
MODAL FEATURES AND DYNAMIC BEHAVIOR OF A NONLINEAR

3D GUYED MAST WITH UNCERTAIN GUYS PRETENSION

Jorge S. Ballabena,b, Marta B. Rosalesa,b and Rubens Sampaioc

aDepartamento de Ingeniería, Universidad Nacional del Sur, Alem 1253, 8000 Bahía Blanca,

Argentina, jorge.ballaben@uns.edu.ar, mrosales@criba.edu.ar

bCONICET, Argentina

cDepartamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro, R.

Marquês de São Vicente 225, 22430-060 Rio de Janeiro, Brasil, rsampaio@puc-rio.br

Keywords: Guyed Mast, Nonlinear Dynamics, Propagation of Uncertainties, Modal Features.

Abstract. The study of the nonlinear dynamic characteristics and response of a guyed mast, considering

the uncertainty of the guys pretension is reported in this work. A computational model is constructed

with the mast represented by an equivalent beam-column and the three guys at one level by cables with

an initial pretension and only having tensile capacity. Starting from the energy formulation of beams and

nonlinear cables, the continuous equations are discretized using finite element techniques, considering

Hermite elements for the mast (Bernoulli beam theory) and quadratic elements for the nonlinear guys.

Also, the second order effect due to the axial loads on the mast is taken into account. An ad hoc software,

developed by the first author, is employed here to explore natural frequencies and modes of the struc-

ture considering the uncertainty propagation of the stochastic guys pretension. Since the guys design

value can be modified at the construction stage and more, during the service life, the pretension force

is modeled as a random variable with a probability density function (PDF) derived from the Principle

of Maximum Entropy (PME). The model herein presented contributes to attain a more realistic descrip-

tion of the structure, mainly regarding the three-dimensional representation and the sensibility to the

variability of the guys pretensions. The results here presented (natural frequencies and modes) obtained

through an uncertainty quantification analysis, improve the understanding of the real dynamic properties

and behavior of slender and flexible guyed structures.
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NOMENCLATURE

Latin symbols

E : Young modulus

I : second order moment of the area

A : area

m : mass per unit length

c : viscous damping coeficient

u, v, w : displacements

θ : rotation in the î direction

D : sag of cable

Lc : length of the cable

Y : initial configuration of the cable

n: number of elements

t: time

p, q : generic distributed forces

Mt : generic distributed torsional

moment

N : axial force in the beam

Greek symbols

ε: lagrangian elongation of cables

ω: circular frequency

Subscripts

c: relative to cable

b: relative to beam

x,y,z: relative to Cartesian coordi-

nates

u,v,w: relative to displacements in

the î, ĵ and k̂ directions

1 INTRODUCTION

The increasing advance in telecommunications requires the installation of new devices to

improve the quality of the services and to meet the consumer demands. In this context, guyed

masts are a structural typology extensively employed to support devices such as antennas for

radio, TV and other types of telecommunication equipment (Fig. 1 a). Their low cost offers

clear advantages and nowadays they are commonly found in urban areas, besides the open

country, where the anchors are more easily positioned.

Guyed masts are flexible structures. Then, their dynamic features and behavior are topics

of interest since the structural behavior is affected and impacts on the quality of transmission.

Despite this, the dynamic response is not studied in detail, with exception of special cases

(Preidikman et al., 2006; Shi and Salim, 2015; de Oliveira et al., 2007; Saudi, 2014).

The present and other authors’ works show that guyed structures have special sensitivity to

the type and amplitude of the excitation (Lenci and Ruzziconi, 2009; Wei et al., 2011, 2016; Bal-

laben et al., 2017a), even avoiding the resonance effects. After the derivation of the equations

of motion of a cable-stayed beam, the in-plane and out-of-plane eigenvalue problems are solved

by Wang et al. (2014). Also, nonlinear modes are studied along with the contribution of the

coupling term. A study on this regard and related to mechanical systems, is reported by Bellizzi

and Sampaio (2012). The smooth decomposition method combined with the Petrov-Galerkin

projection for the structure-preserving model reduction is used to analyze second-order discrete

nonlinear structural systems under random excitation. Nonlinear mechanical systems under ran-

dom excitation with homogeneous and non-homogeneous mass distribution were considered. In

a recent work by the authors (Ballaben et al., 2017b), the nonlinear dynamic response of plane

guyed structures is analyzed through reduced order models with consideration of uncertainties

in structural parameters.

In the present study and using the classical extended Hamilton’s principle, the equations of

motion that govern the vibrations of the system are obtained. The nonlinear model of the cable
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(a) (b)

Figure 1: Guyed mast. a) Typical guyed tower for mobile signal transmission; b) Model under study.

follows the approach reported by Gattulli and Lepidi (2007). Then, and after the statement of

the weak form, the governing system is discretized by finite elements.

The FEM approximation of the complete model in a dynamic nonlinear analysis is computa-

tionally expensive. An ad hoc, nonlinear optimized code for guyed structures was developed by

the authors within a finite element environment in order to reduce the analysis cost. With this

tool, the time-expensive Monte Carlo simulations are possible within acceptable runtimes.

Although the guy pretension is determined at the design stage, it can change during the

construction procedure and also along the structure service life with respect to the design value,

affecting the system performance and even its stability (Margariti and Gantes, 2015). Since the

guy pretension is a significant parameter of the structure, its variation is a relevant issue and

the introduction of uncertainty appears adequate. In this work, the initial tension of the guys

is considered stochastic. The probability density distribution (PDF) is selected by means of

the Principle of Maximum Entropy (Shannon, 1948). All the values of pretension studied are

within the ranges suggested by the standards. It was found that the consideration of uncertainty

in the initial pretension (H) has an important impact in the determination of natural frequencies

and modal shapes. Also, the dynamic response is very dissimilar and heavily influenced by H
and the nonlinear behavior of the guys.

2 MODEL UNDER STUDY

In this section, the studied model is presented. First, the equations of motion for cables and

beams are stated. Then, some comments about the nonlinear finite element discretization and

solver methods are given. Finally, the specific details, constants, constraints and loads of the

structure under study are listed.

2.1 Formulation and discretization of the equations of motion

Next, the equation of motion of nonlinear cables and beams with the addition of the second

order effect are presented. Further details in the derivation of the equations can be found in

Ballaben et al. (2016).
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The following assumptions are made: a) both the cable and the beam-column are considered

as homogeneous one-dimensional elastic continua obeying a linear stress-strain relationship; b)

the equilibrium configuration for the inclined cable is described through a quadratic parabola

under the assumptions of small sag to length ratio; c) axial extensions of the cable are described

by the Lagrangian strain of the centerline; d) the flexural, torsional and shear stiffness of the

cable are neglected; e) the shear strain of the beam-column is assumed negligible; f) the non-

linearity of the problem arises from the cable formulation; g) a second order effect due of the

axial load (assumed constant) is accounted for in the beam-column equation. Under these as-

sumptions and using the classical extended Hamilton’s principle, the general form of the weak

formulation writes as

M(v̈, φ) + C(v̇, φ) + KL(v, φ) + KNL(v, φ) + BC(v, φ) = F(v, φ), (1)

where M, C, F are the mass, damping and external force operators, respectively. KL and KNL

are the linear and nonlinear stiffness operators, respectively. BC is the boundary condition

operator. φ denotes the admissible functions and v are solutions of Eqs. (1).

M(v̈, φ) =

∫ l

0

mv̈φdx (2a)

C(v̇, φ) =

∫ lb

0

cv̇φdx (2b)

F(v, φ) =

∫ lb

0

(Fub
φb + Fvbφb)dxb +

∫ lc

0

(Fvcφc + Fuc
φc)dxc (2c)

KL(v, φ) =

∫ lb

0

(EIbv
′′

bφ
′′

b − PHv
′

bφ
′

b + EAbu
′

bφ
′

b)dxb+

+

∫ lc

0

(Hv′cφ
′

c + EAcu
′

cφ
′

c)dxc (2d)

KNL(v, φ) =

∫ lc

0

EAc[(Y
′

c + v′c)(u
′

c + Y ′

c v
′

c +
v′2c
2
)φ′

c + (Y ′

c v
′

c +
v′2c
2
)φ′

c]dxc, (2e)

BC(v, φ) =
[

Hv′c + EAc(Y
′

c + v′c)(u
′

c + Y ′

c v
′

c + v′2c /2)
]

φc|
lc
0
+

+ EAc(u
′

c + Y ′

c v
′

c + v′2c /2)φc|
lc
0
+ EIbv

′′′

b φb|
lb
0
− EIbv

′′

bφ
′

b|
lb
0
+ (2f)

+ PHv
′

bφb|
lb
0
+ EAbu

′

bφb|
lb
0

Here (∗)′ = d(∗)/dxi, i = c, b and ˙(∗) = d(∗)/dt, H is the component along the chord of

the mean static cable pretension T in the cable (due to the small slope, H and T are practically

equal), Y is the initial configuration of the cable and, due the hypothesis of small sag (D)

to span ratio, a parabolic function is assumed Y (xc) = 4D(xc/Lc − (xc/Lc)
2). Finally, ε =

uc+Y ′v′c+1/2v′2c +1/2w′2

c is the elongation of the cable; φb and φc stand for the beam and cable

admissible functions, respectively. PH is the guy force component in the mast axis direction.

After stating the weak formulation, the system is discretized by means of an ad hoc non-

linear finite element (NLFEM) formulation. The column is modeled using a two nodes, 6-

DOF (transverse and axial displacements and slope at each node) beam elements (Hermite

interpolation functions for the transverse displacements and their derivatives and linear inter-

polation functions for the axial displacements and the torsional rotations). The cable is rep-

resented using a three nodes, 6-DOF (axial and transverse displacements at each node) cable
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element (cuadratic interpolation functions). The nonlinear dynamic response is obtained using

the Newton-Raphson method for the iterations and the Newmark method for the time integra-

tion.

As an initialization and before starting the dynamic analysis, the pretension of the guys is

applied through deformation of the cables (step 1); then, the self-weight of the guys is activated

(step 2). Steps 1 and 2 are depicted in Fig. 2 (b) and (c). The position of the anchors and

the initial pretension are checked (step 3). If the error is less than 0.5%, the program uses this

deformed/stressed state as the initial state of the dynamic analysis. Otherwise, the initial length

of the cable is modified (step 4) and steps 1 to 4 are repeated until the error meets the prescribed

tolerance.

(a) Geometry. (b) Step 1: pretension. (c) Step 2: Self weight.

Figure 2: Geometry of the studied guyed mast and first two steps to get the initial deformed/stressed configuration

for the dynamic/uncertainty studies.

To reduce the runtime, the initial configurations as well as the rotation, mass and linear

stiffness matrices were first solved and preallocated. Thus, the solver only needs to recalculate

the linearized stiffness matrix of the cable elements and the residual vectors at each iteration.

Also, a parallelization of the algorithm is implemented.

2.2 Numerical illustration

The studied case consists in a 20 m height guyed mast, as depicted in Fig. 2 (a), with one

level of three cables connected to the mast at the top. The anchors of the cables are separated

10 m from the mast and 120o of each other. The mast is fixed at the base and it is modeled

using 5 beam elements with consideration of the second order effect. The cables are pinned

at the anchor point and each cable is discretized with 5 three-node nonlinear cable elements.

This article will focus on the influence that the uncertainty on the initial cables pretension value

(H) have on the modal features of the structure. The assumed values of the constants for these

example are detailed in Tab. 1.

3 UNCERTAINTY QUANTIFICATION

The uncertainty quantification is performed considering guys tension H (corresponding to the

deterministic parameter H), as a random variable. The Principle of Maximum Entropy (PME)

(Shannon, 1948; Cursi and Sampaio, 2015) allows to determine the best PDF that satisfies the

imposed constraints, and introduces no unwarranted information, i.e. supplied data is equal to

the removed uncertainty (Kapur and Kesavan, 1992).
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Table 1: Numerical illustration. Values of constants and parameters of Eqs. (2).

Properties Value

E (GPa) 209

Ix = Iy = Iz (m4) 3×10−5

Ab (m2) 1.5×10−3

mb (kg/m) 11.77

Ac (m2) 7.85×10−5

mc (kg/m) 0.62

H (N) 500 - 13500

The PME states that, subjected to known constraints, the PDF which best represents the

current state of knowledge is the one with largest entropy. PME addresses the problem in a

statistically sound way. The approach is systematic and allows to handle data which is limited

or coming from different sources.

The measure of uncertainty of a random variable X is defined by the following expression

S(fX) = −

∫

D

fX(X)log(fX(X))dX, (3)

in which fX stands for the PDF of X and D is its domain. The maximization problem is

frequently solved using Lagrange’s method, with a multiplier accounting for each constraint.

Assuming the constraints of positiveness and bounded second moment, the PME leads to a

gamma PDF. The gamma distribution with parameters a and b, where E(X) = ab ; σ2

X = ab2,
is given by the expression:

f(x|a, b) =
1

baΓ(a)
xa−1e

−x

b . (4)

Afterwards, Monte Carlo simulations are performed in order to find the influence of the guys

tension H with the selected PDF, on the structural response. To achieve significant statistical

results, a convergence study on the standard deviation was first performed to determine the

necessary number of realizations of the Monte Carlo simulations.

The range of values of the initial pretension was chosen following the standard code CIRSOC

306 (1995). Once the realizations are finished, the PDF graphs are constructed using the ksden-

sity function of MATLAB, that estimates the PDF of a set of data using the kernel method. The

bandwidth for the kernel function (here a normal function is used), is optimized in MATLAB,

and it is useful when the target PDF is normal, but can give wrong results when that condition is

not fulfilled. In this work, after several tests, and following an engineering criterion, the authors

adopted a bandwidth of 0.05, that gives as result smooth PDFs and allows to observe the all the

interesting statistical characteristics.

The efficiency of the stochastic computational model is strongly dependent on the structural

model and on the statistical tools. Regarding the first, the size and complexity conditions de-

termine the time in which the deterministic model is solved. Without optimization, a dynamic

study on a nonlinear finite element model of this size (102 degrees of freedom), is hardly feasi-

ble, due that, in top of this, the stochastic study requires thousands of realizations (i.e. solution

of the deterministic model).

J.S. BALLABEN, M.B. ROSALES, R. SAMPAIO1208

Copyright © 2017 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
H [N]

2

4

6

8

10

12

Fr
eq

ue
nc

y 
[H

z]

Figure 3: Deterministic eigenvalues evolution with the initial tension.

4 RESULTS

4.1 Natural frequency analysis

The stiffness matrix of the elements is computed using the initial deformed shape. The

reduction of the stiffness of the column due the force components of the guys is also considered.

In Fig. 3, the deterministic evolution of the first 20 natural frequencies with the tension is

depicted. The nonlinear evolution of each eigenvalue (depicted as a single colored curve in Fig.

3) with H is a consequence of the nonlinear formulation of the cables. In some cases, the curves

become parallel and close, though no crossings are observed.

Fig. 4 depictes the eigenvalue study results, considering uncertainty through H. For a given

value of E(H), rather than a single value of frequency associated to a modal shape, PDF of the

natural frequencies is obtained. The evolution of the distributions with E(H) is depicted in Fig.

4, where the darkest colors denote a higher values of the PDF. In general, the wider frequency

zones correspond to local cable modal shapes. The nonlinear influence of the cables is also

apparent in the eigenvalue study considering a random H, since the mode of the distribution

of each eigenvalue varies in a nonlinear fashion with H. Also, it can be seen that some of the

closest eigenvalue curves are merged with a single PDF; these curves correspond to similar

modal shapes and the stochastic modeling acts as a filter that allows a clearer representation

of the reality by mean of PDFs. Since the guyed masts are flexible structures and the precise

determination natural frequencies is an important issue, the relevance of the results depicted in

Fig. 4 is apparent.

4.2 Modal shape analysis

Since the effective stiffness of each part (cables and column) depends on the initial tension,

and given the wide range of H studied, each eigenvalue curve in Fig. 3 can not be, in general,

associated to a single modal shape. At some values of the initial tension, rapid changes (with

respect to the previous rate) in the derivative of the curves occur. In these zones, the veering

phenomena is observed and the mode shape associated to a given eigenvalue starts to change

gradually, in general, from a local (cable or column) shape to a global cable-column shape.

Then, when the changes in the derivative slow down, the modal shape becomes local again.
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Figure 4: Eigenvalues evolution with the mean value of the stochastic initial tension.

An example of this process is illustrated in Fig. 5: the evolution of two eigenvalues with the

cable initial tension where the veering phenomena is observed is shown at the top plot; the

local and global modal shapes associated with certain ranges of H are depicted with different

line patterns. The distinction between a local and a global modal shape is performed using the

so-called localization factor Gattulli and Lepidi (2007):

Λi,j =
(Rjφi)

T
M(Rjφi)

φT
i Mφi

; Λi,j ∈ [0, 1] (5)

where φi is the ith eigenvector and M is the mass matrix of the model while Rj is a diagonal

matrix of ones and zeroes that allows a selection of the degrees of freedom along the cables.

The Λi,j factor expresses the localization level of the ith eigenvector in the jth cable domain.

Clearly, Λi,j = 0 corresponds to a local cable modal shape and Λi,j = 1 to a local column modal

shape. When 0 < Λi,j < 1, a global (hybrid) cable-column modal shape is present. In Fig. 5

(bottom) the different modal shapes associated with the corresponding eigenvalue and range

of H are depicted. Here, a smooth but rapid transition between a local (i.e. cable or column)

mode to other local shape (i.e. column or cable, respectively) corresponds to the hybridization

of the mode shapes. Also, the hybridization regions correspond to the veering zones, where an

exchange of local modal shapes occur between the eigenvalues (as can be seen in Fig. 5 top for

H ≈ 9500 N). The global shapes are rare (are apparent in small ranges of H) probably due the

difference in the stiffness between the cables and the column.

Additionally, a decrease in the frequency is observed in particular ranges of H (i.e. mode

1, H=11000:13500 N or mode 7, H=3000:9000 N), for increasingly higher values of H . This

effect always happens in local column modes and it is a consequence of the second order effect,

which leads to a reduction of the column stiffness, proportional to the initial tension of the guys.

If the second order effect is neglected, this particularity is lost.

In Fig. 6(a) the veering (and hibridization of modal shapes) zones are highlighted in darker

color, for the first 20 eigenvalues. In Fig. 6(b) the zones where there is a 95% probability

of presence of a global modal shape when H is considered a random variable H are plotted

in darker colors (on the mean eigenvalue curves). It can be seen that the darker zones are far

beyond the veering zones, and occupy the whole space where the local column modal shapes are
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Figure 5: Hybridization of modal shapes and veering of eigenvalues: evolution with the initial tension and veering

of eigenvalues (top) and modal shapes associated with the eigenvalues (bottom).

expected in a deterministic study. Then, the consideration of a stochastic H not only modifies

the size of the zones of probable hybridization, but also suggests that a local column modal

shape is highly improbable, for any given value of E(H).

The results, considering a random H, have important repercussions, in both the academic

and professional fields, i.e. from an academic point of view, the use of the most probable modal

shapes could lead, in the formulation of reduced order models, to a better predictions of the

dynamic behavior. From the professional perspective, the statistic description the natural fre-

quencies is a safer, simpler and realistic definition of an important design parameter. Moreover,

the evaluation of the most probable modal shapes may guide to a better understanding of the

dynamic behavior of the structure.

5 FINAL REMARKS

In this work, an optimized finite element formulation is used to study the nonlinear modal

features of a guyed mast. The results are analyzed from both the classic deterministic and

statistical points of view, considering the initial tension of the guys with a gamma distribution

as the random structural parameter H.

Regarding the deterministic study, the natural frequencies of the guyed mast show a nonlinear

relationship with the initial tension. The veering phenomena is observed and the regions of

veering corresponds to transition zones (which exhibit global or hybrid -column and cable-

modes) between local -column or cable- modes. The so-called localization factor is employed to

distinct local from hybrid modes. Also, due the influence of the second order effect, a reduction

in the natural frequency occurs (for increasing values of E(H)) for local column modal shapes.

When the initial tension is considered stochastic, the probability density distribution of the
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(a) Deterministic localization factor.
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(b) Stochastic localization factor.

Figure 6: Localization factor for each eigenvalue (darker colors indicate hybridization of cable and column modal

shapes.)

eigenvalues were plotted. Again, it can be observed a nonlinear evolution of the mean value of

the eigenvalue PDF with E(H). The veering phenomena is lost within the crossing of the PDFs

path of different eigenvalues. The modal shapes also are affected by the randomness of H, since

the hybridization occurs far beyond the points of veering, from the zones of local column modes

to the point thta the probability of occurrence is almost negligible for any given combination of

E(H) and eigenvalue.

The results, considering a random H, have important aftermaths, which can impact from

reduced order models formulation to a realistic knowledge of the dynamic properties of a flex-

ible structure important design parameter which are important design parameters. Moreover,

the evaluation of the most probable modal shapes may guide to a better understanding of the

dynamic behavior of the structure. Future works over this model should include dynamics anal-

ysis, with variation in amplitude, frequency and direction of the load, consideration of stochastic

wind load, guys with different tension and/or stochastic tension or the study of the dynamics

during the breakage of a guy.
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