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Some quantal systems require only a small part of the full quantum theory for their analysis in classical terms. In such understanding we
discuss some recent literature on semiclassical treatments and add some results of our own. This analysis allows one to see that some
important quantum features of the harmonic oscillator, a system of great didactic value, can indeed be already encountered at the classical or
semiclassical statistical levels.
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Algunos sistemas cuánticos requieren sólo una pequeña parte de la teorı́a cuántica completa para su análisis en términos clásicos. Para
una mejor comprensión discutimos algunos tratamientos semiclásicos de la literatura reciente y añadimos algunos resultados propios. Este
análisis permite ver que algunas importantes caracterı́sticas cuánticas del oscilador armónico, tan importante para la didáctica de conceptos
fı́sico, de hecho ya pueden ser encontradas en los niveles estadı́sticos clásicos o semiclásicos.
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1. Introduction

It has been pointed out long ago that some quantal systems
require only a small part of the full quantum theory for their
analysis in classical terms [1]. Some exciting contempo-
rary ideas in similar vein are those of [2]. Here we wish to
present a didactic discussion concerning these issues in what
we hope is an original manner, suitable for students that have
had one/two semester(s) of instruction in boths quantum me-
chanics and statistical mechanics.

With this notion in mind, and with reference to some re-
cent work [3–9] we will try to show, after inspection, reflec-
tion, and re-elaboration, that some typical quantal peculiar-
ities can be explained, to a rather surprising extent, by re-
course to just classical or semiclassical considerations. We
have in mind here such “purely-quantum” concepts as those
of decoherence factor, Mandel parameter, and escorts distri-
butions, a well-known tool of contemporary statistical me-
chanics’ research [see, for instance, [10, 11] and references
therein]. We will encounter quantum echoes regarding such
notions, outside the Schrödinger or Heisenberg representa-
tions. Our main research tools will be escort distributions,
intertwined with information-quantifiers, of which the semi-
classical Wehrl’s entropy and Fisher’s information measure
are singled-put.

The harmonic oscillator (HO) constitutes the focus of our
attention. This is, of course, much more than a mere exam-
ple, since in addition to the extensively used Glauber states
in molecular physics and chemistry [12, 13], nowadays the
HO is of particular interest for the dynamics of bosonic or
fermionic atoms contained in magnetic traps [14,15], as well
as for any system that exhibits an equidistant level spacing

in the vicinity of the ground state, like nuclei or Luttinger
liquids. For starters we briefly review below the notions un-
derlying this communication.

1.1. Escort distributions

Given a probability distribution (PD) f(x), there exists an
infinite family of associated PDs fq(x) given by

fq(x) =
fq(x)∫
dx fq(x)

, (1)

with q a real parameter, that have proved to be quite useful
in the investigation of nonlinear dynamical systems, as they
often are better able to discern some of the system’s features
than the original distribution [10, 16]. It should be empha-
sized that both types of distributions, fq and f accrue similar
status in contemporary statistical physics’ research [10], as
they notoriously occur in the formulation of several recent
formulations of statistical mechanics [10, 11, 16].

Here we will take advantage of the q−degree of freedom
to look for effects not visible at q = 1 that hopefully emerge
at other q−values. Additionally, it will be seen that physical
considerations constrain the q−choice.

1.2. Decoherence

Decoherence is that interesting process whereby the quantum
mechanical state of any macroscopic system becomes rapidly
correlated with that of its environment in such a manner that
no measurement on the system alone (without a simultane-
ous measurement of the complete state of the environment)
can exhibit any interference between two quantum states of
the system. Decoherence is a rather exciting phenomenon
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and a subject of widespread attention [17]. However, it is dif-
ficult to provide a quantitative definition of it. All pertinent
attempts always depend on the relevant experimental config-
uration and on the authors’ taste [18]. An important related
quantity is the square of the density matrix, in whose terms
one can define a decoherence parameter D [19], ranging be-
tween 0 (pure states) and one. It is defined as

D = 1− Tr(ρ̂2)
(Tr ρ̂)2

. (2)

This is a clearly non-negative quantity. The quantity Tr(ρ̂2)
is often called the purity of ρ̂, equal to unity for pure states.

1.3. Mandel parameter and Fano factor

A convenient noise-indicator of a non-classical field is the
so-called Mandel parameter which is defined by [20]

Q =
(∆N̂)2

〈N̂〉 − 1 ≡ F − 1, (3)

which is closely related to the normalized variance (also
called the quantum Fano factor F [21]) F = (∆N̂)2/〈N̂〉
of the photon distribution. For F < 1 (Q ≤ 0), emitted light
is referred to as sub-Poissonian since it has photo-count noise
smaller than that of coherent (ideal laser) light with the same
intensity (F = 1; Q = 0), whereas for F > 1, (Q > 0) the
light is called super-Poissonian, exhibiting photo-count noise
higher than the coherent-light noise. Of course, one wishes
to minimize the Fano factor.

2. Basic tools

We introduce next the basic tools needed for our endeavor.

2.1. Phase-space, coherent states, and Husimi distribu-
tions

In phase-space, exact quantum solutions are given by Wigner
distributions [22–24]. The paradigmatic semiclassical con-
cept to be appealed to is that of Husimi probability distribu-
tion, µ(x, p), built upon using coherent states [5,25,26]. The
pertinent definition reads

µ(x, p) = 〈z|ρ̂|z〉, (4)

a “semi-classical” phase-space distribution function associ-
ated to the density matrix ρ̂ of the system [12, 26]. Coherent
states are eigenstates of the annihilation operator â, i.e., sat-
isfy â|z〉 = z|z〉. The distribution µ(x, p) is normalized in
the fashion ∫

dxdp

2π~
µ(x, p) = 1. (5)

Indeed, µ(x, p) is a Wigner-distribution DW smeared over
an ~ sized region of phase space [22]. The smearing renders
µ(x, p) a positive function, even if DW does not have such

a character. The semi-classical Husimi probability distribu-
tion refers to a special type of probability: that for simultane-
ous but approximate location of position and momentum in
phase-space [22].

The usual treatment of equilibrium in statistical mechan-
ics makes use of the Gibbs’s canonical distribution, whose
associated, “thermal” density matrix is given by

ρ̂ = Z−1e−βĤ , (6)

with Z = Tr(e−βĤ) the partition function, β = 1/kBT the
inverse temperature T , and kB the Boltzmann constant.

2.2. Information quantifiers in phase-space

The operative semiclassical entropic measure is here
Wehrls’s entropy W , a useful measure of localization in
phase-space [27]. Its definition reads

W = −
∫

dxdp

2π~
µ(x, p) ln µ(x, p). (7)

The uncertainty principle manifests itself through the in-
equality

1 ≤ W, (8)
which was first conjectured by Wehrl [27] and later proved by
Lieb [28]. In order to conveniently write down an expression
for W consider an arbitrary Hamiltonian Ĥ of eigen-energies
En and eigenstates |n〉 (n stands for a collection of all the
pertinent quantum numbers required to label the states). One
can always write [22]

µ(x, p) =
1
Z

∑
n

e−βEn |〈z|n〉|2. (9)

A useful route to W starts then with Eq. (9) and continues
with Eq. (7). In the special case of the harmonic oscillator
the coherent states are of the form [26]

|z〉 = e−|z|
2/2

∞∑
n=0

zn

√
n!
|n〉, (10)

where |n〉 are a complete orthonormal set of eigenstates and
whose spectrum of energy is En = (n+1/2)~ω, n = 0, 1, . . .
In this situation we have the useful analytic expressions ob-
tained in Ref. 22

µ(z) = (1− e−β~ω) e−(1−e−β~ω)|z|2 , (11)

WHO = 1− ln(1− e−β~ω). (12)

When T → 0, the entropy takes its minimum value WHO=1,
expressing purely quantum fluctuations. On the other hand
when T → ∞, the entropy tends to the value − ln(β~ω)
which expresses purely thermal fluctuations. Fisher’s infor-
mation measure I is the local counterpart of the global Wehrl
quantifier. It is an indicator of how much information is con-
tained in a probability distribution function (PDF) [29]. In
phase-space, the local quantifier adopts the appearance [6]

I =
1
4

∫
d2z

π
µ(z)

(
∂ ln µ(z)

∂|z|
)2

, (13)
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so that inserting the µ−expression into the above expression
we obtain for the HO the analytic form

IHO = 1− e−β~ω, (14)

so that 0 ≤ IHO ≤ 1.

2.2.1. A first observation

Introducing (14) into the Wehrl expression we find

WHO = 1− ln (IHO), (15)

which together with the Lieb inequality seems to be telling
us that too much information might be incompatible with the
uncertainty principle. Closer inspection shows, however, that
the above expression is valid for any values of either β or ω.
We will return to this point later on, in connection with escort
distributions.

2.3. Escort Husimi distributions

Things can indeed be improved in the above described sce-
nario by recourse to this concept of escort distribution, intro-
ducing it in conjunction with semiclassical Husimi distribu-
tions. Thereby one might try to gather “improved” semiclas-
sical information from escort Husimi distributions (q−HDs)
γq(x, p):

γq(x, p) =
µ(x, p)q

∫
d2z
π µ(x, p)q

, (16)

where d2z/π = dxdp/2π~ and whose HO-analytic form can
be obtained from Ref. 7, i.e.,

γq(z) = q(1− e−β~ω)e−q(1−e−β~ω)|z|2 . (17)

As for the associated escort-Fisher measure I
(q)
sc one eas-

ily gets

I(q)
sc =

1
4

∫
d2z

π
γq(z)

(
∂ ln γq(z)

∂|z|
)2

, (18)

that using (17) leads to

I(q)
sc = q(1− e−β~ω) = q IHO, (19)

entailing that 0 < I
(q)
sc ≤ q.

2.4. Coherent states and Mandel parameter

For a coherent state (a pure quantum state) the Mandel pa-
rameter vanishes, i.e., Q = 0 and F = 1. A field in a coher-
ent state is considered to be the closest possible quantum-
state to a classical field, since it saturates the Heisenberg
uncertainty relation and has the same uncertainty in each
quadrature component. It should be clear that both Q and
F function as indicators on non-classicality. Indeed, for a
thermal state one has Q > 0 and F > 1, corresponding to a
photon distribution broader than the Poissonian. For Q < 0,

(F < 1) the photon distribution becomes narrower than that
of a Poisson-PDF and the associated state is non-classical.
The most elementary examples of non-classical states are
number states. Since they are eigenstates of the photon num-
ber operator N̂ , the fluctuations in N̂ vanish and the Mandel
parameter reads Q = −1 (F = 0) [23]. Taking into account
that the number operator is connected with the harmonic os-
cillator Hamiltonian Ĥ via N̂ = Ĥ/~ω−1/2, we can rewrite
the HO-Mandel parameter in this fashion

Q = F − 1 =
(∆Ĥ)2

~ω〈Ĥ〉 − ~2ω2/2
− 1, (20)

where we have used that Ĥ = ~ω|z|2 [8]. Of course, classi-
cally the hamiltonian phase-space function is

H(x, p) =
p2

2m
+

1
2
mω2x2. (21)

3. Decoherence parameter

We shall calculate the decoherence (2) in three different ver-
sions: quantum, classical, and semiclassical. In the two last
instances, one replaces ρ̂ by an ordinary, normalized PDF f
and the trace operation by integration over phase space, i.e.,

D = 1−
∫

dxdp
h f2

(
∫

dxdp
h f)2

. (22)

Classically, D is not guaranteed to be of a nonnegative char-
acter. As a first new result of this communication we will see
now that interesting physical results ensue if we nonetheless
demand nonnegativity.

3.1. Quantal HO-version

We begin with the orthodox quantum recipe. All our cal-
culations are performed in phase-space. For technical de-
tails consult, for instance, Ref. 5. The quantum HO- den-
sity operator is ρ̂ = e−βĤ/Z, Ĥ the HO-Hamiltonian, and
Z = e−β~ω/2/(1− e−β~ω) the partition function of this sys-
tem, so that one straightforwardly finds

Dquant =
2

1 + eβ~ω . (23)

It is easy to see that for β → ∞ one has Dquant = 0
while for β → 0 one has Dquant = 1, as expected. As stated
above, intriguing things may happen if we try to replace ρ̂ by
a classical PDF and the trace operation by integration over
phase-space.
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3.2. Classical HO-version

Classically (or semiclassically), the delocalization factor can
be gotten by using probability distributions instead of density
matrices [5]. For the HO one has

Dclass = 1− 1
Z2

class

∫
dxdp

h
e−2β~ω|z|2 , (24)

where Zclass = 1/(β~ω) is the classical partition function for
the HO. The pertinent computation yields

Dclass = 1− β~ω
2

. (25)

Interestingly enough, Dclass → 1 as T → ∞, as in the quan-
tum instance.

3.2.1. First quantum echo

When dealing with Gaussian distributions one finds Dclass≥0
[Cf. Ref. 2] only in special cases. For f = Ae−a|z|2 one
readily finds

Dclass = 1− a

2
. (26)

Thus,Dclass ≥ 0 implies a ≤ 2. In our case, a = β~ω and the
requirement turns out to be that the “thermal” energy kBT ,
i.e., the average classical energy per degree of freedom 〈e〉,
is such that

〈e〉min ≥ ~ω
2

. (27)

This entails a rather surprising result, a minimum possible
mean energy per degree of freedom 〈e〉min. For energies
smaller of this value the quantity (22) becomes negative.
Thus, we encounter a quantum-flavored result at the classi-
cal level. One might be tempted to suggest that the vacuum
energy ~ω/2 has a statistical origin. Why? Because a min-
imum possible HO-energy arises just by demanding that the
pertinent distribution f verify

(∫
dxdp

h
f

)2

≥
∫

dxdp

h
f2. (28)

3.3. Semiclassical HO-version

In a semiclassical version, this parameter takes the form

Dsc = 1−
∫

d2z

π
µ(z)2, (29)

whose analytic expression is

Dsc =
1 + e−β~ω

2
. (30)

One ascertains then that for T → ∞ we have, as expected,
Dsc = 1. On the other hand, at T = 0 we get Dsc = 1/2.

3.3.1. Second echo

The above result can be interpreted ( [6] via the relationship
between the decoherence factor and the so-called participa-
tion ratio R, that “counts” the number of pure states asso-
ciated to a density matrix). We find here that just two pure
states would “enter” the semiclassical PDF at T = 0, if it
could be regarded as being of a quantal character, since

D = 1− 1
R . (31)

3.4. Escort semiclassical HO-version

For more interesting results we turn now our attention to es-
cort distributions in the hope that making q 6= 1 may help us
to elucidate more details of our problem. The ensuing semi-
classical version becomes

D(q)
sc = 1−

∫
d2z

π
γ2

q , (32)

i.e.,

D(q)
sc = 1− q

2
(1− e−β~ω) = 1− q

2
γ; 0 ≤ γ ≤ 1. (33)

Non-negativity implies (q/2) γ ≤ 1. One can satisfy this
relationship and still retain ample liberty to find acceptable
triplets of values D(q)

sc = x, q, β.
Additionally, from (33) we find, calling x = D(q)

sc

q =
2(1− x)

1− e−β~ω . (34)

Now, in this case the Wehrl entropy and Fisher measure
turn out to be, respectively, [6]

Wq = 1− ln [q(1− e−β~ω)]
Iq = q(1− e−β~ω), (35)

so that the Lieb inequality becomes in this instance

− ln [q(1− e−β~ω)] ≥ 0, i.e.,
− ln qγ ≥ 0 ⇒ qγ ≤ 1, (36)

which does pose some further constraints on q, namely,

q(1− e−β~ω) = 2(1− x) ≤ 1, (37)

that is
D(q)

sc ≥ 1/2; R(q)
sc ≥ 2. (38)

3.4.1. Third echo

The meaning of the above result is quite interesting. Math-
ematically, q (and thus Iq) can be larger than what is al-
lowed by (37), since in such vein one only needs asking that
Wq ≥ 0, entailing q ≤ e/γ, instead of q ≤ 1/γ. However,
for

1/γ ≤ q ≤ e/γ, (39)
Lieb’s inequality is violated, which is tantamount to asserting
that the uncertainty principle is ignored. Thus, we see here
that “too much” information violates Heisenberg’s principle
in a semi classical setting.
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3.5. Classical escort version

The escort classical HO-phase-space probability distribution
reads [9]

Pq(x, p) =
e−qβ~ω|z|2

∫
dxdp

h e−qβ~ω|z|2 , (40)

so that, after integration one finds

Pq(x, p) = qβ~ω e−qβ~ω|z|2 . (41)

Thus, a simple computation for

D(q)
class = 1−

∫
(dxdp/h)Pq(x, p)2

yields a result that entails a mere re-scaling of the inverse-
temperature β by a factor q

D(q)
class = 1− qβ~ω

2
. (42)

This entails a shifting of the minimum allowable energy.

3.5.1. Fourth echo

Here D(q)
class ≥ 0 entails q ≤ kBT/(~ω/2), so that we obtain

a physical restriction on the value of q:

q ≤ 〈H〉class

E0
, (43)

where E0 = ~ω/2 is the zero-point energy.

3.6. Quantal escort version

Interestingly enough, the same β−rescaling occurs in the
quantum instance. In this version we have ρ̂q = ρ̂q/ Tr ρ̂q =
e−qβĤ(1 − e−qβ~ω)eqβ~ω/2. Thus, the decoherence factor
is defined as D(q)

quant = 1 − Tr ρ̂2
q , and we have the analytic

expression
D(q)

quant =
2

1 + eqβ~ω . (44)

We see that D(q)
quant ≥ 0 implies q ≥ 0, still another physical

restriction on the q−value.

4. Diverging HO-Fano factors

It was found in Ref. 3 that the semiclassical q-Husimi-HO
treatment reveals the appearance of “poles”, i.e., divergences
of the Fano factor for specific q−values. We delve further
into this issue below.

4.1. Quantal Fano factor

If we take the mean value 〈Ĥ〉 = Tr(ρ̂Ĥ) we have for the
quantal Fano factor the expression

Fquant =
1

1− e−β~ω . (45)

For our present objectives we note that this quantity “di-
verges” only for T = ∞.

4.2. Classical Fano factor

In the classical instance some further considerations become
necessary. The HO’s classical partition function was given
above by Zclass = 1/β~ω [30]. Accordingly,

〈H〉 =
~ω

Zclass

∫
(dxdp/h) |z|2 e−β~ω|z|2 =

1
β

, (46)

〈H2〉 =
~2ω2

Zclass

∫
(dxdp/h) |z|4 e−β~ω|z|2 =

2
β2

, (47)

which entails (∆H)2 = 1/β2. As a consequence, we have

Fclass =
1

~ω
kBT − ~2ω2

2k2
BT 2

. (48)

At low T , kBT ¿ ~ωT and Fclass = 0. Fclass diverges at
high temperatures. Indeed, it does so at kBT = ~ω/2, when
the thermal energy equals the HO-ground state energy.

4.2.1. Fifth echo

This is a quite interesting result. The classical treatment
somehow “knows” that this is a strange energy value, mean-
ingless (but unattainable) in the classical world, and reacts
with a “pole”. In any case, classical considerations do lead to
the vacuum HO-energy (again!).

4.3. Semiclassical Fano factor

The semiclassical version Fsc of Fano factor evaluated with
Husimi’s distribution was found in Refs. 3 and 9

Fsc =
(∆µN)2

〈N̂〉µ
, (49)

where 〈 ... 〉µ denotes the semiclassical mean value of any
general observable and the subindex µ indicates that we have
taken the Husimi distribution (11) as the weight function. It
is then easy to see that Fsc reads

Fsc =
2

(1− e−β~ω)(2− (1− e−β~ω))
. (50)

No divergences ensue in this instance. However, they will
appear if we appeal to escort distributions.
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5. Escort Fano factors

5.1. Semiclassical escort Fano factor for the HO

The “escort”-expression for the Fano factor is [3]

F (q)
sc =

2
q(1− e−β~ω)(2− q(1− e−β~ω))

. (51)

We note that when q tends to unity we have F (1)
sc ≡ Fsc. We

see now the Fano-divergences may occur whenever

2
q

= G(β) = 1− e−β~ω. (52)

Since 0 ≤ exp (−β~ω) ≤ 1

0 ≤ G(β) ≤ 1, (53)

and
2 ≤ q ≤ ∞. (54)

Additionally, the inverse temperature at which the divergence
of the Fano factor takes place is given by

βF diverg(q) =
− ln (1− 2/q)

~ω
, (55)

a value that obviously ranges in [0,∞]. We conclude that the
“classical pole” can be “moved” to any temperature what-
soever by a judicious choice of q, which allows one then to
mimic at will the “pole”-behavior in either the classical or the
quantum (at T = ∞) instances.

5.1.1. Second observation

The escort distribution can mimic, after judicious
q−selection and for specific physical facets, either quantum
or classic behavior.

5.2. Escort-classical Fano factor

The escort-classical HO-phase-space probability distribu-
tion found in (41) that reads Pq(x, p) = qβ~ω e−qβ~ω|z|2 ,
and using 〈f〉 =

∫
(dxdp/h) f(x, p)Pq(x, p) one obtains

〈H〉 = 1/(qβ), 〈H2〉 = 2/(q2β2), and (∆H)2 = 1/(q2β2).
Consequently, the q-escort classical Fano factor is

F (q)
class =

1
q ~ω

kBT − q2 ~2ω2

2k2
BT 2

. (56)

The limit q → 1 leads to F (1)
class ≡ Fclass. The Fano “pole”

becomes located at q = 2kBT/(~ω). Also, here we have

βF diverg(q) =
2

q~ω
, (57)

and can be chosen at will.

5.3. Quantal escort-Fano factor

Here we have
F (q)

quant =
1

1− e−qβ~ω , (58)

i.e., we find again a qβ−scaling and nothing interesting hap-
pens. e−qβ~ω = 1 when either q = 0 or T →∞.

6. Conclusions

We have focused attention here on two purely quantal con-
cepts: the decoherence parameter D and the divergence of
the Fano factor for specific q or β values. These two notions
have been treated at three levels: 1) quantum, 2) classical,
and 3) semiclassical. In all instances this was done both for
q = 1 and q 6= 1.

We have heard quantum echoes at the classical level and
discovered that by changing q we can force the semiclassical
results to accommodate either quantum or classical proper-
ties.

In related matters concerning stochastic electrodynamics,
the illuminating work of T.H. Boyer and L de la Peña et al.
(among others) has to be mentioned [1,31,32], what we here
call echoes emerge there as well. It is safe then to assert then
that the classical-quantum links deserve further scrutiny.

Acknowledgements

F. Pennini would like to thank partial financial support by
FONDECYT, grant 1110827.

1. T.H. Boyer, Phys. Rev. D 81 (2010) 105024.

2. J.B. Gong and P. Brumer, Phys. Rev. A, 68 (2003) 022101; Phys.
Rev. Lett. 90 (2003) 050402.

3. F. Pennini, A. Plastino, G.L. Ferri, Cent. Eur. J. Phys. 7 (2009)
624.

4. F. Pennini, A. Plastino, Eur. Phys. J. D 61 (2011) 241.

5. F. Pennini, G.L. Ferri, A. Plastino, Entropy 11 (2009) 972.

6. F. Olivares, F. Pennini, A. Plastino, Brazilian Journal of Physics
39 (2009) 503.

7. F. Pennini, A. Plastino, G.L. Ferri, Physica A 383 (2007) 782.

8. F. Pennini, A. Plastino, Phys. Rev. E 69 (2004) 0571011.

9. F. Pennini, A. Plastino, Journal of Physics: Conference Series
246 (2010) 0120301.

10. C. Beck, Physica A 342 (2004) 139.

Rev. Mex. Fı́s. E 58 (2012) 120–126



126 F. PENNINI AND A. PLASTINO

11. C. Tsallis, Introduction to nonextensive statistical mechanics:
approaching a complex world (Springer, Berlin, 2009).

12. J.R. Klauder, B.-S. Skagerstam, Coherent states, Applications
in Physics and Mathematical Physics (World Scientific, Singa-
pore, 1985).

13. E. Deumens, A. Diz, R. Longo, Y. Öhyrn, Rev. Mod. Phys., 66
(1994) 917.

14. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten,
D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75 (1995)
3969.

15. C.C. Bradley, C.A. Sackett, R.G. Hulet, Phys. Rev. Lett. 78
(1997) 985.
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