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ABSTRACT 

Discoidal high-density lipoproteins (D-HDL) are critical intermediates in reverse cholesterol 
transport. Most of the present knowledge of D-HDL is based on studies with reconstituted lipoprotein 
complexes of apolipoprotein A-I (apoA-I) obtained by cholate dialysis (CD). D-HDL can also be 
generated by the direct microsolubilization (DM) of phospholipid vesicles at the gel/fluid phase transition 
temperature, a process mechanistically similar to the "in vivo" apoAI lipidation via ABCA1. We 
compared the apoA-I configuration in D-HDL reconstituted with dimyristoylphosphatidylcholine by both 
procedures using fluorescence resonance energy transfer measurements with apoA-I tryptophan mutants 
and fluorescently labeled cysteine mutants. Results indicate that apoA-I configuration in D-HDL depends 
on the reconstitution process and are consistent with a "double belt" molecular arrangement with different 
helix registry. As reported by others, a configuration with juxtaposition of helices 5 of each apoAI 
monomer (5/5 registry) predominates in D-HDL obtained by CD. However, a configuration with helix 5 
of one monomer juxtaposed with helix 2 of the other (5/2 registry) would predominate in D-HDL 
generated by DM. Moreover, we also show that the kinetics of cholesterol efflux from macrophage 
cultures depends on the reconstitution process, suggesting that apoAI configuration is important for this 
HDL function. 
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1. INTRODUCTION 

Apolipoprotein A-I2 (apoA-I), the major protein of high-density lipoproteins (HDL), plays a key role 
in reverse cholesterol transport (RCT), a process with high antiatherogenic relevance that delivers 
cholesterol excess from tissues toward the liver for catabolism and elimination [1]. Lipid-free or lipid-
poor apoAI is initially lipidated at the cell membrane in a process depending on the 
cholesterol/phospholipid transfer activity of ATP binding cassette A1 (ABCA1) whose deficiency causes 
a severe HDL deficiency syndrome known as Tangier's disease [2]. As proposed by Vedhachalam et al. 
[3], phospholipid translocation from the inner toward the outer membrane leaflet via ABCA1 induces 
bending of the membrane bilayer to create high curvature sites to which apoA-I can bind and 
microsolubilize membrane lipids to generate nascent discoidal HDL (D-HDL) particles. Nascent D-HDL 
particles created in this way contain some cholesterol [4], but they are able to acquire additional 
cholesterol by several mechanisms mediated or not by cellular proteins. Among protein-mediated 
mechanisms, we can mention the active transport catalyzed by ABCG1, another member of the ABC 
transporter family [5], and the facilitated transport via the scavenger receptor BI (SR-BI) [6]. Mechanisms 
independent of cell membrane proteins include the so-called aqueous diffusion pathway [7] involving 
desorption of cholesterol molecules from cell membrane, followed by their diffusion in the aqueous phase 
and collision-mediated absorption into HDL particles [8]. Besides, it was also proposed [9,10] that 
membrane cholesterol desorption and transference to D-HDL can be facilitated by the membrane 
anchoring of D-HDL particles through the insertion into the lipid bilayer of the central apoA-I 3-4 helix-
pair. 

Once enriched in cholesterol, D-HDL are good substrates of lecithin-cholesterol acyl transferase 
(LCAT) that generates a hydrophobic core of cholesteryl ester converting the discs into the spherical 
HDL commonly found in plasma [11]. Spherical HDL are remodeled in circulation by several processes 
as lipid or apolipoprotein exchange with other circulating lipoproteins, lipolysis, and liver selective 
cholesteryl ester uptake by SR-BI [1]. Most of these processes result in release of free or lipid-poor apoA-
I able to be relipidated by the ABCA1 reaction. 

Thus, D-HDL are very important intermediates in apoA-I mediated cell cholesterol efflux. Detailed 
knowledge of apoA-I structure in D-HDL is important for understanding the molecular life cycle of HDL. 
Being short-lived, D-HDL are not easily isolated from plasma, and most of the knowledge on their 
structure and properties was obtained with artificially reconstituted complexes. The most used procedure 
to reconstitute D-HDL is the cholate dialysis (CD) method developed by Matz and Jonas [12]. It consists 
in the preparation of mixed micellar dispersion of apoA-I, lipids and cholate; and ulterior removal of 
cholate by dialysis. Alternatively, D-HDL can be generated by direct microsolubilization (DM) of 
phospholipid vesicles at the gel to liquid-crystalline phase transition temperature (Tt). The DM method 
can be mechanistically similar to the "in vivo" D-HDL generation mediated by ABCA1 at the cell 
membrane [13], but it is restricted only to those phospholipids suffering the phase transition at compatible 
temperatures as dipalmitoyl- (DPPC, Tt = 41°C) or dimyristoyl- (DMPC, Tt = 24°C) 
phosphatidylcholines. The CD method, on the contrary, can be used with any phospholipid including 
those physiological ones which have unsaturated fatty acids as palmitoyl-oleyl-phosphatidylcholine 
(POPC), that suffer the phase transition at subzero temperatures. 

Both approaches generate differently sized D-HDL particles which contain 2, 3 or more apoA-I 
molecules. The best characterized ones have a hydrated diameter of 9.6 nm. These particles contain two 
molecules of apoA-I with about 100-150 phospholipid molecules. Several models have been proposed for 
D-DHL [14,15], but the one with the best theoretical and experimental support is the "double belt" model 
in which each of two ring-shaped apoA-I molecules wraps around a patch of phospholipid bilayer in an 
antiparallel orientation, each one on its own leaflet, and with the long helical axis perpendicular to the 
acyl chains [16-20]. The crystal structure of apoAI ∆1-43 [21], in spite of lacking lipid, shows apoA-I in a 
ring-shaped oligomer implying that apoA-I may prefer a belt-like orientation in lipoproteins. A similar 
belt-like orientation seems to be adopted by other exchangeable apolipoproteins in particles of similar 
discoidal morphology [22-25]. 
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Another question to be analyzed is the spatial relationship between both apoAI molecules on the disc. 
Computer analysis [17] predicted a registry between the monomers with similar intermolecular salt bridge 
connections as in apoAI ∆1-43 [21] crystal structure. In this model [17], helix 5 of each apoA-I molecule 
lies in direct opposition (5/5 orientation, see figure 1). Juxtaposition of helices 5 is also observed in a 
recently obtained crystal structure of the C-terminal truncated form ∆(185-243) apoAI [26]. The question 
was addressed by the group of WS Davidson in discoidal [27] and spherical HDL [28] reconstituted 
particles as well as in HDL isolated from human plasma [29] using lysine cross-linking followed by 
trypsinolysis and mass spectrometry analysis of the resulting peptides. In D-HDL reconstituted with 
POPC through the CD method [27], they found several intermolecular distance constraints supporting the 
double-belt model with the 5/5 registry, but data also indicate the presence of an additional double-belt 
orientation with a shifted helical registry with juxtaposition between helices 5 and 2 (5/2 registry) (see 
figure 1). Interestingly, the cross-linking pattern found in reconstituted spherical HDL was highly similar 
to that found in discs, regardless of whether they contained two or three molecules of apoA-I in each 
particle [28]. Moreover, the same methodology applied to 5 HDL subfractions isolated from human 
plasma revealed the presence of several crosslinks supporting the double belt 5/5 or 5/2 arrangement [29]. 
Bath et al. [30] used a very similar approach with CD reconstituted D-HDL to find three intermolecular 
cross-links, two of which were consistent with the 5/5 double-belt model. The third crosslink (K12-K182) 
was interpreted as indicative of a hairpin centered around residue 44 in such a way that the N terminus 
interacts with the C-terminal portion of the second apoA-I molecule that has also doubled back on itself. 
As noted by Davidson and Thompson [31], however, this cross-link is also quite consistent with the 
shifted 5/2 double belt proposed by Silva et al. [27]. Recently, Sorci-Thomas et al. [32] studied the 
structure of two kinds of nascent HDL generated by the action of ABCA1 of human embryonic kidney 
cells. Both in 7.5 and 10 nm particles containing respectively 2 and 3 apoAI molecules, they found 
several intermolecular lysine cross-links indicative of the 5/5 double-belt configuration besides a cross-
link in each kind of particle (K182-K239 and K94-K96) that does not fit this arrangement. These cross-
links were interpreted as indicative of a hairpin in 7.5 nm particles and a triple belt in 10 nm HDL. 
However, both cross-links can be alternatively interpreted as fitting the 5/2 registry. Irrespective of how 
these crosslinks are interpreted, all these studies indicate that the basic belt configuration of apoAI is 
maintained in HDL particles of different size, shape and origin. 

Concerning this work, we were interested in determining whether apoAI configuration on discs 
depends on the reconstitution method. With this aim, we have used two single tryptophan mutants and 
three cysteine mutants specifically designed to distinguish between the 5/5 and 5/2 orientations. 
Intermolecular distances (or distances constraints) obtained from self-quenching and fluorescence 
resonance energy tranfer (FRET) between identical (homo-FRET) or different (hetero.FRET) 
fluorophores strongly indicated that apoAI configuration in D-HDL prepared by DM of DMPC vesicles at 
Tt (24°C) is different from that of D-HDL prepared with the same lipid by CD. Data are consistent with 
the predominance of the 5/5 orientation in CD prepared D-HDL, and the 5/2 configuration in D-HDL 
prepared by DM. Besides, cholesterol efflux measurement from murine macrophages showed a different 
behaviour between both D-HDL preparations, indicating that helix registry would be relevant for D-HDL 
function. 
 
2. MATERAL AND METHODS 

 

2.1 Serum apoAI. 

It was obtained as previously described [33] from human serum kindly donated by Banco de Sangre, 
Instituto de Hemoterapia de la Provincia de Buenos Aires, La Plata, Argentina. It showed more than 95% 
purity as estimated by SDS�polycrylamide gel electrophoresis (SDS�PAGE). 
 

2.2 ApoAI single tryptophan and cysteine mutants. 

The cDNA constructions of single tryptophan mutants W@104 and W@108 as well as the procedures 
for their expression and purification were described in a previous report [34]. 
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For obtaining the cysteine mutants (K107C, K133C and K226C) we started from the cDNA of human 
pro-apoAI kindly donated by Dr A. Jonas (University of Illinois at Urbana-Champaign, IL, USA) inserted 
into a pET-30 plasmid (Novagen, Madison, WI, USA), which was modified in our laboratory [35] in 
order to create an acid labile Asp-Pro peptide bond between amino acids 2 and 3 allowing the specific 
chemical cleavage of the N-terminal region containing the pro-segment and the His-Tag fusion peptide 
[36]. This construction was employed as template to introduce the corresponding mutations for K107C, 
K133C and K226C using the QuickChange site directed mutagenesis kit (Stratagene, La Jolla, CA, USA). 
Primers were designed according to the instructions of kit manufacturers and their sequences are given in 
Supplemental Data (table S-I). PCR reactions were performed using PfuDNA polymerase. After template 
digestion with Dpn1, competent cells were transformed with PCR products, and the plasmid DNAs of 
transformed bacteria were sequenced from S-tag and T7-terminator sites. The service of Macrogen Inc. 
(Seoul, Korea) was used for primer synthesis and DNA sequencing. 

BL21 (DE3) expression host cells were transformed with plasmids containing the correct sequences. 
After induction with isopropyl-1-thio-β-D-galactopyranoside (IPTG), the His-tagged fusion proteins were 
extracted with 3 M guanidine hydrochloride (GdnHCl) and purified by immobilized metal affinity 
chromatography on Ni columns (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) using 0.5 M 
imidazole for their elution. Fusion proteins were cleaved by 45 % formic acid at 45 °C for 5 h [36]. Then, 
proteins were taken to pH 7.4 in 3 M GdnHCl and exhaustively dialyzed against phosphate buffer. A 
second metal affinity chromatography step, where the cysteine mutants were eluted with 0.05 M 
imidazole, was used for separating the final proteins from contaminants His-tag and rests of non cleaved 
fusion protein. SDS-polyacrylamide gel electrophoresis (PAGE) was used for checking each step during 
expression and purification. The final yield was 5 to 8 mg of protein per liter of culture medium and 
purity was higher than 95% as judged by SDS-PAGE. Proteins were stored in 3.0 M GdnHCl at -80°C. 
 
2.3 Characterization of apoAI mutants. 

W@104 and W@108 mutants were previously characterized [34]. Their far UV circular dichroism 
spectra were similar to that of serum apoAI. Although they showed a lower rate of DMPC vesicle 
microsolubilization at 24°C, the maximal clearing efficiency was similar to that of serum apoAI [34]. 

Cysteine mutants and wild type apoAI used in the present work lack the first two residues at their N 
terminal, which are lost after the acidic cleavage to eliminate the His-tag. However, neither the folding 
properties nor the ability to solubilize vesicles is affected by this change [35]. 

The possible influence of K107C, K133C and K226 mutations on apoAI folding and structure was 
herein discarded by using different fluorescence approaches (see table S-II in Supplemental Data). 
Tryptophan fluorescence emission and denaturation curves at increasing concentrations of GdnHCl were 
indistinguishable among cysteine mutants and the wild type protein. Besides, no difference was found in 
the efficiency for acrylamide quenching, bis-ANS binding or tryptophan to bis-ANS FRET efficiency. 
Also, substitutions of lysine 107, 133 or 226 by cysteine did not evoke any difference in the rate of 
DMPC clearance at 24°C (not shown). 
 
2.4 Labeling of cysteine mutants. 

Mutants were labeled with C5 maleimide derivatives of Alexa Fluor-350, -488 and -647 from 
Molecular Probes, Eugene, OR. Proteins at a concentration of 40 µM in 3.0 M GdnHCl were incubated 
with 10-fold molar excess of tris(2-carboxyethyl)phosphine hydrochloride (TCEP) for 1 h to reduce the -
SH group. A 10 mM stock solution of dyes in dimethyl sulfoxide was added so that the final molar ratio 
of probe to protein was 5:1. Reaction mixtures were then incubated at room temperature in the darkness 
for 3 h, and 0.4 mM glutathione was added to stop the reaction. Excess of dye was removed by 
ultrafiltration with Centricon filters with 10 kDa cut-off membranes (Millipore). Samples (2.0 ml) were 
concentrated to 0.1-0.15 ml by spinning at 5000xg. Concentrates were diluted to the original volume with 
3.0 M GdnHCl and procedure was repeated 3 times. 

Absorption spectra were measured in an Agilent 8453 Diode Array Spectrophotometer. The degree of 
labeling was determined by calculating the dye concentrations from their optical densities at the 
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corresponding absorption maxima using the extinction coefficients of 1.9 104, 7.2 104, and 2.6 105 M�1 
cm�1 for Alexa-350, Alexa-488 and Alexa-647, respectively. Protein concentration was estimated from 
the second-derivative spectra corresponding to tryptophan absorption using unlabeled wild type apoAI of 
known concentration as standard, and by using the Protein Assay Kit for Qubit fluorometer (Invitrogen). 
The calculated labeled efficiency was within the range of 0.9 and 1.1 for all samples. Identical labeling 
and dye removal conditions used with wild type apoAI indicated that non-specific labeling was lower 
than 3 %. 

No spectral shift in tryptophan fluorescence emission of the labeled proteins was detected, indicating 
that labeling did not affect either folding or conformation (not shown). 
 
2.5 Reconstitution of D-HDL. 

Dimyristoyl phosphatidylcholine (DMPC) in chloroform was dried down by flushing N2 in a glass 
tube leaving a thin lipid layer. Lipids were brought up in 25 mM sodium phosphate buffer to a lipid 
concentration of 10 mM. Multilamellar vesicles (MLV) were made by extensive vortexing at 35°C. 
Proteins (or protein mixtures) in 3.0 M Gdn HCl were dialyzed against 25 mM sodium phosphate buffer 
pH 7.4 immediately before use. 

For D-HDL reconstitution by CD, the method of Matz and Jonas [12,37] was used. Proteins (or 
protein mixtures) were mixed with DMPC-MLV and sodium cholate in a 1/40/60 molar ratio and then 
dialyzed exhaustively against 25 mM sodium phosphate buffer pH 7.4. For reconstitution by direct 
microsolubilization (DM D-HDL), DMPC-MLV were incubated with proteins (or protein mixtures) at the 
DMPC phase transition temperature (24°C) at a 40/1 lipid/protein molar ratio for 24 h. The decrease in 
turbidity with time was analyzed by following the Optical Density at 350 nm. A similar rate of MLV 
microsolubilization was observed for the differently labeled proteins. In both cases (CD and DM D-
HDL), samples were subjected to 5 cycles of temperature between 4 and 30° to homogenize the size of 
the resultant D-HDL complexes [38]. Analysis of the products by polyacrylamide gradient gel 
electrophoresis (PAGGE) [39] in 4-24% gels indicated that all the preparations of the differently labeled 
proteins (or protein mixtures) generated homogeneous D-HDL with a predominant population of 
complexes with an apparent diameter of about 8 nm or 140 kDa. The emission maxima of tryptophan 
fluorescence were very similar in all D-HDL preparations. 
 
2.6 Fluorescence measurements. 

Fluorescence spectra and anisotropy measurements were made in cells of 0.2 cm path length for 
excitation and 1 cm for emission using an Olis upgraded SLM4800 spectrofluorometer (Olis Inc., Bogart, 
GA). Fluorescence spectra were taken with a resolution of 4 nm for excitation and emission. Excitation 
wavelengths were respectively 290, 350 and 490 nm for tryptophan, Alexa-350 and Alexa-488. A T 
format was used for anisotropy measurements; observing the emission light through cut-off filters KV389 
and KV510 for Alexa-350 and Alexa-488, respectively. D-HDL preparations with 100% wild type apoA-I 
were used for background subtractions of scattering and non-specific fluorescence. 
 
2.7 Cell cholesterol efflux measurements. 

Raw 264.7 macrophagues were cultured as previously described [40]. About 5×105 cells were seeded 
on six-well plates and incubated until confluence (1 day) with 2ml of Dulbecco�s Modified Eagle 

Medium (DMEM) supplemented with penicillin/streptomycin (100 units/ml) and 10% FBS at 37 °C in a 
5% CO2 atmosphere. For cholesterol efflux measurements, RAW 264.7 cells were labeled loaded with 50 
mg/ml cholesterol in DMEM and 0.05 mCi/ml 14[C] cholesterol (Perkin Elmer) supplemented with 1% 
fatty acid-free bovine albumin for 24 h. Following the labeling period, cells were washed twice with PBS 
and allowed to equilibrate in culture medium containing 1 mg/ml BSA in the presence of 0.5mM Br-
cAMP. After 8 h equilibration, cells were washed and incubated for additional 12 h in DMEM with 
increasing doses of D-HDL maintaining the stimulus of Br-cAMP. Background efflux was determined in 
control cells incubated with serum-free medium. Efflux media were collected and centrifuged to remove 
any detached cells and counted for 14C. Then, cells were scraped and suspended in methanol. Cholesterol 
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efflux was calculated as the percentage of radioactivity in the medium relative to total radioactivity in 
cells plus medium as previously described [41]. 
 
 
3. THEORY/CALCULATION 
 

3.1 Homo- and hetero-FRET. Dependence on the interprobe distance. 

FRET efficiency (ET) depends on the average distance (R) between two identical (homo-FRET) or 
two different (hetero-FRET) fluorescent groups according to: 

ET = 1 / [1 + (R / RO)6]         (1) 
where RO (or Föster distance) is the distance for ET = 0.5 and it can be calculated (in nm) as: 

RO = 0,0211 (n-4 κ2 QD J(λ))
1/6        (2) 

where n is the refractive index (taken as 1.4), κ2 is the orientation factor (assumed to be 2/3 for randomly 
oriented donor and acceptor). QD is the donor quantum yield in the absence of FRET and J(λ) is the 
spectral overlap integral calculated as: 

J(λ) = �fD(λ) εA(λ) λ
4 dλ         (3) 

where fD(λ) is the donor emission spectrum with area normalized to unity, εA(λ) is the absorption spectra of 
the acceptor at 1 M concentration, and λ is the wavelength. 

For hetero-FRET, the efficiency ET can be calculated from the increase in donor fluorescence 
intensity, or from the decrease in the acceptor fluorescence intensity or lifetime. In the last case: 

ET = 1 - (τDA / τD) = 1 - (QDA / QD) = 1 - (FDA / FD)     (4) 
where τDA and τD are, respectively, the donor fluorescence lifetimes in the presence and absence of 
acceptor, while QDA and QD are the corresponding donor quantum yields. The quantum yield ratio QDA/QD 
can be replaced by the equivalent ratio of fluorescence intensities FDA/FD. By combining equations 1 and 
4, the following expression is obtained which permits to calculate the interprobe distance R from 
fluorescence intensity or lifetime measurements. 

R = RO [τDA / (τD - τDA)]1/6 = RO [QDA / (QD - QDA)]1/6 = RO [FDA / (FD - FDA)]1/6  (5) 
In the case of a pure homo-FRET process, it does not change lifetime or quantum yield, but it results 

in a decrease of the fluorescence anisotropy. Two approximate expressions have been derived to estimate 
the interprobe distance from steady state anisotropy data [42-44]: 

R = RO [0,5 x (2 r2 - r1) / (r1 - r2)]
1/6       (6) 

or R = RO [(2 r2 - r1) / (r1 - r2)]
1/6        (7) 

where r1 and r2 are the anisotropies either in absence or presence of homo-FRET, respectively. We herein 
used equation 7, which results in 12% longer values for R in comparison with equation 6. 
 
3.2 Self-quenching efficiency. 

When interprobe distance is short enough, a self-quenching phenomenon is possible due to the 
formation of dimeric dark complexes [42]. Like hetero-quenching, self-quenching may or may not affect 
the fluorescence lifetime. In any case, it will decrease the fluorescence intensity according to: 

ESQ = 1 - (QSQ / QO) = 1 - (FSQ / FO)       (8) 
where ESQ is the self-quenching efficiency, QSQ and QO (or FSQ and FO) are the quantum yields (or relative 
fluorescence intensities) in the presence and absence of self-quenching, respectively. 

In dimeric D-HDL preparations, ESQ could be estimated if we know the ratio of quantum yields or 
specific fluorescence intensities between D-HDL particles containing two fluorescently labeled apoAI 
molecules (LL discs) and particles containing one labeled and one unlabeled wild type apoAI molecule 
(LU discs):  

ESQ = 1 - (QLL / QLU) = 1 - (FLL / FLU)       (9) 
QLL (or FLL) values can be directly obtained from intensity measurements in a preparation of LL discs, 
reconstituted with 100% of the labeled protein L. On the contrary, it is not possible to obtain LU discs in a 
homogeneous state. If a mixture of labeled (L) and unlabeled (U) proteins is used in the reconstitution, a 
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mixture of discs with the three possible combinations is expected (LL, LU and UU). If there is no 
preferential interaction, the distribution of them will be: 

fLL = fL
2, fLU = 2 fL fU = 2 fL (1-fL), and fUU = fU

2 = (1-fL)2   (10) 
where fLL, fLU and fUU are the molar fractions of the resultant LL, LU and UU discs; while fL and fU=1-fL, 
are the molar fractions of L and U in the initial mixture. Starting from an equimolar mixture of L and U, 
the expected distribution will be 25% of LL, 50% of LU and 25% of UU discs. 

Since the UU species is non-fluorescent, and LL contains twice more fluorescent groups than LU, the 
total fluorescence intensity (FT) of a D-HDL preparation reconstituted with a mixture of L and U will be: 

FT = 2 (fLL QLL + fLU QLU) [PT] = 2 (fL
2 QLL + fL (1-fL) QLU) [PT]    (11) 

where [PT] = [L] + [U], is the total protein concentration in the sample. 
Factor 2 may be ignored since fluorescence intensity units are relatives. Moreover, if the fluorescence 

intensity is normalized (FN) by the concentration of labeled protein [L] = fL [PT], 
FN = FT / [L] = fL QLL + (1 - fL) QLU = QLU + fL (QLL - QLU)    (12) 

Dividing by QLL, the following function is obtained which allows to obtain the ratio of quantum yields 
either in the absence or of self-quenching from the origin ordinate of plots of FN/QLL versus fL: 

FN / QLL = fL (1 - QLU / QLL) + (QLU / QLL)      (13) 
Once the value for the origin ordinate (Or) is obtained, ESQ can be calculated from the following 
expression that is equivalent to equation 9: 

ESQ = 1-(1 / Or)          (14) 
 
3.3 Homo-FRET measurements in dimeric D-HDL. 

For the case of dimeric D-HDL, r2 in equations 6 and 7 corresponds to the anisotropy of D-HDL LL 
(rLL) and r1 to the anisotropy of D-HDL LU (rLU). While rLL can be directly measured in D-HDL 
reconstituted with 100% of L, rLU should be indirectly calculated from measurements in D-HDL 
preparations containing L and U in different proportions. The total anisotropy (rT) of a D-HDL 
preparation with a determined molar fraction of L (fL) will be: 

 rT = [fL QLL rLL + (1 - fL) QLU rLU] / [fL QLL + (1 - fL) QLU]     (15) 
In the absence of self-quenching QLL = QLU, and this equation simplifies to: 

rT = rLU + fL (rLL - rLU)         (16) 
In the presence of self-quenching with efficiency ESQ, QLL in equation 15 can be replaced by its 

equivalent (1 - ESQ) QLU (see equation 9): 
rT = [fL (1 - ESQ) rLL + (1 - fL) rLU] / (1 - fL ESQ)      (17) 

Multiplying by (1 - fL ESQ) and reordering: 
rT (1 - fL ESQ) = rLU + fL [(1 - ESQ) rLL - rLU]      (18) 

Estimating ESQ from intensity measurements, and plotting rT (1 - fL ESQ) versus fL, rLU can be obtained 
from the origin ordinate. 

Figure S-1 in Supplemental Data shows the influence of self-quenching on the rT versus fL plots. It is 
to note that the influence of self-quenching can be neglected when ESQ ≤ 0.2. 
 
3.4 Hetero-FRET measurements in dimeric D-HDL. 

Based on the same considerations given above, in a D-HDL preparation reconstituted with an 
equimolar mixture of donor D and acceptor, it is to expect that 25% of D-HDL particles will contain only 
donor (DD), 25% will contain only acceptor (AA), and 50% of the particles will contain donor and 
acceptor (DA). The total fluorescence intensity (FtDA) of the sample will be: 

FtDA = 0.5 QDD + 0.5 QDA        (19) 
where QDD is the quantum yield (or specific emission intensity) of D in DD discs, while QDA is the donor 
quantum yield in DA discs. 

Similarly, the total fluorescence (FtDU) of a D-HDL preparation reconstituted with a 1/1 molar ratio of 
D and the unlabeled protein U is: 

FtDU = 0.5 QDD + 0.5 QDU        (20) 
where QDU is the D quantum yield in DU discs and QDD was above defined. 
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The hetero-FRET efficiency will be given by ET = 1- (QDA / QDU), while the self-quenching efficiency 
(defined above) will be ESQ = 1- (QDD / QDU). By combining these relationships with equations 19 and 20, 
the following expression is obtained: 

ET = [1 - (FtDA / FtDU)] (2-ESQ)        (21) 
This expression permits to calculate ET from the measurable total intensities FtDA and FtDU and the 

self-quenching efficiency ESQ independently determined as above explained. It must be noted that in 
absence of self-quenching equation 21 is reduced to:  

ET = 2 [1 - (FtDA / FtDU)]  for ESQ = 0      (22) 
 
4. RESULTS 

 
4.1 Measurements with single tryptophan mutants. 

The single tryptophan mutants W@104 and W@108 were used for preparing D-HDL of DMPC using 
the CD and DM method. After applying the described temperature cycling, all the samples showed a 
single band of about 140 kDa or 8 nm in Stokes diameter (not shown). Tryptophan fluorescence spectra 
and anisotropies were measured. Wavelength of emission maxima, relative intensities and anisotropy 
values are given in table I. For both mutants, a decrease in the relative intensity or quantum yield as well 
as in the anisotropy was observed in D-HDL DM in comparison with D-HDL CD. The decrease in 
intensity indicates the presence of self-quenching in DM samples suggesting that in these discs the 
intermolecular distance between Trp residues is short enough to allow the formation of dark complexes. 
The big change in anisotropy detected between CD and DM samples exceeds the one predicted by a 
maximal change of FRET efficiency from 0 in D-HDL CD to 1 in D-HDL DM. Then, considering that RO 
for Trp-Trp homo-FRET is about 1 nm [34], the average intermolecular 104-104 and 108-108 distances 
should be ≤ 0.6 nm in D-HDL DM and ≥ 1.7 nm in D-HDL CD (i.e. the sensitivity limits given by 0.6 RO 
and 1.7 RO, respectively. See below). If these results are interpreted according to the 5/5 and 5/2 
configurations proposed by Silva et al. [27], they suggest that the 5/5 registry predominates in D-HDL 
prepared by the CD method while the 5/2 registry prevails in those D-HDL generated by the DM method. 
 
4.2 Measurements with cysteine mutants. 

4.2.1 Mutants and probes selection. 
In order to confirm if the DM method generates D-HDL in the 5/2 configuration in opposition to the 

CD method, we have constructed three cysteine mutants (K107C, K133C and K226C) which were 
specifically designed to distinguish between 5/5 and 5/2 orientational arrangements. These positions in 
the polar faces of helices 4, 5 and 10, respectively, were selected considering that the intermolecular 107-
107 and 133-133 distances will suffer the maximal change between both configurational arrangements. 
As illustrated in figure 1, the intermolecular distance between residues 107 is much shorter in the 5/2 than 
in the 5/5 registry, while the opposite is true for the 133-133 distance. The intermolecular distance 226-
226, on the other hand, is maintained approximately constant in both orientations and will serve as a 
negative control. Considering the size of D-HDL (8 nm diameter) and predicted distance changes in both 
orientational arrangements, fluorescent probes (and probe pairs) were selected having adequate Föster 
distances (RO) for homo- and hetero-FRET detection in the distance range from about 1 to 9 nm (see table 
S-III in supplemental data). 
 
4.2.2 Homo-FRET measurements in D-HDL DM reconstituted with Alexa-488 labeled cysteine mutants. 

Firstly, we labeled the cysteine mutants with Alexa-488 to estimate the intermolecular distances in D-
HDL reconstituted by the DM method in order to confirm if these D-HDL display the 5/2 configuration as 
suggested by the measurements with single tryptophan mutants. For this, D-HDL were reconstituted by 
the DM method with the Alexa-488-labeled mutants in mixtures with different proportions of the 
unlabeled wild type protein. Alexa-488 fluorescence intensity measurements indicated that self-quenching 
was present only in the case of D-HDL prepared with the mutant labeled in position 107 (ESQ ≈ 10%), but 
not in D-HDL prepared with the other mutants (data not shown). Since self-quenching has no appreciable 
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influence when ESQ ≤ 20% (see figure S-1 in Supplemental Data), it was neglected and equation 16 was 
directly used for anisotropy data interpretation. Measured anisotropy values are plotted in figure 2 as a 
function of the molar fraction of labeled protein (fL). It is to note that anisotropy values were relatively 
low, indicating a high mobility of the Alexa-488 group. This fact allows the assumption of a random 
orientation of fluorescent groups and justifies the use of 2/3 for the orientational factor κ2 in RO 
calculations. From the origin ordinates and slopes of plots in figure 2, the anisotropy values in the absence 
(rLU or r1) and presence (rLL or r2) of homo-FRET were calculated and given in the figure insert. Equation 
7 was then used for estimating the average intermolecular distances, which are given in table III. 
Considering the size of Alexa-488 group (see below), the estimated 133-133 distance (4.8 nm) is 
compatible with a double belt in the 5/2 helix registry. The 107-107 and 226-226 distances were too short 
in comparison with RO for Alexa-488 homo-FRET to allow a precise estimation, but this fact is even 
compatible with the 5/2 orientation. 
 
4.2.3. Self-quenching and homo-FRET measurements in D-HDL reconstituted with Alexa-350-labeled 

cysteine mutants. 

Since RO for homo-FRET in Alexa-350 is considerably lower than in Alexa-488 (see table S-III), this 
probe was used for determining the intermolecular distances that could not be precisely estimated by 
Alexa-488 homo-FRET. D-HDL were reconstituted by CD and DM approaches with the three Alexa-350 
labeled mutants mixed with different proportions of the wild type protein (fL = 0.25, 0.5 and 1). The 
Alexa-350 fluorescence intensity for each D-HDL preparation (normalized by the intensity of the same 
sample after treatment with 3 M GdnHCl as well as the intensity of the samples with fL=1) is shown in 
figure 3 plotted versus the molar fraction of the labeled protein. These plots follow the function described 
by equation 13. Then, the ratio between the quantum yields in the absence and presence of self-quenching 
(QLU/QLL), and self-quenching efficiencies (ESQ) can be obtained for the origin ordinates. The values, 
given in the insert of figure 3, indicate a high efficiency of self-quenching for CD reconstituted D-HDL of 
the mutant labeled at position 133 (65%) and for DM D-HDL in the case of the mutant labeled at position 
107 (50%). Concerning the protein labeled in position 226, a low self-quenching efficiency (15%) is 
detected in D-HDL DM. These data indicate that when the labeled position is 133, the fluorescent groups 
are close together allowing the formation of dark complexes in the D-HDL prepared by the CD method, 
fact that is compatible with a major proportion of the 5/5 configuration. On the contrary, the self-
quenching detection for DM D-HDL when the labeled position is 107 is compatible with the 5/2 
configuration. 

The anisotropy data, modified as rt (1- fL ESQ), are shown in figure 4 plotted versus the molar fraction 
of labeled protein (fL). By fitting equation 18 to these data, the anisotropies in the absence (rtLU o r1) or 
presence (rtLL o r2) of homo-FRET were calculated. They are shown in the figure insert, while the 
estimated intermolecular distances between the labeled positions are given in table III. These data indicate 
that the intermolecular 107-107 distance in DM D-HDL is about 0.9 nm, but it is higher than 2.2 nm in 
CD D-HDL. Residues 133, on the contrary, are separated each other by about 0.8 nm in the D-HDL 
prepared by the CD method, but by about 1.8 nm in DM prepared D-HDL. On the other hand, the 
intermolecular distance between residues 226 is estimated to be 1.7 nm in D-HDL prepared by both 
methods. 
With the exception of the 133-133 distance in DM D-HDL, which is considerably shorter when detected 
by Alexa-350 (1.8 nm) than by Alexa-488 homo-FRET (4.8 nm), data are qualitatively in agreement and 
support the hypothesis that the major configuration in these D-HDL is the 5/2 registry. Together with self-
quenching data, Alexa-350 homo-FRET indicates that, on the contrary, the major configuration of apoAI 
in D-HDL prepared by the CD method is the 5/5 orientation. 
 
4.2.4 Hetero-FRET measurements with Alexa-350 as donor, and Alexa-488 or Alexa-647 as acceptors. 

For hetero-FRET measurements, D-HDL were reconstituted by both methods (DM and CD) starting 
with mixtures (1/1 in molar ratio) of each one of the mutants labeled with Alexa-350 (donor D) with the 
corresponding mutants labeled with Alexa-488 or Alexa-647 (acceptors A), or with wild type apoAI 
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(unlabeled U). PAGGE controls indicated that all the resulting D-HDL were about 8 nm diameter and 
tryptophan fluorescence spectra did not detect any spectral shift discarding the possibility of an altered 
folding evoked by the label (not shown). Alexa-350 emission spectra (excitation at 350 nm) were 
registered before and after mixing the samples with the same volume of 6.0 M GdnHCl (3.0 M final 
concentration). 

Typical spectra obtained before the addition of GdnHCl are shown in supplemental data (figure S-2). 
Hetero-FRET results in an increased acceptor emission that disappears in 3 M GdnHCl. Hetero-FRET 
also results in the decrease of the donor Alexa-350 fluorescence emission intensity, fact that was herein 
used for quantifying the hetero-FRET efficiencies. The integral of the spectra (between 390 and 480 nm) 
in the absence of GdnHCl was divided by the corresponding integral in the presence of GdnHCl to obtain 
the values of total intensities FtDA (in samples containing donor and acceptor) or FtDU (in samples 
containing donor and unlabeled wild type protein), corresponding to equations 19 and 20. The ratios 
FtDA/FtDU are shown in table II together with hetero-FRET efficiencies (Et) calculated from equation 21. 
The intermolecular distances (R) estimated from equation 5 are given in table III. The obtained data 
clearly indicate that the average 107-107 intermolecular distance is much shorter in DM D-HDL than in 
CD D-HDL. On the contrary, the 133-133 intermolecular distance is much shorter in CD D-HDL than in 
DM D-HDL. The intermolecular distance between residues 226, on the other hand, does not change too 
much between both reconstitution methods. Thus, also these results support the hypothesis that apoAI 
configuration in DM D-HDL is mostly the 5/2 registry, while that one in CD D-HDL is the 5/5 
orientation. 
 
4.3 Functional properties of D-HDL DM and CD. Cholesterol efflux from cell cultures. 

The results obtained with single tryptophan and cysteine mutants of apoAI showed that apoAI 
configuration in D-HDL depends on the method used in their reconstitution. In order to know if the 
different configuration of apoAI in D-HDL prepared by DM and CD methods is relevant for the 
functional properties of D-HDL, the capacity to promote cholesterol efflux from cultured macrophages 
was compared. Confluent cultures of RAW 264.7 macrophages were loaded with cholesterol as described 
in Experimental Procedures Section. Then, cells were treated with different concentrations of CD and DM 
D-HDL for 12 h. In this experiment, CD and DM D-HDL reconstituted with recombinant and serum 
apoA-I were compared. After treatment, radioactivity was counted in the medium and cell monolayers. 
Cholesterol efflux, expressed as percentage of radioactivity in the medium with respect to the total 
radioactivity incorporated in cell is plotted in figure 5 versus the concentration of D-HDL added in the 
medium. It was found that D-HDLs reconstituted with recombinant or serum apoA-I have a similar 
behavior indicating that the lack of two residues at the N terminal does not affect its functionality. The D-
HDL activity, however, was dependent on the reconstitution method. At low D-HDL concentrations (≤ 10 
µg/ml), the activity of those prepared by the DM method was higher than that of those prepared by the 
CD method. At high concentrations, however, the activity of CD D-HDL was similar or somewhat higher 
than that of DM D-HDL. 
 
5. DISCUSION 

In this work, we have shown that the configuration of apoAI in reconstituted D-HDL depends on the 
method used for their preparation. The measurements with the single tryptophan mutants W@104 and 
W@108 indicated that the intermolecular distances between homologous residues 104-104 and 108-108 
are much shorter in DM D-HDL than in CD D-HDL, leading in the first case to self-quenching and 
decreased anisotropy of tryptophan fluorescence. More precise distance estimations could be obtained by 
using the cysteine mutants K107C, K133C and K226C labeled with different fluorophores in order to 
span a wide range of RO values and distance sensitivity through homo- and hetero-FRET measurements. 
Table III summarizes the intermolecular distances and distance constraints between homologous residues 
(107-107, 133-133 and 226-226) obtained for both kinds of reconstituted samples (CD and DM D-HDLs). 
For comparison, table II also shows the intermolecular distances between Cα of these residue pairs in the 
crystal structure of apoAI ∆1-43 (which can be taken as a reference for the 5/5 registry) and those 
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distances arising from the displacement for 5 nm of an apoAI ring with respect to the other (as an 
approximate reference for the 5/2 orientation). 

There is an acceptable concordance between the distances reported by the different probes or probe 
pairs, with the only exception of homo-FRET with Alexa-350 which tends to report shorter distances than 
other probes. Considering the size of the probes and that they can be differently oriented at their cysteine 
attachment sites, the average effective distances measured by FRET can differ almost 2 nm from those 
between the Cα of the corresponding residues [45]. Taking this fact into account, the 133-133 and 226-
226 intermolecular distances measured by FRET in CD D-HDL are in good agreement with those in the 
crystal structure of apoAI ∆1-43 and thus with the expected distances in the 5/5 orientation. For the 107-
107 distance, however, FRET reported a considerably shorter distance than that between the Cα in the 
apoAI ∆1-43 crystal. This fact could be explained by a probe orientation at the cys attachment size 
resulting in the approaching of fluorescent groups and lower effective distance for FRET. However, it 
also can be due to the coexistence of a minor proportion of discs having the 5/2 registry as it was detected 
by Silva et al. [27] in D-HDL reconstituted with POPC through the CD method. 

With regard to DM D-HDL, there is good agreement between the intermolecular distances measured 
by FRET with those expected for the 5/2 orientation, with the exception of the 133-133 distance measured 
by homo-FRET with Alexa-350 which is shorter than the expected one. With all probes and probe pairs, 
the measured intermolecular distance 107-107 was shorter in DM D-HDL than in CD D-HDL, while the 
opposite was true for the 133-133 distance and no large changes were observed for the distance between 
residues 226. Although alternative configurations cannot be discarded, data indicate that most of the D-
HDL prepared by the DM method present the 5/2 registry while most of the discs prepared by CD present 
the 5/5 orientation. Detection of self-quenching of Alexa-350 in DM D-HDL with the mutant labeled in 
position 107, and in CD D-HDL with the mutant labeled in 133 also indicates that the DM method 
preferentially generates the 5/2 registry while the CD method preferentially generates the 5/5 orientation. 

The microsolubilization reaction at the phase transition temperature of phospholipid vesicles is 
attributed to the coexistence of fluid and gel lipid domains, fact that generates bilayer packing defects at 
the domain interfaces [13]. The reaction follows a second order kinetics and consists of two simultaneous 
kinetic phases [46]. The two kinetic components were proposed to arise from two distinct types of 
binding sites (with or without lattice defects) for apoAI on the vesicle surface. If the initial apoA-I/MLV 
contact occurs at a packing defect in the DMPC bilayer surface, then the reaction proceeds directly. Initial 
contact at a non-defect site, however, will require diffusion of the apoAI molecule over the surface until 
reaching a defect site, giving rise to the slow kinetic phase. In any case, the reaction requires the initial 
binding of apoAI to the vesicle surface which is a reversible process, contrarily to the conversion in D-
HDL that is irreversible. As shown in previous reports, the membrane bound state of apoAI is essentially 
dimeric [47], and it occurs with the deep insertion in the lipid bilayer of the central 3-4 helix pair [10] 
whereas the rest of the helices interact more superficially. The determination of the insertion topology of 
the 3-4 helix pair in the lipid bilayer [34] allowed the proposal of a model in which an intermolecular 
bundle of both central helix pairs of the dimeric apoAI penetrates one leaflet of the lipid bilayer with the 
helix axis perpendicular to the membrane surface. The particular distribution of charged residues at the 
polar faces of these helices would allow the bundle stabilization through saline bridges. Dimerization of 
apoAI in aqueous solution also seems to be the result of interactions between the 3-4 helix pairs, although 
in this case through the hydrophobic helix faces [34]. Then, the apoAI dimerization through the 
intermolecular interaction of the 3-4 helix pairs, either before or after binding to the membrane, can 
determine the final configuration of the DM generated D-HDL, whose apoAI molecules would remain 
aligned or juxtaposed in the region of the 3-4 helix pairs and thus in the 5/2 registry (see figure 1). 

On the other hand, the formation of mixed apoAI/phospholipid/cholate micelles would not require 
previous dimerization of apoAI. When cholate is progressively removed by dialysis, apoAI helices would 
replace it at the edge of the lipid bilayer disc patch. In this case, the determinant for intermolecular helix-
helix interactions and the preferred 5/5 configuration would be the maximization of saline bridges as it 
occurs in the apoAI ∆1-43 crystal [21], as proposed by Segrest [17] in the development of the double belt 
model. 
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The fact that both apoAI configurations (5/5 and 5/2 registries) can be generated by independent 
procedures implies the existence of a thermodynamic barrier for their interconversion. In this respect, 
molecular dynamics simulations were made with D-HDL models starting from configurations similar to 
that of the apoA-I ∆1-43 crystal but differing in the initial alignment by a helix turn (G129/G129 or 
K133/K133 rotamers). Breaking and reformation of saline bridges were observed in a time scale of 100 
ps allowing the rotation of an apoAI molecule with respect to the other [48]. However, rotation stopped 
when proline residues of both molecules (which are regularly spaced in the sequence) becomes 
juxtaposed and stacked. The protein double belt, initially circular, acquired then a hexagonal shape with 
straight helix stretches interrupted at the stacked proline pairs. Based on this observation, it was proposed 
that proline-induced kinking introduces a kinetic barrier to the rotation of two apo A-I monomers on an 
HDL disk. 

As proposed [3, 13], the "in vivo" generation of nascent D-HDL mediated by the ABCA1 transporter 
at the cell membrane would occur by a mechanism basically similar to the direct microsolubilization of 
phospholipid vesicles at the phase transition. Thus, it is probable that "in vivo" generated D-HDL by the 
action of ABCA1 would present the same major configuration (5/2 registry) as those D-HDL generated 
by the microsolubilization of DMPC vesicles at 24°C. This possibility must be confirmed, but it is worth 
noting that evidence obtained by cross-linking indicates that both, the 5/2 and 5/5 registries are present in 
natural HDL complexes [28, 29]. 

In this work, we have also shown that the reconstitution method (CD or DM) impacts on the activity 
of the resulting D-HDL to remove cholesterol from RAW macrophages, suggesting that helix registry 
could be important for this activity. As noted above, cell cholesterol efflux evoked by apoAI and its 
lipoprotein complexes can occur through different mechanisms either independent or dependent on 
cellular transporters as ABCA1, ABCG1 and SRB1. ApoAI configuration in D-HDL may be important 
for recognition of cellular proteins as well as for the direct interaction with specific lipid domains of the 
cell membrane. D-HDL can bind to protein-free lipid vesicles [33,49,50], and this interaction facilitates 
cholesterol exchange between vesicles and D-HDL [9]. As it happens with lipid-free apoAI, binding of D-
HDL to lipid vesicles seems to occur with the deep insertion into the vesicle lipid bilayer of the central 
apoAI region consisting of helices 3 and 4 [10]. This fact indicates that the intermolecular helix bundle 
proposed as the membrane inserting domain [34] should be also operative in the case of D-HDL. It is to 
note that the formation of this intermolecular 4-helix bundle within a D-HDL particle is only possible 
with the 5/2 double belt configuration but not with the 5/5 registry (see figure 1). Thus, it is likely that the 
increased cell cholesterol efflux evoked at low concentrations by DM D-HDL in comparison with CD D-
HDL could be due to the fact that the 5/2 registry predominates in the first case. At high D-HDL 
concentrations, other mechanisms independent of the apoAI double-belt registry as the aqueous diffusion 
pathway could be predominant.  
 
6. CONCLUSIONS 

In summary, the present results show that the reconstitution method affects both apoAI configuration 
and kinetics of cell cholesterol removal of D-HDL. Although alternative configurations cannot be 
discarded, the results can be explained by the predominance of the 5/2 configuration in DM D-HDL and 
of the 5/5 registry in D-HDL prepared by the CD method. Further experiments are needed to clearly 
determine the apoAI configuration and helix registry in natural D-HDL as well as to know their 
importance for HDL functionality in the RCT and other antiatherogenic processes mediated by this 
protein. 
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Table I. Tryptophan fluorescence parameters for D-HDL prepared with the single tryptophan W@104 
and W@108 mutants and DMPC using the cholate-dialysis (CD) and direct microsolubilization (DM) 
methods. 
 

Mutant 
Reconstitution 

method 
λmax (nm) 

Relative 

intensity 
Anisotropy 

Estimated R 

(nm) 

W@104 CD 341 56 0.117 ≥ 1.7 
W@104 DM 341 34 0.017 ≤ 0.6 

      
W@108 CD 338 100 0.116 ≥ 1.7 
W@108 DM 340 45 0.049 ≤ 0.6 
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Table II. Hetero-FRET in DM and CD reconstituted D-HDL containing Alexa-350 as donor, and Alexa-
488 or Alexa-647 as acceptors. The FtDA/FtDU ratio obtained as explained in the text was used for 
calculating the FRET efficiencies (ET) using equation 21 and self-quenching efficiencies ESQ given in the 
insert of figure 3. 
 

Mutant / D-A pair / Method FtDA/FtDN FRET efficiency (ET) 

M107 / A350-A488 / DM 0.241 > 1.0 
M107 / A350-A647 / DM 0.299 > 1.0 
M107 / A350-A488 / CD 0.650 0.700 
M107 / A350-A647 / CD 0.830 0.340 

   
M133 / A350-A488 / DM 0.840 0.320 
M133 / A350-A647 / DM 0.945 0.110 
M133 / A350-A488 / CD 0.250 > 1.0 
M133 / A350-A647 / CD 0.273 0.978 

   
M226 / A350-A488 / DM 0.645 0.656 
M226 / A350-A647 / DM 0.715 0.527 
M226 / A350-A488 / CD 0.726 0.548 
M226 / A350-A647 / CD 0.855 0.290 
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Table III. Intermolecular distances (in nm) between residue pairs 107-107, 133-133 and 226-226 
estimated by homo- and hetero-FRET measurements in CD and DM D-HDL in comparison with the 
expected distances in the 5/5 and 5/2 orientations of the double belt. 
 

Residue 

pair 

LL5/5 

registry
a
 

D-HDL CD 

Ho A350
c
 He A350/488

d
 He A350/647

e
 Ho A488

f
 

107-107 6.4 > 2.2 3.9 3.2 NDg 
133-133 1.4 0.8 < 2.2 1.5 ND 
226-226 2.9 1.7 4.4 3.4 ND 

 LL5/2 

registry
b
 

D-HDL DM 

Ho A350
c
 He A350/488

d
 He A350/647

e
 Ho A488

f
 

107-107 1.4 0.9 < 2.2 < 1.4 � 2.5 
133-133 6.4 1.8 5.1 4.1 4.8 
226-226 2.1 1.7 4.0 2.8 � 2.5 

 

a Cα-Cα distances obtained from the coordinates of the A/B dimer in the crystal structure of apoAI ∆1-43 
(21) 
b Cα-Cα distances arising by supposing a rotation displacing 5 nm one apoAI ring with respect to the 
other in order to juxtapose helices 5 with helices 2. 
c Distances obtained by homo-FRET measurements with Alexa-350 labeled proteins 
d Distances obtained by measurements of hetero-FRET from Alexa-350 to Alexa-488 
e Distances obtained by measurements of hetero-FRET from Alexa-350 to Alexa-647 
f Distances obtained by homo-FRET measurements with Alexa-488 labeled proteins 
g ND = not determined 
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FIGURE LEGENDS 

 

Figure 1. Schematic diagram illustrating the double-belt arrangement of apoA-I in the 5/5 and 5/2 
orientations. Amphipathic �-helices of apoAI are numbered according to Segrest et al. [51] with the G* 
helix at the N terminal and helices 1 to 10 toward de C end. The approximate localization of residues 107, 
133 and 226 are also indicated. 
 
Figure 2. Alexa-488 homo-FRET in D-HDL reconstituted by direct microsolubilization. Alexa-488 
steady state fluorescence anisotropy (rT) was measured in samples of D-HDL prepared by the direct 
microsolubilization (DM) method with Alexa-488-labeled K107C (circles), K133C (triangles) and K226C 
(squares) mutants mixed at different molar ratios with unlabeled wild type apoA-I. The means of 5 
determinations (and standard deviations) are plotted as a function of the molar fraction of the labeled 
protein (fL). The values for the anisotropies in the absence (r1 or rLU) and in the presence (r2 or rLL) of 
homo-FRET, which were calculated from linear regressions of the corresponding plots according to 
equation 16, are given in the figure insert. 
 
Figure 3. Self-quenching of Alexa-350 fluorescence in reconstituted D-HDL. D-HDL were prepared by 
the CD (open symbols) and DM (filled symbols) methods, with the mutants labeled with Alexa-350 in 
position 107 (circles), position 133 (triangles) and position 226 (squares) and mixed in different 
proportions with unlabeled wild type apoA-I. The fluorescence intensity values normalized by the 
concentration of labeled protein and the value corresponding to fL = 1 (see text) are plotted as function of 
the molar fraction of labeled protein (fL). Data are the means of 3 determinations. Standard deviations are 
in the order of the symbol size (≤ 0.1 relative fluorescence units). The quantum yield ratio QLU/QLL and 
self-quenching efficiency ESQ calculated from equations 13 and 14 are given in the figure insert. 
 

Figure 4. Alexa-350 homo-FRET in reconstituted D-HDL. D-HDL were prepared by the CD (open 
symbols) or DM (filled symbols) methods, with mixtures of the labeled K107C (circles), K133C 
(triangles) or K226C (squares) mutants with different proportions of the unlabeled wild type protein. The 
anisotropy values modified as rT (1-fL ESQ) are plotted versus the molar fraction of labeled protein (fL). 
Data are the means of 5 determinations. Standard deviations are in the order of the symbol size (≤ 0.005 
anisotropy units). The values for the anisotropies in either the absence (r1 or rLU) or in the presence (r2 
or rLL) of homo-FRET, calculated by fitting equation 18 to the data, are given in the figure insert. 
 

Figure 5. Cholesterol efflux from RAW macrophages evoked by D-HDL. RAW 264.7 macrophages 
charged with 14C-cholesterol were treated with different concentrations of D-HDL prepared by the CD 
(open symbols) or DM (filled symbols) methods with serum (circles) or recombinant (squares) apoAI. 
After 12 h, radioactivity was counted in media and cells. Efflux is expressed as the percentage of the 
radioactivity found in media relative to the total radioactivity in cells plus media. Data are the mean (and 
standard deviations) of five determinations. 
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SUPPLEMENTAL DATA 

 

Table S-I. Primers used for constructing K107C, K133C and K226C mutants of apoA-I 
Mutant Sequence (5'→3') 

K107C 

CGACTTCCAGAAGAAGTGGCAGGAGG         (Original sequence) 

CGACTTCCAGAAGTGTTGGCAGGAGG         (Forward primer) 

CCTCCTGCCAACACTTCTGGAAGTCG         (Reverse primer) 

K133C 

GCGCGCGCCAGAAGCTGCACGAGCTG         (Original sequence) 

GCGCGCGCCAGTGTCTGCACGAGCTG         (Forward primer) 

CAGCTCGTGCAGACACTGGCGCGCGC         (Reverse primer) 

K226C 

GCCCGTGCTGGAGAGCTTCAAGGTCAGCTTCCTG (Original sequence) 

GCCCGTGCTGGAGAGCTTCTGTGTCAGCTTCCTG (Forward primer) 

CAGGAAGCTGACACAGAAGCTCTCCAGCACGGGC (Reverse primer) 
 
 
 
 
 
Table S-II. Stability and spectral properties of K107C, K133C and K226C mutants in comparison with 
the recombinant wild type apoA-I. 
 Wild typea K107C K133C K226C 

λmax (nm)b 339 ± 2 339 ± 2 340 ± 2 339 ± 2 
∆GO (Kcal/mol)c 2.90 ± 0.2 2.89 ± 0.2 2.91 ± 0.2 2.88 ± 0.2 

md 1693 ± 100 1710 ± 100 1715 ± 100 1708 ± 100 
1/2[GdnHCl] (M)e 1.50 ± 0.04 1.52 ± 0.02 1.54 ± 0.04 1.53 ± 0.04 

K (M-1)f 6.25 ± 1.10 6.26 ± 1.10 6.23 ± 1.10 6.30 ± 1.10 
fag 0.79 ± 0.01 0.79 ± 0.01 0.80 ± 0.01 0.79 ± 0.01 
Eh 0.28 ± 0.02 0.27 ± 0.02 0.28 ± 0.01 0.28 ± 0.01 

a Data for wild type protein are from reference (34) 
b Wavelength of maximum fluorescence of Trp residues under native conditions 
c,d,e Are the free energy change of unfolding, the relative exposure of the hydrophobic surface area and 
GdnHCl concentration of half denaturation respectively, calculated from equilibrium unfolding curves as 
described previously (34) 
f,g Are the Stern�Volmer constant and fluorophore fraction accessible to acrylamide quenching, 
respectively. 
h Efficiency of energy transfer from tryptophan (as donor) to bis-ANS (as acceptor). 
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Table S-III. Properties of fluorescent probes and probe pairs used in homo- end hetero-FRET 
measurements. 

Donor Acceptor εAmax 

(M-1cm-1) 
QD J(λ) RO (nm) 

Sensitivity 
range (nm) 

Homo-FRET 
Alexa-350 1.9 10

4
 0.55 6.6 10

11
 1.3 0.8 - 2.2 

Alexa-488 7.2 104 0.92 7.3 1014 4.7 2.8 - 8.0 
Alexa-488-Pr 7.2 10

4
 0.92 1.2 10

15
 5.1 3.1 - 8.7 

Hetero-FRET 
A-350 A-488 7.2 104 0.55 1.0 1015 4.5 2.7 - 7.6 
A-350 A-488-Pr 7.2 10

4
 0.55 9.3 10

14
 4.5 2.7 - 7.6 

A-350 A-647 2.6 10
5
 0.55 7.6 10

13
 2.9 1.7 - 4.9 

The values for the acceptor extinction coefficient at the wavelength of the absorption maximum (εAmax) 
and quantum yield (QD) are those given in the probe instruction manuals provided by Molecular Probes. 
The overlap integrals (J(λ)) and Föster distances (RO) were calculated from equations 2 and 3 given in 
Experimental Procedures. Sensitivity ranges correspond to the limits between 0.6 and 1.7 RO (or between 
5 and 95% of FRET efficiency) where distances can be measured with acceptable precision. In the case of 
Alexa-488 (which presents a considerable blue shift in the absorption and emission spectra when it is 
covalently bound to the protein), data are given for the free and protein-bound (Alexa-488-Pr) probes. 
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Figure S-1. Self-quenching influence on homo-FRET measurements. Theoretical plots of the total 
anisotropy (rT) as a function of the molar fraction of labeled protein (fL) for different self-quenching 
efficiencies (ESQ) according to equation 17. Note that self-quenching influence can be ignored for ESQ ≤ 
0.2. 
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Figure S-2. Hetero-FRET measurements with Alexa-350 as donor and Alexa-488 or Alexa-647 as 
acceptors. Emission spectra of D-HDL prepared by DM with the mutant labeled with Alexa-350 in 
position 226 mixed in equimolar proportion with: a) the unlabeled wild type protein (black curve), b) the 
mutant 226 labeled with Alexa-488 (red curve), or c) the mutant 226 labeled with Alexa-647 (green 
curve). Note the increased acceptor emission in the region of 520 nm when the acceptor is Alexa-488 or 
in the region of 680 nm when the acceptor is Alexa-647 (visible in spite of the 2nd. order scattering peak 
at 700 nm). A wavelength of 350 nm was used for excitation. 


