low, this microbe has the ability to affect host 
gene expression,6,27 therefore alterations in the abundance of this species in disease states may nonetheless have 
implications for the host.

Johansson et al., demonstrated that in UC, bacteria can penetrate the normally sterile inner layer of the 
MGL28, a fact which should also be considered when interpreting these data and may account for the observed 
reduction in A. muciniphila in the AC cohort.

It should be noted that all patients included in this study were fasting for a minimum of 24 hours prior to 
biopsy collection. A. muciniphila does not rely on dietary substances for substrate and consequently is conferred 
with a competitive advantage during periods of fasting29,30. The abundances reported here, therefore, may not be 
truly representative of the normal healthy colon. This potential confounding factor would be difficult to eliminate, 
as adequate bowel cleansing is a prerequisite for colonoscopy. Furthermore, as all three groups included in this 
study were fasting, comparisons of the relative abundances between cohorts should not be affected.

The second aim of this study was to assess if a correlation exists between A. muciniphila and the degree of 
mucin sulphation present in mucosal biopsies. One possible explanation for reduced abundance AC is a lack of 
substrate. A. muciniphila has the capacity to produce sulfatases17 and may use sulphated mucin as their substrate. 
Analysis of the sulphomucin profiles in the three cohorts indicated that the inflamed mucosa in acute UC was 
associated with a significantly lower percentage of sulphomucin. Lower percentage of sulphomucin was associ-
ated with reduced A. muciniphila abundance, and multiple linear regression analysis revealed that percentage 
sulphation significantly predicted A. muciniphila abundance, indicating a possible link between sulphomucin 
content and A. muciniphila burden. These data lend support to the hypothesis that a lack of sulphomucin sub-
strate may contribute to the reduced abundance of this microbe in the inflamed colon. Of note, a correlation 
between the species Desulfovibrio, a species also capable of degrading sulphated mucin, and reduced sulphated 
mucin in the colitic colon has previously been demonstrated lending support to the hypothesis that alterations in 
mucin biochemistry may contribute of changes in the microbiota observed in UC15.

It is likely that the lack of sulphated mucin in AC is not the sole contributor to alterations in A. muciniphila 
abundance. Other biochemical changes in mucin composition have been reported in UC, including reduced lev-
els of MUC2 and alterations in glycosylation16,31, which may also influence microbial survival and proliferation.

The results also show that higher inflammatory scores were associated with reduced abundances of A. mucin-
iphila. In keeping with this, the MAYO score was the only clinical parameter that was predictive of A. muciniphila 
abundance. It is conceivable that bacterial growth inhibition resulting from the inflammatory process itself may 
account for the reduced abundance of A. muciniphila in UC. The production of inflammatory mediators and 
associated changes in the micro-environment may render the MGL a less hospitable niche for this commen-
sal. UC is also associated with increased colonisation with opportunistic pathogens, such as members of the 
Enterobacteriaceae family32, which could potentially lead to competitive exclusion of A. muciniphila. In vitro 
studies have demonstrated growth inhibition of A. muciniphila in co-culture compared to pure culture, lending 
support to this hypothesis10. In contrast to these findings however, one study in the literature reported exacerba-
tion of Salmonella typhimurium induced inflammation in the presence of A. muciniphila33.

https://doi.org/10.1038/s41598-019-51878-3
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In addition to mucin degradation10,17, A. muciniphila may have other functions which are beneficial to the host7,34–36. 
Mechanisms that have been proposed include: production of essential SCFAs such as propionate and acetate as a result 
of mucin degradation17, immunomodulation of the adaptive immune system6, protective barrier functions7,37 and 
anti-inflammatory properties38. The role of A. muciniphila in modulating metabolic pathways has been well described 
in obesity, diabetes and other cardiometabolic disorders4,27,35,39–41, conditions which, like UC, are associated with an 
altered microbiota, inflammation and altered gut barrier function. Derangements in the abundance of this microbe 
may have important metabolic implications in the colon and warrant further investigation in the setting of UC.

A. muciniphila may be involved in a positive feedback loop, whereby through mucin degradation it stimulates 
mucin production and renewal of the MGL34. While this has not been described specifically in the context of UC, 
evidence suggests that the species has the ability to ameliorate age related depletion of colonic mucus42 suggest-
ing that this loop may exist at times of stress or disease states. If this hypothesis holds true, then reduced activity 
of this species may represent a primary pathogenic mechanism in UC. In contrast to the described beneficial 
actions, one study in murine models demonstrated a link between A. muciniphila colonisation and development 
of colitis. However this may have been attributable to loss of host immune tolerance to commensal microbiota in 
disease states, rather than a true pathogenic mechanism of A. muciniphila43.

Overall, this study lends support to the hypothesis that A. muciniphila is a symbiont member of the human 
colonic microbiota and confirms an inverse relationship between its abundance in the MGL and active inflam-
mation. The observed reduction in abundance may be the result of an altered micro-environment in the inflamed 
colon itself, however these data lend support to the hypothesis that it is a consequence of reduced availability of 
sulphated mucin substrate.
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