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1 Introduction and motivation

Heavy-ion collision experiments at the Relativistic Heavy Ion Collider (RHIC) and the

Large Hadron Collider (LHC) lead to the formation of a state of QCD matter known as

quark-gluon plasma (QGP). It has been shown that the hydrodynamical behavior of such

a system is compatible with low values of the viscosity. This is an indication that the

referred QGP is strongly coupled. Therefore, perturbative quantum field theory methods

are not suitable to investigate this plasma. This is where the gauge/string duality enters,

since it allows one to describe properties of a strongly coupled gauge theory in terms of its

dual gravitational description. In particular, a holographic dual pair which has been very

useful to understand important results of heavy-ion collider physics is given by the planar

limit of the SU(N) N = 4 supersymmetric Yang-Mills theory (SYM), and by type IIB

supergravity theory on the anti-de Sitter Schwarzschild black hole times a S5 background.

Motivated by QCD and SU(N) N = 4 SYM lattice calculations, it has been argued (see

for instance [1] and references therein) that for QGP equilibrium temperatures which are

just above the QCD deconfinement temperature, several properties of both gauge theories

behave in a similar way, even quantitatively. This supports the idea of using SU(N) N = 4

SYM theory, which is much more symmetric and therefore a much easier theory to work

with than the strongly coupled regime of QCD, in terms of its dual string theory model at

finite temperature in order to describe the strongly coupled plasma.

In an actual collision of two heavy nuclei part of their kinetic energy in the center of

mass frame transforms into intense heat before the system reaches the thermal equilibrium,

leading to a strongly coupled plasma. When the collision occurs the initial state represents

a far-from-equilibrium system. A proposal to model such a system has been the so-called

holographic thermalization, where it is assumed that there is a sudden injection of energy

to the system which in the thermal quantum field theory is interpreted as a thermal quench.
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The time evolution of the thermalizing system is a very complicated process to model due

to the large number of degrees of freedom involved as well as its non-perturbative character.

We consider a model of dynamical holographic thermalization [2–17] which has been

recently used to study thermalization time scale of strongly coupled plasmas. Although

most of these applications have been done by using effective holographic dual models, in

the present work we focus on an specific string theory dual model in order to investigate

quantum corrections to the holographic thermalization time scale of a particular strongly

coupled SYM plasma whose string dual description is very well known. We can schemat-

ically describe this thermalization model starting from an initial vacuum gravity solution

given by an anti-de Sitter spacetime (AdS), which represents the holographic dual descrip-

tion of a certain quantum field theory at zero temperature. The final state is defined by an

asymptotically anti-de Sitter Schwarzschild black hole (AdS-BH), with Hawking temper-

ature TH , which is the gravity dual model corresponding to the quantum field theory at

finite equilibrium temperature T . Furthermore, it is assumed that T = TH . Interestingly,

there is a solution of the Einstein equations which interpolates between these gravity so-

lutions, and it can be represented by a thin shell collapsing from the AdS-boundary. The

shell separates the space into two regions: the inner one is an AdS and the outer one is an

AdS-BH. As we shall explain, extended probes in the bulk can be used in order to measure

the thermalization time scale of the boundary theory plasma.

The general picture which emerges from the gauge/gravity duality when studying the

dynamical evolution of a collapsing thin shell shows that UV modes thermalize faster

than IR ones. This statement is based upon the fact that extended geometric probes in

the bulk, such as space-like geodesic curves, minimal area surfaces and minimal volume

hyper-surfaces, thermalize faster when the boundary field theory separation between two

operators (which are dual to these bulk geometric probes) becomes shorter. Thus, the

claim is that the faster thermalization of short distance two-point functions of quantum

field theory operators of the boundary field theory is related to faster thermalization of

UV modes, in comparison with IR modes which are associated with two-point functions of

operators with larger separation between them.

The referred behavior has been found for very different kinds of degrees of freedom

composing the shell [17] in effective five-dimensional holographic dual models, and from

the gravity point of view it follows as a consequence of the construction of the geometric

probes. In particular, this also occurs in the planar limit of the SU(N) N = 4 SYM plasma

at the strong ’t Hooft coupling (λ) limit. This result is obtained from its dual supergravity

description, i.e. with no string theory corrections. Thus, a natural question which arises

is whether string theory quantum corrections modify or not that statement about UV/IR

modes thermalization, and if they do, it is crucial to know how are such corrections. In

this paper we address this question by considering the leading string theory corrections to

type IIB supergravity. Very interestingly, we find the emergence of an energy scale which

separates the thermalization time scales of IR and UV modes. Thus, by decreasing λ the

thermalization time scale for IR modes slightly increases in comparison with its thermal-

ization time scale at the λ → ∞ limit, when final states are compared at fixed temperature

or fixed energy, i.e. they thermalize a bit slower than in the strong coupling limit. On
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the other hand, the alluded corrections induce an opposite behavior on the thermalization

time for UV modes, i.e. they thermalize slightly faster compared with the strong coupling

limit. We shall discuss about these two distinctive effects in the last section of the paper.

We also consider the effect of string-loop corrections which lead to 1/N corrections in the

dual SYM theory, and show that their effects go in the same direction as for the mentioned

higher curvature corrections.

In particular, we study the dynamical evolution of a thin shell composed by massless

type IIB supergravity degrees of freedom, collapsing within the asymptotically AdS spaces

described before. This is aimed at investigating holographic thermalization of SU(N) N =

4 SYM theory plasma at strong yet finite coupling. On the boundary quantum field theory

this corresponds to considering a certain thermal quench. As we have already commented,

we assume it corresponds to a sudden injection of energy due to a heavy-ion collision.

Essentially, this energy is a fraction of the center of mass kinetic energy of the two colliding

heavy ions which is transformed into intense heat during the plasma thermalization. In a

certain way this energy enters the definition of the parameter M introduced in the thermal

quench. We study the thermalization time scale by calculating renormalized space-like

geodesic lengths, rectangular and circular minimal area surfaces, and three-dimensional

minimal volume hyper-surfaces, as extended probes of thermalization, which are claimed to

be related to two-point functions, rectangular and circular Wilson loops, and entanglement

entropy, respectively. Thus, on the quantum field theory side we consider different non-local

observables to probe thermalization of this strongly coupled system.

We consider three scenarios described in terms of the parameters of the model, which

are the equilibrium temperature T and the energy parameter M of the quench, which are

related each other by eq. (2.17). One situation is when we fix the horizon radius zh or

equivalently the parameter M (see eq. (2.2)), independently of the quantum corrections,

this makes the equilibrium temperature to be dependent of the ’t Hooft coupling. Secondly,

we consider the case when the equilibrium temperature is kept fixed, while the horizon ra-

dius becomes a function of the ’t Hooft coupling. These two situations show the same

behavior for the thermalization, as explained before. Then, we discuss what happens when

we vary the parameter M of the thermal quench in an arbitrary way, which we associate

with the fraction of the center of mass kinetic energy of the two colliding heavy ions which

transforms into heat and initiates the thermalization process. We discuss in detail these

three cases in section 4.

Notice that recently higher curvature corrections to the SU(N) N = 4 SYM plasma

thermalization using a quasi-static approximation have been discussed in [18, 19], obtaining

a different behavior for the UV and IR modes compared with our results. However, one has

to be cautious making that comparison since in these references the SU(N) N = 4 SYM

theory is coupled to an external electromagnetic field, which induces large O(α′3) correc-

tions for certain observables. In section 5 we shall discuss more about this in comparison

with our findings.

The paper is organized as follows. In section 2 we describe the leading string theory

corrections to the type IIB supergravity action, including string-loop corrections. In section

3 we consider the quantum corrections to the holographic thermalization process. Results

and discussions are introduced in section 4. Section 5 is devoted to the conclusions.
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2 Leading type IIB string theory corrections

The ten-dimensional AdS5-BH×S5 metric is given by

ds2 =
R2

z2

[

−f(z) dt2 + d~x2 +
1

f(z)
dz2
]

+ R2 dΩ2
5 . (2.1)

This is in fact an exact solution of type IIB supergravity, which turns out to be the metric

of the background of the holographic dual model corresponding to the planar limit of the

SU(N) N = 4 SYM theory at finite temperature, T , in the strong coupling limit. In the

above expression we define

f(z) = 1 − z4

z4h
= 1 − 2Mz4 , (2.2)

while the radius of the AdS5 and the five-sphere is R. At z = 0 we have the boundary of

the AdS5 space, while the black hole horizon is set at z = zh.

Now, let us consider the leading type IIB string theory corrections to the supergravity

action SSUGRA
IIB . The corrections are described by the term S3

R4 . Therefore, the total action

at O(α′3) can be written as follows

SIIB = SSUGRA
IIB + S3

R4 . (2.3)

Since the square root of the ’t Hooft coupling is related to the inverse of α′, at the strong

’t Hooft coupling limit (N ≫ λ ≫ 1) the holographic dual model is derived from type IIB

supergravity, i.e. for α′ → 0. In particular, SSUGRA
IIB is composed by the Einstein-Hilbert

action coupled to the dilaton and the Ramond-Ramond five-form field strength F5. In the

Einstein frame it reads

SSUGRA
IIB =

1

2κ210

∫

d10x
√
−G

[

R10 −
1

2
(∂φ)2 − 1

4.5!
(F5)

2

]

. (2.4)

By considering D3-branes in type IIB string theory, in reference [20] the contributions from

higher curvature terms at O(α′3), as well as perturbative 1/N corrections and instanton

corrections were computed. The idea is to look at a supersymmetric completion of the C4

term, where C is the ten-dimensional Weyl tensor. Thus

S3
R4 =

α′3g
3/2
s

32πG

∫

d10x

∫

d16θ
√−g f (0,0)(τ, τ̄)[(θΓmnpθ)(θΓqrsθ)Rmnpqrs]

4 + c.c. , (2.5)

where τ is the complex scalar field written as τ1 + iτ2 ≡ a + ie−φ, where a is the axion, φ

is the dilaton and eφ = gs is the string coupling. Recall that in terms of the gauge/string

duality gs ≡ 1/N . In the above expression f (0,0)(τ, τ̄) is the modular form. Using the Weyl

tensor one can define the tensor R [20–23]

Rmnpqrs =
1

8
gpsCmnqr +

i

48
DmF+

npqrs +
1

384
F+
mnpklF

+ kl
qrs , (2.6)

where

F+ = (1 + ∗)F5/2 . (2.7)
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Notice that the action (2.5) has been obtained using the fact that the physical field content

of type IIB supergravity can be arranged in a scalar superfield Φ(x, θ), where θa, with

a = 1, · · ·, 16, is a complex Weyl spinor of SO(1, 9). The matrices Γ have been defined as

usual [22]. The modular form is given by the following expression [24]

f (0,0)(τ, τ̄) = 2ζ(3)τ
3/2
2 +

2π2

3
τ
−1/2
2 + 8πτ

1/2
2

∑

m 6=0,n≥0

|m|
|n| e

2πi|mn|τ1K1(2π|mn|τ2) , (2.8)

where K1 is the modified Bessel function of second kind which comes from the non-perturba-

tive D-instantons contributions. The zeta function ζ(3) is the coefficient of the first per-

turbative correction in the Eisenstein series of the modular form. Also note that in the

background we consider with N coincident parallel D3 branes there are some simplifica-

tions: the axion vanishes, thus τ1 = 0, while τ2 = g−1
s . Thus, when the string coupling is

small the modular form reduces to

f (0,0)(τ, τ̄) = 2(4πN)3/2

(

ζ(3)

λ3/2
+

λ1/2

48N2
+

e−8π2N/λ

2π1/2N3/2

)

. (2.9)

It has been also shown that the D3-brane solution in supergravity is not renormalized by

higher derivative terms [20]. Previously, Banks and Green had shown that AdS5 × S5 is a

solution to all orders in α′ [25]. This is not the case for the AdS-BH we consider, whose

metric does receive corrections at order α′3 as we shall see shortly.

At this point, let us also consider the large N limit of the dual SU(N) N = 4 SYM

theory. The finite leading ’t Hooft coupling corrections in its string theory dual description

are accounted for by the following action [23]

Sα′

IIB =
R6

2κ210

∫

d10x
√
−G

[

γe−
3

2
φ
(

C4 + C3T + C2T 2 + CT 3 + T 4
)

]

, (2.10)

which was obtained from the action (2.5) in the planar limit of the SU(N) N = 4 SYM

theory. Notice that we have written this α′3-corrected action (2.10) in the Einstein frame.

Here γ ≡ 1
8 ζ(3) (α′/R2)3, where R4 = 4πgsNα′2. Since λ = g2YMN ≡ 4πgsN , therefore

γ = 1
8 ζ(3) 1

λ3/2 . This action was computed in [22], using the methods of [26].

The C4 term is a dimension-eight operator, given by

C4 = Chmnk Cpmnq C
rsp

h Cq
rsk +

1

2
ChkmnCpqmnC

rsp
h Cq

rsk , (2.11)

where Cq
rsk is the Weyl tensor. The tensor T is much more involved and it is defined by

Tabcdef = i∇aF
+
bcdef +

1

16

(

F+
abcmnF

+
def

mn − 3F+
abfmnF

+
dec

mn
)

, (2.12)

where the indices [a, b, c] and [d, e, f ] are antisymmetrized in each squared brackets, and

symmetrized with respect to interchange of abc ↔ def [22].

Importantly, at finite temperature the metric only has corrections coming from the

C4 term. This is so because the tensor T vanishes on the supergravity solution with no

string theory corrections [23]. The solution to the Einstein equations derived from the

– 5 –
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supergravity action (2.4) is an AdS5-BH×S5. There are N units of flux of F5 through the

sphere. Recall that N is the rank of the gauge group in the field theory, and on the other

hand, it corresponds to the number of parallel D3-branes whose back-reaction deforms the

space-time leading to the above metric in the near horizon limit.

In conclusion, the only part of the O(α′3)-action which affects the metric is the C4

term. This induces the following corrected metric obtained by [27–29]

ds2 =
R2

z2
[

−f(z)K2(z) dt2 + d~x2 + f−1(z)P 2(z) dz2
]

+ R2L2(z) dΩ2
5 , (2.13)

using same notation as in eq. (2.1). K(z), P (z) and L(z) are given by the following

expressions:

K(z) = eγ [a(z)+4b(z)] , P (z) = eγ b(z) , L(z) = eγ c(z) , (2.14)

where

a(z) = −1625

8

(

z

zh

)4

− 175

(

z

zh

)8

+
10005

16

(

z

zh

)12

,

b(z) =
325

8

(

z

zh

)4

+
1075

32

(

z

zh

)8

− 4835

32

(

z

zh

)12

,

c(z) =
15

32

(

1 +

(

z

zh

)4
)

(

z

zh

)8

. (2.15)

In addition, after the leading type IIB string theory corrections are taken into account, the

dilaton field becomes φ = φ0 + γφ1 + O(γ2), where

φ0 = − log(gs) ,

φ1(z) = −45

8

(

z4

z4h
+

1

2

z8

z8h
+

1

3

z12

z12h

)

. (2.16)

The temperature of the boundary field theory, which is assumed to be equal to the Hawking

temperature of the AdS5-Schwarzschild black hole, is now corrected as [28]

T =
(2M)

1

4

πR2

(

1 +
265

16
γ

)

. (2.17)

Having obtained the corrected metric, dilaton, and temperature, equations (2.13), (2.16)

and (2.17), we now focus on the leading quantum corrections to the holographic thermal-

ization process.

3 Quantum corrections to holographic thermalization

3.1 A collapsing thin shell in Anti de Sitter space

The AdS-Vaidya solution has been widely employed to account for the evolution towards

the final equilibrium state of strongly coupled SYM plasmas [2–17]. This solution de-

scribes the geometry of a pressureless thin shell composed by massless particles collapsing

– 6 –
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in an AdS spacetime,1 leading to the formation of a black hole with negative cosmological

constant at asymptotic times.

Since the shell is composed by coherent massless degrees of freedom, it moves at the

speed of light. Thus, it is set at a constant position in the Eddington-Filkenstein-like

coordinate v0, defined by

dv0 = dt− f−1(z)dz . (3.1)

The AdS part of the metric describing this geometry, in the thin-shell limit, takes the

following form

ds2 =











R2

z2

[

−dv20 − 2dv0dz + d~x 2
]

, v0 < 0,

R2

z2

[

−f(z)dv20 − 2dv0dz + d~x 2
]

, v0 > 0 .

(3.2)

Once the corrections to the pure type IIB supergravity solution are considered, the null

dust and zero width hypotheses lead to a geometry with the metric given by

ds2 =











R2

z2

[

−dv2 − 2dvdz + d~x 2
]

, v < 0 ,

R2

z2

[

−f(z)K2(z)dv2 − 2P (z)K(z)dvdz + d~x 2
]

, v > 0 ,

(3.3)

where v is now defined by

dv = dt− e−γ[a(z)+3b(z)]

f(z)
dz . (3.4)

3.2 Probing thermalization: non-local observables

In order to probe the thermalization one must consider the evolution of different non-

local observables. In the AdS/CFT correspondence such boundary quantum field theory

observables are typically identified with geometric objects in the bulk, e.g. the Wightman

two-point function of scalar field operators is determined by the sum of curve lengths ending

at the location of the operators. In the limit of highest conformal weights, the saddle-point

approximation reduces the sum just to the contribution of the shortest length, i.e. the

geodesic length [31]. Similarly, in the classical limit, the Wilson loops are determined by

minimal area surfaces ending on the closed Wilson path [32], and the entanglement entropy

of a given volume in the boundary theory is set by the minimal bulk hyper-surface ending

in such a region [33, 34].

Equation (3.4) determines the position of the shell as a function of the boundary time,

t. Without lost of generality we can set t = 0 as the moment the shell leaves the bound-

ary. Thus, a boundary observer feels that for any t > 0 there is a spatial scale l̃ at the

boundary such that the extended geometric objects in the bulk (like geodesic curves and

hyper-surfaces) with ends at the boundary whose separation is smaller than l̃ are completely

1It is worth mentioning that AdS-Vaidya metric (3.2) is not an exact solution of type IIB supergravity

on AdS5 × S5. Nevertheless, it was shown [30] that this solution appears as a good approximation of

certain field configurations.
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embedded in the AdS-BH region of the bulk. Therefore, the observable associated quanti-

ties of the boundary theory exactly match their corresponding measures of the plasma in

thermal equilibrium.

On the other hand, extended objects probing larger scales than l̃ on the boundary have

to wait more time before they agree with their corresponding thermally equilibrated values.

This simple geometric picture gives us a very simple (gravity) intuition of why, contrary to

what happens in perturbative theories, UV modes thermalize before than the IR ones do.

Once quantum corrections are included non-local observables may no longer be given

by the geometric quantities described above.2 Nevertheless, there is evidence supporting

the statement that the new definition for these non-local observables is not given in terms

of the length of the geodesic or the area/volume of the minimal hypersurface, but in terms

of a different functional over the same geodesic or minimal surfaces. Thus, provided that

we exclusively focus on thermalization times, and not on the precise value of the non-

local observables, we still have to consider the same kind of objects considered before the

introduction of α′ corrections.

For instance, let us consider a scalar field coupled to gravity through a standard inter-

action term

SInt(g, φ) =
1

2

∫

dDx
√−g

(

∂µφ∂νφ + m2φ2
)

. (3.5)

Then, following [35] with the new effective supergravity action, the two-point function is

now given by the old one with the replacement of the AdS-Schwarzschild metric by the cor-

rected one (2.13). This is up to an overall factor containing the Weyl tensor (2.10), which

plays no role in the variation with respect to the boundary values of the scalar fields. Thus,

following [31], the corrected two-point function in the large conformal weight limit is, up

to an overall constant, given by the exponential of the geodesic length in the space whose

metric is defined by equation (2.13).

Concerning the entanglement entropy, at the present it is not known a general defini-

tion for it if one considers higher derivative gravity. Some progress in this direction was

achieved for Gauss-Bonnet and Lovelock gravities. In this situation, it was shown in [36],

that Wald’s formula used by [33] does not satisfy the subadditivity condition when higher

derivative terms are included in the Einstein-Hilbert action. They found a natural gener-

alization which replaces the projection of the curvature tensor by the intrinsic curvature

tensor of the surface in the Wald’s formula. This new definition was used for the Gauss-

Bonnet gravity, as well as in the next order in derivatives (see (C.21) and (C.28) of [36])

of Lovelock gravity. These definitions reproduce the expressions derived in [37] for an ar-

bitrary higher curvature theory, and although they do not agree with the Ryu-Takayanagi

(RT) prescription, these new functionals are computed over the same minimal surfaces

used in the RT prescription (see (C.14) of [36]).

Recent studies [38] have found that entanglement entropy at T = 0 does not receive

corrections when leading higher derivative terms from type IIB string theory are considered,

studying leading ’t Hooft coupling corrections to N = 4 SYM theory. Thus, although

2We thank Robert Myers for some comments about this point.
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the Einstein-Hilbert action is supplemented with the Weyl term (2.10), the entanglement

entropy is computed in terms of the same minimal surface used in the RT prescription.

Now, let us consider Wilson loops. It is worth nothing that these observables are not

computed in terms of the supergravity action. Instead, one directly uses the string theory

action for curved backgrounds [32]. Then, α′ corrections are analyzed in a different way.

They correct the background, but they also demand to consider quadratic fluctuations

around the classical solution. Although the later give the leading corrections to the Wilson

loop (order O(α′) with respect to the classical solution), they are seen as wrinkles of the

classical surface, and they are not expected to be relevant for the discussion of thermaliza-

tion times. A quantitative estimate of this claim is out of the scope of the present work,

nevertheless, our results displayed on the figures in the following section strongly support

this statement. This is so, because the conclusions for thermalization times obtained by

using different observables are nearly the same.

Wightman two-point function. Equal time two-point correlation functions of bound-

ary quantum field theory operators are related to space-like geodesics. In the AdS-BH

region of the bulk these are the ones that minimize the functional length

L = R

∫ ℓ
2

− ℓ
2

dx

√

1 − 2eγ(a(z)+5b(z))v′(x)z′(x) − eγ(2a(z)+8b(z))f(z)v′(x)2

z(x)
, (3.6)

where x is one of the xi-coordinates on the boundary and the rest have been chosen to

be fixed along the curve. Since there is no explicit dependence on the x variable, the

associated “Hamiltonian” is a constant of motion. It leads to the equation

1 − 2eγ(a(z)+5b(z)) v′(x) z′(x) − eγ(2a(z)+8b(z)) f(z) v′(x)2 =

(

z∗

z

)2

, (3.7)

where we have used the fact that v(x) and z(x) have a maximum at x = 0, and we have

introduced z∗ = z(0) = zmax.

On the other hand, the time independence of the metric in the AdS-BH region requires

t′(x) = 0 as solution to the boundary conditions t( ℓ
2) = t(− ℓ

2). It leads to

v′(x) = −e−γ[a(z)+3b(z)]

f(z)
z′(x) , (3.8)

which together with equation (3.7) can be used to express z′(x) as a function of z. Further-

more, one can use it to obtain the following expression for the separation of the geodesic

ends

ℓ = 2

∫ z∗

0

dz
√

e−2γb(z) f(z)
[

(

z∗

z

)2 − 1
]

. (3.9)

Notice that this has been derived within the Einstein frame.
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Rectangular Wilson loops. Wilson loops are computed in terms of the Polyakov action

for curved spaces [32]. Since we are working within the Einstein frame, the dilaton appears

in two different ways in the action, namely: in a conformal factor connecting the string

metric with the Einstein metric, and also multiplying the world-sheet scalar curvature.

The later is order α′ with respect to the metric contribution, therefore, the leading φ0 term

gives rise to the string coupling constant while φ1 leads to a sub-leading contribution with

respect to the metric corrections, so they are neglected here. Concerning the conformal

factor, it is actually a function of φ− φ0, so it introduces only φ1(z) in the action.

Then, the minimal area surface related to space-like rectangular Wilson loop with

edges of length ℓ and L, satisfying L ≫ ℓ, is determined by the functional

A = R2L

∫ ℓ
2

− ℓ
2

dx e
1

2
γφ1(z)

√

1 − 2eγ(a(z)+5b(z))v′(x)z′(x) − eγ(2a(z)+8b(z))f(z)v′(x)2

z(x)2
. (3.10)

Following similar steps as for the geodesic length case one finds

ℓ = 2

∫ z∗

0

dz
√

e−2γb(z) f(z)
[

(

z∗

z

)4
eγ(φ1(z)−φ1(z∗)) − 1

]

. (3.11)

Circular Wilson loops. The minimal area surface associated with a space-like circular

Wilson loop with radius R is given by

A = 2πR2

∫ R

0
dρ

ρ

z(ρ)2
e

1

2
γφ1(z)

√

1 − 2eγ(a(z)+5b(z))v′(ρ)z′(ρ) − eγ(2a(z)+8b(z))f(z)v′(ρ)2 .

(3.12)

Unfortunately, there is no constant of motion associated to ρ in this case. Nevertheless, we

can use the equation coming from the condition t′(ρ) = 0 to replace v′(ρ) as a function of

(z(ρ), z′(ρ)) in equation (3.12), leading to the following equation of motion

−1

2
γ∂zφ1ρz(ρ)z′(ρ)

(

1 − z(ρ)4
)

(

1 − z(ρ)4 + e2γbz′(ρ)2
)

+
(

1 − z(ρ)4 + e2γb(z)z′(ρ)
)(

2ρ (1 − z(ρ)4) + e2γb(z)z(ρ)z′(ρ)
)

+ 2ρ e2γb(z)z(ρ)4z′(ρ)2

+
1

2
(1 − z(ρ)4)ρ ∂z

(

e2γb(z)
)

z(ρ)z′(ρ)2 + (1 − z(ρ)4)ρ e2γb(z)z(ρ)z′′(ρ) = 0 . (3.13)

No analytical solution is known for this non-linear differential equation. Thus, expressions

with R as a function of z∗ are only numerically available.

Entanglement entropy. Now, we shall focus on the entanglement entropy of spherical

regions at the boundary theory. The minimal volume of the bulk hyper-surface ending on

it is specified by

V = 4πR3

∫ R

0
dρ

ρ2

z(ρ)3

√

1 − 2eγ(a(z)+5b(z))v′(ρ)z′(ρ) − eγ(2a(z)+8b(z))f(z)v′(ρ)2 . (3.14)

After following similar steps as for the circular Wilson loop case one obtains the following

differential equation
(

1 − z(ρ)4 + e2γb(z)z′(ρ)
)(

3ρ (1 − z(ρ)4) + 2e2γb(z)z(ρ)z′(ρ)
)

+ 2ρ e2γb(z)z(ρ)4z′2(ρ)

– 10 –
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+
1

2
(1 − z(ρ)4)ρ ∂z

(

e2γb(z)
)

z(ρ)z′2(ρ) + (1 − z(ρ)4)ρ e2γb(z)z(ρ)z′′(ρ) = 0 . (3.15)

Again, R can be expressed as a function of z∗ only numerically.

In the classical limit, where all these non-local observables are well approximated as

functions of these geometric objects, the thermalization at a given scale is determined by

the position of the shell at that moment. If all non-local observables testing a particular

scale have their associated z∗ smaller than z(t)shell, we consider that this scale has ther-

malized. In the next section we shall consider the thermalization time as a function of

the boundary scale, e.g. the separation between two operator insertions at the boundary

theory, between Wilson lines, or entangled region, for the different non-local observables

discussed here once quantum corrections are taken into account.

4 Results and discussion

It is worth noting that the shell moves slower near the boundary as λ decreases from the

strong coupling limit. However, z∗(ℓ) and z∗(R) decrease in such a way that the net result

renders a faster thermalization. Also notice that the opposite behavior is observed near

the black hole horizon.

The results for the thermalization times are displayed in figure 1. The sequence of

curves: blue, green, brown and red correspond to λ → ∞, 150, 70, 30, respectively and

zh = 1. All non-local probes used to study thermalization show that there exist a critical

length, which at least for the range studied (0.5 < zh < 5) is located about (1.7−1.8)× zh,

for two-point functions, circular Wilson loops and entanglement entropy, and about 0.95×zh
for rectangular Wilson loops. Shorter distances than the critical scale measure a reduction

in the thermalization time, while larger distances perceive a delay. Figure 2 shows only

the α′3 corrections for case of the geodesics in order to display more clearly the crossover

point. Of course, as the UV modes thermalize near instantaneously, their α′ corrections

are hardly appreciable. Another distinction between rectangular Wilson loops and the rest

of the observables is a delay in reaching the equilibrium state (see figure 1.b). This effect

is likely to be a consequence of the fact that rectangular Wilson loops are not completely

contained in a region of size ℓ, because of the presence of the scale L, which is a second

large scale for this particular observable. This is what makes a difference with respect to

the other non-local observables discusses in this work. Notice that although the geodesic

lengths and minimal surfaces depend on R, the thermalization times do not depend on R,

so zh is the unique relevant scale to this discussion.3

We have considered corrections to thermalization time for systems with the same

amount of energy parameter M at different strong couplings, λ. Another interesting sce-

nario is to compare thermalization time for systems evolving to a given thermal equilibrium

temperature. By doing so, instead of a fixed zh, it requires (see eq. (2.17))

zh = z
(0)
h → z

(0)
h

(

1 +
265

16
γ

)

. (4.1)

3It is worth mentioning that the situation is different if one changes the degrees of freedom of the shell.

As discussed in [17] and displayed in figure 2 of loc. cit., when the shell is not composed by a massless

pressureless fluid, the velocity of the shell depends on the radius of AdS space.
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(a) Two-point function.
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(b) Rectangular Wilson loop.
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(c) Circular Wilson loop.
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(d) Entanglement entropy.

Figure 1. Figures show thermalization times as functions of spatial resolution on the boundary

theory. In figures (a) and (b), ℓ denotes geodesic separation and separation for the rectangular

Wilson loop, respectively. In figures (c) and (d), d = 2R denote the diameter of the circular

Wilson loop and of the sphere associated with the entanglement entropy. Blue curves describe the

thermalization pattern without α′ corrections (λ → ∞), the green ones correspond to λ = 150,

brown to λ = 70 and the red ones to λ = 30.

In this situation, the thermalization is still very similar to the previous case, the only differ-

ence is that the crossover point is shifted to the IR and is located at about (1.9− 2.1)× zh.

Although we are analyzing an N = 4 SYM plasma, one is tempted to compare the ther-

malization patterns with more realistic scenarios like strongly coupled QGP of RHIC and

LHC experiments. In these situations two heavy ions collide at relativistic velocities and af-

ter that thousand of particles are created and a fraction of the kinetic energy of the original

nuclei is converted into heat leading to a finite temperature strongly coupled plasma.

It means that in order to analyze more rigorously the pattern of thermalization times

with large yet finite coupling, one should be able to model the amount of kinetic energy

which is converted into heat during the collision, when the coupling decreases from infinity

to a given finite value. This information is an input for our approach which enters the

mass of the collapsing shell. The knowledge of this information in the case of QGP re-

quires that one should be able to model the whole process: collision, deconfinement and

– 12 –
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Figure 2. This plot displays the α′ corrections to the thermalization time as a function of the

scale resolution in the case of two-point functions. The identification among colors and couplings

is as in figure 1.

thermalization. However, since N = 4 SYM is not a confining quantum field theory, it is

not expected that this information could be inferred from our analysis.

Numerical analysis shows that if the rate of kinetic energy transferred increases, the

critical scale shifts towards the IR (as for instance in the fixed-temperature scenario). On

the other hand, if it decreases (zh increases) there exist a bound zh → zh(1 + Λγ), Λ . 20,

where there is still a critical length, and above this limit any scale experiences a delay in

reaching the thermal equilibrium.

We have not displayed here the results with 1/N corrections. Nevertheless, it is easy

to see that there is no qualitative difference. In fact, there is only a hardly appreciable

difference with respect to the case with α′ corrections. The effective value for γ, when both

α′ and 1/N corrections are considered, is given by (see equation (2.9))

γ =
1

8
ζ(3)

1

λ
3

2

→ 1

8

1

λ
3

2

(

ζ(3) +
1

48

(

λ

N

)2

+
1

2π1/2

(

λ

N

)
3

2

e−8π2 N
λ

)

. (4.2)

Therefore, both α′ and 1/N corrections go in the same direction. Both types of corrections

increase the value of γ, however, since we are working in the limit where λ ≪ N , the 1/N

contributions can be seen as sub-leading ones.4

5 Conclusions

We have studied type IIB stringy theory corrections to thermalization processes in strongly

coupled SYM plasmas. Our results show that both α′ and 1/N contributions lead to de-

lays in thermalization times for IR modes, while they make slightly faster thermalization

time for UV modes, both in comparison with the strong coupling limit, when comparing

4This holds for geodesic lengths. On the other hand, for Wilson loops the leading 1/N corrections due

to world-sheet with handles have been discussed by Drukker and Gross in [39], and they turn to be also

additive. Also notice that α′ corrections to circular Wilson loops due to string fluctuations were discussed

by Forste, Ghoshal and Theisen in [40] at zero temperature.
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equal temperature or equal energy scenarios. This statement is based on the study of the

time evolution of extended geometric probes in the bulk which are connected to specific

non-local observables in the boundary field theory plasma.

We find that finite ’t Hooft coupling corrections decrease very little the thermalization

time of UV modes, while they produce the opposite trend for IR modes, which thermal-

ize slightly later in comparison with their corresponding behavior at the strong coupling

limit. Thus, the observed trend is that the leading string theory corrections enhance the

difference of thermalization time between UV and IR modes.

In the figures shown we consider the situation where the black hole horizon does not

change by the effects of string theory corrections. Equation (2.17) indicates that the equi-

librium temperature increases as the ’t Hooft coupling decreases from the strong coupling

limit. Besides, we also have numerically investigated the case when the equilibrium tem-

perature is kept fixed, and then the black hole radius becomes smaller. In this case our

results agree with the pattern indicated in the figures.

Although this approach has no access to the information about coupling corrections

to the rate of kinetic energy converted into thermal energy during the heavy-ion collision,

it is indeed interesting to study which are the consequences of varying such a conversion

rate. We numerically show that if this rate increases, the critical length shifts toward the

IR. On the other hand, if it decreases, there is a bound above which there is no crossover

and the obtained pattern shows a delay at any scale.

Besides, it has been recently discussed the effect of certain aspects of the thermaliza-

tion time scale in terms of finite values of the ’t Hooft coupling, but from a very different

perspective. In particular, in references [18, 19] it has been investigated the effect of finite

values of the ’t Hooft coupling in comparison with the λ → ∞ limit, using a particular

version of the holographic thermalization within a quasi-static approach, by looking at

spectral densities to infer the thermalization times for UV and IR modes. Recall that spec-

tral densities are obtained from two-point correlation functions of electric currents in the

plasma.5 Whenever current correlators are studied in the SU(N) N = 4 SYM plasma, it is

necessary to introduce an external gauge field in the boundary field theory to be coupled to

the current. The currents are to be coupled to a vector fluctuation of the bulk metric, thus

turning on a contribution from the Ramond-Ramond five-form field strength in the O(α′3)

corrections to the type IIB string theory action. These contributions produce very large

corrections in SYM plasma observables associated with electric charge transport, such as

electrical conductivity, and photo-emission rates. This could be one of the reasons for the

difference with respect to our work where no external Abelian gauge field is considered. An-

other difference is that if one uses non-local observables associated with charged particles in

5Particularly, for the SU(N) N = 4 SYM plasma at thermal equilibrium the current-current correlators,

spectral densities, photoemission and lepton pair production rates were firstly obtained in [41]. In order to

include the full O(α′3) corrections one has to consider not only the effect of the term quartic in the ten-

dimensional Weyl tensor, but also the corrections coming from the Ramond-Ramond 5-form field strength

F5. These effects can be collected into the T -tensor mentioned above. This leads to a very complicated

series of calculations which have been carried out in [42] within the deep inelastic scattering regime, in [43]

within the hydrodynamic regime, in [44] for the electrical conductivity of the plasma, in [45, 46] for the

photoemission rates in the thermally equilibrated SYM plasma.
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the boundary field theory, in order to probe thermalization at a given scale, not only the po-

sition of the shell is relevant but also the photon spectrum from the plasma has to be taken

into account. In addition, another important difference is that in the approach of [18, 19]

the idea is to consider a quasi-static shell rather than a dynamical one, and look at certain

positions of this shell, which are close to the event horizon of the black hole. From the point

of view of the thermalizing plasma this situation corresponds to consider a SYM plasma

near the thermal equilibrium. This situation is very different compared with a dynamical

holographic thermalization process because in the dynamical case one follows the collapse

of the thin shell starting from the boundary of the AdS space, i.e. completely far away from

the black hole horizon, and this corresponds to a SYM plasma which is very far from its

thermally equilibrated state. This last case seems to be somehow closer to a realistic plasma

thermalization process initiated by a heavy ion collision than the quasi-static approach.

It is worth noting that some of the conclusions displayed here could be altered if one

considers two-point functions of operators with no large conformal weights. Another crucial

ingredient in our work was the assumption of Vaidya as a solution of type IIB supergravity

on AdS5 × S5 background. Nevertheless, as commented in [30] the pressureless null dust

is only understood as an approximation in the field configuration space. For this reason

it would be very interesting to consider quantum corrections in the case of more general

shells, for instance those discussed in [17] by generalizing the Israel junction conditions in

higher derivative gravity theories. By doing so, one should be able to see if the pattern on

thermalization times observed here is generic, or it is just a consequence of the degrees of

freedom chosen for the shell.
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arXiv:1305.7191 [INSPIRE].

[39] N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory,

J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

[40] S. Förste, D. Ghoshal and S. Theisen, Stringy corrections to the Wilson loop in N = 4 super

Yang-Mills theory, JHEP 08 (1999) 013 [hep-th/9903042] [INSPIRE].

[41] S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton

production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237]

[INSPIRE].

[42] B. Hassanain and M. Schvellinger, Holographic current correlators at finite coupling and

scattering off a supersymmetric plasma, JHEP 04 (2010) 012 [arXiv:0912.4704] [INSPIRE].

[43] B. Hassanain and M. Schvellinger, Holographic current correlators at finite coupling and

scattering off a supersymmetric plasma, JHEP 04 (2010) 012 [arXiv:0912.4704] [INSPIRE].

– 17 –

http://dx.doi.org/10.1088/1126-6708/1998/05/002
http://arxiv.org/abs/hep-th/9804170
http://inspirehep.net/search?p=find+EPRINT+hep-th/9804170
http://dx.doi.org/10.1088/1126-6708/2005/08/093
http://arxiv.org/abs/hep-th/0506161
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506161
http://dx.doi.org/10.1016/S0550-3213(98)00514-8
http://arxiv.org/abs/hep-th/9805156
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805156
http://dx.doi.org/10.1088/1126-6708/1998/09/010
http://arxiv.org/abs/hep-th/9808126
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808126
http://dx.doi.org/10.1103/PhysRevD.68.066001
http://arxiv.org/abs/hep-th/0302136
http://inspirehep.net/search?p=find+EPRINT+hep-th/0302136
http://dx.doi.org/10.1088/1126-6708/2009/09/034
http://arxiv.org/abs/0904.0464
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.0464
http://dx.doi.org/10.1103/PhysRevD.61.044007
http://arxiv.org/abs/hep-th/9906226
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906226
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://arxiv.org/abs/hep-th/9803002
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803002
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
http://dx.doi.org/10.1088/1126-6708/2008/03/006
http://arxiv.org/abs/0711.4118
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.4118
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1007/JHEP04(2011)025
http://arxiv.org/abs/1101.5813
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5813
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
http://arxiv.org/abs/1305.7191
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7191
http://dx.doi.org/10.1063/1.1372177
http://arxiv.org/abs/hep-th/0010274
http://inspirehep.net/search?p=find+EPRINT+hep-th/0010274
http://dx.doi.org/10.1088/1126-6708/1999/08/013
http://arxiv.org/abs/hep-th/9903042
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903042
http://dx.doi.org/10.1088/1126-6708/2006/12/015
http://arxiv.org/abs/hep-th/0607237
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607237
http://dx.doi.org/10.1007/JHEP04(2010)012
http://arxiv.org/abs/0912.4704
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4704
http://dx.doi.org/10.1007/JHEP04(2010)012
http://arxiv.org/abs/0912.4704
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4704


J
H
E
P
0
8
(
2
0
1
3
)
0
3
5

[44] B. Hassanain and M. Schvellinger, Towards ’t Hooft parameter corrections to charge

transport in strongly-coupled plasma, JHEP 10 (2010) 068 [arXiv:1006.5480] [INSPIRE].

[45] B. Hassanain and M. Schvellinger, Diagnostics of plasma photoemission at strong coupling,

Phys. Rev. D 85 (2012) 086007 [arXiv:1110.0526] [INSPIRE].

[46] B. Hassanain and M. Schvellinger, Plasma photoemission from string theory,

JHEP 12 (2012) 095 [arXiv:1209.0427] [INSPIRE].

– 18 –

http://dx.doi.org/10.1007/JHEP10(2010)068
http://arxiv.org/abs/1006.5480
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5480
http://dx.doi.org/10.1103/PhysRevD.85.086007
http://arxiv.org/abs/1110.0526
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0526
http://dx.doi.org/10.1007/JHEP12(2012)095
http://arxiv.org/abs/1209.0427
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0427

	Introduction and motivation
	Leading type IIB string theory corrections
	Quantum corrections to holographic thermalization
	A collapsing thin shell in Anti de Sitter space
	Probing thermalization: non-local observables

	Results and discussion
	Conclusions

