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Abstract 13 

Radio frequency (RF) is a volumetric heating technology that reduces the time needed to cook 14 

foodstuffs, but heating is not evenly distributed. The aim of this work was to develop a two-step 15 

cooking process in a RF tunnel and in a steam oven (RF-ST) for pork hams and compare it to 16 

cooking in a steam oven (ST). The temperature distribution was monitored during cooking and 17 

the accumulated lethality was calculated. Cooking losses and physicochemical and sensory 18 

properties of the cooked product were analysed. Hot spots and overheating problems were 19 

identified during the RF cooking process and were reduced by shielding the ends of the hams 20 

with aluminium foil and by adjusting the times of both, RF and steam cooking. The total ST 21 

process time (360 min) was reduced by 50% in RF-ST (180 min). Hardly significant differences 22 

were observed in the technological and sensory quality of the final product. Regarding the food 23 

safety of the RF-ST process, the lowest accumulated lethality in RF-ST process was observed in 24 

the outer part of the hams, which can be increased by extending the ST processing time, 25 

obtaining a more evenly distributed accumulated lethality in comparison to the ST process.  26 

Keywords: Pork ham; Radio frequency cooking, Radio frequency overheating, Sensory quality. 27 
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Highlights 28 

- Cooking time decreased by 50% using radio frequency in large calibre products 29 

- Best results obtained by combining radio frequency and steam cooking 30 

- Overheating problems minimized by shielding the product ends 31 

- Slight sensory quality differences observed between steam and RF-steam processes 32 

  33 
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1. Introduction 34 

In conventional heating, heat penetrates through the surface and takes a long time to diffuse 35 

towards the centre of the product, resulting in a non-uniform heating. Radio frequency (RF) is a 36 

type of dielectric heating that generates heat volumetrically throughout the product using 37 

alternating electromagnetic fields. Dielectric heating has some advantages over conventional 38 

heating technologies, namely, higher heating rates, improved energy efficiency, heating of 39 

thicker products and a better distribution of temperature within the product (Singh & 40 

Ramaswamy, 2015). However, some problems can appear, such as thermal runaway heating, 41 

overheating (especially on the product edges) and dielectric breakdown (arcing) which can 42 

produce damages to both packaging and product (Zhao, Flugstad, Kolbe, Park, & Wells, 2000). 43 

There exist several solutions to address these problems, such as leaving an appropriate air gap 44 

between the top electrode and the foodstuff and/or immersing the product in water (Brunton 45 

et al., 2005; Lyng, Cronin, Brunton, Li, & Gu, 2007; Kirmaci & Singh, 2012). The immersion in 46 

distilled water increases the effective voltage applied to the product, thus increasing the heating 47 

rate, minimizing the incidence of electric arcs and discharges from the electrode (Kirmaci & 48 

Singh, 2012) and improving the uniformity of the temperature on the product surface. However, 49 

the use of water may also decrease the heating rate of the surface. Overheating in microwaves 50 

can be reduced by shielding the overheated parts of the food with metal films (Bohrer, 2009).  51 

Cooked hams are some of the most consumed ready-to-eat meat products because of their high 52 

nutritional value and appreciated sensory attributes. Cooked meat products are thermally 53 

processed at 70-80 C, using conventional heating technologies with steam or a water bath until 54 

reaching a core temperature of 66-72 C. The RF has also proven effective in processing different 55 

types of meat products, such as pork ham and shoulder (Zhang, Lyng, & Brunton, 2006), chicken 56 

breast (Kirmaci & Singh, 2012), beef homogenate blends (Ganashree, Singh, Hung, & Mohan, 57 

2015), non-intact beefsteaks (Rincon, Singh, & Stelzleni, 2015) or frozen chicken (Bedane, Altin, 58 

Erol, Marra & Edogdu, 2018), among others. In general, RF processing reduces considerably the 59 
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processing time from around 40 % (Kirmaci and Singh, 2012) up to 90% (Laycock, Piyasena, & 60 

Mittal, 2003). All these studies have focused on RF cooking of products of small size/calibre (less 61 

than Ø100 mm and up to 1.2 kg), much smaller than the typical commercial size for cooked ham. 62 

Many of these studies relied on the use of hot water baths (around 80 C) during the RF cooking 63 

to ensure heat distribution and temperature uniformity on the product surface. The main 64 

objectives of the present study were to: (1) develop a RF cooking process for large-calibre pork 65 

hams with a final conventional steam-cooking step to ensure complete cooking of the product 66 

(RF-ST), and subsequently (2) compare the thermal treatment and the sensory quality of the RF-67 

ST cooking process with those of a conventional steam cooking process (ST). 68 

 69 

2. Materials and methods 70 

2.1. Pork  ham preparation before cooking 71 

Raw boned shoulders (boneless, without knuckles, skin and cartilage, well-polished and 72 

defatted) were obtained from a local meat processor. Refrigerated (48 h post-mortem) lean 73 

shoulders (35 kg/batch)  were injected with a brine solution (22 g/100 g of raw meat) to give the 74 

following concentration of ingredients in the final product (g/100 g): 15.6 water, 1.9 NaCl, 0.45 75 

tetrapotassium pyrophosphate, 0.06 sodium erythorbate and 0.023 sodium nitrite. Immediately 76 

after injection, the shoulders were minced with a three-hole kidney plate and mixed with 4 77 

g/100 g of minced (Ø 3 mm) knuckle lean in a kneader mixer (50 l, Tecmaq) under vacuum for 1 78 

h. Finally, the mass was vacuum-filled in polyamide/polyethylene waterproof plastic casings 79 

(230 mm Fibran Plex I, Fibran S.A., www.fibran.net) into 6.0 kg pieces (Ø146 mm and length 80 

≈340 mm) and stored in refrigeration at 3 C until next day, when they were cooked either with 81 

steam (ST) or with a combination of RF and steam (RF-ST). 82 

2.2. Steam (ST) cooking 83 

The conventional steam (ST) cooking of the pork hams was carried out in an oven (SCC101 84 

Rational, www.rational-online.com). Hams were placed horizontally on the oven grids and were 85 



6 
 

cooked with steam (100% RH) at a constant temperature of 72 ± 1 C for approx. 6 h until 86 

reaching a core temperature of 68 ± 1 C. These cooking parameters are commonly used in 87 

cooked ham processing in order to preserve the sensory characteristics of the product while 88 

obtaining pasteurization values (P70) of 40-60 min and above (Feiner, 2006). Next, the cooked 89 

hams were cooled in a cold-water bath for 1 h and stored at 3 ± 1 C until evaluation. 90 

2.3. Radio frequency (RF) cooking 91 

The RF cooking was carried out in a Radio Frequency system (RF 15 KW, STALAM S.p.A., Italy; 92 

www.stalam.com) with a maximum output of 15 kW (Fig. 1). The sample moved through two 93 

electrodes subjected to a voltage of about 5,300 V at a frequency of 27.120 ± 0.163 MHz. A 94 

staggered through-field electrode applicator with circular-shaped rod electrodes was used 95 

(Bedane, Altin, Erol, Marra, & Edogdu, 2018). The voltage of the upper electrode was set at 5,300 96 

V and an electrode gap of 0.185 m (Fig. 2) was used. The conveyor belt speed was set at 10 m/h. 97 

The samples were individually cooked immersed in distilled water at 17 ± 2 C with a 2.6:1 water 98 

to product weight ratio in a polypropylene container (L×W×H: 35×35×17 cm3) with a 1-cm gap 99 

between the upper electrode and the container lid. 100 

2.4. Preliminary tests to evaluate the temperature distribution in the hams after RF cooking. 101 

The temperature distribution inside the hams was measured with a thermographic camera 102 

(PI160, Optris GmbH, Germany) after cutting the ham immediately after the RF cooking. This 103 

allowed defining the temperature positions to be monitored during the RF cooking.  104 

2.5. Temperature measurements in ST and RF cooking 105 

During the ST cooking process temperature was monitored and recorded at 10 s intervals with 106 

four (Fig. 3) Cu-CuNi thermocouples (type T, 405-382, TC Directand) connected to a data logger 107 

(Testo164/T4, Testo SE & Co. KGaA). During the RF cooking (Fig. 4), the temperature was 108 

measured at 1 s intervals with two optic fibre probes (FOT-L-NS-484B, FISO Technologies, 109 

Canada) connected to a data logger (TMI, FISO Technologies, Canada). The optic fibre probes 110 

were inserted through soft type septa (ref. 220235, Dansensor) to prevent vacuum leaks. 111 
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2.6. RF cooking with final ST cooking of hams 112 

Prior to the RF cooking, both ends of the hams were covered with aluminium foil (Fig. 4) to 113 

minimize overheating (Bohrer, 2009). Hams were individually RF cooked until reaching a core 114 

temperature of 72 ± 1 C. Since one cycle of RF cooking (10 min/cycle) was not enough to reach 115 

the target temperature, the container with the ham was pulled backwards to start a new cycle 116 

with the RF equipment switched on. This operation took approx. 30 s and the ham was all the 117 

time under the influence of the electric field. In order to improve the homogeneity of the heating 118 

process (Birla, Wang, & Tang, 2008), the RF cooking was stopped after 7 cycles to reverse the 119 

orientation of the ham manually (180 rotation along the transverse axis). Subsequently, the RF 120 

process continued until reaching the core temperature of 72 C, which required 14 RF cycles in 121 

total (140 min processing time). Immediately after RF cooking, the aluminium foil shield was 122 

removed and hams were subjected to a conventional steam cooking (ST). The transfer time 123 

between the end of RF-cooking and the start of ST cooking was 3 min. The ST oven was 124 

preheated at 72 C and 100% RH, and the steam cooking lasted approx. 40 min until a 125 

temperature of 68 ± 1 C was reached by all the thermocouples monitoring the ham 126 

temperature. Next, the cooked hams were cooled down in a cold-water bath for 1 h and stored 127 

in a chilling room at 3 ± 1 C until evaluation. 128 

2.7. Comparison between ST and RF-ST cooking processes 129 

Four batches of pork hams (seven hams per batch) were manufactured in four different days. 130 

Within each batch (manufacturing day), three hams were randomly assigned to the ST cooking 131 

process (n= 3x4 batches = 12 hams) and three hams to the RF-ST cooking process (n= 3x4=12), 132 

and one ham was left uncooked (n= 4) and used for the analysis of the chemical composition. 133 

The three hams within each batch were cooked together in the ST process. However, due to RF 134 

equipment capacity, hams were individually cooked in the RF-ST process. The temperature vs 135 

time profiles were monitored and recorded during cooking in two hams for each cooking process 136 

(ST and RF-ST) and batch. Some temperature probes failed during the cooking process and the 137 
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records were discarded. The third cooked ham for each cooking process and batch (ST: n= 1x4 138 

batches= 4 hams; RF-ST: n= 4 hams) was used to analyse the technological and the sensory 139 

quality.  140 

2.8. Accumulated lethality calculation 141 

In order to compare the RF-ST and ST cooking processes, the accumulated lethality was 142 

calculated from the time-temperature profiles during cooking. Enterococcus faecium, which has 143 

been involved in the spoilage of cooked meat products (Magnus, Ingledew, & McCurdy, 1986; 144 

Gordon & Ahmad, 1991), was selected as the reference microorganism for the calculations. The 145 

reference temperature (Tref) was 70 C and the thermal resistance z = 10 C (Smelt & Brul, 2014). 146 

The accumulated lethality values (P70
10) achieved in the ST and RF-ST processes were obtained 147 

by incorporating the experimental time-temperature profiles (Te(t)), during the whole cooking 148 

process (RF and ST steps) into the lethality equation [eq. 1] and integrating the equation using 149 

the integration trapezoid method. 150 

𝑃 = ∫ 10
൬
೅೐(೟)ష೅ೝ೐೑

ೋ
൰௧ୀ௧೟೚೟ೌ೗

௧ୀ଴
𝑑𝑡  [1] 151 

Where P is the accumulated lethality value (min), and t is time (min). 152 

2.9. Physicochemical characteristics and cooking loss 153 

The moisture, protein and fat contents (before and after cooking) were determined by near-154 

infrared spectroscopy (Association of Official Analytical Chemists [AOAC], 2007) using a 155 

FoodScan™ Lab (Foss Analytical, Hillerød, Denmark). Chloride content was determined 156 

according to ISO 1841-2 (1996) using a potentiometric titrator 785 DMP Titrino (Metrohm AG, 157 

Herisau, Switzerland) and expressed as NaCl percentage. The pH of the minced raw and cooked 158 

pork hams was measured with a pH penetration electrode (Hach 52-33, Hach Lange GmbH, 159 

Düsseldorf, Germany) and a portable pH-meter (Portamess 913, Knick, Berlin, Germany). The 160 

cooking loss was calculated as the weight difference between raw weight and cooked weight 161 

(after draining and drying the ham surface), and expressed as a percentage of the raw ham 162 

weight. 163 
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2.10. Sensory analysis 164 

A Quantitative Descriptive Analysis was performed. One ST and one RF-ST cooked hams from 165 

the same batch were evaluated in each session (one session per batch). The generation of the 166 

descriptors was carried out by open discussion in a previous session. The descriptors retained 167 

and their definition were: odour intensity (i.e., intensity of overall odour of the sample); cooked 168 

odour (i.e., intensity of cooked ham odour), flavour intensity (i.e., evaluation of the overall 169 

flavour intensity of the sample), sweetness (i.e., basic taste sensation elicited by sugar), saltiness 170 

(i.e., basic taste sensation elicited by NaCl), hardness (i.e., amount of pressure required to 171 

completely compress the sample), springiness (i.e., degree of return to the original position of 172 

the sample when a compression force is applied between molars), cohesiveness (i.e., textural 173 

property characterized by the difficulty with which a sample can be separated into particles 174 

during chewing) and juiciness (i.e., feeling of moisture inside the mouth as a result of chewing 175 

the sample). With respect to the texture properties of the slice, the outer zone of the slice (outer 176 

ring: width of 2 cm) and the inner zone (inner circle: diameter of 4 cm) were evaluated 177 

separately. Six trained panellists (American Society for Testing, Materials [ASTM], 1981; 178 

International Organization for Standardization [ISO], 1993, 1994) carried out the sensory 179 

analysis on 2 mm-thick slices. A non-structured scoring scale (Amerine, Pangborn & Roessler, 180 

1965) was used, where 0 meant absence of the descriptor and 10 meant the highest intensity of 181 

the descriptor. Samples were wrapped in a film to avoid surface drying and evaluated within 1 182 

h after slicing. Samples were coded with three-digit random numbers and were presented to 183 

the assessors balancing the first order effect (MacFie, Bratchell, Greenhoff, & Vallis , 1989). 184 

2.11. Statistical analysis 185 

The analysis of variance for the physicochemical parameters and sensory attributes was 186 

performed with the General Linear Model (GLM) procedure of the SAS statistical package 187 

(Statistical Analysis System [SAS], 2017). The average score of the panel for each cooked ham 188 

was used as dependent variable. The linear model included the cooking process (ST or RF-ST) as 189 
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a fixed effect and the batch as a block effect. Differences among means were tested with the 190 

Tukey test. 191 

 192 

3. Results and discussion 193 

3.1. Temperature distribution in the hams after RF cooking  194 

The temperature of the center of the ham just after finishing the RF cooking was quite 195 

homogeneous (50-55 C) (Fig. 5b). Fig. 5a shows an uncooked outer layer in the ham which 196 

correlates with the low temperature isotherm lines (<40 C) seen in the thermographic image 197 

(Fig. 5b). Thus, after RF cooking, the surface of the ham still showed a raw appearance, indicating 198 

insufficient heating of this part. Based on these results, ST cooking was carried out just after the 199 

RF cooking (RF-ST). The transfer time between the end of RF-cooking and the start of ST cooking 200 

was 3 min. Moreover, based on the thermographic image, the positions for the temperature 201 

probes (optic fibre and thermocouples) to monitor and record the temperature during the 202 

cooking processes, were defined (Fig. 3).  203 

3.2. Temperature profiles of the ST and the RF-ST cooking processes 204 

The time-temperature profiles of the hams at the core, at 2 cm below the surface and at the 205 

ends (Fig. 3, probe positions P2, P3 and P4) are shown in Fig. 6. After 360 min of cooking, the ST 206 

hams reached 68 C at P2 (Fig 6a), whereas the final temperature was slightly higher (70 C) at 207 

P3 and P4. As expected, the ST heating was much faster at the ends and near the surface of the 208 

product than at the core, as the heat penetrates by conduction from the outside of the product. 209 

The RF-ST hams reached 72 C at P2 after 140 min of RF cooking (Fig. 6b). While the temperature 210 

at P4 was 75 C, only 3 degrees higher than at P2. This confirms that the aluminium shielding 211 

helped to prevent overheating of the ham ends during RF cooking. In contrast, the temperature 212 

at position P3, which was only recorded just at the end of RF cooking, was much lower (60 C). 213 

Thus, the temperature difference measured after RF cooking between P2, P3 and P4 was 214 

approximately 15 C.  215 
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The steam-cooking of the RF-ST process lasted 40 min, until the temperature at P3 (the coldest 216 

point after RF-cooking) reached 68 C. During the steam cooking, the heat diffused from the 217 

hottest to the coldest spots and, at the same time, the steam heat penetrated from the surface. 218 

The temperature decreased from 72 C to 68 C at P2 and from 75 C to 70 C at P4. In contrast, 219 

the temperature at P3 increased from 60 C to the target temperature (68 C). The total cooking 220 

time of the RF-ST process was approximately half that of the conventional ST process, 180 and 221 

360 min respectively. 222 

 Several studies with meat products have reported cooking times with RF significantly lower than 223 

with conventional processes. Zhang, Lyng, & Brunton, (2006) reported a cooking-time reduction 224 

by 75% for pork leg and shoulder, and by 79% for a similar comminuted meat product (Zhang, 225 

Lyng, & Brunton, 2004). In other products, such as beef, the reduction was 90% (Laycock, 226 

Piyasena, & Mittal, 2003), and 73% in turkey rolls (Tang, Cronin, & Brunton, 2005). For chicken 227 

breast, with a higher weight (between 1.36 kg and 2.27 kg) than previous studies, the reduction 228 

was 42.4% (Kirmaci & Singh, 2012), similarly to the value observed in our study. In this case, the 229 

samples were immersed in water at 20 C, similarly to this study and samples were bigger than 230 

in other studies. This may explain the lower reduction in cooking time. 231 

3.3. Accumulated lethality of ST and RF-ST cooking processes 232 

The accumulated lethality values (P70
10) varied greatly from 50 min to 165 min for the ST hams 233 

(Fig. 6a), and from 22 min to 106 min for the RF-ST cooked hams (Fig. 6b). The difference 234 

between the maximum and minimum P70
10 values for the ST hams was higher (115 min) than for 235 

the RF-ST cooking (84 min). For the ST cooking, the probe position with the lowest calculated 236 

P70
10 value was at P2, as expected in conventional heating. In contrast, the RF-ST cooking showed 237 

the lowest P70
10 at P3, which was the lowest P70

10 observed in both treatments. Therefore, the 238 

ST cooking applied after RF was not long enough to compensate for the low temperature at the 239 

outer areas of the ham just after the RF cooking step (Fig. 5) and similar P70
10 values to those of 240 
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conventional cooking were not achieved. On the contrary, the P70
10 values of RF-ST hams in the 241 

core were higher than those of ST hams (P70
10= 70 min vs. 50 min).  242 

In Zhang, Lyng, & Brunton (2004, 2006) the lethality values were much lower for RF cooked 243 

samples than for conventionally cooked samples. Zhang, Lyng, & Brunton (2004) suggested 244 

extending the holding time after the RF treatment as a possible solution to this problem. 245 

Schlisselberg et al. (2013) improved lethality values of RF cooking by combining both RF and 246 

conventional cooking in an oven.  247 

The results obtained for the RF-ST process indicate that the final ST cooking step should be 248 

extended to obtain a P70
10 value, at position P3, equivalent to that at P2. In Fig. 6b, the P-2cm-249 

surface accumulated lethality plot is projected beyond 180 min (grey dashed line) to estimate 250 

the additional heating process needed to obtain an accumulated lethality equivalent to the 251 

reference value in the core of the ST hams (P70
10 = 50). According to these calculations, 30 more 252 

min are needed. Another solution could be to shorten the RF cooking and to extend the ST 253 

cooking. Thus, the final temperature and P70
10 values in P1 and P3 would decrease after RF 254 

cooking and the P70
10 values in P2 would increase after ST cooking, achieving a more uniform 255 

cooking of the product.  256 

3.4. Physicochemical characteristics and cooking yield 257 

The uncooked (raw) ham composition (mean ±sd) was (g/100 g): 74.8 ±0.5 moisture, 16.9 ±0.1 258 

protein, 4.8 ±0.6 fat and 2.2 ±0.1 NaCl. Significant differences between raw and cooked products 259 

were only observed in protein, moisture contents and pH values. A slightly higher protein 260 

content (P<0.05) was observed in the ST (17.7 ±0.3 g/100 g) and in the RF-ST (17.5 ±0.3 g/100 g) 261 

in comparison with the raw product due to the cooking losses. In relation with this, moisture 262 

content was slightly lower in the ST (73.9 ±0.7 g/100 g, P<0.05) and RF-ST (74.3 ±0.2 g/100 g, 263 

P>0.05) than in the raw product. The average pH of the raw product was 6.33 (±0.05) and 264 

increased significantly (P<0.05) up to 6.43 (±0.03) in both ST and RF-ST products. No significant 265 

differences (P>0.05) were observed in the chemical composition and pH values between ST and 266 
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RF-ST hams. Regarding cooking yield, the RF-ST hams showed slightly lower cooking loss (P<0.05) 267 

than ST hams (RF-ST: 2.9% vs. ST: 4.8 %), which can be explained by the differences in the total 268 

cooking time. Usually, the faster the cooking, the lower the cooking losses (Lawrie, 2006). 269 

Previous studies comparing RF cooking and steam/water bath cooking of meat products were 270 

not conclusive on differences in cooking yields.  271 

3.5. Sensory analysis 272 

During descriptors generation, no differences in visual colour were observed between ST and 273 

RF-ST hams (Fig. 7). Therefore, no appearance attributes were included in the sensory profile. 274 

Table 1 shows the results of the effect of the cooking process (ST vs. RF-ST) on the sensory 275 

attributes of cooked ham. Slight significant differences (P<0.05) between cooking processes 276 

were detected only in odour (overall intensity and cooked odour) and in hardness and elasticity 277 

of the external part of the slices. ST hams were rated with higher intensity of odour and lower 278 

hardness and elasticity than RF-ST hams.  279 

Results of previous studies were not conclusive. The studies of Zhang, Lyng, & Brunton (2004) in 280 

pork luncheon rolls and Zhang, Lyng, & Brunton (2006) in cooked leg and shoulder hams, 281 

reported that panellists were able to discriminate between RF and steam cooked meat products 282 

in similarity tests and RF cooked meat products were significantly firmer than their steam 283 

cooked counterparts. In contrast, Brunton et al. (2005) in white pudding and Tang, Lyng, Cronin, 284 

& Durand (2006) in beef rolls reported no significant differences in sensory analysis of RF and 285 

steam cooked meat products. These discrepancies could be related to the different 286 

combinations of time and temperature applied in each study.  287 

Heat treatment induces modifications of the meat structure and its constituents (Davis & 288 

Williams, 1998). Denaturation, aggregation and degradation of myofibrillar, sarcoplasmic and 289 

connective tissue proteins occur depending on the combination of time and temperature during 290 

the heat treatment (Dominguez-Hernández, Salaseviciene, & Ertbjerg, 2018). The rate and 291 

extent of the changes are dependent on the amount of heat transferred to the meat, and on the 292 
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heating rate (Tornberg, 2005). Cooked ham odour and flavour are the result of complex 293 

interactions between precursors derived from both lean and fat that generate volatile 294 

compounds that contribute to their final aroma throughout the fatty acid oxidation releasing 295 

aldehydes, alcohols, ketones and medium chain fatty acids which can react with Maillard 296 

reaction and thiamine degradation compounds (Thomas, Mercier, Tournayre, Martin, & 297 

Berdague, 2013). Ames, Guy & Kipping (2001) concluded that the amounts of most volatile 298 

flavour compounds increased during cooking.  299 

In the present study, the slight differences in flavour and texture between ST and RF-ST hams 300 

could be related to the fact that the external part of the ST hams was subjected to high 301 

temperatures (72 C) for a longer time than in RF-ST hams. The lower hardness and elasticity 302 

values in ST hams could also be due to the longer cooking process that helps to solubilize 303 

connective tissue.  304 

 305 

4. Conclusion 306 

The combination of radio frequency and steam cooking (RF-ST process) allowed obtaining a 307 

cooked pork ham similar to that obtained with conventional steam cooking (ST). The RF-ST 308 

process time was reduced by 50%. Slight differences were observed in the technological and 309 

sensory quality of the final product. Regarding the food safety of the RF-ST process, the lethality 310 

values could be further improved by adjusting the times of both RF and steam cooking. In order 311 

to avoid overheating problems in the product during the RF process, the ends of the hams should 312 

be shielded with aluminium foil or a similar material. 313 
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 410 

 

Fig. 1. RF 15 KW STALAM Radio Frequency system at 27.12 MHz (STALAM S.p.A., Italy; 

www.stalam.com) at IRTA facilities in Monells. 

 411 
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Fig. 2. Sketch of the staggered through-field electrode applicator showing the cavity with 

the container (with the ham and distilled water) during the RF cooking process. 

 413 
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Fig. 3. Sketch of the axial section of a ham showing the positions (P1 - P4) and the 
penetration depth of the temperature probes (optic fibre and thermocouples) inserted 
in the product to monitor and record the temperature during the cooking processes. 
Two optic probes inserted at positions P2 and P1 or P4 were used to monitor the 
temperature during RF cooking. Four thermocouples inserted at positions P1 to P4 
were used during ST cooking. 
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Fig. 4. Uncooked pork shoulder ham with aluminium foil 
shielding at the ends and with the two optic fibre probes inserted 
at the core (P2) and at the end of the ham (left side; P1 or P4; 
Fig. 3) to measure the temperature during RF cooking. 

 417 
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Fig. 5. Cooked ham cut after finishing the RF cooking process (with aluminium foil shielding at 

the ends; see Fig. 4). a) Axial cross-section showing the uncooked outer layer (darker area) and 

the inner cooked zone (pale-pink area). b) Thermographic image of the axial cross-section. 
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421 

 422 
 423 
Fig. 6. Time vs. temperature and time vs. accumulated lethality P70

10 profiles for conventional 424 
steam (ST; Fig. 6a) and radio frequency plus steam (RF-ST; Fig. 6b) cooking processes. 425 
Temperature and accumulated lethality correspond to ham positions P2: core (○), P1 and P4: 426 
end (∆, mean of the two probes per ham) and P3: 2 cm below the surface (□), as shown in Fig. 427 
3. The plotted temperature data are mean values (± standard deviation) of ST (n= 7 hams) and 428 
RF-ST (n= 4 hams) cooking processes. In Fig. 6b (RF-ST) the vertical dotted lines mark the end (t= 429 
140 min) of the RF cooking and the end (t= 180 min) of the final steam cooking. The surface 430 
accumulated lethality plot (P-2cm-surface, Fig. 6b) is projected beyond 180 min (grey dashed 431 
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line) to show an estimation of the additional heating process needed to obtain an accumulated 432 
lethality equivalent to the reference value in the core of the ST hams (P70

10 = 50, Fig. 6a). 433 
  434 
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Fig. 7. Cooked ham slices of ST (conventional steam cooking) and RF-ST (RF plus final steam 
cooking) processes. 
 435 
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Table 1. Effect of the cooking process: conventional steam cooking (ST) and radio frequency 

plus final steam cooking (RF-ST) on the sensory attributes of cooked pork shoulder ham. 

Sensory attributes A ST RF-ST Significance B RMSE C 

Odour     

    Overall intensity 5.4 4.9 * 0.29 

    Cooked 5.1 4.6 * 0.28 

Taste/flavour     

    Intensity 5.8 5.9 NS 0.19 

    Saltiness 4.9 5.0 NS 0.11 

    Sweetness 2.0 1.9 NS 0.11 

Texture (slice outer part)     

    Hardness 5.1 5.5 * 0.17 

    Elasticity 4.9 5.1 * 0.14 

    Cohesiveness 4.9 5.0 NS 0.16 

    Juiciness 5.7 5.6 NS 0.22 

Texture (slice inner part)     

    Hardness 5.3 5.3 NS 0.12 

    Elasticity 4.8 4.8 NS 0.19 

    Cohesiveness 5.3 5.3 NS 0.09 

    Juiciness 6.1 6.1 NS 0.08 

A Non-structured scoring scale (0= absence and 10=highest intensity of the descriptor). 

B Significance: NS, non-significant; *, P<0.05. 

C RMSE: root mean square error of the model. 
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