

Document details

1 of 1

→ Export 🕁 Download More... >

Cited by 0 documents

Materials Research Express Volume 6, Issue 10, 13 September 2019, Article number 106444

Experimental investigation of tribological properties of laser textured tungsten doped diamond like carbon coating under dry sliding conditions at various loads (Article)

Arslan, A., Masjuki, H.H., Quazi, M.M., Kalam, M.A., Varman, M., Jamshaid, M., Rahman, S.M.A., Imran, M., Zulfattah, Z.M., Anwar, M.T., Gohar, G.A., Mandalan, S.M., Harith, M.H. 2

View additional authors $\,\,\checkmark\,$

Save all to author list

^aDepartment of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, 57000, Pakistan ^bDepartment of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia ^cDepartment of Mechanical Engineering, Faculty of Engineering, IIUM, Kuala Lumpur, 50728, Malaysia ^dFaculty of Mechanical and Manufacturing Engineering, Universiti Malaysia Pahang, Pekan, Pahang, 26600, Malaysia ^eDepartment of Mechanical Engineering, Bahauddin Zakariya University, Multan, 60000, Pakistan ^fQueensland University of Technology, Brisbane, QLD, Australia ^gMechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom

^hCenter for Advanced Research on Energy (CARe), Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Ayer Keroh, Melaka, 75450, Malaysia

ⁱDepartment of Mechanical Engineering, Faculty of Engineering, Bayero University, Kano, 3011, Nigeria

()

View additional affiliations $\,\checkmark\,$

Abstract

Laser micro texturing technique has shown its potential in reducing friction and wear at various mechanical interfaces such as automotive and cutting tools etc. Automotive parts are coated with Diamond-like Carbon (DLC) coatings to enhance their performance. Due to stringent condition at the automotive contacts and demand for performance enhancement, increase in performance of DLC coatings is required. In this study laser micro texturing is being combined with tungsten doped DLC coating. In order to analyze the benefits of laser micro texturing on tungsten doped DLC coating. Tribological testing was conducted on a reciprocating test rig at various loading conditions. The results indicated that laser textured tungsten doped DLC coating showed the lower coefficient of friction compared to un-textured tungsten doped DLC coating at a load of 15 N, 25 N and 35 N. Higher graphitization was observed in the case of un-textured coating at 35 N load. © 2019 IOP Publishing Ltd.

SciVal Topic Prominence 🕞

Topic: Lubrication | Texturing | Hydrodynamic lubrication

Prominence percentile: 97.433

Author keywords

Friction Laser surface texturing Tungsten doped dlc Wear

Indexed keywords

Engineering controlled terms:

Inform me when this document is cited in Scopus:

Set citation	Set citation
alert >	feed >

Related documents

Find more related documents in Scopus based on:

Authors > Keywords >

(

Create account || Sign in

Engineering uncontrolled terms	Coefficient of frictions) (Doped DLC) Experime (Performance enhancemen	Experimental investigations Laser surface texturing		
Engineering main heading:	Diamond cutting tools			
ISSN: 20531591 Source Type: Journal Original language: E		DOI: 10.1088/2053-1591/ab408c Document Type: Article Publisher: Institute of Physics Publishing		
م Arslan, A.; Depart		ering, COMSATS University Islamabad, Sahiwal	Campus, Pakistan;	
About Scopus		Language	Customer Service	
What is Scopus		日本語に切り替える	Help	
Content coverage		切换到简体中文	Contact us	
Scopus blog		切換到繁體中文		
Scopus API		Русский язык		
Privacy matters				

ELSEVIER

Terms and conditions \neg Privacy policy \neg

Copyright © Elsevier B.V ». All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.

RELX