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ABSTRACT

We consider a time-dependent method which is coupled with the method of approximate

particular solutions (MAPS) of Delta-shaped basis functions and the method of fundamental

solutions (MFS) to solve nonlinear ordinary differential equations. Firstly, we convert a

nonlinear problem into a sequence of time-dependent non-homogeneous boundary value

problems through a fictitious time integration method. The superposition principle is applied

to split the numerical solution at each time step into an approximate particular solution and

a homogeneous solution. Delta-shaped basis functions are used to provide an approximation

of the source function at each time step. The purpose of this is to allow a convenient

derivation of an approximate particular solution. The corresponding homogeneous boundary

value problem is solved using the method of fundamental solutions. Numerical results

support the accuracy and validity of this computational method.
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NOTATION AND GLOSSARY

General Usage and Terminology

The notation used in this text represents fairly standard mathematical and computational
usage. In many cases these fields tend to use different preferred notation to indicate the same
concept, and these have been reconciled to the extent possible, given the interdisciplinary
nature of the material. In particular, the notation for partial derivatives varies extensively,
and the notation used is chosen for stylistic convenience based on the application. While it
would be convenient to utilize a standard nomenclature for this important symbol, the many
alternatives currently in the published literature will continue to be utilized.

The blackboard fonts are used to denote standard sets of numbers: R for the field of real
numbers, C for the complex field, Z for the integers, and Q for the rationals. The capital
letters, A,B, · · · are used to denote matrices, including capital greek letters, e.g., Λ for a
diagnonal matrix. Functions which are denoted in boldface type typically represent vector
valued functions, and real valued functions usually are set in lower case roman or greek
letters. Caligraphic letters, e.g., Ω, denote a bounded domain, ∂Ω denoting the boundaries
of the Ω, or F denoting a general function space. Lower case letters such as i, j,k, l,m,n and
sometimes p and d are used to denote indices.

Vectors are typset in square brackets, e.g., [·], and matrices are typeset in parenthesese,
e.g., (·). In general the norms are typeset using double pairs of lines, e.g., || · ||, and the
abolute value of numbers is denoted using a single pairs of lines, e.g., | · |. Single pairs of
lines around matrices indicates the determinant of the matrix.

viii
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Chapter 1

INTRODUCTION

Nonlinear differential equations have been extensively used to mathematically model many
of the interesting and important phenomena that are observed in areas of science and
technology. They are inspired by problems which arise in diverse fields such as economics,
biology, fluid dynamics, physics, engineering and materials science. Nonlinear differential
equations are challenging problems since the general classes have no known forms of exact
solutions. Numerical approximation is an alternative approach for solving these problems.

Over several decades, there has been increased research in developing efficient computa-
tional methods for finding numerical solutions of differential equations. These computational
methods are either mesh-free or mesh-based methods.

Mesh-free methods use a set of nodes scattered in the domain or on the boundary of
the domain of a problem. They include methods such as the radial basis functions (RBFs)
method, the moving least squares (MLS) method, the method of fundamental solutions
(MFS), the method of approximate fundamental solutions (MAFS), the element free Galerkin
method (EFG), and the finite point (FP) method. [5, 6, 7, 24, 27]. Alternatively, the mesh-
based methods, also known as the traditional methods, include finite-element methods
(FEM), finite-difference methods (FDM) and finite-volume methods (FVM) [11, 21]. These
methods require the interaction and connection of each node with its neighbors inside the
computational domain or on the boundary.

In recent decades, meshless methods have been developed for solving nonlinear partial
differential equations [1, 8, 26]. These techniques aim to produce accurate and efficient
algorithms with least amount of time spent on its domain or boundary discretization.

In this paper, we study a general class of nonlinear differential equations subjected to
boundary conditions as follows:

−u′′(x) = H(x,u,u′), x ∈ Ω, (1.1)

u(x) = f (x), x ∈ ∂Ω, (1.2)

where H is a known function of x,u or u′, f is a known function of x , Ω is a bounded
domain and ∂Ω is the boundary of Ω.
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Here, we implement a numerical method to approximate the solution to the nonlinear
problem iteratively. Firstly, by incorporating a fictitious time function and numerical in-
tegration [9, 26], we transform a given nonlinear differential equation into a sequence of
time-dependent non-homogeneous equations. We then apply the principle of superposition
at each time step to split the numerical solution into an approximate particular solution
and a homogeneous solution. Delta-shaped basis functions are then used to provide an
accurate approximation of the source function at each time step. This leads to also a conve-
nient derivation of the approximate particular solution of the non-homogeneous equation.
The method of fundamental solutions [10] is used to find an approximate solution to the
corresponding homogeneous problem.

This paper is organized as follows. In section 2, we apply the fictitious time integration
method to convert the nonlinear ordinary differential equation into a sequence of time depen-
dent non-homogeneous differential equations [8, 9, 17, 26]. In Section 3, an approximate
particular solution at each time step is derived by using Delta-shaped basis. The method of
fundamental solutions is provided in Section 4 to approximate the homogeneous problems
and its effectiveness is shown coupled with MAPS for non-homogeneous problems. In Sec-
tion 5, we provide numerical results for various nonlinearities to illustrate the effectiveness
of the method. A conclusion is given in Section 6.
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Chapter 2

CONVERSION USING FICTITIOUS TIME INTEGRATION
METHOD

A fictitious time integration method (FTIM) was originally developed by Liu and Alturi
in 2008 to solve large systems of nonlinear algebraic equations [17] where a fictitious
time is introduced to convert the original nonlinear system of algebraic equations into
evolutionary ordinary differential equations. Since then, the FTIM has been applied to
solve mixed complementarity problems with applications to nonlinear optimization [14],
nonlinear obstacle problems [18], two-dimensional quasilinear elliptic boundary value
problems [12], discretized inverse sturm-louiville problems, for specified eigenvalues [15],
m-point boundary value problems [13], the Fredholm Integral equation [16], nonlinear
algebraic equations with multiple solutions [19], and non-linear Poisson-type boundary
value problems [8, 26].

We apply this method in our solution process. Firstly, a fictitious time is introduced to
convert the nonlinear differential equation problem (1.1) and (1.2) into a time-dependent
differential equation. Secondly, a numerical integration is performed on the time-dependent
problem to obtain a sequence of linear non-homogeneous boundary value problems. A
time-dependent function w(x, t) is defined as:

w(x, t) = u(x, t)q(t), (2.1)

or equivalently written as

u(x, t) =
w(x, t)

q(t)
, (2.2)

where t is a fictitious time and q(t) is the time function

q(t) = (1+ t)β , (2.3)

with 0 < β ≤ 1, a parameter for the convergence of the time integration method.
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Figure 2.1: Plot of the time function q(t) = (1+ t)β with various β .

Substituting Eq. (2.2) into Eq. (1.1), we obtain

− d2

dx2

(
w(x, t)

q(t)

)
= H

(
x,

w(x, t)
q(t)

,
wx(x, t)

q(t)

)
. (2.4)

Differentiating Eq. (2.1) with respect to t and utilizing Eqs. (2.2) and (2.4), we have

dw
dt

= u
dq
dt

,

dw
dt
− d2

dx2 (
w
q
) =

w
q

dq
dt

+H(x,
w
q
,
wx

q
),

1
q

dw
dt
− w

q2
dq
dt
− 1

q
d2

dx2

(
w
q

)
=

1
q

H
(

x,
w
q
,
wx

q

)
. (2.5)

Since
d
dt

(
w
q

)
=

1
q

dw
dt
− w

q2
dq
dt

,

the Eq. (2.5) is reduced to
du
dt
− 1

q
d2u
dx2 =

1
q

H (x,u,ux) . (2.6)

We then use forward Euler integration technique to discretize the time component of the
ordinary differential equation defined in Eq. (2.6) with du/dt being approximated as follows:
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du
dt
≈ uI+1−uI

4t
=

u(x, tI+1)−u(x, tI)

4t
.
Therefore, the Eq. (2.6) becomes

uI+1−uI

4t
− 1

q
d2

dx2 uI+1 =
1
q

H(x,uI,uI
x),

which can be written as

qI+1uI+1

4t
− qIuI

4t
− d2

dx2 uI+1 = H(x,uI,uI
x)

.
Now, we consider solving the following problems

d2

dx2 uI+1(x, t)− qI+1(t)
4t

uI+1(x, t) =−qI(t)
4t

uI(x, t)−H(x,uI,uI
x), x ∈Ω, (2.7)

uI+1(x, t) = f (x), x ∈ ∂Ω. (2.8)

for I = 0,1,2, ..., where uI(x, t) = u(x, tI), qI(t) = q(I4 t), tI = I4 t and4t is the step size
for each time step.

The numerical procedure for solving Eqs. (2.7) and (2.8) begins with a chosen initial
value of u0(x, t). During the solution process, Eq. (2.7) is integrated from t = 0 to some
final time tn = n4 t. The inequality

|| uI+1(x, t)−uI(x, t) ||∞< ε

is used as the criterion to stop the iteration where || • ||∞ is the maximum norm and ε is a
small positive number.
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Chapter 3

APPROXIMATING PARTICULAR SOLUTIONS

3.1 Superposition Principle

In chapter 2, we show that at each time step our original problem takes the form of Eqs.
(2.7) - (2.8). In order to solve the problem, we apply the superposition principle to split the
solution uI+1(x, t) as

uI+1(x, t) = uI+1
p (x, t)+uI+1

h (x, t),

where uI+1
p (x, t) is the approximate particular solution satisfying

d2

dx2 uI+1
p (x, t)− qI+1(t)

4t
uI+1

p (x, t) =−qI(t)
4t

uI(x, t)−H(x,uI,uI
x), (3.1)

and uI+1
h (x, t) is the corresponding homogeneous solution satisfying

d2

dx2 uI+1
h (x, t)− qI+1(t)

4t
uI+1

h (x, t) = 0, x ∈Ω, (3.2)

uI+1
h (x, t) = f (x, t)−uI+1

p (x, t), x ∈ ∂Ω, (3.3)

for I = 0,1,2,3, ....

3.2 Delta-shaped Basis and Source Function Approximation

Now it is necessary for us to find an accurate approximation of the source function in Eq.
(3.1) in order to derive an accurate approximation to the particular solution uI+1

p (x, t) for
each time step I.

Let’s consider the right hand side of Eq. (3.1),

hI(x, t) =−qI(t)
4t

uI(x, t)−H(x,uI,uI
x). (3.4)
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Our first objective here is to obtain a good approximation of the source function. This is
to achieve an easy derivation of a closed form approximate particular solution uI+1

p (x, t).
One-dimensional Delta-shaped basis function IM,χ(x;ξ ) are used for this purpose because
of their specific characteristics [22, 23, 25]. A one-dimensional Delta-shaped basis function
is given as

IM,χ(x;ξ ) =
M

∑
n=1

cn(ξ )ϕn(x),

where
cn(ξ ) = rn(M,χ)ϕn(ξ ), (3.5)

and ξ is the center of the basis function, and the ϕn are the eigenfunctions of the following
Sturm- Liouville problem on the interval [-1,1]:

−ϕ
′′
n = λnϕn, (3.6)

ϕn(−1) = ϕn(1) = 0. (3.7)

More specifically, the eigenfunctions and eigenvalues of the problem (3.6)-(3.7) are

ϕn(x) = sin
(

nπ(x+1)
2

)
,

and

λn =

(
nπ

2

)2

,

for n = 1,2,3, ....

The regularizing coefficients rn(M,χ) are determined by the Riesz regularization tech-
nique [23] with

rn(M,χ) =

[
1−
(

λn

λM+1

)2
]χ

=

[
1−
(

n
M+1

)2
]χ

,

where the parameters M and χ are positive integers with M playing the role of scaling and
χ playing the role of regularization. The coupled parameters are taken as χ = 4,6,9,14,22
for M = 10,20,30,50,100 respectively.
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Now we use a linear combination of the one-dimensional Delta-shaped basis functions
to approximate Eq. (3.4) for each time step sampled at the scattered data points {xi}N

i=1 in
Ω. To obtain accurate approximation, we use Delta-shaped basis functions of two different
shapes.

Now, let h̃I(xi, t) denote the approximation of hI in Eq. (3.4) at each data point xi which
takes the form

h̃I(xi, t) =
R1

∑
j=1

p jIM1,χ1(xi;ξ j)+
R1+R2

∑
j=R1+1

p jIM2,χ2(xi;ξ j), (3.8)

for i = 1, ...,N, where

γ1 =
R1

∑
j=1

p jIM1,χ1(x;ξ j) (3.9)

is the contribution of R1 type-one basis functions and

γ2 =
R1+R2

∑
j=R1+1

p jIM2,χ2(x;ξ j) (3.10)

is a contribution of R2 type-two basis functions.
Let R = R1 +R2.The above system of equations contains as many equations as scattered
data points {(xi),hI

i}N
i=1 and as many unknown as center points {(ξ j)}R

j=1, so the system
contains N equations and R variables. This implies that, if R = N, we obtain a square matrix
but if R≤ N, an over-determined system is obtained of which least squares method can be
used to solve.
Therefore, the system of equations in Eq. (3.8) is set up for each time step I to determine
the coefficients {p j}R

j=1.
Let

A = [ai, j]N×R

whose entry at the i-th row and j-th column is as follows

ai j =

{IM1,χ1(xi;ξ j), f or 1≤ j≤R1,

IM2,χ2(xi;ξ j), f or R1+1≤ j≤R1+R2,

and
b = [hI

i ]N×1,
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where hI
i is hI(x, t) in Eq. (3.4) evaluated at each point xi when t = I4 t.

The column vector p is defined as

p = [p j]R×1

with j = 1, ...,R. The system in matrix form is

AN×R ·pR×1 = bN×1.

3.3 The Method of Approximate Particular Solutions

After approximating the source function, we now derive an approximate particular solution
uI+1

p (x, t) for each I satisfying Eq. (3.1). Under the framework of the dual reciprocity
method (DRM)[20], an approximate particular solution associated with the Delta-shaped
basis function IM,χ(x;ξ ) is required. That is, at each time step I, a function φ I+1(x;ξ ) is
desired satisfying,

d2

dx2 φ
I+1(x;ξ )− qI+1

4t
φ

I+1(x;ξ ) = IMχ(x;ξ ) =
M

∑
n=1

cn(ξ )ϕn(x). (3.11)

Let an approximate particular solution φ I+1(x,ξ ) takes the form

φ
I+1(x;ξ ) =

M

∑
n=1

dI+1
n (ξ )ϕn(x).

Utilizing Eq. (3.11), we obtain

φ
′′(x;ξ )− qI+1(t)

4t
φ(x;ξ ) =

M

∑
n=1

cn(ξ )ϕn(x),

which is
M

∑
n=1

dI+1
n (ξ )

[
ϕ
′′
n (x)−

qI+1(t)
4t

ϕn(x)
]
=

M

∑
n=1

cn(ξ )ϕn(x),

Now, solving for the coefficients dI+1
n (ξ ), we obtain

dI+1
n (ξ )

[
−
(nπ

2

)2
− qI+1(t)
4t

]
ϕn(x) = cn(ξ )ϕn(x),
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thus
dI+1

n (ξ ) =− cn(ξ )(
nπ

2

)2
+ qI+1(t)

4t

=−

[
1−
(

n
M+1

)2
]χ

sin
(

nπ(ξ+1)
2

)
(

nπ

2

)2
+ qI+1(t)

4t

=− rn(M,χ)ϕn(ξ )(
nπ

2

)2
+ qI+1(t)

4t

.

Since the source function Eqs. (3.4) is approximated by Eq. (3.8) as a linear combination of
two types of Delta- shaped basis functions, the approximate particular solution uI+1

p (x, t)

can be represented as

Φ
I+1(x, t) =−[ΦI+1

1 (x, t)+Φ
I+1
2 (x, t)],

where

Φ
I+1
1 =

R1

∑
j=1

M1

∑
n=1

p jrn(M1,χ1)ϕn(ξ j)ϕn(x)(
nπ

2

)2
+ qI+1(t)

4t

,

and

Φ
I+1
2 =

R1+R2

∑
j=R1+1

M2

∑
n=1

p jrn(M2,χ2)ϕn(ξ j)ϕn(x)(
nπ

2

)2
+ qI+1(t)

4t

,

are the approximate particular solutions corresponding to Eqs. (3.9) and (3.10 ) respectively.
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Chapter 4

METHOD OF FUNDAMENTAL SOLUTIONS

4.1 The Method of Fundamental Solutions

Once we have found our approximation of up, we are prepared to solve the corresponding
homogeneous problem uh at each time step using the method of fundamental solutions.
The MFS method was first proposed by Kupradze and Aleksidze [10]. It is a flexible and
efficient mesh-free boundary method provided the fundamental solution for the differential
operator is known [2, 3, 4, 10]. The method of fundamental solutions is used for solving the
homogeneous boundary valued problem (3.2) - (3.3). Our homogeneous problem takes the
form,

d2uh

dx2 −λ
2uh = 0, x ∈Ω, (4.1)

Buh(x) = f (x)−up(x), x ∈ ∂Ω. (4.2)

The solution to the homogeneous equation at each time step can be approximated as a
linear combination of fundamental solutions

uI+1
h (x, t) =

K

∑
j=1

c jGI+1(x, t,ξ j), x ∈ ∂Ω, (4.3)

where {c j}K
j=1 are coefficients to be determined and G(x, t,ξ ) is the fundamental solution

to Eq. (3.2) which is represented as

GI+1(x, t,ξ ) = sinh(λ (x−ξ )) .

Now, the homogeneous solution uI+1
h satisfies the boundary conditions which results in the

following system of linear equations

K

∑
j=1

c jG(xi, t,ξ j) = f (xi)−up(xi, t),

for K = 2 and i = 1,2.
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c1sinh(λ (x1−ξ1))+ c2sinh(λ (x1−ξ2)) = f (x1)−up(x1)

c1sinh(λ (x2−ξ1))+ c2sinh(λ (x2−ξ2)) = f (x2)−up(x2)

where ξ1, ξ2 are points outside the bounded domain and x1, x2 are points on the boundary of
the domain.

4.2 A Homogeneous Case using MFS

Consider the homogeneous problem,

y′′−λ
2y = 0, x ∈ (−0.5,0.5),

y(0.5) and y(−0.5) given,

such that the exact solution is y = ex +3e−x. The homogeneous solution uh is expressed as
a linear combination of fundamental solutions

uh(x) =
2

∑
j=1

c jG(x,ξ j),

uh = c1G(x,ξ1)+ c2G(x,ξ2),

where G(x,ξ ) is the fundamental solution given as

G(x,ξ ) = sinhλ (x−ξ ).

Now, we solve the system of linear equations to obtain the coefficients c1 and c2 for the
homogeneous equation:

2

∑
j=1

c jG(xi,ξ j) = By(xi).

Choosing ξ1 and ξ2 outside the domain (−0.5,0.5) as −1 and 1 respectively, and x1 and x2

as boundary points -0.5 and 0.5 respectively, the matrix(
sinh((x1−ξ1)) sinh((x1−ξ2))
sinh((x2−ξ1)) sinh((x2−ξ2))

)(
c1
c2

)
=

(
y(x1)
y(x2)

)
,

becomes (
sinh((−0.5+1)) sinh((−0.5−1))
sinh((0.5+1)) sinh((0.5−1))

)(
c1
c2

)
=

(
y(−0.5)
y(0.5)

)
,
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which is (
0.52109530549 -2.12927945509
2.12927945509 -0.52109530549

)(
c1
c2

)
=

(
5.552694472
3.46831325

)
.

Solving this linear system, we obtain c1 = 1.0538and c2 =−2.3499.
Therefore the homogeneous solution is

uh = 1.0538sinh((x+1))−2.3499sinh((x−1)).

Figure 4.1: Plot of the exact solution and homogeneous solution .

Figure (4.1) shows that the exact solution (star line) and the homogeneous solution
(double dash line) lay closely to each other making the error between the two solutions to be
really small, which shows the accuracy of the MFS.

4.3 A Non-homogeneous Case Coupled with MAPS

To demonstrate the use of the MFS for solving a general ODE boundary value problem, we
consider the non-homogeneous problem

y′′−λ
2y = 6−3x2− x, x ∈ (−0.5,0.5),
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y(0.5) and y(−0.5) given,

such that the exact solution is y = 3x2 + x.

N1 N2 MSE RMSE
50 100 1.7668 · 10−11 3.9667 · 10−11

100 150 4.6451 · 10−11 1.0563 · 10−11

150 200 7.3097 · 10−12 1.6205 · 10−11

201 200 3.3114 · 10−11 7.6328 · 10−11

Table 4.1: MFS results for the non-homogeneous problem.

The boundary of this problem is ∂Ω = {−0.5,0.5}. The number of collocation points
N = N1 +N2 is selected to be twice the number of source points. To determine the accuracy
of the approximate solution, the collocation points are also used as test points within the
domain. The approximate solution ũ is compared to the exact solution u at the collocation
points using the mean square root error (MSE) and relative mean square root error (RMSE)
which is respectively represented as follow:

MSE =

√√√√ 1
Nt

Nt

∑
i=1

[ũ(xi)−u(xi)]2,

and

RMSE =

√
1
Nt

∑
Nt
i=1[ũ(xi)−u(xi)]2√
1
Nt

∑
Nt
i=1[u(xi)]2

,

where Nt is the number of test points. The results displayed in Table (4.1) demonstrate
the accuracy of MFS coupled MAFS for solving the non-homogeneous boundary value
problem.
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Chapter 5

NUMERICAL EXAMPLES

We provide numerical examples in this section to measure and determine the accuracy and
validity of the proposed method for solving nonlinear ordinary differential equations. To
measure the accuracy of an approximate solution at each time step, we use the mean square
root error defined as follows,

MSEI =

√
1
N

N

∑
i=1

[uI(xi)−uexact(xi)]2

where uI is the numerical solution at each time step which is compared with the exact
solution uexact . The test points {(xi)

N
k=1} are the points used for collocation inside the

domain. To see how the error is relative to the magnitude of the solution, we also provide
the relative mean square root error,

RMSEI =

√
1
N ∑

N
i=1[uI(xi)−uexact(xi)]2√
1
N ∑

N
i=1[uexact(xi)]2

.

Let Ω be the interval −0.5 < x < 0.5 and ∂Ω be the boundary of Ω given as |x|= 0.5. If
a problem is not originally defined on the interval [−0.5,0.5] we can always use proper
scaling or translation to make it a problem over this interval. Hence in this chapter, we
assume all problems are defined on this interval.
Example 1. We consider the nonlinear differential equation,

−u′′ =−3
2

u2, x ∈Ω,

Bu = u(x) given, x ∈ ∂Ω,

such that its exact solution is

u =
4

(3+ x)2 .
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For this example, we choose 50 of the type I basis and 150 of the type II basis centers
randomly inside the bounded domain. The number of collocation point is 400, twice the
total number of basis centers. The regularization parameters are chosen as m1 = 10, χ1 = 4,
m2 = 20 and χ2 = 6. The arbitrarily chosen initial solution for I = 0 is the constant function
u0 = 0. We recorded 50 time steps. Figure (5.1) displays the error after various numbers
of iteration. We choose different ∆t with β = 10−2 and β = 10−4. It can be observed from
Table (5.1) that the iteration corresponding to a larger ∆t tends to converge rapidly, thus has
smaller error. The numerical results tends to be more accurate for smaller β .

Figure 5.1: (Example 1) Plot of exact solutions and approximate solutions at different
number of iterations.
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β ∆T MSE RMSE
10−02 2−05 1.4728 · 10−04 3.1650 · 10−04

10−02 2−06 3.1963 · 10−04 6.8572 · 10−04

10−02 2−07 6.1164 · 10−03 1.3296 · 10−02

10−02 2−08 4.9734 · 10−02 1.0508 · 10−01

10−04 2−05 1.5134 · 10−06 3.3023 · 10−06

10−04 2−06 1.0157 · 10−04 2.1657 · 10−04

10−04 2−07 5.7693 · 10−03 1.2516 · 10−02

10−04 2−08 4.8963 · 10−02 1.0722 · 10−01

Table 5.1: (Example 1) MSE & RMSE for time function β = 10−2 and β = 10−4; Basis 1:
m1 = 10 and χ1 = 4 , Basis 2: m2 = 20 and χ2 = 6.

Example 2. For our next example, we take a look at the nonlinear differential equation

−u′′ =−2u3, x ∈Ω,

Bu = u(x) given, x ∈ ∂Ω,

such that its exact solution is

u =
1

(4+ x)
.

For this example, we choose 75 of the type I basis and 125 of the type II basis centers
randomly inside the bounded domain. The number of collocation point is 400, twice the
total number of basis centers. We choose the regularization parameters m1 = 20, χ1 = 6,
m2 = 30 and χ2 = 9. The arbitrarily chosen initial solution for I = 0 is the constant function
u0 = 0. Figure (5.2) displays the error after various numbers of iteration. We choose different
∆t with β = 10−2 and β = 10−4. It can be observed from Table (5.2) that the iteration
corresponding to a larger ∆t tends to converge rapidly, thus after 50 steps the MSE with
β = 10−02 and ∆t = 2−08 reaches 3.1509 × 10−02 while the MSE with ∆t = 2−05 reaches
9.1636 × 10−05. Also, smaller β coupled with a large ∆t tends to produce a more accurate
numerical results.



18

Figure 5.2: (Example 2) Plot of exact solutions and approximate solutions at different
number of iterations.

β ∆T MSE RMSE
10−02 2−05 9.1636 · 10−05 3.6466 · 10−04

10−02 2−06 2.4905 · 10−04 9.8796 · 10−04

10−02 2−07 4.6832 · 10−03 1.8670 · 10−02

10−02 2−08 3.1509 · 10−02 1.2542 · 10−01

10−04 2−05 1.0346 · 10−06 4.0797 · 10−06

10−04 2−06 1.1705 · 10−04 4.6416 · 10−04

10−04 2−07 4.6558 · 10−03 1.8496 · 10−02

10−04 2−08 3.1913 · 10−02 1.2622 · 10−01

Table 5.2: (Example 2) MSE & RMSE for time function β = 10−2 and β = 10−4; Basis 1:
m1 = 20 and χ1 = 6 , Basis 2: m2 = 30 and χ2 = 9.

Example 3. To demonstrate flexibility of the methods, consider the nonlinear problem that
also includes spatial variables in the source function.

−u′′ = u2− ex− e2x, x ∈Ω,

Bu = u(x) given, x ∈ ∂Ω,

such that its exact solution is u = ex.



19

We choose 50 of the type I basis and 150 of the type II basis centers randomly inside
the bounded domain. The number of collocation point is 500, twice the total number of
basis centers. The regularization parameters are chosen as m1 = 10, χ1 = 4, m2 = 20 and
χ2 = 6.The arbitrarily chosen initial solution for I = 0 is the constant function u0 = 0.
Figure (5.3) displays the error after various number of iteration. We choose different ∆t

with β = 10−2 and β = 10−4. Again, it can be observed from Table (5.3) that the iteration
corresponding to a larger ∆t tends to converge rapidly.

Figure 5.3: (Example 3) Plot of exact solutions and approximate solutions at different
number of iterations.
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β ∆T MSE RMSE
10−02 2−05 5.2178 · 10−04 4.8614 · 10−04

10−02 2−06 3.3885 · 10−03 3.1413 · 10−03

10−02 2−07 4.1809 · 10−02 3.9181 · 10−02

10−02 2−08 1.7904 · 10−01 1.6165 · 10−01

10−04 2−05 2.5818 · 10−05 2.3808 · 10−05

10−04 2−06 2.6338 · 10−03 2.4183 · 10−03

10−04 2−07 4.0345 · 10−02 3.6956 · 10−02

10−04 2−08 1.8309 · 10−01 1.7098 · 10−01

Table 5.3: (Example 3) MSE & RMSE for time function β = 10−2 and β = 10−4; Basis 1:
m1 = 10 and χ1 = 4 , Basis 2: m2 = 20 and χ2 = 6.

Example 4. To further demonstrate the applicability of the methods, we consider a nonlinear
problem with a source function that depends on u, u′ and spatial variable x.

−u′′ =−2u3 +(u′)2− 1
(4+ x)4 , x ∈Ω,

Bu = u(x) given, x ∈ ∂Ω,

such that its exact solution is
u =

1
(4+ x)

.

For this example, we choose 100 of the type I basis and 150 of the type II basis centers
randomly inside the bounded domain. The number of collocation point is 500, twice the
total number of basis centers. The regularization parameters are chosen as m1 = 10, χ1 = 4,
m2 = 30 and χ2 = 9. The arbitrarily chosen initial solution for I = 0 is the constant function
u0 = 0. Figure (5.4) displays the error after various numbers of iteration. We choose different
∆t with β = 10−2 and β = 10−4. It can be observed from Table (5.4) that the iteration
corresponding to a larger ∆t tends to converge rapidly.
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Figure 5.4: (Example 4) Plot of exact solutions and approximate solutions at different
number of iterations.

β ∆T MSE RMSE
10−02 2−05 9.0013 · 10−05 3.5579 · 10−04

10−02 2−06 2.2890 · 10−04 9.1579 · 10−04

10−02 2−07 4.3144 · 10−03 1.7059 · 10−02

10−02 2−08 2.8341 · 10−02 1.1275 · 10−01

10−04 2−05 1.0017 · 10−06 3.9329 · 10−06

10−04 2−06 1.0249 · 10−04 4.0596 · 10−04

10−04 2−07 3.9891 · 10−03 1.5846 · 10−02

10−04 2−08 2.8985 · 10−02 1.1471 · 10−01

Table 5.4: (Example 4) MSE & RMSE for time function β = 10−2 and β = 10−4; Basis 1:
m1 = 10 and χ1 = 4 , Basis 2: m2 = 30 and χ2 = 9.

Example 5. For our next example, we choose a more difficult nonlinear problem which
incorporates trigonometry functions.

−u′′ = 4u′+2u− 2u
sin2(u)+1

− cos(x)+4sin(x)+
2cos(x)

sin2(cos(x))+1
, x ∈Ω,

Bu = u(x) given, x ∈ ∂Ω,
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such that its exact solution is u = cos(x).

For this example, we choose 100 of the type I basis and 150 of the type II basis centers
randomly inside the bounded domain. The number of collocation point is 500, twice the
total number of basis centers. The regularization parameters are chosen as m1 = 10, χ1 = 4,
m2 = 20 and χ2 = 6. The arbitrarily chosen initial solution for I = 0 is the constant function
u0 = 0. Figure (5.5) displays the error after various number of iteration. We choose different
∆t with β = 10−2 and β = 10−4. It can be observed from Table (5.5) that the iteration
corresponding to a larger ∆t tends to converge rapidly. Table (5.5) shows the accurate results
with smaller β coupled with larger ∆t.

Figure 5.5: (Example 5) Plot of the exact solution and approximate solutions at different
number of iterations.
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β ∆T MSE RMSE
10−02 2−05 3.2402 · 10−04 3.3818 · 10−04

10−02 2−06 5.2581 · 10−04 5.4834 · 10−04

10−02 2−07 9.1234 · 10−03 9.4851 · 10−03

10−02 2−08 9.1766 · 10−02 9.5725 · 10−02

10−04 2−05 3.2267 · 10−06 3.3681 · 10−06

10−04 2−06 6.0586 · 10−05 6.3211 · 10−05

10−04 2−07 7.9037 · 10−03 8.2584 · 10−03

10−04 2−08 9.2965 · 10−02 9.6628 · 10−02

Table 5.5: (Example 5) MSE & RMSE for time function β = 10−2 and β = 10−4; Basis 1:
m1=10 and χ1 = 4 , Basis 2: m2 = 20 and χ2 = 6.

Example 6. We consider a nonlinear problem with both derivative and logarithm incorpo-
rated in it.

−u′′ = x2u′−u− x ·u · log(u), x ∈Ω,

Bu = u(x) given, x ∈ ∂Ω,

such that its exact solution is u = ex.

For this example, we choose 75 of the type I basis and 125 of the type II basis centers
randomly inside the bounded domain. The number of collocation point is 400, twice the
total number of basis centers. The regularization parameters are chosen as m1 = 30, χ1 = 9,
m2 = 50 and χ2 = 14. The arbitrarily chosen initial solution for I = 0 is the constant function
u0 = 0. Figure (5.6) displays the error after various number of iteration. We choose different
∆t with β = 10−2 and β = 10−4. It can also be observed from Table (5.6) that the iteration
corresponding to a larger ∆t tends to converge rapidly.
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Figure 5.6: (Example 6) Plot of exact solutions and approximate solutions at different
number of iterations.

β ∆T MSE RMSE
10−02 2−05 3.4285 · 10−04 3.1641 · 10−04

10−02 2−06 5.1540 · 10−04 4.7900 · 10−04

10−02 2−07 9.3589 · 10−04 8.5241 · 10−04

10−02 2−08 3.0150 · 10−03 2.8734 · 10−03

10−04 2−05 3.4130 · 10−06 3.0813 · 10−06

10−04 2−06 1.0425 · 10−05 9.7449 · 10−06

10−04 2−07 2.9076 · 10−04 2.6422 · 10−04

10−04 2−08 2.3294 · 10−03 2.1113 · 10−03

Table 5.6: (Example 6) MSE & RMSE for time function β = 10−2 and β = 10−4; Basis 1:
m1 = 30 and χ1 = 9 , Basis 2: m2 = 50 and χ2 = 14.

Example 7. Finally, we choose a nonlinear problem which incorporates trigonometry
functions.

−u′′ = 4u′+2u− 2u
sin2(u)+1

−98cos(10x)+40sin(10x)+
2cos(10x)

sin2(cos(10x))+1
, x ∈Ω,

Bu = u(x) given, x ∈ ∂Ω,
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such that its exact solution is u = cos(10x).

For this example, we choose 50 of the type I basis and 150 of the type II basis centers
randomly inside the bounded domain. The number of collocation point is 500, twice the
total number of basis centers. The regularization parameters are chosen as m1 = 20, χ1 = 6,
m2 = 30 and χ2 = 9. The arbitrarily chosen initial solution for I = 0 is the constant function
u0 = 0. Figure (5.7) displays the error after various number of iteration. We choose different
∆t with β = 10−2 and β = 10−4. It can be observed from Table (5.7) that the iteration
corresponding to a larger ∆t tends to converge rapidly. Table (5.7) shows the accurate results
with smaller β coupled with larger ∆t. In general , the numerical results tends to be more
accurate for smaller β with larger ∆t.

Figure 5.7: (Example 7) Plot of the exact solution and approximate solutions at different
number of iterations.
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β ∆T MSE RMSE
10−02 2−05 3.2636 · 10−05 4.6867 · 10−05

10−02 2−06 5.3332 · 10−05 7.6249 · 10−05

10−02 2−07 9.4165 · 10−04 1.4100 · 10−04

10−02 2−08 8.7518 · 10−03 1.3300 · 10−02

10−04 2−05 3.3549 · 10−07 4.8031 · 10−07

10−04 2−06 7.0426 · 10−06 1.0569 · 10−05

10−04 2−07 8.7337 · 10−04 1.2829 · 10−03

10−04 2−08 9.2667 · 10−03 1.3907 · 10−02

Table 5.7: (Example 7) MSE & RMSE for time function β = 10−2 and β = 10−4; Basis 1:
m1=20 and χ1 = 6 , Basis 2: m2 = 30 and χ2 = 9.
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Chapter 6

CONCLUSION

A general class of nonlinear differential equations is solved by incorporating a fictitious
time integration method to transform the nonlinear ODE into a sequence of time-dependent
linear non-homogeneous differential equations. Delta-shaped basis functions are used to
approximate the source function at each time step. An approximate particular solution is
obtained at each time step by using the Delta-shaped basis functions. The corresponding
homogeneous problem at each time step is solved using the MFS. The proposed method
is applicable to a general class of nonlinear ODEs provided the fundamental solution for
the differential operator is known. The validity and accuracy of this computational method
is supported with numerical examples with different kinds of nonlinear source functions.
The numerical results demonstrate that with proper parameter values approximate solutions
converge rapidly to exact solution.
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