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Abstract

Sensor network design problem (SNDP) in process
plants includes the determination of which process
variables should be measured to achieve a required
degree of knowledge about the plant. We propose
to solve the SNDP problem in plants of increasing
size and complexity using a hybrid algorithm based
on Simulated Annealing (HSA) as main metaheuristic
and Tabu Search embedded with Strategic Oscillation
(SOTS) as a subordinate metaheuristic. We studied the
tuning of control parameters in order to improve the
HSA performance. Experimental results indicate that
a high-quality solution in reasonable computational
times can be found by HSA effectively. Moreover,
HSA shows good features solving SNDP compared
with proposals from the literature.

Keywords: Cooling Schedule, Optimization, Sensor
networks, Simulated Annealing

Resumen

El problema de diseño de una red de sensores en
plantas de proceso (Sensor Network Design Prob-
lem, SNDP) consiste en determinar las variables de
proceso que deben ser medidas, a fin de alcanzar el
grado de conocimiento requerido de dicha planta. Pro-
ponemos resolver el problema SNDP en plantas de
tamaño y complejidad creciente utilizando un algo-
ritmo hı́brido basado en Recocido Simulado (Hybrid
Simulated Annealing, HSA) como metaheurı́stica prin-
cipal y Búsqueda Tabu con Oscilación Estratégica
como metaheurı́stica subordinada. Investigamos los
ajustes de los parámetros de control para obtener el
mejor desempeño del HSA. Los resultados experi-
mentales indican que el HSA puede efectivamente

encontrar una solución de buena calidad en tiempos
de cómputo razonable. Mas aún, HSA muestra buenas
caracterı́sticas en la solución de SNDP en comparación
con algoritmos propuestos en la literatura.

Palabras claves: Esquemas de enfriamiento, Opti-
mization, Recocido Simulado, Redes de Sensores

1 Introduction

The monitoring in a chemical plant is absolutely cru-
cial and it has considerable impacts on aspects such
as economic, safety or control. Bearing in mind that
the process state at any time must be warranted. For
that purpose the information is collected by sensors
distributed throughout the plant, responsible for mea-
suring and transmitting the values of magnitudes such
as temperature, humidity, pressure, etc. The set of
devices used in the measurement is called the sen-
sor network (SN, Sensor Network). The SN design
is systematically made by formulating an optimiza-
tion problem called Sensor Network Design Problem
(SNDP), which is a discrete optimization problem. In
real work scenarios, the number of variables involved
is quite large and the SNDP formulation can be more
or less complex depending on the performance criteria
and the restrictions set imposed on it.

SNDP was formulated by Bagajewicz [1], and tack-
led by Nguyen and Bagajewicz [2] using a new tree
search method that exploits certain cost properties of
the different nodes in the tree to efficiently prune non
optimal nodes using a breadth-first/level traversal tree
search method to obtain the global optimum. Other
approaches modeled the problem combining the in-
teger and non-linear programming and solved it by
means of depth-first or breadth-first tree searches. The
main disadvantage of all these methods is that they are
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highly time consuming. Consequently, to achieve an
efficient optimization, it is important to have a tool that
allows solving the problem for different formulations
of different complexity and size.

In this sense, metaheuristic methods appear as at-
tractive general-purpose optimization methodologies
that allow to solve a wide range of formulations,
including those where it is required optimize more
than one performance criterion at a time, i.e. multi-
objective problems. The literature presents genetic
algorithms [3], swarm intelligence [4], among oth-
ers population-based metaheuristics. Furthermore, hy-
bridized metaheuristics have been reported to solve
this problem, Carnero et al. [5] propose an algorithm
called PBIL SOTS, which combines estimation of dis-
tribution algorithm with a tabu search improved by
using a strategic oscillation.

In contrast with the population-based metaheuris-
tics previously mentioned, the Simulated Annealing
(SA) [6] may be classified into the trajectory-based
group and it has proved to be an efficient method
to solve many hard combinatorial optimization prob-
lems [7]. In [8], we present a hybrid algorithm based
on Simulated Annealing (HSA) as main metaheuristic
and Tabu Search embedded with a Strategic Oscilla-
tion (SOTS), as a subordinate metaheuristic, to solve
the SNDP. Its adaptation to the resolution of a particu-
lar problem implies, among other aspects, to make an
adjustment of its parameters that can obtain the best
performance of the proposed technique. Therefore, the
focus has been on the tuning of the algorithmic control
parameters to reach an equilibrium between the solu-
tion quality and time consumption. The current work
is an extension of our previous article [8], where the
objective is reformulated into three research questions:

• RQ1: Can the HSA find high quality solutions for
the SNDP? (Efficacy)

• RQ2: Which combination of the control parame-
ter tuning allows to reach the best performance?
(Efficiency)

• RQ3: Does HSA improve the techniques reported
in the state-of-the-art to solve this problem?
(Competitive with the state-of-the-art)

In addition, from the analysis of the previous results we
extend our work by proposing a new research question:

• RQ4: Which combination of the control parame-
ter adjustments impacts over the number of eval-
uations? (Efficiency)

To answer the previous questions about the HSA
behaviour, we address more extensively the SNDP and
the HSA algorithm description. In this way, we pro-
vide a more thorough insight into both problem and
algorithm descriptions. Moreover, a comparison with
other methods and numerical test results is provided

for several case studies, and the effectiveness of the
proposed method is analyzed. The analysis of the re-
sults is enlarged by including other metrics, that allows
us to improve the comprehension of the relation be-
tween the solution quality and the HSA computational
effort.

The rest of this article is organized as follows. In
Section 2 the SNDP is described. Sections 3 and 4
introduce and explain the approach proposed in this
work. Section 5 refers to the experimental analysis
and the methodology used. Sections 6 and 7 present
the analysis of results and the comparison with the
literature. Finally, the main conclusions and future
lines of research are drawn in Section 8.

2 Sensor Network Design Problem

The SNDP is summarized as a problem of finding the
minimum cost network that satisfies precision and es-
timability constraints. Formally, a SNDP solution has
to satisfy these constraints for a set of key variable esti-
mates, as stated by Eq (1), where q is an n-dimensional
vector of binary variables such that qi = 1 if variable
i is measured, and qi = 0 otherwise, cT is the cost
vector; σ̂k is the estimate standard deviation of the
k-th variable contained in Sσ after a data reconcilia-
tion procedure is applied [9], and El stands for the
degree of estimability of the l-th variable included in
SE . Furthermore, Sσ and SE are the set of key process
variables with requirements in precision and ability to
be estimated, respectively.

min cT q (1)

subject to:

σ̂k(q)≤ σ
∗
k (q) ∀ k ∈ Sσ

El ≥ 1 ∀ l ∈ SE

q ∈ {0,1}n

In this formulation, it is assumed that a linearized
algebraic model represents plant operation, measure-
ments are subject to noncorrelated random errors, there
is only one potential measuring device for each vari-
able, and there are no restrictions for the localization
of instruments. Regarding the definition of degree
of estimability, let us first denote A(p) as the set of
all possible combinations of p measurements, and
call A j(p), the j-th element (combination) of this set.
The l-th variable (measured or not) has a degree of
ability for estimation El , if it remains estimable after
the elimination of any combination A j(El1) ∈ A(El1)
and it becomes unobservable when at least one set,
A j(El) ∈ A(El), is eliminated [10]. If El is set equal
to one, the feasibility of the constraint can be checked
by executing a variable classification procedure, which
can be accomplished by matrix projection, QR decom-
position, or matrix co-optation [11, 12].
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Figure 1: Simulated Annealing flowchart.

3 Simulated Annealing Algorithm

Simulated Annealing is a well-studied trajectory-based
metaheuristic used to address discrete and, to a lesser
extent, continuous optimization problems. SA is based
on the analogy to the annealing process of metal and
glass, which assumes a low energy configuration when
cooled with an appropriate cooling schedule. The SA
algorithm simulates the energy changes in a system
subjected to a cooling process until it converges to
an equilibrium state (steady frozen state), where the
physical material states correspond to problem solu-
tions, the energy of a state to cost of a solution, and
the temperature to a control parameter.

At the beginning (with a high temperature), SA ac-
cepts solutions with high cost values under a certain
probability (Boltzmann criterion) in order to explore
the search space and to escape from local optima. Dur-
ing the annealing process this probability decreases
according to the cooling temperature, intensifying the
search and reducing the exploration in order to exploit
a restricted area of a search space. Fig. 1 shows the
flowchart of this algorithm.

Simulated Annealing evolves by a sequence of tran-
sitions between states and this sequence is generated
by transition probabilities. Consequently, SA can be
mathematically modeled by Markov chains. Each
chain is generated by a transition probability, which is
computed involving the current temperature.

Most of the search components of SA are fixed in
function of the problem to be solved. Consequently,
the search space, cost (evaluation) function, perturba-
tion operator, and local search are directly related to
the problem. The main search components, which are
variable during the process, are the initial temperature,

Algorithm 1 Pseudocode for setting T0
1: function initTemp (Ts)
2: T0 = Ts;
3: while acceptability rate is not reached do
4: update T0 ;
5: generate(q1);
6: H1=evaluate(q1);
7: for i=0 to test do
8: q2 = perturbation Operator(q1);
9: H2=evaluate(q2);

10: if (H2 < H1) or (exp((H2−H1)/T ) > random(0,1)) then
11: q1=q2;
12: H1 = H1;
13: end if
14: end for
15: end while
16: return T0

the temperature through their annealing schedules (see
Subsection 3.2), and the Markov chain length [7] (ex-
plained in Section 3.3).

3.1 Initial Temperature

One of the most important issues in SA is the choice
of the right initial temperature, which must not be
excessively high to conduct a random search for a
period of time but high enough to allow moves to al-
most neighborhood state. The classical and intuitive
method consists of computing a temperature such that
the acceptance ratio is approximately equal to a given
value χ0 [6]. Given a Ts seed temperature, the ini-
tial temperature is computed by the procedure shown
in Algorithm 1. The output, T0, is determined such
that, when applying the Boltzmann criterion, worse
solutions are accepted with a high probability value.
To achieve this, the algorithm starts from a Ts that is
increased until the acceptance ratio is reached.

3.2 Cooling Process

The scheme to control the annealing or cooling process
is also crucial, so that the system gradually cools from
a higher temperature, ultimately freezing to a global
minimum state. Many attempts have been made to
derive or suggest good schedules [7], being the most
known cooling processes: the proportional [6], expo-
nential [6], and logarithmic [13] schemes.

Proportional Scheme. In this case, the tempera-
ture is updated using the Eq (2), where α is a con-
stant close to, but smaller than, 1 and calculated as the
Eq (3) shown. This scheme is the most popular cool-
ing function, since the temperature decay is neither too
slow nor too fast allowing to achieve an equilibrium
between exploitation and exploration.

Tk+1 = α ×Tk (2)

α =
k

k+1
(3)

Exponential Scheme. The exponential cooling
scheme produces the temperature decay by applying
the Eq (4), where the constant αk < 1 is calculated as
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presented in the Eq (5). This schedule quickly cools
the temperature reducing the required time and iter-
ations to converge to a good solution. In large and
complex problems, this becomes in a disadvantage,
given that the equilibrium between the exploitation
and exploration is broken.

Tk+1 = Tk ×α
k (4)

α
k =

ek

ek+1 (5)

Logarithmic Scheme. This cooling scheme mod-
ifies the temperature, as shown in the Eq (6). The
chain converges to a global and minimal energy value,
where the constant C is computed as the Eq (7) in-
dicates. This schedule is too slow to be applied in
practice but has the property of the convergence proof
to a global optimum [14].

Tk+1 =C×Tk (6)

C =
ln(k)

ln(k+1)
(7)

Random Scheme. This last variant is a random
schedule [15], which combines the three previous cool-
ing schemes in only one schedule process. In each it-
eration, one of these schemes are randomly selected in
order to reduce the temperature. In this way, we try to
enhance the SA by aggregating the advantages of these
three schemes and mitigating their disadvantages.

3.3 Markov Chain Length

The Markov chain length (MCL) is the number of re-
quired transitions (moves) to reach the equilibrium
state at each temperature. This number can be either
static or adaptive. At the first case, the number of
movements is calculated before the search starts. The
static approach, named MCLs, assumes that each tem-
perature Tk is held constant for a sufficient and fixed
number of iterations. In this work, each Tk is held
constant for 30 iterations, a common number used in
the scientific community.

For the adaptive way, the Markov chain length de-
pends on the characteristics of the search. For instance,
Cardoso et al. [16] consider that the equilibrium state is
not be necessarily attained at each level of the tempera-
ture. Consequently, the cooling schedule is applied as
soon as an improved candidate (neighbor) solution is
generated. In this way, the computational effort can be
drastically reduced without compromising the solution
quality. This approach is referred as MCLa1. Another
adaptive approach is propose by Ali et al. [17], named
as MCLa2, which uses both the worst and the best
solutions found in the Markov chain (inner loop) to
compute the next MCL. This strategy allows the possi-
bility of increasing the number of function evaluations

at a given temperature if the difference between the
worst and the best solutions increases, but the whole
of the increased Markov chain will not be required if
an improved solution is found.

4 Hybrid Simulated Annealing Algo-
rithm for SNDP

In Hernández et al. [18], we propose an adapted and hy-
bridized SA algorithm to solve the SNDP in chemical
plants. SA works as main metaheuristic with a sub-
ordinated ad hoc local search, inspired in tabu search
with strategic oscillation technique, SOTS, giving rise
to the Hybrid Simulated Annealing algorithm. This
hybridization is applied in two levels: in the first one
to generate an initial solution, and in the second level
to improve the solution during the annealing process.

The perturbation scheme of the current solution is
carried out through a certain swapping number of mea-
sured variables to unmeasured ones and vice versa in
order to generate a candidate solution q2 from q0. This
swap mutation is applied over each variable with a cer-
tain probability (called Pswap) [19]. Furthermore, the
temperature is updated using the geometric criterion.

The first issue of algorithm design is related to
the representation of a solution. In equation 3 it is
assumed that each variable can be measured with
only one type of instrument. In this case, a solu-
tion to the SNDP problem is an n-dimensional vector
q= {q1,q2, . . . ,qn} of binary variables, where qi = 1
if variable i is measured, and qi = 0 otherwise, as ex-
plained in Section 2. In order to evaluate a solution,

the Eq (8) is used as an objective function, where
n
∑

i=1
ci

is the cost of the SN when all variables are measured
(upper bound of the SNDP objective function). When
restrictions are not met, the Eq (9) computes S(q),
where rno and rnp represent the number of observ-
ability and precision constraints not met for a solution
vector q.

H =


n
∑

i=1
ciqi if q is feasible

n
∑

i=1
ci(1+S(q)) if q is infeasible

(8)

S(q) =
rno
SE

+
1

rnp

r

∑
i=1

np
σ̂i −σ∗

i
σ̂i

(9)

The pseudo-code of the HSA algorithm proposed
to solve the SNDP optimization problem is shown in
Algorithm 2. HSA begins with the initialization of the
temperature (line 2). After that, HSA generates an ini-
tial solution q0 applying a specific-heuristic proposed
in [20] as the first hybridization level (line 3), which is
then evaluated (line 4). Once the initialization process
ends, an iterative process starts (lines 5 to 24). As a
first step in the iteration, the second level of hybridiza-
tion is carried out in order to intensify the search into
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Algorithm 2 HSA Algorithm to solve the SNDP
1: k = 0;
2: T =initTemp(Ts);
3: generate(q0) by means of the first hybridization level;
4: H0 = evaluate(q0);
5: repeat
6: repeat
7: k = k + 1;
8: if random(0,1) < Pso then . Pso: probability to apply SOTS
9: q1 = SOTS LS(q0);

10: H1=evaluate(q1);
11: if (H1 < H0) or (exp((H1−H0)/T ) > random(0,1)) then
12: q0=q1;
13: H0 = H1;
14: end if
15: end if
16: generate q2 = Pswap(q0);
17: H2 = evaluate(S2);
18: if (H2 < H0) or (exp((H2−H0)/T ) > random(0,1)) then
19: q0 = q1;
20: H0 = H2;
21: end if
22: until (k mod MCL) == 0
23: update(T );
24: until stop criterion is met
25: return S0;

the current region of the solution space. In this way a
solution, q1, is obtained by applying the SOTS local
search to q0 (line 9), and then the Boltzmann criterion
is applied to accept q1 (lines 11-14). In the next step,
the Pswap perturbation operator is used to obtain a
neighbor, q2, from q0 (line 16), in order to explore
another areas of the search space. If q2 is worse than
q0, q2 can be accepted under the Boltzmann probabil-
ity (line 18, second condition). In this way, at high
temperatures (T ) the exploration of the search space
is strengthened. In contrast, at low temperatures the
algorithm only exploits a promising region of the solu-
tion space, intensifying the search. In order to update
T , a cooling schedule is used (line 22) and it is applied
after a certain number of iterations (k) given by the
Markov Chain Length (MCL) (line 23). Finally, SA
ends the search when the stop criterion is met (1250
iterations of the mean loop).

The second design issue involves the main search
components that are variable during the process. In or-
der to study the impact of different initial temperatures
in the performance of the HSA, we use Ts values be-
longing to {1,900} from small to large seeds. In this
way, we test very dissimilar seeds allowing a differ-
ent number of HSA’s main loop iterations. When the
cooling scheme is studied, we propose four different
HSA approaches, as introduced earlier: HSAProp that
adopts the proportional annealing schedule, HSAExp
uses the exponential cooling scheme, HSALog employs
the logarithmic schedule, and HSARand that applies the
random scheme. Finally, we also consider three dif-
ferent ways to compute the Markov chain length, as
explained in Section 3.3. By combining all the afore-
mentioned approaches, a total of 24 HSA’s variants are
obtained to solve the SNDP.

5 Experimental Design

In order to evaluate HSA performance, a test set of
5 design problems were considered, which includes
processes of different complexity and size and whose
operation can be represented by both linear and non-
linear models. The first one involves 11 units and
28 streams. Case study 2 is a continuous stirred tank
reactor (CSTR) [21], which is composed of 13 vari-
ables (total flow rates, compositions, and temperatures)
and 5 mass and energy balances. The mineral flota-
tion problem [22], MFP, is selected as case study 3.
Its model is bilinear and composed of 24 variables
(8 flow rates and 16 compositions) related by total
and component mass balances. For case studies 2
and 3, the model is linearized around the nominal op-
eration point of the process. Finally, case studies 4
and 5 correspond to large-scale process flow sheets,
and variables are related by total mass balances (case
study 4, 19 units and 52 streams; case study 5, 47
units and 82 streams). The interested readers can
gain access to the file containing information about
the case studies from https://www.ing.unrc.edu.

ar/archivos/sndp_cases.doc. The standard devi-
ation of flow meters is 2.5%, 1%, 2%, 2%, and 2% of
the corresponding true flow rates for case studies 1-5,
respectively. The complexity of the set of constraints
imposed on all case studies can be found in [5].

The computational environment used in this work
to carry out the experimentation consists of comput-
ers with Processor Intel Core i5 CPU 4440 @ 3.10
GHz, 4GB RAM, using MatLab R2011b. Because of
the stochastic nature of the algorithms, 30 indepen-
dent runs of each design problem were performed to
gather meaningful experimental data and statistical
confidence metrics were applied to validate the results
and conclusions. As a result, a total of 3600 execu-
tions (24 HSA variants × 5 design problems × 30
runs) were carried out. Before performing the statisti-
cal tests, we first checked whether the data followed
a normal distribution by applying the Shapiro–Wilks
test. Where the data was distributed normally, we
later applied an ANOVA test. Otherwise, we used
the Kruskal–Wallis test. This statistical study allows
us to assess whether or not there were meaningful
differences between the compared algorithms with a
confidence level of 99%.

6 Analysis of HSA Results

In this section, we summarize and analyze the results
of using the HSA’s variants proposed in this work on
the all SNDP case studies in order to answer the RQs
formulated in the Section 1. First, we study the so-
lution quality of the 24 HSA’s variants: HSAProp,
HSAExp, HSALog, and HSARand with Ts values be-
longing to {1,900} and the three ways to compute
the Markov chain length. The tables 1 and 2 present
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Table 1: Best and median cost values found by these 24 variants for the all cases and its percentage of hits
Case Algorithms Ts = 1 Ts = 900 KW

Study MCL Cooling Scheme Min. Median % hits Min. Median % hits
1 All All 1106.46 1106.46 100 1106.46 1106.46 100 =

2 All All 735 735 100 735 735 100 =

3 All All 2928 2928 100 2928 2928 100 =

4 All All 1154.34 1154.34 100 1154.34 1154.34 100 =

Table 2: Best and median cost values found by these 24 variants for the Case Study 5
Algorithms Ts = 1 Ts = 900 KW

MCL Cooling Scheme Min. Median Min. Median

MCLs

HSAProp 50845.37 54974.18 50845.16 50845.16 6=

HSAExp 50845.16 54974.18 50845.16 54974.18 =

HSALog 50846.39 54974.18 50845.16 50846.18 6=

HSARand 50845.37 52909.78 50845.37 54974.18 6=

MCLa1

HSAProp 50845.16 54973.16 50845.16 50845.16 6=

HSAExp 50845.16 52909.67 50845.16 52909.16 =

HSALog 50845.16 50845.67 50845.16 50845.16 6=

HSARand 50845.16 50845.16 50845.16 50845.16 =

MCLa2

HSAProp 50845.16 52909.16 50845.16 50845.16 =

HSAExp 50845.16 50845.16 50845.16 50845.16 =

HSALog 50845.16 50845.16 50845.16 50845.16 6=

HSARand 50845.16 50845.16 50845.16 50845.16 6=

Figure 2: Hits of each algorithmic variant for case
study 5.

the best and median cost values found by these 24
variants for all case studies, besides the percentage of
hits (%hits) is included in Table 1 for cases 1-4 and
in Fig. 2 for the fifth case. In these tables the best
known cost values are boldfaced. Finally, we analyze
the HSA’s variants performance considering the aver-
age number of evaluations to find the best solution and
the average execution total time in the figures 3 and 4,
respectively.

6.1 Solution Quality

From the analysis of the result quality, an important
separation of the case studies is observed. For the first
four cases (see Table 1), the all algorithmic variants
find the best known solution in each execution. How-
ever when the case study 5 is solved (see Table 2 and

Fig. 2), different behaviors between the proposed algo-
rithms is detected. These differences are statistically
corroborated using the Kruskal-Wallis (KW) test with
a confidence level, α = 0.01.

The results for the fifth case study deserves a de-
tailed analysis. If the Ts parameter is considered, the
highest percentages of hits are reached for Ts = 900,
and the optimal solution is found by 11 of 12 HsA’s
variants. This selection for Ts is statistically supported
by the median values because they are equal to the
optimum in 8 of 12 opportunities against 4 times when
Ts = 1. Analyzing the three MCL options, a signifi-
cant improvement in the solution quality is observed
if the adaptive variants are applied. In other words,
only the application of MCLa1 or MCLa2 in HSA
warranties to find the optimum. Finally, the results are
assessed considering the cooling scheme. None direct
relation between the kind of cooling process and the
result quality is observed, but the behavior of these
schedules is highly dependent of the combination of
the Ts value and MCL option. For example, when the
parametric configuration Ts = 1 and MCLs is applied
the best results are found by HSAExp, but if Ts = 900
the best option is HSAProp.

The results of the different HSA’s variants indicates
that they find the optimal solution for the all study
cases. As a consequence, the RQ1 related with the
efficacy of the proposals is answered affirmatively .

6.2 Performance Analysis

The performance is analysed considering two factors:
the number of evaluations to find the best solution and
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Figure 3: Number of evaluations to find the best solution for each algorithmic variant including all case studies.

the total execution time. Attending the first perfor-
mance factor for the case studies 1, 4, and 5, HSA
with Ts = 900 requires less number of evaluations to
find its best solutions against Ts = 1, as Fig. 3 shows.
This observation is reversed for the third case, while
for the second one no differences are detected, as the
KW tests proved.

Regarding the total execution time values (see
Fig. 4), the HSA’s variants using MCLa2 spend a sig-
nificant greater time than the other two MCL options.
Being MCLs, the way to compute the Markov Chain
length that minimizes the runtime for the all case stud-
ies. When the Ts values and schedule schemes are as-
sessed together, HSA presents similar execution times
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Figure 4: Total time (in seconds) spent by each algorithmic variant for all case studies.

for MCLs and MCLa1 in all study cases. Our conclu-
sions are supported by the KW tests performed.

6.3 Discussion

The HSA’s variants that implement MCLs maximize
the performance, obtaining the best known solution

for the first four case studies in every run. For the
case study 5, the MCLs application allows to reach a
relatively high percentage of hits with Ts = 900 and the
proportional cooling scheme (HSAProp). Furthermore,
a 100% of hits is achieved by the most time consuming
HSA’s variants (MCLa1 and MCLa2). However, the

Journal of Computer Science & Technology, Volume 20, Number 1, May 2020

-30-



Table 3: Comparison of the best HSA variant and PBIL SOTS, considering best solution statistics for each case
study.

Case
study

Best solution Mean best solution KW
PBIL SOTS Best HSA

variant PBIL SOTS Best HSA
variant

1 1106.50 1106.50 1106.50±0.00 1106.46±0.00 =
2 735.00 735.00 735.00±0.00 735.00±0.00 =
3 2928.00 2928.00 2929.20±0.69 2928.00±0.00 =
4 1154.34 1154.34 1154.34±0.00 1154.34±0.00 =
5 50845.16 50845.16 50886.63±41.29 50845.16±0.00 6=

MCLa1 application is significantly less expensive that
the MCLa2 one.

Considering the first four study cases, the HSA’s
variants that implement MCLs always obtain the best
solution with the maximum performance, showing sta-
tistically similar behaviors (KW test with α = 0.01).
But if the complexity of the case to solve grows (study
case 5), a trade-off between quality and time must
be achieved. In this sense, the answer to RQ2 and
RQ4 is summarized as follows: the best algorithmic
approaches to solve SNDP are HSAProp and HSA-
Log with Ts = 900 and the application of MCLa1 to
calculate the Markov chain length.

7 Comparison of HSA Variants against
a Literature Approach

In this section, we compare the behavior of the best al-
gorithmic variants of HSA versus other well-known al-
gorithm found in the literature for solving these SNDP
case studies, in order to answer the RQ3. In this sense
PBIL SOTS, introduced by Carnero et al. [5], has re-
cently reported results for these cases.

To compare this state-of-the-art algorithm versus
the best HSA’s variant, we use the averages and stan-
dard deviations for the five case studies, as shown in
the Table 3. Furthermore, a KW test is carried out
to corroborate the similarities or differences between
them. In general, we can observe that the PBIL SOTS
behaves similarly to the HSA in the least complex case
studies. However, statistically different behaviors are
observed for the fifth case study. In this sense, two
advantages in favor of HSA are observed: i) the aver-
age best solution is equal to the optimum, and ii) the
optimum is found in each run because the standard
deviation is equal to zero. In this way, we can say that
the answer to the RQ3 is affirmative.

8 Conclusions

This paper examines the appropriateness of using a
hybrid SA with the SOTS method to solve the SNDP.
The focus is on the analysis of the found solution qual-
ity and the performance of each HSA’s variant, which
arise from the combination of the algorithmic control
parameter tuning. As a consequence, 24 algorithmic
variants are introduced by considering two initial tem-
perature values (Ts ∈ {1,900}), four cooling schemes

(proportional, exponential, logarithmic, and random),
and tree ways to calculate the Markov Chain Length
(one static and two adaptive). We empirically assess
the effectiveness of the HSA’s variants in terms of solu-
tion quality, execution time, and number of evaluations
to answer the research questions formulated at the be-
ginning of this work. This assessment is carried out by
using five SNDP case studies of a growing complexity,
which represent different degrees of difficulty.

The results we had obtained answer our four re-
search questions regarding efficacy, efficiency, and
competitive with a state-of-the-art algorithm. We con-
clude that the HSA’s variants, which compute statically
the Markov chain length (MCLs), always obtain the
best solution with the minimum effort for the case
studies 1, 2, 3, and 4. Instead, for the most complex
case (the fifth one), a trade-off between quality and
time is achieved when HSA sets the initial tempera-
ture to a high value (Ts = 900), uses an adaptive MCL
(MCLa1), and applies the proportional cooling scheme.
Finally, we concluded that HSA algorithm is a com-
petitive algorithm in solving realistic SNDP cases.

A challenging extension of this work will be to
tackle other SNDP formulations. The idea behind this
future work is to improve the SA main heuristic by
introducing different specific local search mechanisms.
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