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Abstract

Neorickettsia (Rickettsiales, Anaplasmataceae) is a genus of obligate intracellular bacterial 

endosymbionts of digeneans (Platyhelminthes, Digenea). Some Neorickettsia are able to invade 

cells of the digenean's vertebrate host and are known to cause diseases of domestic animals, 

wildlife, and humans. In this study we report the results of screening digenean samples for 

Neorickettsia collected from bats in Egypt and Mindoro Island, Philippines, snails and fishes from 

Thailand, and fishes from Vietnam and the USA. Neorickettsiae were detected using a real-time 

PCR protocol targeting a 152 bp fragment of the heat shock protein coding gene, GroEL, and 

verified with nested PCR and sequencing of a 1853 bp long region of the GroESL operon and a 

1371 bp long region of 16S rRNA. Eight unique genotypes of Neorickettsia were obtained from 

digenean samples. Neorickettsia sp. 8 obtained from Lecithodendrium sp. from Egypt; 

Neorickettsia sp. 9 and 10 obtained from two species of Paralecithodendrium from Mindoro, 

Philippines; Neorickettsia sp. 11 from Lecithodendrium sp. and Neorickettsia sp. 4 (previously 

identified from Saccocoelioides lizae, from China) from Thailand; Neorickettsia sp. 12 from 

Dicrogaster sp. Florida, USA; Neorickettsia sp. 13 and SF agent from Vietnam. Sequence 

comparison and phylogenetic analysis demonstrated that the forms, provisionally named 

Neorickettsia sp. 8-13, represent new genotypes. We have for the first time detected Neorickettsia 
in a digenean from Egypt (and the African continent as a whole), the Philippines, Thailand and 

Vietnam based on PCR and sequencing evidence. Our findings suggest that further surveys from 

the African continent, SE Asia, and the Island countries are likely to reveal new Neorickettsia 
lineages as well as new digenean host associations.

*Address correspondence to Vasyl V. Tkach, vasyl.tkach@und.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Parasitol Int. Author manuscript; available in PMC 2018 February 01.

Published in final edited form as:
Parasitol Int. 2017 February ; 66(1): 1003–1007. doi:10.1016/j.parint.2016.08.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Graphical Abstract

Keywords

Neorickettsia; Southeast Asia; Africa; North America; real-time PCR; molecular phylogeny; 
Digenea

1. Introduction

Obligate intracellular bacteria in the genus Neorickettsia (Rickettsiales, Anaplasmataceae) 

are endosymbionts of digeneans. Neorickettsia are vertically transmitted through all stages 

of complex digenean life cycles. Additionally, they are capable of being horizontally 

transmitted to the vertebrate hosts of the digenean, both human and wildlife, where they can 

cause disease [1]. These diseases are potentially debilitating, e.g., Sennetsu fever in humans 

(Neorickettsia sennetsu), or even fatal, e.g., salmon dog poisoning (Neorickettsia 
helminthoeca) and Potomac horse fever (Neorickettsia risticii)[1].

Greiman et al. [2] conducted the first large scale molecular screening of digeneans for 

Neorickettsia from multiple countries and continents. Their screening revealed 7 new 

genotypes of Neorickettsia, bringing the known number of species/genotypes of the bacteria 

to 20. Additionally, they detected Neorickettsia from digeneans for the first time from the 

Australian continent and China. Records resulting from PCR detection of neorickettsial 

DNA are known only from North and South America, eastern Asia, Antarctica, and 

Australia [2], [3] and [4]. Africa and Europe are the last continents where Neorickettsia has 

yet to be found.

In this study, we screened DNA extracts of lecithodendriid digeneans from bats collected in 

Egypt and the Philippines, and other digenean samples collected from fishes and snails in 

the United States, Thailand, and Vietnam. As a result we found 6 new genotypes of 

Neorickettsia and two previously identified genotypes of Neorickettsia. We have for the first 

time detected Neorickettsia in digeneans from the African continent, the Philippines, 

Vietnam, and Thailand using PCR-based detection and DNA sequencing. Also, we have 

conducted molecular phylogenetic analyses in order to reveal the interrelationships among 

the newly discovered genotypes with previously known species/genotypes of Neorickettsia.
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2. Materials and methods

2.1 Sample collections

Digenean samples were collected from bats, fishes and snails from the United States (Salt 

Springs, Florida, 29°21′01″N, 81°43′57″ W), Vietnam (Cat-Ba Island) 20°43′27.86″N, 

107°2′58.61″E), Egypt (30°1′39″N, 31°12′37″E), Philippines (Mindoro Island, 

12°47′14.99″N, 120°54′57.96″E), and Thailand (Aranyaprathet, Sa Kae, 13°36′37″N, 

102°34′14″E and Talay Thai Seafood market, Sumut Sakhon (13°32′56.29″N, 

100°15′26.11″E). Fishes from Vietnam and Thailand were purchased from local and 

commercial fish markets.

2.2 Sample processing

Live adult worms were rinsed in saline, examined briefly, killed with hot water, and fixed in 

80% ethanol that allowed for both morphological examination and molecular study. For 

morphological identifications, fixed worms were stained in aqueous alum carmine or 

Mayer's hematoxylin; dehydrated in a graded ethanol series; cleared in clove oil (carmine) or 

methyl salicylate (Mayer's); and mounted permanently in Damar Gum.

Genomic DNA was extracted one of two ways. Samples collected from Florida were 

extracted using the Qiagen DNAeasy tissue kit (Qiagen, Inc., Valencia, California) following 

the manufacturer's instructions. Samples collected from Egypt, Thailand, Vietnam, and 

Philippines were first homogenized by direct sonication using a UP100H compact ultrasonic 

processor (Hielscher USA, Inc., Ringwood, New Jersey) at an amplitude of 90% for 20 

seconds and further DNA extracted using the guanidine thiocyanate method according to 

Tkach and Pawlowski [5].

2.3 Molecular screening

DNA extracts were first tested for the presence of Neorickettsia using a real-time PCR 

protocol as described by Greiman et al. [2]. Five microliters of each DNA extract were used. 

The real-time PCR amplified a 152-bp portion of the 3' end of the heat shock protein coding 

gene, GroEL. Samples that tested positive with real-time PCR were verified using a 

substantially modified nested PCR protocol as described by Greiman et al. [6]. Five 

microliters of each DNA extract were used for the first PCR reaction and 1 μl of the first 

PCR product was used for the nested PCR. A 1470-bp long fragment of the 16S rRNA gene 

was first amplified, followed by the nested PCR step which amplified a 1371-bp fragment 

using internal primers. The same nested PCR primers were used in sequencing reactions 

along with internal forward and internal reverse primers [6]. DNA of Neorickettsia sp. from 

the digenean Plagiorchis elegans, obtained from a laboratory life cycle, was used as a 

positive control [7]. Pure water was used for negative controls in both real-time and nested 

PCRs.

A nested PCR amplifying a 1940-bp fragment of the GroESL operon was carried out for 

members of the “Neorickettsia risticii” clade (Fig. 1, subclade B). Five microliters of each 

DNA extract were used for the first PCR reaction and 2 μl of the first PCR product was used 

for the nested PCR. The primers used for the initial PCR were; hs10F 5′-
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CTCAAATGAAACAAT-CCGTTTGTTTGTAGC-3′ and hs2090R 5′-

CATTCCACCCATGCCA-CCACCAGGCAT-3′. The primers used for the nested PCR were 

hs90F 5′-GTAGGTCTTGAAAAATATCACAGCG-3′ and hs2030R 5′-

GTAGTCACTAGAACACTAGCAACAGA-3′. The same nested PCR primers were used for 

sequencing along with internal forward primers; hs120F 5′- 

TACGATATTTGATTCTGTAGGTCATTAG -3′and hs910F 5′- 

TGGTTCAATTTCTGCTAACGGCAAT-3′ and internal reverse primers; hs700R 5′ 
GCTTTTTCATTCGCCTGTGAGGTAGCCT-3′ and hs1620R 5′- 

CTTTAACCTCAACTTCTGTAGCACCAC-3′ designed by SEG.

2.4 Digenean host identification

The digenean hosts were identified based on morphology using stained whole mounts and 

using partial sequences of the nuclear large ribosomal subunit gene (28S). Digenean DNA 

was amplified from the extracted DNA by the PCR protocol described by Greiman et al. [2].

2.5 DNA sequencing

PCR amplicons of both Neorickettsia and digeneans were purified using the Zymo DNA 

Clean & Concentrator™-5 (Zymo Research, Irvine, CA) or ExoSap PCR clean-up 

enzymatic kit from Affimetrix (Santa Clara, CA) according to the manufacturer's 

instructions. The PCR products were cycle-sequenced using ABI BigDye™ chemistry, 

ethanol precipitated, and run on an ABI Prism 3100™ automated capillary sequencer. 

Contiguous sequences of Neorickettsia were assembled using Sequencher™ ver. 4.2 

(GeneCodes Corp., Ann Arbor, MI) and submitted to GenBank under accession numbers 

XXXX.

2.6 Phylogenetic analysis

Newly obtained sequences of neorickettsiae from GenBank were used in the phylogenetic 

analyses (Figs. 1, 2). The sequences were initially aligned with the aid of ClustalW as 

implemented in the BioEdit program, version 7.0.1 [8]. Two distinct alignments were 

prepared and two analyses were done. The alignments were manually refined in MacClade, 

version 4 [9].

The first phylogenetic analysis was run using a larger dataset including all new and 

previously available 16S sequences of Neorickettsia (a total of 30 sequences), one sequence 

of closely related Anaplasmataceae sp., and Wolbachia pipientis as the outgroup (Fig. 1). 

The analysis was carried out using Bayesian inference as implemented in the MrBayes 

program, version 2.01 [10] with the following nucleotide substitution parameters: lset nst=6, 

rates=invgamma, prset (prior assumptions) pinvarpr=fixed (0.6170) shapepr=fixed (0.4360), 

that correspond to a “three-parameter model (TPM3) [11] model including estimates of the 

proportion of invariant sites (I) and rate variation among sites with a number of rate 

categories (G). Posterior probabilities were approximated over 1,500,000 generations, log-

likelihood scores plotted, and only the final 75% of trees were used to produce the consensus 

trees by setting the “burnin” parameters at 375,000 generations. The TPM3+I+G model was 

used for the analysis based off of the results obtained from jModelTest, version 0.1.1 [12], 

[13].
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The second phylogenetic analysis was run using a much smaller dataset based on the partial 

sequences of the GroESL operon, including only species/genotypes of Neorickettsia closely 

related to Neorickettsia risticii (Fig. 2), a total of 13 sequences. Neorickettsia helminthoeca 
was used as an outgroup based on the outcome of the 16S analysis (Fig. 1). The analysis was 

carried out using Bayesian inference (BI) as implemented in the MrBayes program, version 

2.01 [10] with the following nucleotide substitution parameters: lset nst=6, rates=propinv, 

prset (prior assumptions) pinvarpr=fixed (0.6380), that correspond to a Tamura-Nei (TrN) 

model including estimates of the proportion of invariant sites (I). Posterior probabilities were 

approximated over 1,000,000 generations, log-likelihood scores plotted, and only the final 

75% of trees were used to produce the consensus trees by setting the “burnin” parameters at 

250,000 generations. The TrN+I model was used for the analysis based off of the results 

obtained from jModelTest, version 0.1.1 [12], [13].

3. Results

In northeastern Egypt, during the fall of 2012, authors RE and AIK collected a total of 50 

bats (Pipistrellus kuhli marginatus) infected with adult digeneans. In northern Vietnam, 

during the fall of 2013, authors SEG and NVH dissected a total of 75 fishes, representing at 

least 6 fish species. From those dissections, a total of 30 fishes were infected with either 

larval or adult digeneans. In southeastern Thailand, during the winter of 2014, authors SEG, 

JAV, PA, and VVT dissected a total of 114 fishes. From those dissections, 50 fishes were 

infected with either larval or adult digeneans. In spring of 2013 (March), TJF obtained 8 

Mugil cephalus via Hawaiian sling from Salt Springs, Florida. Two-thirds of these hosts 

harbored coinfections of F. apiensis and Saccocoelioides sp. and one individual harbored a 

single mature specimen of Intromugil alachuaensis.

Digenean samples were screened for Neorickettsia. Screening revealed eight unique 

genotypes of Neorickettsia from digenean samples: Neorickettsia sp. 8 obtained from 

Lecithodendrium sp. from Egypt; Neorickettsia sp. 9 and 10 obtained from two species of 

Paralecithodendrium from Mindoro, Philippines; Neorickettsia sp. 11 from Lecithodendrium 
sp. and Neorickettsia sp. 4 (previously identified from Saccocoelioides lizae, from China) 

from Thailand; Neorickettsia sp. 12 from Florida, USA; Neorickettsia sp. 13 and SF agent 

from Vietnam (Table 1). Genotype numbering is the continuation of that proposed by 

Greiman et al. [2].

The 16S alignment included a total of 1,258 sites, of which 1,249 could be aligned 

unambiguously. Positions of ambiguous homology were excluded from the analysis. 

Bayesian analysis produced a tree where all Neorickettsia sequences clearly fall into a well-

defined clade, with 100% support (Fig. 1), composed of three subclades – subclade I (1 

genotype), subclade II (7 genotypes), and subclade III (22 genotypes). Subclade IIIA 

included N. helminthoeca, agent of salmon dog poisoning and subclade IIIB included N. 
risticii, agent of Potomac horse fever and N. sennetsu, agent of Sennetsu fever in humans 

The topology of the consensus tree generated by this analysis is essentially identical to the 

phylogeny published by Greiman et al. [2], with the only exception being the inclusion of 

the new genotypes of Neorickettsia discovered in this study.
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The GroESL alignment included a total of 1,822 sites, of which all could be aligned 

unambiguously. Bayesian analysis produced a well-structured consensus tree with strong 

support of nearly all topologies (Fig. 2). Based on this analysis, Neorickettsia sp. 8 from 

Egypt and Neorickettsia spp. 9 and 10 from the Philippines appeared in a cluster that formed 

a sister clade to all other genotypes of Neorickettsia (N. sennetsu, N. risticii, Neorickettsia 
sp. from Plagiorchis elegans, Neorickettsia sp. from Fasciola hepatica, and SF agent).

4. Discussion

Greiman et al. [2] emphasized that the known distribution of Neorickettsia is very 

geographically uneven, with no well-documented records supported by PCR/sequence data 

from Africa, Europe, most of South America, most of Asia, and nearly all island countries. 

In this study we have further expanded taxonomic and geographic coverage of screening of 

digeneans for Neorickettsia. As suggested by Greiman et al. [2] it resulted in discoveries of 

novel forms of Neorickettsia from additional digenean taxa and geographic regions 

including the first record from Africa.

Digeneans in the family Lecithodendriidae parasitic in bats appear to be common hosts of 

Neorickettsia, with a total of 7 species of lecithodendriids known to harbor the bacteria 

including 4 added by the present study [1], [2]. This is a relatively large digenean family 

comprising at least 12 genera parasitizing mammals (mostly bats) and occasionally birds, on 

all continents [14]. Currently, lecithodendriids have been found to harbor the bacterial 

endosymbiont in Egypt, Thailand, North America (USA), South America (Argentina), and 

the Philippines, with those in the Americas known to harbor N. risticii, the etiological agent 

of Potomac horse fever.

Mugil cephalus (grey mullet) is the 2nd intermediate or definitive host of four digenean 

species harboring Neorickettsia in this study (Saccocoelioides lizae, Saccocoelioides sp., 

Forticulcita apiensis, and Stellantchasmis falcatus (host of SF agent)) and two digenean 

species (Saccocoelioides beauforti and S. lizae) harboring Neorickettsia in the study by 

Greiman et al. [2]. Although this is a globally distributed marine fish, its digenean species 

appear to be much more restricted in their distribution. Saccocoelioides lizae has only been 

recorded off the cost of southeastern China [15]; however, we have now found it off the 

coast of Thailand. The distribution of Saccocoelioides sp. from northern Vietnam is 

unknown, however, the sequence of Neorickettsia sp. 13 differs from Neorickettsia sp. 4 

identified from S. lizae from Thailand (this study) and China [2] by only 3 bp, likely 

indicating that its distribution is limited to the marine habitats of the region. Based on the 

high sequence similarity, Neorickettsia sp. 13 from Vietnam is likely the same species as 

Neorickettsia identified from China and Thailand. The last Neorickettsia hosting digenean 

species from mullet, F. apiensis was recently described from Salt Springs, Florida [16]. Salt 

Springs is an artesian spring that discharges slightly saline water in Lake George. This 

haploporid is likely endemic to the region, and therefore the genotype/species of 

Neorickettsia (sp. 12) is likely also unique to this area.

The least resolved part of the 16S tree is the polytomy in the sub-clade B of clade III that 

includes several genotypes occupying a derived position in relation to N. sennetsu (Fig. 1; 
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also in [2]). The GroESL phylogenetic analysis helped resolve the relationships among a 

majority of these taxa and has produced a tree with strong branch support for all topologies 

(Fig. 2). The GroESL operon was used for the second phylogenetic analysis following its 

use by Dumler et al. [17] for the members of the family Anaplasmataceae. The new 

genotypes (Neorickettsia spp. 8, 9, and 10) (from Egypt and the Philippines, respectively) 

identified in our study, fall into a clade that is sister to the well-supported clade including N. 
risticii, N. sennetsu, Neorickettsia (P. elegans agent), Neorickettsia sp. (from F. hepatica) and 

SF agent. This brings up the potential question regarding the pathogenicity of the new 

genotypes of Neorickettsia from Egypt and the Philippines. Neorickettsia risticii, N. 
sennetsu, and SF agent are all known to cause potentially debilitating or even fatal diseases 

in the vertebrate hosts of digeneans [1]. Neorickettsia spp. 8, 9, and 10 from lecithodendriids 

from Egypt and the Philippines, are closely related to these three species of Neorickettsia 
and therefore have the potential of causing yet unknown disease in wildlife or domestic 

animals. Further studies of these three genotypes may reveal their potential as pathogens. 

The GroESL phylogeny also indicates that the genotype of Neorickettsia from Deropegus 
aspina, originally called Neorickettsia sp. by Greiman et al. [2], is in fact N. risticii. 
Additionally, Greiman et al. [6] identified the species of Neorickettsia from P. elegans as N. 
risticii. However, our GroESL phylogeny (Fig. 2) corroborates the suggestion by Greiman et 

al. [2] regarding the status of this genotype as a separate species related to N. risticii.

Lastly, Mitreva et al. (unpublished; GenBank LNGI01000001) sequenced the complete 

genome of a species of Neorickettsia from Fasciola hepatica. Based on our GroESL 

phylogeny the species falls into the same clade as our species from P. elegans. However, due 

to the high 16S sequence similarity (99.6%) between these two forms, it remains unknown 

whether they represent two distinct species or different strains of one species.

The GroESL phylogenetic tree shows close associations among Neorickettsia and their 

digenean hosts' 2nd intermediate or definitive hosts (Fig. 2). In the sub-clade including N. 
sennetsu and N. risticii, the 2nd intermediate host of all digenean hosts (at least where the 

digenean host is known) is an arthropod, and the definitive hosts for all but one are mammals 

(bats) and potentially birds. The digenean host of N. sennetsu, the causative agent of the 

human disease Sennetsu fever in Southeast Asia, is currently unknown. Greiman et al. [2] 

hypothesized a mammal or fish as a definitive host. The topology of the GroESL 

phylogenetic tree obtained in this study strongly suggests that it also should be a digenean 

that uses an arthropod as a second intermediate host. This is in contrast with the previous 

notion that the digenan host of N. sennetsu utilizes a fish second intermediate host. This 

previous hypothesis was based on the discovery that people became ill with N. sennetsu after 

consuming raw mullet infected with digenean metacercariae in Japan [18]. However, based 

on our GroESL phylogeny, and the transmission biology of the closely related species N. 
risticii, we hypothesize that the tissue of the fish may become infected with the bacteria in a 

similar manner to how horses become infected with N. risticii. Horses are dead-end hosts to 

the digeneans infected with N. risticii, and therefore, the mullet may also be dead end hosts 

to the digenean harboring N. sennetsu, and become infected when the fish ingests an 

arthropod infected with the metacercariae of the digenean harboring the bacteria. Further 

studies of trematodes from different host taxa are needed in the regions endemic for 

Sennetsu in order to answer this intriguing question of public health importance.
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Highlights

• Eight unique isolates of Neorickettsia discovered in SE Asia, Africa 

and North America.

• Seven isolates represent new species level genetic lineages.

• This is the first report of Neorickettsia from digeneans in Africa and 

three SE Asian countries.

• Phylogenetic relationships Neorickettsia has been studied 16S and 

GroESL genes.

• Host associations of digeneans harboring Neorickettsia are discussed.
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Fig 1. 
Phylogenetic interrelationships among 30 genetic lineages of Neorickettsia based on 

Bayesian analysis of partial 16S rRNA sequences. Numbers above internodes indicate 

posterior probabilities. An asterisk (*) at the end of a taxon name indicates a new sequence 

obtained in this study. GenBank numbers are given here for all taxa.
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Fig. 2. 
Cladogram based on Bayesian analysis of partial GroESL sequences depicting phylogenetic 

interrelationships among 14 genetic lineages of N. risticii and N. risticii-like neorickettsiae. 

Posterior probabilities greater than 80% are shown. Digenean second intermediate host 

groups and vertebrate definitive host groups are indicated by symbols. An asterisk (*) at the 

end of a taxon name indicates a new sequence obtained in this study. GenBank numbers are 

given here for all taxa.
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