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Abstract. Nested cartesian grid systems by design require interpolation of solution fields from coarser

to finer grid systems. While several choices are available, preserving accuracy, stability and efficiency

at the same time require careful design of the interpolation schemes. Given this context, a series of

interpolation algorithms for nested cartesian finite difference grids of different size were developed and

tested. These algorithms are based on post-processing, on each local grid, the raw (bi/trilinear) informa-

tion passed to the halo points from coarser grids. In this way modularity is maximized while preserving

locality.

The results obtained indicate that the schemes improve markedly the convergence rates and the overall

accuracy of finite difference codes with varying grid sizes.
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1 INTRODUCTION

High-order cartesian finite difference (FD) solvers have shown considerable advantages in

speed and simplicity for the solution of partial differential equations. Coupling with block-

wise adaptive mesh refinement combined with prismatic meshing near the body or usage of

immersed or embedded body techniques appear to remove the main obstacles to attaining geo-

metrical flexibility and solution accuracy at the same time (Nakahashi, 2003; Sitaraman et al.,

2008; Löhner et al., 2014; Sitaraman et al., 2017).

However, the transition between grids of different spatial resolution is still a source of diffi-

culty. A recent study conducted by the authors for a 6th-order FD flow solver revealed that at

the transition between grids the numerical diffusion and dispersion due to interpolation com-

pletely overwhelmed the physics. This prompted a search for better interpolation techniques

and interface treatments for such problems.

If one considers the interpolation problem, the immediate inclination is to use standard clas-

sic high-order interpolation techniques. High-order interpolation in local refined Cartesian

grids have been reported in literature (Ray et al., 2005; McCorquodale and Collella, 2011;

Hittinger and Banks, 2013), where techniques such as Fourier basis, cubic least squares and

limited monotone (WENO type) schemes were considered for designing the interpolations.

In three dimensions, this often led to large stencil sizes of the order of 20 to 30 coefficients

that need to be synthesized for each fine grid point. Moreover, interpolation schemes were

fixed to maintain a particular order of accuracy and extending them to even higher orders often

required revisiting the derivations and re-implementation of new schemes. Having a large

stencil footprint often defeats the purpose of using ’fast and cheap’ FD methods. This has led

to the consideration of simpler interpolation techniques, utilizing immediately available data

and constructing fast schemes that reuse results of interpolations performed previously. The

aim of the present paper it to assess whether improvements in accuracy with a modest increase

in complexity are possible using such schemes.

2 H/2H INTERPOLATION BETWEEN CARTESIAN GRIDS

The situation commonly encountered is shown in Fig. 1,2 for the 1-D and 2-D cases respec-

tively. We denote the fine and coarse grids as grid h and grid 2h respectively. At the h/2h

boundary, the Cartesian grids need to exchange information. The assumption is made that in

order to maintain code modularity, halo points are used to transfer information between grids

(and also for boundary conditions). In this way, the ‘update’ and ‘boundary condition’ stages

are separated in a clean, modular fashion. At the beginning of each timestep, iteration, or

Runge-Kutta stage the information required for the halo points is obtained from the appropriate

neighbouring grids. Furthermore, it is assumed that the information given at gridpoints is the

most accurate and should therefore not be changed. This implies that for points that coincide

(labeled D in Fig. 2) a direct injection / transfer of information is desirable. On the other hand,

for the points along edges or faces (labeled E,F in Fig. 2), one is at liberty to apply interpolation

schemes of different order. Note that these will only be required for grid h on a h/2h boundary,

i.e. only for the finer grid.
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Figure 1: Interpolation Between FD Grids (1-D)
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Figure 2: Interpolation Between FD Grids (2-D)

3 POST-PROCESSING INTERPOLATION

An interesting option when trying to maximize modularity is to transfer all direct injection

points first from 2h to h, and then obtain the missing information by post-processing this data

on grid h. In 2-D, the cases that need to be considered are:

- E1: Edge-points aligned with grid-lines from grid h

- E2: Edge-points not aligned with grid-lines from grid h

- F : Face-points

The distinguishing factor for points of type E1 is that information from the interior of grid h is

readily available and can be used to improve the interpolation order. Fig. 3 shows some of the
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possibilities, together with the interpolation weights. For the points of type E2 usual high order

Lagrangian interpolation schemes are employed. Fig. 4 shows some of the possibilities, together

with the interpolation weights. Points of type F may be interpolated either via a weighted

average of the surrounding edge-points, or by treating them as points of type E1 with the extra

information required obtained previously for the points of type E2 (see Fig. 5).
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Figure 5: Interpolation Factors for Faces

4 FINITE DIFFERENCE NAVIER-STOKES SOLVER (FDFLO)

4.1 EQUATIONS SOLVED

FDFLO solves the weakly compressible Navier-Stokes equations. The temperature is in-

cluded as an option, as well as the Boussinesq approximation for natural convection. The sys-

tem of PDEs is given by:

1

c2
p,t + ρ∇ · v = 0 , (1)

ρv,t + ρv∇v +∇p = ∇µ∇v + ρg + βρg(T − T0) + Sv , (2)

ρcpT,t + ρcpv∇T = ∇λ∇T + ST , (3)

where ρ,v = (u, v, w), p, T, c, µ, cp, λ, β, T0 denote, respectively, the density, velocity, pres-

sure, temperature, (constant) speed of sound, viscosity, heat capacitance, conductivity, thermal

expansion and reference temperature for the fluid, and g, Sv, ST the gravity vector and source

terms for velocities and temperature.

4.2 NUMERICS

The numerics implemented may be summarized as follows:

- Explicit timestepping via low-storage Runge-Kutta schemes;

- Conservative formulation for advection and divergence;

- Easy extensions to high-order stencils;

- Ordered access to memory;

- Minimum access to memory;

- Long 1-D loops (for optimal vector, OMP and GPU performance);
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- Use of halo points to impose boundary conditions and enable easy extension to massively

parallel machines.

In the sequel, we describe in detail the discretizations employed.

4.3 DISCRETIZATION IN SPACE

The spatial discretization is carried out via Finite Differences on a cartesian grid with equal

mesh size in all directions:

hx = hy = hz = ∆x . (4)

All fluxes are written in conservative form as:

ri =
1

∆x

[

fxi+1/2 − fxi−1/2 + f
y
i+1/2 − f

y
i−1/2 + f zi+1/2 − f zi−1/2

]

. (5)

Each flux is composed of the physical and the artificial dissipation flux, e.g.:

fi+1/2 = f
p
i+1/2 − fdi+1/2 . (6)

The advective physical fluxes are obtained from central difference operators of 2nd, 4th, 6th

and 8th order:
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For the 2nd order (Laplacian) operators the physical fluxes of 2nd, 4th, 6th and 8th order are:
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These (unstable) approximations are stabilized by adding an appropriate artificial viscosity /

damping (Hirsch, 1991; Kallinderis and Chen, 1996; Löhner, 2008; Sitaraman et al., 2008) of

the form:
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fdi+1/2
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(9.8)
where λ is the maximum eigenvalue of the system

λ = |v|+ c (10)

and cd the artificial viscosity / damping coefficient. Typical values are: cIId = 0.2, cIVd =
0.10, cV I

d = 0.02, cV III
d = 0.02. For viscous cases, the artificial viscosity / damping coefficient

of the momentum equations is reduced:

c∗d = cd · r(u) , r(u) = max(0,min(1, Reh − 1)) , Reh =
ρu∆x

µ
. (11)

Note that as the mesh is refined and the cell Reynolds-number Reh falls below Reh = 1, the

artificial viscosity vanishes. The same type of advection and artificial viscosity is also used for

the temperature equation, but limiting with the local Peclet-number.

Finally, for the Boussinesq terms the approximation taken is simply:

ri = gβ (TB − Ti) . (12)

The same is done for the source-terms Sv, ST .

In order to achieve long vector loops the formation of right-hand sides (RHSs) is carried

out by forming a single array of point data. Given nx, ny, nz, and defining nxny = nx * ny,

the points are traversed as ip = nxny*(iz-1) + ny*(iy-1) + ix. In order to minimize the use of

registers, the RHSs are formed dimension by dimension.

4.4 BOUNDARY CONDITIONS

A variety of boundary conditions are required for practical computations. An easy way to

implement these is via halo points. In order to be able to cast all operations in terms of large

loops over all points, two (for 4th order stabilized fluxes), three (for 6th order stabilized fluxes)

or four (for 8th order stabilized fluxes) halo points are added at the minimum and maximum

extent of each dimension. This increases the total point count, but allows for maximal vector

length. The boundary conditions are then imposed as follows:

- No-Slip (NavSto) Wall: Same p,v, T as wall;

- Symmetry/Euler Wall: same p,v · t, T , opposite v · n;

- Inflow to Field: v, T imposed, p free;

- Outflow of Field: p imposed, v, T free.
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4.5 IMMERSED BODY OPTION

A solver based on Cartesian Finite Differences may be very fast, but its use is very limited

when considering geometrically complex objects. There are two options of treating these: either

via immersed body methods, or via embedded surface techniques. We have implemented both.

Immersed Body

v(fluid)=v(body)

Figure 1 Immersed Body Approach

The immersed body methods (Mohd-Yusof, 1997; Ye et al., 1999; Fadlun et al., 2000;

Gilmanov et al., 2003; Balaras, 2004; Gilmanov and Sotiropoulos, 2005; Mittal and Iaccarino,

2005; Yang and Balaras, 2006; Storti et al., 2013) (see Fig. 1) may be classified by the way they

apply the boundary conditions into kinematic or kinetic (Löhner, 2008).

The kinematic approaches simply set the velocity of the flow to the velocity of the body:

vflow = vbody . (13)

This 1st order scheme may be improved via interpolation or weighting functions, i.e. taking

into account neighbour information (Balaras, 2004).

The kinetic (i.e. force-based) approaches add a force to the momentum equations such that

Eqn.(13) is fulfilled at the end of the timestep, or a penalty term that imposes Eqn.(13) weakly.

In either case, the immersed body options described require the following steps:

- Read in the immersed bodies as a mesh (elements, coordinates, velocities, temperature);

- Determine the cartesian points inside the bodies; this is done by performing a loop over

the elements of the immersed bodies; for each of these the cartesian points inside the

element are obtained and marked;

- Store the points marked in a separate boundary point array.

In order to be as general as possible, the immersed bodies are defined via tetrahedral meshes.

4.6 EMBEDDED SURFACE OPTION

The second way to treat geometrically complex objects within a Cartesian Finite Dif-

ference code is via embedded surface techniques (Clarke et al., 1985; Melton et al., 1993;

Pember et al., 1995; Aftosmis et al., 2000; Dadone and Grossman, 2002; Nakahashi and Kim,

2004; Peller et al., 2006) (see Fig. 2).
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Embedded Surface

Figure 2 Embedded Surface Approach

The key idea is to ‘extend’ the stencil past the edges crossed by the embedded surfaces,

mirror these points back into the proper computational domain, and then use mirroring or other

boundary conditions to impose the presence of the embedded surfaces (see Fig. 3). This way

of imposing the boundary conditions for embedded surfaces is theoretically 2nd order accurate.

However, in many cases (particularly if the points are very close to the embedded surface, or in

narrow passages) the available information for interpolation is not sufficient to guarantee this

order.

P1

P2 P3

P’

P

PN         P’: Interpolation
P            P’: Mirroring

Embedded Surface

Figure 3 Embedded Surface Approach: Boundary Conditions

The embedded surface option requires the following steps:

- Read in the embedded surfaces as a triangulation (elements, coordinates, velocities, tem-

perature);

- Determine the cartesian edges crossed by the surface; this is done by performing a loop

over the triangles of the embedded surfaces; for each of these the cartesian edges crossed

are obtained and marked;

- Determine the interpolation conditions for the points ‘on the other side’ of the crossed

edges.

- Store the points marked in a separate boundary point array.

There are several possible ways of incorporating the values of the unknowns required to im-

posed embedded surfaces. We have pursued a dual-loop approach: The first loop over the

points is the usual one, i.e. it ignores the embedded surface boundary conditions. The second

loop, over the points whose surrounding edges are crossed by embedded surfaces, substracts

the right hand of the 1st loop, and adds the right hand side replacing the unknowns ’on the
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other side’ with the proper values. In this way, the extra burden of imposing embedded surface

boundary conditions is minimized.

4.7 DISCRETIZATION IN TIME

After spatial discretization, the original PDEs given by Eqns.(1-3) form a coupled system of

ordinary differential equations (ODEs) of the form:

u,t = r(t,u) . (14)

This system is solved using explicit, low-storage Runge-Kutta methods of the form:

∆un+i = αi ∆t r(un +∆un+i−1) , i = 1, s , ∆u0 = 0 , (15)

or via the usual 4-stage Runge-Kutta scheme (Butcher, 2003). We remark that for linear ODEs

the choice

αi =
1

s+ 1− i
, i = 1, s (16)

in combination with Eqn.(15) leads to a scheme that is s-th order accurate in time. Like all

explicit schemes, the allowable timestep is bounded by the condition:

∆t < CFL ·min

(

h

|v|+ c
,
ρh2

µ
,
ρcph

2

λ

)

, (17)

where the allowable CFL factor is proportional (i.e. increasing) with the number of stages s.

One complete timestep is given by the following steps:

- Apply BC / Transfer Info from Domain to Halo Points

- Get Allowable Timestep

- Set Timestep ∆t = 0 for Halo Points

- Loop Over the Stages:

- Set r = 0

- Compute r

- Obtain ∆u = αi∆tr(u)

- Apply Boundary Conditions

- Update u

4.8 MULTIBLOCK OPTION

A solver based on Cartesian Finite Differences may be very fast, and may be made applica-

ble to complex geometries via immersed or embedded techniques. However, its use is still very

limited when considering problems with varying spatial lengthscales. The best way of address-

ing this problem while keeping the speed advantages of the basic solver is via multiblocking

(Berger and Oliger, 1984; Pember et al., 1995). The key idea is to consider each cartesian grid

or block independently, and to combine these by interpolating the unknowns of the halo points

from the adjacent blocks.
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Domain 2 [size: h/2] Domain 1 [size: h]

Grid Points
Halo Points

Figure 4 Multiblock Option

5 EXAMPLES

The interpolation schemes developed were implemented and tested in FDFLO. In the sequel,

we show the performance of the difference options implemented.

5.1 Lamb-Vortex

The so-called Lamb-vortex, centered at x, y = 0, was chosen to assess the accuracy of the

interpolation schemes developed. The unknowns are given by:

u = u0 −
α

2π
yeφ(1−x2

−y2) ; v =
α

2π
xeφ(1−x2

−y2) ; p = −
( α

2π

)2 1

4φ
e2φ(1−x2

−y2) , (18)

and µ = 0. For the particular case tested, the domain was given by −5 ≤ x, y ≤ 5, and α = 1,

φ = 0.5, c = 1, ρ = 1, and the grids were of size h = 0.125 and 2h = 0.250. The vortex was

propagated for T = 200 time units. Given that the domain is doubly periodic, the vortex should

reappear in the exact location as at time T = 0 after traversing the mesh twice.

Fig. 5.1 shows the initial conditions for the mesh h2h, where the discretizations used are clearly

visible. Fig. 5.2-3 show the pressure and velocity obtained using an 8th order spatial discretiza-

tion and a 5th order low-storage Runge-Kutta timestepping scheme. From left to right, the cases

are: mesh 2h,mesh h2h (i.e. mesh h inside mesh 2h) with usual bilinear interpolation, mesh h2h

with cubic interpolation, and mesh h. One can see that for the case with bilinear interpolation,

running the case on the 2h mesh yields better results than the h2h mesh, defeating the purpose

of mesh refinement. This should be a cause of alarm if one considers complex flow problems

where vortices and other flow structures will traverse grids with different mesh sizes. On the

other hand, the cubic interpolation does yield results on the h2h mesh that are demonstrably

better than those on the 2h mesh, indicating the potential of the procedures developed.
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Figure 5.1: Lamb Vortex: Initial Conditions, h2h Mesh

Figure 5.2: Lamb Vortex: Comparison of Pressures at Tf :

2h, h2h with Bilinear interpolation, h2h with Cubic interpolation, h

Figure 5.3: Lamb Vortex: Comparison of Velocity Magnitudes at Tf :

2h, h2h with Bilinear interpolation, h2h with Cubic interpolation, h

5.2 Convergence Study With Stationary Lamb-Vortex

In order to quantify the relative merit of the different interpolation schemes, a series of

convergence studies were carried out. The same domain as before was used, but the boundary

conditions were changed from periodic to gliding wall. The right half of the domain was of size

h, the left of size 2h. At the same time, uniform grids of size h and 2h were run for comparison.

A stationary Lamb-Vortex was set as the initial condition. This is an exact steady solution, so the

initial residual can be used to measure the convergence of the schemes. A typical configuration

is shown in Fig. 6.1.

Figure 6.1: Stationary Lamb Vortex: Typical Initial Configuration

A. FIGUEROA, R. LOHNER866

Copyright © 2017 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Fig. 6.2-5 show the convergence obtained for the 6th and 8th order solvers, together with dif-

ferent interpolation schemes. The notation is as follows: L2 denotes the L2 norm, LI the L∞

norm, P the pressure, V the velocity, UNH and U2H the convergence on uniform grids of size

h and 2h, and M00, M33, M43 the cases of mixed h, 2h grids with simple bi/trilinear interpo-

lation, cubic interpolation and quartic interpolation. As expected, for the L2 norm the errors

of the high order interpolation schemes fall between the values for uniform grids of size h and

2h. This is not always the case for the L∞ norm. Furthermore, one can see the serious negative

effect on convergence of the bi/trilinear interpolation. The results show that the aim of interpo-

lation schemes that are balanced and appropriate to the spatial discretization while being local

and fast has been achieved.

Figure 6.2: Stationary Lamb Vortex: L2 Convergence for 6th Order

Figure 6.3: Stationary Lamb Vortex: L∞ Convergence for 6th Order
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Figure 6.4: Stationary Lamb Vortex: L2 Convergence for 8th Order

Figure 6.5: Stationary Lamb Vortex: L∞ Convergence for 8th Order

5.3 Cylinder

This classic testcase was added in order to show the effect of high-order interpolation for

wake flows. The domain considered was −4 ≤ x ≤ 10, −2 ≤ y ≤ 2, with gliding wall bound-

ary conditions at ymin, ymax, prescribed uniform inflow and prescribed pressure at outflow. As

can be seen from Fig. 6.1, the mesh consisted of 10 domains, with three levels of refinement:

∆x = 0.100, 0.050, 0.025. The physical parameters were set as follows: ρ = 1.0,v∞ =
(1, 0, 0), µ = 0.01, c = 5, and the diameter of the cylinder was d = 1.0, yielding a Reynolds

number of Re = 100. A 6-stage, low-storage RK scheme was used to integrate in time with a

Courant-number of C = 0.4. The immersed boundary option was used with a spatial discretiza-

tion of 6th order. The case was run with the usual, low-order bi/trilinear interpolation, and also

with the high-order interpolation. The results obtained for the latter one at T = 100 are shown

in Fig. 7.2. A number of station time history points were placed in the flow and the results

recorded. Fig. 7.3-4 show the values for the pressure, x- and y-velocities for two stations. As

expected, the most pronounced difference can be observed in the y-velocities. However, even

the pressures show larger variations in time for the high-order interpolation, indicating less dis-

sipation. Note also that a slight change of frequency is incurred when changing interpolation

order.
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Figure 7.1: Cylinder: Grid System Used

Figure 7.2: Cylinder: Results at Time T = 200

Figure 7.3: Cylinder: Station Time History for Station 5: x = (1, 0, 0)

Figure 7.4: Cylinder: Station Time History for Station 7: x = (10, 0, 0)

6 CONCLUSIONS AND OUTLOOK

A series of interpolation algorithms for nested cartesian grids of different size were devel-

oped and tested. These algorithms are based on post-processing, on each local grid, the raw

(bi/trilinear) information passed to the halo points from coarser grids. In this way modularity is

maximized while preserving locality.

The results obtained indicate that the schemes improve markedly the convergence rates and the

overall accuracy of finite difference codes with varying grid sizes.

Current work is centered on quantifying these results for more realistic cases, including some
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large-scale complex 3-D flows around cars and helicopters.
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