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Abstract 

Coumarins (2H-chromen-2-one) are oxygen-containing heterocyclic compounds that belong to 

the benzopyranones family. In this work we have synthesized different coordination complexes 

with coumarin-3-carboxylic acid (HCCA), o-phenanthroline (phen) and zinc(II). In the reported 

[Zn(CCA)2(H2O)2] complex, coumarin-3-carboxylate (CCA) is acting as a bidentate ligand while 

in the two prepared complexes, [Zn(phen)3]CCA(NO3) (obtained as a single crystal) and 

[Zn(CCA)2phen].4H2O,  CCA is acting as a counterion of the complex cation [Zn(phen)3]+2 or 

coordinated to the metal center along with phen, respectively. These compounds were 

characterized on the basis of elemental analysis and thermogravimetry. NMR, FTIR and Raman 

spectroscopies of the compounds and the CCA potassium salt (KCCA) allow to determine 

several similarities and differences among them. Finally, their behavior against alkaline 

phosphatase enzyme and their antimicrobial activities were also measured.  
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Abbreviations 

 

ALP alkaline phosphatase 

ATCC American Type Culture Collections 

CCA coumarin-3-carboxylate 

HCCA coumarin-3-carboxylic acid 

HSQC heteronuclear single quantum coherence 

KCCA coumarin-3-carboxylate potassium salt 

MIC minimum inhibitory concentration 

phen o-phenanthroline 
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1. Introduction 

Coumarins (2H-chromen-2-one) are oxygen-containing heterocyclic compounds that belong to 

the benzopyranones family and can be found mainly in plants. They have been associated with 

beneficial effects on human health, such as reducing the risk of cancer, diabetes, and 

cardiovascular diseases, among others. These effects are thought to be related to the radical 

scavenging effect, due to their antioxidant activities, along with other possible mechanisms, 

such as anti-inflammatory properties and interaction with several enzymes [1,2]. It is also well 

known that coumarin derivatives, such as coumarin-3-carboxylic acid (HCCA) can yield a wide 

variety of metal complexes with different coordination modes, spectroscopic properties, and 

potential applications (Scheme 1). The complexation of coumarin derived ligands to various 

metal ions established a promising route towards the development of new therapeutic agents 

[3,4]. For instance, an enhancement of antimicrobial activity of the silver(I)-HCCA coordination 

complex in comparison with the free ligand has previously been reported [5]. In addition, 1-10-

phenanthroline (phen) metal complexes can also act as both, bacteriostatic and bactericidal 

compounds [6]. 

O

O

O

O
H

HCCA
 

Scheme 1. Structure of coumarin-3-carboxylic acid  

Zinc is the second most abundant trace metal for humans, animals, plants and microorganisms 

after iron [7]. It is a multi-functional element that is found in almost 300 enzymes where it plays 

catalytic, co-catalytic, and/or structural functions [8]. A great degree of complexation is 

associated with zinc in biological systems. Hence, the most advantageous way to its biological 
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release in order to supply the free metal ion required for enzymatic synthesis facilitating Zn-

dependent biochemical processes is the use of low molecular weight chelates or complexes of 

Zn [9].  

In this paper, we have synthesized and studied two CCA containing complexes of zinc(II) and 

phen, [Zn(phen)3]CCA(NO3).7H2O (Znphen) and [Zn(CCA)2phen].4H2O (ZnCCAphen). The 

spectroscopic properties of these coordination complexes and those of the reported binary 

complex [Zn(CCA)2(H2O)2] (ZnCCA) [10] were evaluated. The structure of Znphen has been 

solved by single crystal X-ray determinations. Besides, X-ray single-crystal structure analysis of 

the synthesized ZnCCA complex was found to be in good agreement with previously reported 

data [10]. 

Due to the presence of carbonyl and carboxylate groups in cis- position, coumarin-3-carboxylate 

(CCA) can act as a monodentate or bidentate ligand (through carboxylate moiety), or as a 

bidentate ligand (through both carboxylate and carbonyl groups). In the bibliography there has 

been some controversy in the assignment of the stretching modes of carbonyl and carboxyl 

groups because of their proximity, similarities, and the presence of an intramolecular bonding in 

HCCA [3,5]. Moreover, it has also been observed that the shifts of the C=O stretching 

frequencies are not a direct indication of a metal coordination to the corresponding groups when 

hydrogen bonds are present [11]. Herein, and through the experimental measurements of bond 

distances, we approach this problem studying their spectroscopic properties by comparing the 

different binary complexes where CCA acts as a bidentate ligand in one of them and as a 

counterion in the other. Although the spectral behavior of ZnCCA complex was already reported 

by Creaven et. al. [3], on the basis of the single crystal X-Ray diffraction determinations [10] and 

our own measurements, we show a different coordination mode of CCA, with the carboxylate 

and carbonyl moieties chelating the metal center (not with bidentate carboxylate coordination). 

The spectroscopic properties of the complexes have also been compared with a previously 
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synthesized potassium salt of CCA (KCCA). In addition, we have studied the properties of the 

ZnCCAphen complex, in which CCA shows similar coordination modes than ZnCCA.  

We have systematically studied the spectroscopic patterns of these compounds comparing 

NMR in combination with FTIR and Raman spectra. Moreover, the antimicrobial activities and 

the behavior on alkaline phosphatase (ALP) have also been determined. 

2. Materials and Methods 

2.1. Instruments, Reagents and Materials 

All chemicals Zn(NO3)2.6H2O (Merck), coumarin-3-carboxylic acid (Fluka) and o-phenanthroline 

dihydrate (Sigma) were of analytical grade and used without further purification. Elemental 

analyses for carbon, nitrogen and hydrogen were performed using a Carlo Erba EA 1108 

analyzer. FTIR spectra of powdered samples (as pressed KBr pellets) were measured with an 

Equinox 55 FTIR-spectrophotometer from 4000 to 400 cm−1. The dispersive Raman spectra 

were collected on a Horiba-Jobin-Yvon T64000 Raman spectrometer, with a confocal 

microscope (10x objective) and CCD detection. A Kr laser with 647.1 nm of excitation 

wavelength and 500mW power was used. Calibration was performed using the 459 cm−1 band 

of CCl4. NMR spectra were acquired in a Bruker UltraShield 600 Plus, 14.1 Tesla with 1H 

resonance of 600 MHz. Thermogravimetric measurement (TG) were performed on a Shimadzu 

system (model TG-50) working in an oxygen flow (50 mL min-1) at a heating rate of 10 oC min-1. 

Sample quantities ranged from 5 to 10 mg.  

 

2.2. Synthesis of the complexes 

Synthetic methods for both binary and ternary complexes, as well as the potassium salt are 

developed in this section.  

KCCA: coumarin-3-carboxylic acid was dissolved in water at 60 ºC under continuous stirring. 

Then, the pH was adjusted to 9 by the addition of 1M KOH obtaining a light-yellow solution. 
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Finally, acetone was added until precipitation of KCCA. Elemental analysis calculated for 

KC10H5O4 (228 g/mol): C, 52.6; H, 2.2. Found: C, 52.7; H, 2.3. The thermogravimetric analysis 

(Fig. S1) has shown a weight loss (79.4%, calc.; 79.0%, exp.) at 800 °C and represents the 

formation of K2O (characterized by FTIR spectroscopy). 

[Zn(CCA)2(H2O)2]: Single crystals of the complex were obtained according to a recent literature 

procedure [10]. Briefly, a mixture of coumarin-3-carboxylic acid (0.1 mmol) and LiOH (0.2 mmol) 

in water (10 ml) was added in a test-tube. Then, a solution of Zn(NO3)2 (0.1 mmol) in ethanol 

(10 ml) was added on the top of the mixture by carefully layering. After about two months at 

room temperature, colorless single crystals suitable for X-ray determinations were obtained at 

the boundary between the ethanol solution and the water layer. Elemental analysis calculated 

for ZnC20H14O10 (479.4 g/mol): C, 50.1; H, 2.9. Found: C, 50.0; H, 2.9. The thermogravimetric 

analysis (Fig. S2) confirmed the presence of two water molecules per zinc atom (Exp. loss: 

7.7%. Calc. loss: 7.5%; broad endothermic peak, DTA, 182 °C). At 800 °C the weight loss 

(83.0%, calc.; 82.6%, exp.) represents the formation of ZnO that was characterized by FTIR 

spectroscopy. 

[Zn(CCA)2phen].4H2O: HCCA (2 mmol in 10 ml of water) was dissolved under continuous 

stirring and pH was adjusted to 6 with NaOH 1M. Then, phen (2 mmol in 3 ml of ethanol) and 

Zn(NO3)2 (1 mmol in 2 ml of water) solutions were added to the previous colorless mixture. 

Immediately, a white precipitated was formed. The solid was filtered off, washed several times 

with water and dried in oven at 60 ºC. Elemental analysis calculated for ZnC32H26N2O12 (695.4 

g/mol): C, 55.2; H, 3.7; N, 4.0. Found: C, 55.3; H, 3.7; N, 4.1. The thermogravimetric analysis 

(Fig. S3) confirmed the presence of four labile water molecules per zinc atom (Exp. loss: 10.4% 

Calc. loss: 10.3%; endothermic peaks, DTA, in three successive stages at 96 °C, 147 ºC and 

168 ºC). At 800 °C the weight loss (88.3%, calc.; 88.4%, exp.) represents the formation of ZnO 

that was characterized by FTIR spectroscopy. 
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[Zn(phen)3](CCA)(NO3).7H2O: HCCA (2 mmol) was dissolved in 10 ml of water and NaOH 1M 

was added to achieve a pH value of 6. Then an ethanolic solution of phen (1 mmol in 3 ml) and 

an aqueous solution of Zn(NO3)2 (1 mmol in 2 ml) were added. The final pH of the mixture was 5 

and the white precipitate obtained was filtered and discarded. The mother liquor was placed at 

room temperature on slow evaporation and after two weeks light pink single crystals suitable for 

X-ray determinations were obtained. Elemental analysis calculated for ZnC46H43N7O14 (982.4 

g/mol): C, 56.2; H, 4.4; N, 10.0. Found: C, 56.4; H, 4.4; N, 10.2. The thermogravimetric analysis 

(Fig. S4) confirmed the presence of seven labile water molecules per zinc atom (weight loss: 

Exp.: 12.4% Calc.: 12.8%; broad endothermic peak, DTA, 57 °C). The weight loss (91.7%, calc.; 

91.3%, exp.) at 800 °C and represents the formation of ZnO (characterized by FTIR 

spectroscopy).  

 

2.3. X-ray diffraction data 

The measurements were performed on an Oxford Xcalibur Gemini, Eos CCD diffractometer with 

graphite-monochromated MoKα ( = 0.71073 Å) radiation. X-ray diffraction intensities were 

collected ( scans with  and κ-offsets), integrated and scaled with CrysAlisPro [12]  suite of 

programs. The unit cell parameters were obtained by least-squares refinement (based on the 

angular settings for all collected reflections with intensities larger than seven times the standard 

deviation of measurement errors) using CrysAlisPro. Data were corrected empirically for 

absorption employing the multi-scan method implemented in CrysAlisPro. The structure was 

solved by intrinsic phasing with SHELXT of the SHELX suit of programs [13] and the 

corresponding molecular models developed by alternated cycles of Fourier methods and full-

matrix least-squares refinement with SHELXL of the same package. The molecular model 

showed disordered NO3
- anion and water molecules, whose contribution to the diffraction 

pattern was removed from the data set with the procedure described by Van der Sluis and Spek 

[14]  and implemented in the program SQUEEZE included in PLATON [15] suit of programs. As 
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expected the refinement improved substantially to a degree where all H-atoms of the remained 

ordered [Zn(phen)3](CCA) portion of the molecular structure were found among the first 31 

residual peaks of a difference Fourier map phased on the heavier atoms. These light atoms, 

however, were positioned on stereo-chemical basis and refined with the riding model.  

 

Table 1. Crystal data and structure refinement results for [Zn(phen)3](CCA)(NO3).xH2O. 
================================================================ 
Empirical formula  C46H29N7O7Zn 
Formula weight  857.13 
Temperature  297(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  1P  
Unit cell dimensions a = 12.3818(5) Å α = 113.768(3)° 
 b = 15.1143(4) Å β = 112.826(4)° 
 c = 15.4875(6) Å γ = 90.329(3)° 
Volume 2399.25(17) Å3 
Z 2 
Density (calculated) 1.186 Mg/m3 
Absorption coefficient 0.564 mm-1 
F(000) 880 
Crystal size 0.282 x 0.218 x 0.135 mm3 
ϑ-range for data collection 3.206 to 29.449° 
Index ranges -16 ≤ h ≤ 16, -18 ≤ k ≤ 18, -18 ≤ l ≤ 21 
Reflections collected 21439 
Independent reflections 10998 [R(int) = 0.036] 
Observed reflections 7408 
Completeness to ϑ = 25.242° 99.8 %  
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 10998 / 0 / 514 
Goodness-of-fit on F2 1.015 
Final R indices [I>2sigma(I)] R1 = 0.0572, wR2 = 0.1629 
R indices (all data) R1 = 0.0878, wR2 = 0.1836 
Largest diff. peak and hole 0.415 and -0.375 e.Å-3 

============================================================ 
aR1=ΣFo-Fc/ΣFo, wR2=[Σw(Fo

2-Fc
2)2

/Σw(Fo 
2)2]1/2 
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Crystal data, data collection procedure, structure determination methods and refinement results 

are summarized in Table 1. Crystallographic structural data have been deposited at the 

Cambridge Crystallographic Data Centre (CCDC). Any request to the CCDC for this material 

should quote the full literature citation and the reference number CCDC 1587820. 

 

2.4. Alkaline phosphatase specific activity 

The effect of zinc(II), HCCA, phen and the binary and ternary complexes on ALP activity was 

determined by UV-Vis spectroscopy. The reaction was started by the addition of the substrate 

para-nitrophenyl phosphate (p-NPP) and the product p-nitrophenol was monitored by changes 

in the absorbance at 405 nm. Briefly, the experimental conditions for ALP specific activity 

measurement were as follows: 1 µg/mL of bovine intestinal ALP and 5 mM of p-NPP were 

dissolved in the incubation buffer (55 mM glycine + 0.55 mM MgCl2, pH 10.4) and held for 10 

min at 25 ºC. The effects of the compounds were determined by addition of different 

concentrations (1-100 µM) of each compound to the pre-incubated mixture. The solutions of the 

complexes were prepared in DMSO before adding them the buffer to obtain the desired final 

concentrations and the final concentration of DMSO in each tube did not exceed 1%.  The effect 

of each concentration was tested at least in triplicate in three different experiments. 

 

2.5. Antimicrobial assays 

The antimicrobial activity was evaluated by the Minimum Inhibitory Concentration (MIC) using 

the agar dilution method. The grow/assay medium for all strains was Müeller-Hinton broth or 

agar [16,17]. The inocula of bacterial strains were prepared from 18 h-old broth cultures. A 

McFarland standard 0.5 suspension was prepared for each microorganism and a 1:10 dilution 

was made prior to inoculation (~107 colony forming units (CFU) per milliliter) [18,19]. The 

inocula of fungal strains were adjusted to 0.5 McFarland standard and the suspensions (~108 
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CFU per milliliter) were directly inoculated without dilution. For the agar dilution method, 

aqueous solutions of the metal salt (Zn(NO3)2.6H2O) and the ligand phen were prepared and 

sterilized by filtration. The ligand HCCA and the zinc(II) complexes ZnCCA and ZnCCAphen 

were dissolved in DMSO and sterilized by filtration. Besides, two-fold serial dilutions were 

prepared from the stock solution into molten Mueller Hinton agar medium and cooled down to 

45 °C to obtain the desired final concentrations. For each compound, the dosage started from 

1.5 μg mL-1 and continued until 1500 μg mL-1 (stopping criteria). Then, the inoculum of 2 μL of 

the microbial suspensions was streaked onto the plates and incubated aerobically at 37 °C for 

24 h (bacteria) and 48 h (fungi). Inhibition of microbial growth in the plates containing tested 

solutions was judged by comparison with growth in blank control plates. The MIC was defined 

as the lowest dilution of the compound that inhibited the visible growth of the tested organism. 

3. Results and Discussion  

3.1. Crystallographic structural results of {[Zn(phen)3]CCA}+ 

Figure 1 is an ORTEP [20] drawing showing the crystal packing of the salt ordered 

[Zn(phen)3]CCA part. The ligand CCA appears in the lattice deprotonated at its carboxylic group, 

namely as 2-Oxo-2H-1-benzopyran-3-carboxylate (CCA) as a counterion. Because of the 

extended molecular orbital π-delocalization, the fused rings of CCA are planar [rms deviation of 

atoms from the best least-square plane of 0.0197 Å]. The carboxylate group departs slightly 

from the plane [angled at 30.8(6)º]. Bond distances and angles within the CCA anion accord 

with reported values in other coumarin salts [21–23], only differing with these salts in the 

dihedral angle subtended by the –COO group with the fused ring plane. As expected, the main 

differences in bond distances of CCA when compared with neutral coumarin-3-carboxylic acid 

[24] occurs due to the bond structure change at the carboxylic group upon deprotonation from 

formally C=O double and C-OH single bonds [lengths of 1.214 and 1.330 Å] in neutral HCCA to 
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two localized C-O σ-bond plus a delocalized π-bond in the –COO- carboxylate group of CCA 

(C-O bond distances of 1.245(4) and 1.268(5) Å). 
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Fig. 1. Crystal packing of {[Zn(phen)3](CCA)}+ cation in [Zn(phen)3]CCA(NO3).7H2O solid 

showing the labeling of the non-H atoms and their displacement ellipsoids at the 30% probability 

level. For clarity, only one phenanthroline ligand was completely labeled to indicate the atom 

numbering scheme. Dashed lines indicate possible path for inter ring π-π interactions. The 

displayed molecules belong to the same lamella of the layered arrangement adopted by the 

{[Zn(phen)3](CCA)}+ cations. Crystal symmetry operations: (i) 1-x, 1-y, 1-z; (ii) 1-x, -y, 1-z.    

Zinc ion in the [Zn(phen)3]2+ complex is located in a distorted octahedral environment (ZnN6 

core), coordinated to three phen groups acting as bidentate ligands through their N-atoms in a 

three-bladed propeller-líke conformation. Data of the crystal structure of the cation complex is in 

accordance with a previous report [25]. Briefly, metal-nitrogen bond distances are in the range 

from 2.138(2) to 2.199(2) Å. Phenanthroline N-Zn-N ‘bite’ angles are 77.17(9), 74.49(9) and 

76.65(9)º; the other cis N-Zn-N angles are in the 89.94(9)-101.03(9)º range. Trans N-Zn-N bond 

angles range from 161.14(9) to 169.76(9)º.    

The {[Zn(phen)3]2+ and CCA- ions are arranged in {[Zn(phen)3](CCA)}+ layers parallel to the 

crystal (101) plane (cf. Figure 1) which are further stabilized through π-π staking interaction 

between neighboring, symmetry-related, phenanthroline ligands (inter-fused ring distances in 

the range from 3.47 to 3.57 Å) and between phenanthroline and CCA rings (3.38 Å apart). The 

layers, in turn, are interspaced by nitrate anions (not shown) which are disordered around 

crystallographic inversion centers and by loosely bound and also disordered interstitial water 

molecules, as confirmed by the relatively low dehydration temperatures observed in DTA-DTG 

measurements.         
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3.2. Vibrational spectroscopy  

The vibrational FTIR and Raman spectra of the three complexes, [Zn(phen)3]CCA(NO3).7H2O, 

[Zn(CCA)2phen].4H2O  and [Zn(CCA)2(H2O)2] have been measured and compared with the 

spectra of phen, CCA and HCCA (Figs. 2 and 3).  As it was previously mentioned, deprotonated 

CCA was found to act using two different types of interactions, as a counter anion in 

[Zn(phen)3]CCA(NO3) or in a bidentate coordinated form in [Zn(CCA)2(H2O)2]. Spectral 

comparison substantiated similarities between pairs of compounds. The FTIR pattern of ionic 

carboxylate in the KCCA salt resulted similar to the vibrational modes of CCA in the 

[Zn(phen)3]CCA(NO3) complex showing that CCA is acting as counterion. Whereas, the bands 

corresponding to the modes of the carboxylate group assigned to CCA in [Zn(CCA)2phen].4H2O 

are located near those of ZnCCA, showing a similar coordination mode of this group. 

Considering that the crystal structure of ZnCCA showed that the carboxylate group acted as a 

monodentate ligand and that chelation with CCA was achieved by C=O (carbonyl) coordination, 

we assume a similar environment of the metal ion in the ternary complex. Main vibrational 

modes of these compounds and the free ligands with their tentative assignments for FTIR and 

Raman spectra are listed in Table 2.  

In the region between 3500 cm-1 and 2900 cm-1 broad and intense bands corresponding to O-H 

stretching modes can be found. For the zinc complexes, the bands can be assigned to 

coordinated water molecules (3221 cm-1 in ZnCCA) or hydration water (3336 cm-1 for ternary 

complex and 3389 cm-1 for the binary Znphen complex). For HCCA, and due to presence of an 

intramolecular H-bond, the band shifts to lower frequencies and it is located at 2933 cm-1. 

Considering the polarization produced by the interactions in the different compounds, the 

carbonyl (C=O) stretching modes shifted to lower values due to the elongation of C=O bond 

upon hydrogen bonding or coordination to the metal center (Table 3). In HCCA the C=O 

(carbonyl) group is involved in an intramolecular H-bond by formation of a 5-membered ring, 

and according to its crystalline structure [26], its bond length is 1. 1    and then, the frequency 
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assigned to the C=O stretching mode is 1682 cm-1. After deprotonation, the ionic CCA 

decreases the polarization of the C=O moiety and the bond is shortened to 1.199  , for 

[Zn(phen)3](CCA)(NO3), therefore, the frequency is shifted to 1733 cm-1. On the other hand, 

when CCA is acting as a bidentate ligand (though two O atoms belonging to carboxylate and 

carbonyl moieties) in ZnCCA, the formation of a 5-membered ring produces an elongation of the 

  O length (1.     ) and its frequency shifted to the red (1669 cm-1). These results are in 

agreement with the experimental results obtained by B.S. Creaven et al. for the powder complex 

of ZnCCA [3], but the structure proposed by these authors is different from the structure 

determined by X-ray measurements. The position of the C=O (carbonyl) stretching band in 

ZnCCAphen at 1670 cm-1 is an indication of the coordination of the carbonyl group to the metal 

center like in the binary complex.  

The C=O stretching band of the carboxylic acid of HCCA appeared as a strong band at 1744 

cm-1 (FTIR) and as a medium band 1738 cm-1 (Raman) in agreement to the measured C=O 

bond length of 1.199   [26]. Upon deprotonation this band disappeared and two new bands 

corresponding to the symmetric and antisymmetric CO stretching of the carboxylate groups are 

observed (see Table 3) [27]. These bands have been assigned by comparison with previously 

reported data [23,28]. Besides, the band corresponding to the symmetric (COO-) stretching 

showed higher intensity in the Raman spectra, as expected. The CO bond lengths for the 

monodentate and anionic carboxylate group obtained in this work agree with those reported for 

similar complexes with Cu(II), Mn(II), Cd(II) and Zn(II) metal centers (Table 4). Metal 

coordination to the C=O (carbonyl) group generates the same effect than H-bonds (-  O…H) in 

the ligand, due to the delocalization of the π electrons that reduces the electron density of the 

C=O bond which weakens and elongates it, generating partial double bond character. It is 

evident that in anionic CCA the C=O group lacks of resonance and hence it remains double 

bonded (C=O, 1.199 Å). Both the C=O lengths for the carboxylic acid and carbonyl groups are 

identical (Tables 3 and 4) and then, the stretching frequencies C=O (carboxylic) for HCCA and 
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C=O (carbonylic) for Znphen appeared in the same region of the infrared spectrum (1738 cm-1, 

Raman, Table 2) [29]. It can then be seen that the distance changes in HCCA upon 

deprotonation for the C=O group of carboxylic acid (from 1.199 Å to ca. 1.25 Å) and for the C=O 

carbonylic group (carbonyl with H-Bridge interaction, 1.216 Å to double bonded carbonyl, 1.199 

Å) (Table 3) was found to be a controversial factor that produced misinterpretations in the FTIR 

spectra of complexes containing coumarin-3-carboxylic acid. 

The spectral region most characteristic of any given phen-metal complex is the 900-700 cm-1 

spectral range. The characteristic and most intense phen bands are located at 853 cm-1 and 738 

cm-1. These bands have been assigned to motions of ring hydrogen atoms moving in phase out 

of the plane of the ring. The high energy band has been identified to the out of plane motion of 

the hydrogen atoms on the center ring and the band at 738 cm-1, to the hydrogens on the 

heterocyclic rings [30]. The shift of these bands appeared sensitive to small differences in the 

nature of the coordinated metal ion [31]. Hence, the small shifts of these bands at 850 cm-1 and 

729 cm-1 in the ternary complex and at 847 cm-1 and 730 cm-1 in the [Zn(phen)3]+2 salt, are 

indicative of the phen coordination to the metal center. Other vibrational modes of 

phenanthroline ligand appeared as low intense bands in the FTIR spectra of the metal 

complexes. The region of characteristic ring frequencies of aromatic compounds is located in 

the 1600-1400 cm-1 range and the vibrational modes of phen ligands of medium intensities and 

associated with C=C and C=N stretchings overlapped with those of CCA [31]. The low intensity 

C=C and C=N stretching bands at ca. 1620 and 1646 cm-1, respectively, are masked with the 

C=C and C=O stretching modes of the CCA ligand.  

Besides, the sharp band at 1384 cm-1 for [Zn(phen)3](CCA)(NO3) has been assigned to 

stretching mode of nitrate anion acting as counterion like CCA [27].  
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Fig. 2. FTIR spectra of o-phenanthroline dihydrate (phen), [Zn(phen)3]CCA(NO3) 

(Znphen3CCANO3), [Zn(CCA)2phen].4H2O (ZnCCAphen), [Zn(CCA)2(H2O)2] (ZnCCA), 

coumarin-3-carboxylate potassium salt (KCCA) and coumarin-3-carboxylic acid (HCCA).  
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Fig. 3. Raman spectra of o-phenanthroline dihydrate (phen), [Zn(phen)3]CCA(NO3) 

(Znphen3CCANO3), [Zn(CCA)2phen].4H2O (ZnCCAphen), [Zn(CCA)2(H2O)2] (ZnCCA), 

coumarin-3-carboxylate potassium salt (KCCA) and coumarin-3-carboxylic acid (HCCA). 

 

Table 2. Main vibrational modes observed by FTIR and Raman (bold) of different compounds 

with Zn(II), HCCA and phen (dihydrate). 

 

 

Assignment HCCA KCCA ZnCCA phen ZnCCAphen Znphen 

 OH (H2O)   3221 (br) 3408 (br) 3336 (br) 
3261 (br) 3389 (br) 

 OH 
(bridge) 2933 (s)      

 C=O 
(carboxylic) 

1744 (s)  
1738 (m)      

 C=O 
(carbonyl) 

1682 (s)  
1680 (w)  1669 (s) 

1675 (m)  1670 (s)  
1675 (w) 

1733 (s) 
1738 (m) 

 C=C  

1609 (s) 
1615 (s) 

1627 (s) 
1627 (s) 1616 (s)  1625 (s) 

1627 (s) 
1624 (s) 
1625 (s) 

 1608 (sh) 
1609 (s) 

1609 (m)  
1609 (s)  1598 (sh) 

1606 (s) 
1607 (sh) 
1608 (s) 

as COO  1597 (s) 
1599 (sh) 

1563 (m)  
1567 (m)  

1563 (s)  
1555 (s) 
1560 (w) 

1596 (m) 
1589   (m)  

 

s COO   1391 (sh) 
1396 (m) 

1367 (w) 
1369 (m)  1367 (m) 

1369 (m)  

s COO + 3 
NO3 

     
1384 vs, br 

1422 vs (phen) 
1377 w 

1 NO3      1057 s  

phen    853 (s)  
855 (w) 

850 (s) 
 847 (s) 

phen    738 (s) 725 (s) 
729 (s) 

724 (s) 
723 (sh) 

 

Abbreviations: vs, very strong; s, strong; m, medium; w, weak; sh, shoulder; br, broad. , 
stretching; s, symmetric; as, antisymmetric.   
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Table 3. Comparison of bond lengths and vibrational stretchings for CO (carbonyl, carboxylic 

acid and carboxylate) groups. 

 HCCA a ZnCCA b Znphen 
 

 Bond 
length ( ) 

 C=O 
(cm-1) 

Bond 
length ( ) 

 C=O 
(cm-1) 

Bond 
length 
( ) 

 C=O 
(cm-1) 

C=O 
(carboxylic) 

1.199 
 

1744 (s)     

CO (carboxylate)   1.245 
1.264 

1561 
1396 

1.245 
1.268 

1596  
1384 

C=O (carbonyl) 1.216 1682 (s) 1.232 1669 (s) 1.199 1733 (s) 
 

a Crystallographic data for HCCA obtained from [26]; b Crystallographic data measured in this 

work for comparison with data obtained by Y. Cui et al. [10]. 

Table 4. Comparison of CO bond lengths for the carbonyl, carboxylic and carboxylate groups. 

 HCCA 
[26] 

CuCCA 
[32] 

MnCCA 
[33]  

CdCCA 
[34] 

ZnCCA b ZnCCAa CCAa 
anion 

C=O 
carbonyl 

1.216 1.216 1.222 1.227 1.2241 1.232 1.199 

C=O 
carbox 

1.199 1.251 
1.266 

1.2509 
1.2549 

1.256 
1.257 

1.2501 
1.2617 

1.245 
1.264 

1.245 
1.268 

C-O(H)  
carbox 

1.328       

  

a Comparison of crystallographic data measured in this work and b data obtained by Y. Cui et al. 

[10].  
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3.3. NMR spectroscopy   

The 1HNMR, 13CNMR and 1H-13C HSQC spectra have been measured in DMSO-d6, and the 

proposed assignments were carried out using standard 2D correlation techniques Table 5 and 

Figs. S5-S8. Assignments for HCCA spectrum are in agreement with previous reports [35], 

similar to the assignment of the complexes [3,5]. Fig. 4 shows the carbon atom numbering. 
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Fig. 4. Carbon atom numbering for HCCA and phenanthroline.  

 

The broad signal at 13.25 ppm in the 1HNMR spectrum of HCCA has been assigned to the acid 

proton of the carboxylic group which is involved in an intramolecular H bond. When this H atom 

is dissociated, this signal disappears (KCCA and the Zn complexes). The negative charge in 

CCA is delocalized all over the molecule and, as a consequence, an increment in the shielding 

of every proton is observed and every signal shifts to upper fields. The major shift has been 

obtained for the H(4) signal because of its proximity with the carboxylate group. The HCCA 

peak at 8.76 ppm shifts 0.94 ppm in the ionic compound (7.82 ppm) while in the complexes the 

shifts are 0.23 ppm and 0.61 ppm for ZnCCA and ZnCCAphen, respectively.  

The 1H chemical shifts for the  phen molecule with four pairs of equivalent protons, can be 

ordered: H(2) > H(4) > H(6) > H(3) [36], in which the lowest field peak can be assigned to the 
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nitrogen-adjacent proton, H(2). It has been reported that after complexation all the signals are 

both shifted downfield and broadened [37] and that the most pronounced changes upon the 

formation of the Zn(II) phenanthroline complexes are observed for the phen fragment and for 

protons at C(2) which indicates the engagement of aromatic nitrogen atoms in the binding of the 

metal ion [38]. However, some authors propose a change in this order, mainly due to a 

significant shielding in H(2). [39] Although we have observed this magnitude of shielding (from 

9.18 ppm in free phen [36] to 8.78 ppm in the ternary complex), we propose similar order to that 

of free-phen based mainly on the ZnCCAphen HSQC spectrum. In this spectrum, the highest 

downfield shifts for 13C have been assigned to the C(4) atom of CCA (carboxylic-adjacent 

carbon) and the C(2) atom of phen (nitrogen-adjacent carbon). As a consequence, in the ternary 

complex, we have assigned the   value of 8.15,143 ppm (1H,13C) to H,C(4) of CCA and 

8.78,139 ppm to H(2) of phen (Fig. 5).  

From the 2D HSQC spectra of the complexes (Fig. 4) it can be observed that the signals of 

coupling 1H-13C for the ZnCCA complex shift to a shielded position (up and right) in comparison 

with the ZnCCAphen complex. In addition, four additional signals assigned to phen appear in 

the ternary complex. Hence, we propose that the coordination of an electron donor base such 

as phen to ZnCCA, causes a shielding increase and downfield shifts of all protons of CCA in the 

ternary complex.  

Besides, for the carbonyl carbon atom, C(1), the 13C  signal also shows significant shifts. In 

HCCA the lactone carbonylic group is involved in intramolecular H- bridge with a  13C value of 

157 ppm. Once deprotonated,  13C shifted to 153 ppm. In the coordination complexes, a 5- 

membered rings are formed between zinc(II), and the carboxylic and carbonylic groups. 

Therefore, the measured values for  13C are closer to that of HCCA rather than that of KCCA, 

as expected.  
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With the aim to establish the coordination mode of the carboxylate group we compared the 

measured  13C values for C(3). In the acid HCCA,  13C was located at 164 ppm and shifted 

downfield as expected, to 165 ppm in the potassium salt ( salt <  acid) [40]. When the 

carboxylate group coordinates to the metal ion the  13C value of was located at 167 ppm for 

both, the binary and the ternary complexes. Although it was predicted that coordination may 

lead to lower 13C chemical shifts in comparison with ionic compounds [40], we have found a 

deshielding of this carbon atom, similar to other metal complexes of CCA [5,41]. Hence, the 

HSQC spectra measured for CCA allow us to solve the reported inconsistencies [3,35].  This 

behavior has been explained on the basis of the  inductive effects that can affect the entire 

molecule for highly conjugated compounds [42,43].  

By FTIR spectroscopy the monodentate coordination mode of the carboxylate anion was 

determined (see above). In both complexes, the measured chemical shifts for C(3) were 167 

ppm, showing a similar mode of coordination to the metal. However, the coordination mode 

could not be predicted by these spectral measurements because there were no differences 

between these chemical shifts.  
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Table 5: 1H and 13C NMR main chemical shifts in DMSO-d6 of HCCA, KCCA and binary and 

ternary complexes of Zn(II). 

 

 Group HCCA KCCA ZnCCA  ZnCCAphen  phen [38] 
  1H 13C 1H 13C 1H 13C 1H 13C 1H 13C 

C
C

A
 

C(3)OOH 13.25 (s) 164 - 165 - 167 - 167   
C(1)=O - 157 - 153 - 158 - 158   
CH (4) 8.76 (s) 149 7.82 (s) 137 8.53 (s) 145 8.15 (s) 143   
CH (7) 7.92 (d) 130 7.67 (d) 128 7.85 (d) 130 7.64 (d) 129   
CH(10) 7.74 (t) 135 7.50 (t) 130 7.65 (t) 133 7.57 (t) 133   
CH(8) 7.44 (m) 116 7.29 (m) 116 7.39 (m) 116 7.28 (m) 116   
CH(9) 7.42 (m) 125 7.27 (m) 124 7.36 (m) 125 7.27 (m) 125   

ph
en

 CH(2) -  -  -  8.78 (br) 139 9.18 150.4 
CH(3) -  -  -  7.25 (br) 129 7.62 123.1 
CH(4) -  -  -  8.18 (br) 127 8.23 136.0 
CH(6) -  -  -  7.93 (br) 125 7.77 126.6 

 
Chemical shifts are expressed in ppm using TMS as reference. In parentheses the signal 

multiplicities are indicated (s: singlet, d: doublet, t: triplet, m: multiplet, br: broad).  

 
 

Fig. 5: 2D 1H,13C HSQC NMR spectra overlapping of binary ZnCCA and ternary ZnCCAphen 

complexes 
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3.4. Alkaline Phosphatase 

Alkaline phosphatase (ALP) is one of the most important zinc-dependent enzymes. It has been 

reported that Zn(II) increases the ALP activity at low concentrations [44], nevertheless, in higher 

concentrations the metal can displace the Mg(II) ion from the active site, preventing its 

stabilizing effects [45]. ALP can be found in almost every tissue of the body, mainly in the liver 

and in the bones. It is also a hydrolase enzyme responsible for removing phosphate groups 

from several types of molecules such as nucleotides, proteins, and alkaloids. As it is suggested 

by its name, alkaline phosphatases are more effective in an alkaline environment. ALP activity 

in serum is usually related to bone and liver diseases in-vivo and it is a marker of osteoblastic 

differentiation [46]. Furthermore, the chelating ligand phen also produces inhibition of intestinal 

bovine ALP. This effect has been explained by a time-dependent mechanism in which Zn(II) is 

slowly removed from ALP, causing its inactivation. However, this effect has shown to be 

reversible, in contrast with the effect exerted by other chelating compound, EDTA [47,48].  
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Fig. 6. The effects of the different compounds on ALP activity obtained from bovine intestinal 

mucose. Initial rate was determined by incubation of the enzyme at 37ºC for 20 min in the 

absence or presence of variable concentrations of each compound. The ALP basal activity was 

5.2 ± 0.2 nmol pNPP min-1 µg-1 protein. The results are expressed as the percentage of the 

basal level and represent the mean ± SEM (n = 9). *Significant differences versus control p < 

0.05. 

 

Herein, we have tested the effect of the binary and ternary complexes in addition to HCCA, 

phen, and Zn(II) on ALP activity. In the tested range of concentrations, Zn(II) has increased the 

ALP activity in almost 90% from de basal conditions at a concentration of 100 M (Fig. 6). 

According to what was aforementioned, low concentrations (less than 1 mM) of Zn(II) increase 

the enzyme reaction rate [44], and in consequence, its activity. Moreover, no significant 

differences among the two complexes and Zn(II) were found at 100 M concentration. HCCA 

has not shown any difference in ALP activity in the tested concentrations (up to 100M). In 

addition, phen has only shown a slightly inhibition (14%) at the maximum concentration tested. 

According to the chelating character of phen, ALP activity decreases due to complexation of 

Zn(II) from the active site [47]. This inhibition is relatively low at 100 M, however it increases in 

a significant manner at 10 time higher concentrations, with an inhibition of ALP activity of 59 % 

at 1 mM [49]. 

To sum up, at the low tested concentrations it has been observed an increment in ALP 

activity for the complexes, like the effect of Zn(II). HCCA has not shown activity, while phen 

slightly decreases ALP activity. Due to the low solubility of complexes, concentrations higher 

than 100 M could not be measured. 
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3.5. Microbiological assays  

It has been reported that some coumarinic derivatives [49] and some metal complexes of HCCA 

have antimicrobial effects [2]. Hence, we propose to study the activity of the binary and ternary 

complexes, in addition to HCCA, phen, and Zn(II) for comparative purposes against different 

bacterial and fungal strains with clinical interest. The antimicrobial effect was evaluated by the 

minimum inhibitory concentration (MIC) technique, the lowest dilution of the compound that 

inhibited the visible growth of the tested organism. The effects of the compounds have been 

tested on five strains of bacteria derived from the American Type Culture Collections (ATCC), 

namely Pseudomonas aeruginosa (P. aeruginosa, ATCC 27853), Escherichia coli (E. coli), 

Enterococcus faecalis (E. faecalis, ATCC 29212), Staphylococcus aureus (S. aureus, ATCC 

25923), Staphylococcus epidermidis (S. epidermis, ATCC 1263). The antifungal activity was 

tested on five strains of fungus, Candida parapsilosis (C. parapsilosis, ATCC 22019), Candida 

krusei (C. krusei), Candida glabrata (C. glabrate), Candida albicans (C. albicans), Candida 

tropicalis (C. tropicalis) these last obtained from clinical isolates. It is well-known that the 

antibacterial activity is significant when MIC values are 100 µg mL-1 or lower. MICs in the 100 a 

500 µg mL-1 range are considered moderate, between 500 a 1000 µg mL-1 weak, and inactive 

above 1000 µg mL-1 [50,51]. 

The activities for Zn(II) and phen have previously been reported by our group [52]. The ligand 

phen has shown significant antimicrobial activity against both, fungi and bacteria in every tested 

strain (except in P. aeruginosa, MIC of 375 g mL-1). P. aeruginosa, is the only strain of aerobic 

bacteria tested, and has shown the lowest effect after each treatment with the different 

compounds. On the other hand, E. coli has shown not only to be sensitive to phen (MIC of 12 g 

mL-1) but also to Zn(II) (MIC of 188 g mL-1). This moderated value for the metal, in addition to 

significant activity against phen was also observed in both, S. Aureus and S. epidermis. 

Furthermore, these bacteria strains have shown to be slightly sensitive to the ternary complex 
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(Table 6). The binary complex of ZnCCA has not exhibited neither antifungal nor antibacterial 

activity. However, the ternary complex of ZnCCAphen has shown antifungal activity and a 

significant improvement of the antifungal activity of HCCA, ZnCCA and Zn(II) ions due to 

complexation with phen. The highest effect was observed in C. albicans in which phen has 

shown a MIC of 3 g mL-1 and the ternary complex displayed a MIC of 12 g mL-1. Besides, it 

has been discarded that these activities could be due to free phen generated by a possible 

release of this ligand from the complex because of the different relative results obtained in the 

tested strains. It has been stated that phenanthrolines have potential biological activities such 

as anticancer, antiviral and antimicrobial agents and that their interaction with DNA occurs 

between base pairs by aromatic π stacking [53]. The higher antimicrobial effects of the ternary 

complex in comparison with the lack of antimicrobial activity of ZnCCA, allow us to postulate 

that the phen ligand gave the planar structure in the complex needed for the cleavage of the 

DNA of the different strains being this effect higher for the Candida strains. The higher 

antifungal activity for phenanthroline coordinated to metal centers has previously been shown 

[54,55]. The MIC values of ZnCCAphen differ slightly from the values determined for the 

antibacterial effects of other ternary complex of Zn(II) with 4-methylpiperazine-1-carbodithioate 

and phenanthroline against E.coli, P aeruginosa, S. aureus and E. faecalis that are in the range 

of 128-256 µg mL-1 [56]. Interestingly, for the Zn complex of phenanthroline and bipyridine, 

[Zn(bipy)2(phen)]Cl2.6H2O, in which both ligands could display π stacking, the antifungal MIC 

values are somehow lower than in ZnCCAphen and ranged from 4.88 µg mL-1 for C. albicans, 

9.76 µg mL-1 for C.Krusei and 39 µg mL-1 for C. Parapsilosis [57].  

To sum up, HCCA has not shown antimicrobial activity in any of the tested strains, in agreement 

with previous reports [5]. A similar behavior has been observed for ZnCCA. Moreover, Zn(II) has 

shown none to mild (in E. coli, S aureus and S. epidermis) antimicrobial effects at the low 

concentration tested, in agreement with its essentiality for all living organisms. Although it has 

been widely demonstrated that phen is an antimicrobial compound [56], we have observed a 
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lower effect in bacterial (prokaryotic) than in fungal strains (eukaryotic), (the highest effect were 

in C. albicans, C. glabrata y C. krusei). A similar behavior was observed for the ternary 

complexes.  

It has been suggested that microbial infections are very common in hepatic diseases and there 

also exists a relationship between alkaline phosphatase and fungal and bacterial infections. 

Particularly, when those infections are present, ALP levels decreases [58]. Although we have 

found an increase in ALP activity for the tested complexes, we cannot establish a correlation 

with the antimicrobial activity. While the ALP activity seems to be related to Zn(II) presence, the 

antimicrobial activity seems to be related to the coordination of phen in the complexes.  

 

 

Table 6. Minimum inhibitory concentration (MIC) of metal Zn(II), free ligands (phen and HCCA), 

binary complex ZnCCA and ternary complex ZnCCAphen for fungus and bacteria reference 

strains, in μg mL-1. Minimum inhibitory concentration (MIC, g mL-1): Inactive (above 1000), 

weak toxicity (1000-500), moderate (500-100), significant toxicity (lower than 100). Minimum 

values are shown in bold. 

 

    Zn(II) phen HCCA ZnCCA ZnCCAphen 

B
ac

te
ri

a 

P. aeruginosa 1500 375 1500 >1500 >1500 
E. faecalis 1500 94 1500 >1500 1500 

E. coli 188 12 >1500 >1500 1500 
S. aureus 188 24 1500 >1500 750 

S. epidermidis 188 12 1500 1500 750 

Fu
n

gi
 

C. albicans ATCC 10231 1500 3 >1500 >1500 12 
C. glabrata 1500 6 >1500 >1500 24 

C. krusei 1500 6 >1500 >1500 24 
C.  parapsilosis ATCC 

22019 
750 12 >1500 >1500 188 

C. tropicalis 750 12 >1500 >1500 188 
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4. Conclusions 

Coordination complexes containing Zn, coumarin-3-carboxylate and phen were obtained and 

characterized in solid state as well as in solution phase by elemental analysis, 

thermogravimetric studies, FTIR, Raman and NMR spectroscopies. The binary complex ZnCCA 

was prepared by previously reported procedures and characterized to make relevant 

comparisons. The reported structural data of ZnCCA (compared with our own determinations) 

and the determination of the structure of the new [Zn(phen)3](CCA)(NO3) complex allowed us to 

complete the vibrational assignments considering that the CCA ligand in the latter complex is 

present as counteranion. Hence, vibrational determinations of the ternary complex ZnCCAphen 

have been performed by comparison with the binary complex. Some biological measurements 

were performed for both complexes coordinated to CCA, the ligands and the Zn(II) metal. The 

antimicrobial effects resulted relevant on the fungal studied strains. Because the complexes 

enhanced FAL activity they may eventually be useful to reverse the decrease of this activity 

when microbial infections were present.  
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Table 1. Crystal data and structure refinement results for [Zn(phen)3](CCA)(NO3).xH2O. 
================================================================ 
Empirical formula  C46H29N7O7Zn 
Formula weight  857.13 
Temperature  297(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  1P  
Unit cell dimensions a = 12.3818(5) Å α = 113.768(3)° 
 b = 15.1143(4) Å β = 112.826(4)° 
 c = 15.4875(6) Å γ = 90.329(3)° 
Volume 2399.25(17) Å3 
Z 2 
Density (calculated) 1.186 Mg/m3 
Absorption coefficient 0.564 mm-1 
F(000) 880 
Crystal size 0.282 x 0.218 x 0.135 mm3 
ϑ-range for data collection 3.206 to 29.449° 
Index ranges -16 ≤ h ≤ 16, -18 ≤ k ≤ 18, -18 ≤ l ≤ 21 
Reflections collected 21439 
Independent reflections 10998 [R(int) = 0.036] 
Observed reflections 7408 
Completeness to ϑ = 25.242° 99.8 %  
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 10998 / 0 / 514 
Goodness-of-fit on F2 1.015 
Final R indices [I>2sigma(I)] R1 = 0.0572, wR2 = 0.1629 
R indices (all data) R1 = 0.0878, wR2 = 0.1836 
Largest diff. peak and hole 0.415 and -0.375 e.Å-3 

============================================================ 
aR1=ΣFo-Fc/ΣFo, wR2=[Σw(Fo

2-Fc
2)2

/Σw(Fo 
2)2]1/2 
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Table 2. Main vibrational modes observed by FTIR and Raman (bold) of different compounds 

with Zn(II), HCCA and phen 

 

 

Assignment HCCA KCCA ZnCCA phen ZnCCAphen Znphen 

 OH (H2O)   3221 (br) 3408 (br) 3336 (br) 
3261 (br) 3389 (br) 

 OH 
(bridge) 2933 (s)      

 C=O 
(carboxylic) 

1744 (s)  
1738 (m)      

 C=O 
(carbonyl) 

1682 (s)  
1680 (w)  1669 (s) 

1675 (m)  1670 (s)  
1675 (w) 

1733 (s) 
1738 (m) 

 C=C  

1609 (s) 
1615 (s) 

1627 (s) 
1627 (s) 1616 (s)  1625 (s) 

1627 (s) 
1624 (s) 
1625 (s) 

 1608 (sh) 
1609 (s) 

1609 (m)  
1609 (s)  1598 (sh) 

1606 (s) 
1607 (sh) 
1608 (s) 

as COO  1597 (s) 
1599 (sh) 

1563 (m)  
1567 (m)  

1563 (s)  
1555 (s) 
1560 (w) 

1596 (m) 
1589 (m)  

 

s COO   1391 (sh) 
1396 (m) 

1367 (w) 
1369 (m)  1367 (m) 

1369 (m)  

s COO + 3 
NO3 

     
1384 vs, br 

1422 vs (phen) 
1377 w 

1 NO3      1057 s  

o-phen    853 (s)  
855 (w) 

850 (s) 
 847 (s) 

o-phen    738 (s) 725 (s) 
729 (s) 

724 (s) 
723 (sh) 

 

Abbreviations: vs, very strong; s, strong; m, medium; w, weak; sh, shoulder; br, broad. , 

stretching; s, symmetric; as, antisymmetric.   
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Table 3. Comparison of bond lengths and vibrational stretchings for CO (carbonyl, carboxylic 

acid and carboxylate) groups. 

 HCCA a ZnCCA b Znphen 
 

  ond 
length ( ) 

 C=O 
(cm-1) 

 ond 
length ( ) 

 C=O 
(cm-1) 

Bond length 
( ) 

 C=O 
(cm-1) 

C=O (carboxylic) 1.199 1744 (s)     
CO (carboxylate)   1.245 

1.264 
1561 
1396 

1.245 
1.268 

1596  
1384 

C=O (carbonyl) 1.216 1682 (s) 1.232 1669 (s) 1.199 1733 (s) 
 

a Crystallographic data for HCCA obtained from [26]; b Crystallographic data measured in this 

work for comparison with data obtained by Y. Cui et al. [10]. 

 

Table 4. Comparison of CO bond lengths for the carbonyl, carboxylic and carboxylate groups. 

 HCCA 
[26] 

CuCCA 
[32] 

MnCCA  
[33] 

CdCCA 
[34] 

ZnCCA 
[10] 

ZnCCAa CCAa 
anion 

C=O 
carbonyl 

1.216 1.216 1.222 1.227 1.2241 1.232 1.199 

C=O 
carbox 

1.199 1.251 
1.266 

1.2509 
1.2549 

1.256 
1.257 

1.2501 
1.2617 

1.245 
1.264 

1.245 
1.268 

C-O(H)  
carbox 

1.328       

  

a Crystallographic data measured in this work and b for comparison with data obtained by Y. Cui 

et al. [10].  
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Table 5: 1H and 13C NMR main chemical shifts in DMSO-d6 of HCCA, KCCA and binary and 

ternary complexes of Zn(II). 

 
 Group HCCA KCCA ZnCCA  ZnCCAphen  phen [38] 
  1H 13C 1H 13C 1H 13C 1H 13C 1H 13C 

C
C

A
 

C(3)OOH 13.25 (s) 164 - 165 - 167 - 167   
C(1)=O - 157 - 153 - 158 - 158   
CH (4) 8.76 (s) 149 7.82 (s) 137 8.53 (s) 145 8.15 (s) 143   
CH (7) 7.92 (d) 130 7.67 (d) 128 7.85 (d) 130 7.64 (d) 129   
CH(10) 7.74 (t) 135 7.50 (t) 130 7.65 (t) 133 7.57 (t) 133   
CH(8) 7.44 (m) 116 7.29 (m) 116 7.39 (m) 116 7.28 (m) 116   
CH(9) 7.42 (m) 125 7.27 (m) 124 7.36 (m) 125 7.27 (m) 125   

ph
en

 CH(2) -  -  -  8.78 (br) 139 9.18 150.4 
CH(3) -  -  -  7.25 (br) 129 7.62 123.1 
CH(4) -  -  -  8.18 (br) 127 8.23 136.0 
CH(6) -  -  -  7.93 (br) 125 7.77 126.6 

 
Chemical shifts are expressed in ppm using TMS as reference. In parentheses the signal 

multiplicities are indicated (s: singlet, d: doublet, t: triplet, m: multiplet, br: broad).  

 

Table 6. Minimum inhibitory concentration (MIC) of metal Zn(II), free ligands (phen and HCCA), 

binary complex ZnCCA and ternary complex ZnCCAphen for fungus and bacteria reference 

strains, in μg mL-1. Minimum inhibitory concentration (MIC, g mL-1): Inactive (above 1000), 

weak toxicity (1000-500), moderate (500-100), significant toxicity (lower than 100). Minimum 

values are shown in bold. 

    Zn(II) phen HCCA ZnCCA ZnCCAphen 

B
ac

te
ri

a 

P. aeruginosa 1500 375 1500 >1500 >1500 
E. faecalis 1500 94 1500 >1500 1500 

E. coli 188 12 >1500 >1500 1500 
S. aureus 188 24 1500 >1500 750 

S. epidermidis 188 12 1500 1500 750 

Fu
n

gi
 

C. albicans ATCC 10231 1500 3 >1500 >1500 12 
C. glabrata 1500 6 >1500 >1500 24 

C. krusei 1500 6 >1500 >1500 24 
C.  parapsilosis ATCC 

22019 
750 12 >1500 >1500 188 

C. tropicalis 750 12 >1500 >1500 188 
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Highlights 

 

 Zn coumarin-3-carboxylate o-phenanthroline compounds 
 Vibrational determinations based in bond length 
 NMR characterization 
 Antimicrobial activities and behavior against alkaline phosphatase  
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