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Genomic prediction (GP) is the procedure whereby the genetic merits of untested
candidates are predicted using genome wide marker information. Although numerous
examples of GP exist in plants and animals, applications to polyploid organisms are still
scarce, partly due to limited genome resources and the complexity of this system. Deep
learning (DL) techniques comprise a heterogeneous collection of machine learning
algorithms that have excelled at many prediction tasks. A potential advantage of DL for
GP over standard linear model methods is that DL can potentially take into account all
genetic interactions, including dominance and epistasis, which are expected to be of
special relevance in most polyploids. In this study, we evaluated the predictive accuracy of
linear and DL techniques in two important small fruits or berries: strawberry and blueberry.
The two datasets contained a total of 1,358 allopolyploid strawberry (2n=8x=112) and
1,802 autopolyploid blueberry (2n=4x=48) individuals, genotyped for 9,908 and 73,045
single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for five
agronomic traits each. DL depends on numerous parameters that influence performance
and optimizing hyperparameter values can be a critical step. Here we show that
interactions between hyperparameter combinations should be expected and that the
number of convolutional filters and regularization in the first layers can have an important
effect on model performance. In terms of genomic prediction, we did not find an
advantage of DL over linear model methods, except when the epistasis component
was important. Linear Bayesian models were better than convolutional neural networks for
the full additive architecture, whereas the opposite was observed under strong epistasis.
However, by using a parameterization capable of taking into account these non-linear
effects, Bayesian linear models can match or exceed the predictive accuracy of DL. A
semiautomatic implementation of the DL pipeline is available at https://github.com/
lauzingaretti/deepGP/.

Keywords: genomic prediction, genomic selection, polyploid species, deep learning, epistasis, complex traits,
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INTRODUCTION

Deep learning (DL) techniques comprise a heterogeneous
collection of machine learning algorithms which have excelled
at many prediction tasks, and this is a very active area of research
(Min et al., 2017; Pattanayak, 2017; Namin et al., 2018). All DL
algorithms employ multiple neuron layers and numerous
architectures have been proposed: multiple layer perceptrons
(MLPs), recurrent neural networks (RNNs), convolutional
neural networks (CNNs) (LeCun et al., 2015) and others. DL is
relatively straightforward to implement (https://keras.io/why-
use-keras/), but optimum performance depends on an
adequate hyperparameter choice, which is not trivial and
requires considerable computational resources (Young et al.,
2015; Chan et al., 2018). Although previous, limited evidence
does not show a consistent advantage of DL over penalized linear
methods for genomic prediction (GP) purposes (González-
Recio et al., 2014; Ma et al., 2017; Bellot et al., 2018;
Montesinos-López et al., 2018a; Montesinos-López et al.,
2018b; Montesinos-López et al., 2019a), more efforts are
needed to fully understand the behavior and potential
constraints and capabilities of DL in GP scenarios.

Genomic selection (GS) is the breeding strategy consisting in
predicting complex traits using genomic-wide genetic markers.
The idea was developed to overcome the limitations of marker-
assisted selection (MAS) and was formalized by Meuwissen et al.
(2001). While MAS establishes a model with only the markers
with significant associations, genomic selection includes all, or
most available markers, for GP, irrespective of their effect and its
significance. Due to the decrease in genotyping costs, genomic
selection is becoming the standard tool in many plant and animal
breeding programs (Bernardo, 2008; González-Camacho et al.,
2012; Crossa et al., 2013b; Meuwissen et al., 2013; Wiggans et al.,
2017). There is an increasing number of successful applications of
genomic selection in diploid and polyploid organisms where its use
has generated important genetic gains by improving the accuracy of
breeding value prediction and dramatically reducing generation
intervals (Crossa et al., 2013a; Castillo-Juárez et al., 2015; Duangjit
et al., 2016; Juliana et al., 2019; de Bem Oliveira et al., 2019).

In any scenario, GP poses statistical challenges since the
number of markers is usually much larger than the number of
individuals, i.e., the so-called large p (number of features) small n
(sample size) paradigm (de los Campos et al., 2013; Pérez and De
Los Campos, 2014). In this context, statistical methods require
either shrinkage, variable selection, or a combination of both
(Tibshirani, 1996). Most GP methods are based on linear models,
such as Genomic Best Linear Unbiased Prediction (GBLUP)
(VanRaden, 2008), the Bayesian GP family (Meuwissen et al.,
2001; Pérez and De Los Campos, 2014), or LASSO (Tibshirani,
1996). In GBLUP, all marker effects are assumed to be normally
distributed with equal variance and a homogeneous shrinkage is
induced, whereas Bayesian models are more flexible and
differential shrinkages and/or variable selection can be applied
to distinct marker subsets. Note that these methods are linear
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and, in contrast to DL, have not been designed to model non-
additive genetic effects (such as dominance or epistasis);
however, these effects can be incorporated in the model with
appropriate parameterizations.

One potential advantage of DL for GP over standard methods is
that the whole genetic merit, including all non-additive effects, can
potentially be predicted without the need to partition all effects. This
is an interesting property for clonally propagated outcrossing
species, because genomes can be asexually reproduced from single
plants once the desirable individual is found. It should also be a
promising strategy in polyploids, although their complex genetic
structure has delayed the availability of whole genome markers and
of specific analytic tools for, e.g. SNP calling (Slater et al., 2016;
Gezan et al., 2017; Bourke et al., 2018). A few studies have
demonstrated the potential advantages of GS in allo and
autopolyploids (Gezan et al., 2017; Enciso-Rodriguez et al., 2018;
Nyine et al., 2018; Amadeu et al., 2019; de Bem Oliveira et al., 2019;
Juliana et al., 2019; Zingaretti et al., 2019), although its
implementation is still in its infancy.

When non-additive effects are investigated, there are two
important points that need to be considered for higher ploidy
levels: i) there is a portion of the intra-locus allele interaction (i.e.,
dominance) that is passed to the progeny (particularly full-sibs),
and ii) the definition of non-additive effects is more complex
than in diploids as higher order interaction exist (Osborn et al.,
2003). Thus, methodologies that could model the whole genetic
merit without restrictive assumptions could facilitate and
improve the prediction for polyploid species, making DL an
attractive choice for genomic prediction. In practice, DL aims at
predicting the whole genetic merit, including interactions
irrespective of their origin.

Among the polyploid species, strawberries (Fragaria x
ananassa) and blueberries (Vaccinium corymbosum) are
considered two of the most important soft fruit commodities.
Considered a rich source of vitamins and minerals, fruit markets
for both species have experienced a global increase in production
and consumption over the past decade (https://www.nass.usda.
gov/Publications/Todays_Reports/reports/ncit0619.pdf). To
ensure that production and fruit quality meet the global
demand, genetic improvement, and particularly GP, has a role
to play in maximizing the utility, diversity, and yield of resources.
In this sense, previous experimental assessments performed in
blueberry (Amadeu et al., 2019; de Bem Oliveira et al., 2019) and
strawberry (Gezan et al., 2017) have proven the feasibility of
incorporating genomic selection to either accelerate the pace or
improve the efficiency of breeding programs. From a genetic
standpoint, one important difference between both species is its
inheritance pattern. Cultivated strawberry (Fragaria x ananassa)
is an allo-octoploid hybrid plant originated by cross between two
wild octoploid species F. chiloensis and F.virginiana (Hancock
et al., 2008) both descendants of Fragaria diploid species;
referred as allopolyploids, meiosis is mainly dictated by
preferential pairing, exhibiting a diploid-like (or disomic)
segregation. In contrast, blueberry is a tetraploid organism
February 2020 | Volume 11 | Article 25
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originated from genome duplication within the same species. In
autopolyploids, the meiotic pairing is mainly described by forming
either random bivalents ormultivalent during the division. Since the
molecular mechanisms in auto and allopolyploids are quite
complex, comparing new algorithms is a relevant issue to the
prospect of GP in these and other polyploid species.

In this study, we evaluated the performance of deep learning
for genomic prediction in two important horticultural species:
allo-octoploid strawberry and auto-tetraploid blueberry. We
complement the empirical study with simulations to
understand better the impact of genetic architecture on DL
performance. Given the complexity of implementing DL, we
also provide a guideline on best practices for hyperparameter
tuning and evaluate its importance in terms of predictive ability.
To facilitate reproducibility of these methods, a python-based
package for semiautomatic DL implementation, including auto
and allopolyploid organisms have been made available at https://
github.com/lauzingaretti/deepGS/.
MATERIALS AND METHODS

Plant Material and Genotypes
Predictive performances were compared in two polyploid species
(blueberry and strawberry), for a series of traits with presumably
contrasting genetic architecture. A summary of both experimental
data sets is presented in the Table 1.

Regarding strawberry, we used 1,233 unique genotypes which
correspond to five advanced selection trials (T2, T4, T6, T8, and
T10) from the strawberry breeding program at the University of
Florida, Institute of Food and Agricultural Sciences (USA). These
advanced trials were planted in five consecutive seasons and were
given an even code starting with season 2013–2014 as T2 and
ending with season 2018–2019 as T10. The number of lines in
each trial was 217, 240, 236, 272, and 393 for T2, T4, T6, T8, and
T10, respectively. Some of the genotypes in the last trial T10 were
already tested in earlier trials, making the total number of
observations sum up to 1,358 (instead of 1,233). Plants were
genotyped with the Axiom IStraw90 SNP array (Bassil et al.,
Frontiers in Plant Science | www.frontiersin.org 3
2015). After quality control, in which those markers with minor
allele frequencies (MAF) < 5% and with missing marker
data > 5% were eliminated, 9,908 polymorphic SNP markers
were available. A total of five yield and fruit quality traits were
evaluated in each trial: soluble solid content (brix), average fruit
weight (AveWtT), total marketable yield (MktWtT), early
marketable yield (MktWtE), and percentage of culled
(unmarketable) fruit (CullsTPer). Additional details for T2 and
T4 can be found in Gezan et al. (2017).

The blueberry population used in this study encompasses one
cycle of the University of Florida blueberry breeding program's
recurrent selection and comprised 1,802 lines from 117 full-sib
families. The population was originated from 146 parents that
presented superior phenotypic performance (cultivars and
advanced stage of breeding). Individuals were evaluated for five
yield and fruit quality-related traits: firmness, fruit size, weight,
yield, and picking scar, which were collected during two
production seasons. Phenotypes were pre-corrected for fixed
year effects, as detailed in Amadeu et al. (2019) and de Bem
Oliveira et al. (2019). A total of 73,045 SNPs was obtained using
sequence capture by Rapid Genomics (Gainesville, FL), after
aligning the reads against the high-quality “Draper” genome
assembly (Colle et al., 2019) as described in Benevenuto et al.
(2019). Marker filtering followed these criteria: biallelic, mean
coverage > 40, minimum allele frequency > 0.01; maximum
missing data = 0.5%; minimum quality = 20. Also, individuals
with more than 50% missing data were removed, missing
genotypes were simply imputed with the mean. Tetraploid
genotypes were called and the allele dosages were inferred with
the updog R package (Gerard et al., 2018). Standard genotype
calling with updog allows inferring genotypes according to the
number of allele copies, and genotypes can be coded say 0,1,2,3,4.
In addition, as in de Bem Oliveira et al. (2019), here we
considered a set of “diploidized” genotypes that were obtained
pooling all heterozygous genotypes in a single class, i.e.,
genotypes above 0,1,2,3,4 can be recoded as 0,1,1,1,2. The
rationale is that there can be incertitude on the exact number
of allele copies in heterozygous genotypes.

The GP methods evaluated in this study were assessed by true
validation, which was obtained by splitting data into a training
and a validation dataset. In the strawberry dataset, we considered
that predicting performance of the last stage lines (T10) is the
most interest application for the industry and therefore the
population was divided between training (T2, T4, T6, and T8
trials) and validation (T10) subsets with 965 and 393 lines,
respectively. In the case of blueberry data, all samples were
equally important and 30% of randomly sampled genotypes
were assigned to the validation set. Predictive ability (PA) was
defined as the correlation between observed and predicted
phenotypes in the validation set; prediction was computed
from parameters estimated in the training dataset only.

Genetic Structure and Heritability
Inference
Potential genetic structure was assessed by principal component
analysis (PCA) using all genotypes. Since genetic architecture
TABLE 1 | Summary of blueberry and strawberry experimental data sets used in
this paper.

Strawberry (allopolyploid) Blueberry
(autopolyploid)

Ploidy 2n = 8x = 112 2n = 4x = 48
No.
observations

1,358 (1,233 unique genotypes) 1,802

No. SNPs 9,908 73,045
Traits
analyzed

• Soluble solid content (brix)
• Average fruit weight (AveWtT)
• Total marketable weight (MktWtT)
• Early marketable yield (MktWtE)
• Percentage of culled fruit (CullsTPer).

• Firmness
• Fruit Size
• Weight
• Yield
• Scar

Main
reference

Gezan et al. (2017) Amadeu et al. (2019)
and de Bem Oliveira
et al. (2019)
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may have an impact on GP performance and on the optimum
GP model (Daetwyler et al., 2013), additive and non-additive
genetic features were assessed by computing variance
components from the model:

y = m 1 + a + d + e + e (1)

where the vector y represents the adjusted phenotype, m1 is the
intercept, a∼N(0, As2

a),d∼N(0, Ds2
d) and e∼N(0, Es2

e ) are the
additive, dominant and epistatic effects, respectively, and e ∼
N(0, Is2

e) is the residual component. Matrices A and D were
obtained using AGHmatrix package (Amadeu et al., 2016) for
both strawberry (as diploid) and blueberry (autotetraploid)
species. For diploids, A and D were computed using
VanRaden (2008) and Vitezica et al. (2013) methods,
respectively. In fact, A = ZZ0

2ojpj(1 − pj)
where Z is the matrix

that contains the centered individual genotype values and D =

MM0

4oj½pj(1 − pj)�2
is the dominance matrix, where the M elements

are − 2p2j , 2pj(1 − pj), −2(1 − pj)
2 for genotypes 0, 1, and 2,

respectively. In the case of ploidy = 4, D was obtained as in
Slater et al. (2016). The epistatic matrix (E) considered is the
Hadamard product of additive effects, i.e. A⊙A (Henderson,
1984) Posterior distributions of genetic parameters were
obtained using Reproducing Kernel Hilbert Spaces (RKHS)
regression with BGLR package (Pérez and De Los Campos,
2014). The additive, dominance and epistatic ratios were

estimated as: ĥ2a = s2a=(s
2
a + s2d + s2e + s2e), ĥ

2
d = s2d=(s

2
a + s2d + s2e + s2e

) and ĥ2e = s2e=(s
2
a + s2d + s2e + s2e); where s

2
i the i

th mean posterior
estimates of s2 as in Equation 1. We used both training and
validation datasets combined in this stage, since this is purely a
descriptive analysis and the values obtained are not employed in
the later prediction stages.

Penalized Linear Methods
We compared the prediction performance of DL models with
two well-established linear methods: Bayesian Lasso (BL,
Meuwissen et al., 2001) and Bayesian Ridge Regression (BRR,
Gianola, 2013). In these models, the trait can be expressed as:

y = m 1 + g + e (2)

where m1 is the overall mean, g=Xb, X is the genotypes' matrix
and b is a vector of marker effects. In BRR, prior distributions of
marker effects b are N(0, Is2

b ), whereas the prior distributions for

b in BL have a Laplace distribution, i.e., p(bj l,s2
e) =

l
2s2

e
exp( −

jb j l
s2
e
). Note that the Laplace distribution does not remove

markers so, contrary to its frequentist counterpart, BL is not a
variable selection approach. Each model was fitted by using only
phenotypes from the training subset. The models were run using
the BGLR package (Pérez and De Los Campos, 2014) with a
Gibbs sampler algorithm for a total of 6,000 cycles, discarding
the first 1,000 samples for burn-in.
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The above parameterization assumes additivity of effects,
although linear models can address non-linear relationships if
properly parameterized. Non-linear interactions can be modeled
by expressing g (Equation 2) in a general way, i.e., g =WwwhereW
(centered and scaled) is a matrix of dummy variables that indicates
the number of copies of the reference allele ranging from 0 to the
ploidy level (Slater et al., 2016; Enciso-Rodriguez et al., 2018). This
model is, in principle, a good parameterization to account for non-
linear interactions and we will refer to it as BRR general model
(BRR-GM), since Bayes ridge regression was used. For more details,
see Enciso-Rodriguez et al. (2018) and Amadeu et al. (2019).

Non-linearity can also be managed by means of RKHS
regression (Gianola et al., 2006) as an alternative to a linear
regression for capturing complex interactions. This model

considers g in Equation 2 as N(0,Ks2
g) with K(xi, xi0 ) = exp( −

hjjxi − xi0 jj2
p

), a kernel function where h is de bandwidth

parameter controlling how fast the covariance function drops
with the distance between pairs of markers and jjxi − xijj2 is the
Euclidean distance between any two pairs of genotypes. This
parameterization induces a general matrix of genetic covariance
between markers. The key point here is that the kernel can model
non-linear relationships because it is a non-linear transformation
of the distances between the input variables. Empirical evidence
confirms that it is an accurate approach to predict phenotypes of
complex traits (Gianola et al., 2008; de los Campos et al., 2009; de
Los Campos et al., 2010). BRR-GM and RKHS were only
implemented for strawberry and simulated scenarios, since it
was in strawberry where we found the trait with the largest
epistasis component, as described below.
Deep Learning (Convolutional Neural
Networks)
DL has been described as a universal learning approach able to
solve supervised, semi-supervised and unsupervised problems.
Several DL architectures have been proposed, such as MLPs,
RNNs, CNNs, Generative Adversarial Networks (GANs) and
Reinforcement Learning (RL). Figure 1 shows a generic pipeline
to evaluate DL in a GP context.

In our previous experiment (Bellot et al., 2018), CNNs were the
best performingmethods and therefore are the only ones discussed
here. The advantage ofCNNs in aGPcontext is that they canmodel
the correlation between adjacent input variables, that is, linkage
disequilibrium between nearby SNPs. This is done via a
mathematical operation called convolution (Goodfellow et al.,
2016). A typical CNN is made up of “convolutional layers”,
“pooling”, “flatten” and “dense” fully connected layers (Figure 2).
In the “convolutional layer”, an operation called convolution is
performed along the input of predefined width and strides, which
are known as “kernel” and “filter” in the DL jargon, respectively.
From amathematical view, a convolution s(t) is a function that can
be defined as an “integral transform” (Widder, 1954):

s tð Þ = f *kð Þ tð Þ = ʃ k t − xð Þf xð Þdx (3)
February 2020 | Volume 11 | Article 25
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where one of the functions (k or f) in Equation (3) must be a
kernel. Assuming that the kernel is represented by k, the
convolution is the transformation of f (input data in the DL
context) into s(t). The operation is just the weighted sum of an
infinite number of copies f shifting over the kernel. The discrete
version of Equation 3 follows naturally as:
Frontiers in Plant Science | www.frontiersin.org 5
s tð Þ = f *kð Þ tð Þ =oxk t − xð Þf xð Þ (4)

One of the main advantages of convolution networks is their
capability to reduce the number of operations, i.e., the
hyperparameters to be estimated. As usual, an activation
function (generally non-linear) is applied after each convolution
FIGURE 1 | A generic deep learning (DL) pipeline for genomic prediction (GP) purposes. The general process includes the training and validation steps. In the
training step, data are split into training and testing, DL hyperparameters are optimized by internal cross-validation with the test set and the model with the best
predictive ability (PA) is chosen. In the validation step, the model PA is evaluated using a new set of data.
FIGURE 2 | General CNN architecture employed in our workflow. The input layer is a SNP matrix of size n x p, where n is the number of training set and p, the
number of SNPs. The convolutional layer consists on a nfilters convolution followed by a max-pooling layer with poolsize = 3 and an optional dropout. The outputs of
max-pooling layer are joined together into one vector by flattening. All the neurons in the flatten layer are fully connected to the first dense layer. We tune the network
using i dense layers with a variable number of hidden neurons in the respective hidden layers. The output of these dense layers is the prediction layer that uses linear
function as activation. The neurons in convolutional and dense layers use relu, tanh or linear function as activations.
February 2020 | Volume 11 | Article 25

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zingaretti et al. Exploring Deep Learning in Polyploids
to produce the output layer. Finally, “pooling” layers reduces dimension
and achieves a smoother representation, summarizing adjacent neurons
by computing their maximum or mean.

Hyperparameter Optimization
Since DL depends on numerous parameters that influence
performance, optimizing hyperparameter can be a critical
unresolved step, which relies heavily on heuristics. Hence, it is
surprising that many DL applications in GP have not paid
enough attention to this problem (Ma et al., 2017; Montesinos-
López et al., 2018b; Montesinos-López et al., 2019b). Several
approaches have been proposed for hyperparameter tuning (e.g.,
Bellot et al., 2018; Cho and Hegde, 2019; Le et al., 2019;
Rajaraman et al., 2019; Yoo, 2019). Here, DL architectures
were optimized using Talos (Autonomia Talos, 2019), which
works combining all parameters in a grid. Talos can choose the
best model either maximizing the predictive accuracy or
minimizing the error; the former criterion was employed here.
Since the approach can be expensive as the number of
hyperparameters increases, a random search is the best strategy
in practice. This rule evolves a list of CNN models for each
phenotypic trait. We optimized the following hyperparameters
(values considered within parentheses): activation function (relu,
tanh, linear), number of filters (16, 32, 64, 128), regularization
(i.e., weight decay in DL terminology, 0, 0.1, 0.01, 0.001), learning
rate (0.1, 0.01, 0.001, 0.0025), number of neurons in fully
connected layer (4, 8, 12, 16), number of hidden layers
(1,5,10), and dropout (0, 0.01, 0.1, 0.2).

Talos output is the accuracy for each hyperparameter
combination; we then used hyperparameter values as
independent variables and accuracy as target variable to run a
random forest algorithm, which allowed us to compute the
hyperparameter value importance, measured as the decrease in
Gini's coefficient when adding the given hyperparameter. This
hyperparameter importance can be then used as guide to
improve interpretability. The R package randomForest (Liaw
and Wiener, 2002) was employed for this analysis.

The DL algorithms used in this study were implemented in
Keras (Chollet, 2015) and Tensorflow (Abadi et al., 2015) and
run on a GPU equipped Linux workstation. A generic script is
publicly available at https://github.com/lauzingaretti/deepGS/.

Simulation
We studied the impact of genetic architecture on prediction
performance by simulation using the actual observed strawberry
genotypes, assessing predictive performance with the same T10
strawberry genotypes (and genotypic data) as in the real
experiment, except that phenotypic responses were simulated.
Three contrasting genetic architectures were considered:

1. Additive: 200 randomly chosen SNPs were considered as
causal loci. No dominance was simulated. Total individual
genetic value was the sum of effects across loci.

2. Epistatic: 100 epistatic pairs of SNPs were randomly sampled.
Epistasis was multiplicative by pairs, i.e., the genotype was the
Frontiers in Plant Science | www.frontiersin.org 6
product of individual genotypes in each pair. Total genetic
value was the sum of effects across pairs of loci.

3. Mixed: 80 individual additive SNPs and 60 epistatic SNP
pairs were randomly chosen. Total genetic value was the sum
of effects across pairs of loci and individual additive loci.

Allele substitution effects were sampled from a gamma
distribution G(a = 1, b = 0.2). The trait was obtained adding
the genetic value to an environmental normal residual.
Environmental variance was chosen such that broad-sense
heritability was set to 0.50. For each genetic architecture, five
replicates were run. We compared BRR, BRR-GM, RKHS, and
DL. DL architectures were specifically optimized to each
phenotypic trait, since no universal architecture is able to make
accurate predictions for all cases.
RESULTS

Population Structure and Genetic
Parameters
No clear population structure was observed, neither in the
strawberry nor in the blueberry datasets (Figure S1). Note that
genetic relationships between trials in strawberry data are rather
uniform, irrespective of whether they are successive seasons or
not. This, together with the fact that little genotype by
environment (or year) interaction was observed (Gezan et al.,
2017), suggests a favorable scenario for GP.

Heritability estimates in strawberry are slightly different from
those obtained in the same material by Gezan et al. (2017) since
here we used additional data and we removed genotypes tested
since here we used additional material and we removed
genotypes tested more than once on different seasons.
Nevertheless, in agreement with previous results (Amadeu
et al., 2019; de Bem Oliveira et al., 2019; Gezan et al., 2017)
narrow-sense heritabilities were moderate, ranging from 0.25 to
0.35 for most strawberry (Figure 3) and blueberry (Figure 4)
traits, except for strawberry average fruit weight (h2a = 0:58) The
degree of dominance found was quite low in general, especially in
strawberry. An exception was blueberry yield, where dominant
and epistatic variances were similar to the additive variance
(Figure 4E). A remarkable case is percentage of culled fruit
(CulsTPer) in strawberry, where the epistatic ratio (18%) was
only slightly smaller than the additive one (25%, Figure 3E).

Hyperparameter Importance
CNN hyperparameters were optimized for each strawberry trait
separately. Figure 5A shows the importance of each
hyperparameter obtained from random forest by regressing the
model predictive accuracies (obtained by an inner cross-
validation) on all hyperparameter values combinations.
Interestingly, the number of filters was overall the most
relevant factor, whereas other factors such as learning rate, whose
importance has been claimed in the literature as critically important
(Maas et al., 2013; Bawa and Kumar, 2019; Feng and Lu, 2019),
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played only a minor role. We also observed that the effect of each
hyperparameter depends on the layer, e.g. regularization or dropout
were more important in first than in deep layers.

In Figure 5A, the “trait” effect was excluded since it cannot be
controlled by the experimenter, although it was by far the most
influential variable. This is illustrated in Figure 5B, which shows the
distribution of accuracies for each trait studied. Not only maximum
accuracies varied across trait, the profiles were also extremely
different, usually multimodal. This suggests interactions between
hyperparameter combinations, and it also indicates that trait–
specific optimization should be performed whenever possible.

Figure 5 illustrates the kind of complex interactions that we
observed in hyperparameter optimization. For instance, Figures
5C, E, show the distinct influence of activation functions in
percentage of culled fruit (Figure 5C) and brix (Figure 5E).
Although “relu” activation function has been suggested as the
activation of choice in recent DL literature (Maas et al., 2013;
Pouladi et al., 2016), here we observed that linear or even
sigmoid-like hyperbolic tangent (tanh) seemed to be a safer
choice overall. It is relevant to note that interactions were
clearly observed for some hyperparameters, such as the number
of filters. For CulsTPer, either 16 or 128 filters resulted in optimum
accuracies, although they were also associated with the worst
hyperparameter combinations. In contrast, either 32 or 64 filters
are to be preferred for average weight in strawberry (Figure 5F).
Frontiers in Plant Science | www.frontiersin.org 7
The final sets of hyperparameters for strawberry and
blueberry phenotypes are indicated in Tables S1 and S2,
respectively. Overall , our study shows that shallow
architectures are more competitive than deep architectures in
terms of PA, since the majority of models only included one
CNN layer. The number of filters -in combination with dropout-
has a large effect in the PA, but is highly dependent of the trait.
For instance, all optimal architectures for strawberry contain 128
convolutions, but this is much more variable in the case of
blueberry, with a range between 16 and 128 convolutional
operations. As for the fully connected layers, the situation is
less clear, and no obvious pattern is observed. We can highlight
some characteristics though, for example, the number of hidden
fully connected layers is quite variable, but only a few neurons (4,
8, 12) are preferable in most of the architectures. As also reported
by Waldmann (2018), combining weight decay and dropout
regularization is an efficient option to increase PA. Finally, the
best overlapping stride was 1 and optimum window size was 3 in
the convolutional layer, confirming Bellot et al. (2018) results.

Comparing Deep Learning With Bayesian
Penalized Linear Models
Figure 6A shows observed predictive abilities for each of the five
GP methods compared: BL, BRR, BRR-GM, RKHS, and CNNs in
strawberry. When averaged over traits in the strawberry species,
FIGURE 3 | Posterior distributions of additive (blue), dominant (red), epistasis (green) fractions of variance in octoploid strawberry: (A) soluble solid content (brix); (B)
early marketable yield (MktWtE); (C) total marketable yield (MktWtT); (D) average fruit weight (AveWtT); and (E) percentage of culled fruit (CullsTPer). Note the scale
may vary along traits.
FIGURE 4 | Posterior distributions of additive (blue), dominant (red), epistasis (green) fractions of variance in blueberry obtained with the tetraploid genotypes: (A) Firmness;
(B) Scar; (C) Size; (D) Fruit Weight, and (E) Yield. Note the scale may vary along traits.
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PAs were 0.43, 0.43, 0.44, 0.44, and 0.44 for each of the five
methods, respectively. By trait, the BRR-GMwas best in AveWtT
prediction, BL, BRR, and RKHS for MktWtE, RKHS, and BRR-
GM for MkWtT, whereas CNN performed best in brix and
percentage of culled fruit. In all, nevertheless, there were no
Frontiers in Plant Science | www.frontiersin.org 8
important differences between methods except in percentage of
culled fruit. For this trait, CNN was ~20% better than any linear
model method. Interestingly, this trait was also the one with the
largest epistatic component and exhibited a modest additive
component (Figure 3E).
FIGURE 5 | Hyperparameter influence on predictive accuracy in strawberry. Accuracy is defined as correlation between observed and predicted phenotypes by
internal cross-validation. (A) Hyperparameter importance obtained from a random forest algorithm. nFilter: number of filters in the convolutional layer, activation_2,
activation function in layer 2; reg_i, regularization in i-th layer; dropout_i, dropout rate in i-th layer; lr, learning rate; hidden_neurons, number of neurons in inter-
mediate layers; hidden_layers, number of intermediate layers. (B) Distribution of accuracies along hyperparameter combinations for each phenotype. (C) Accuracies
as a function of activation function for percentage of culls. (D) Accuracies as a function of number of filters for percentage of culls. (E) Distribution of accuracies as a
function of activation for brix. (F) Distribution of accuracies as a function of number of filters for average fruit weight (AveWtT).
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As for the blueberry phenotypic traits, we found no
differences between GP methods BL and BRR (average PA =
0.42), whereas CNNs were somewhat underperforming (average
PA = 0.40). The most remarkable result in blueberry is that CNN
performance was barely affected by the ploidy level employed to
build the genetic relationship matrix. In fact, the “diploid” option
seemed more robust than the tetraploid one, except in fruit yield,
the only trait that was measured using a rating scale.

Simulation Study
Table 2 presents the main simulation results and Table S3, the
CNN architectures used for computing the PA in each replicate.
Some interesting remarks can be made from these simulations.
First, although biased, the variance component estimates do
detect whether epistasis is important: h2e estimates are larger
than the narrow-sense heritability in the presence of complete
epistasis. Results are far less clear when only a fraction of loci
show epistasis. But the most relevant result is that, as we
hypothesized, predictive accuracies of CNN and additive
penalized methods were affected by genetic architecture. BRR
and RKHS were better than CNNs for the pure additive
architecture, whereas the opposite was observed with pure
epistasis. However, BRR-GM, which accounts for non-linear
relationships, was better than either CNNs or pure additive
linear models in most of the studied cases.
Frontiers in Plant Science | www.frontiersin.org 9
DISCUSSION

Supervised DL methods are examples of predictive modelling,
consisting of approximating a mapping function (f) from input
FIGURE 6 | Predictive ability (PA) measured as correlation between observed and predicted phenotypes in the validation dataset in strawberry (A) and blueberry
(B). Bayesian linear models (lasso and BRR) PAs in blueberry were computed with tetraploid genotypes, but were almost identical to those obtained with the
diploidized ones.
TABLE 2 | Posterior distribution means of variance component estimates (ĥ2)
and predictive ability (in simulated data using Bayes Ridge Regression (BRR),
general model BRR (BRR-GM), Reproducing Kernel Hilbert Space regression
(RKHS), and Convolutional Neural Networks (CNN).

Replicate Architecture Genetic parame-
ter estimates

Predictive ability (PA)

ĥ2
a ĥ2

d ĥ2
e

BRR BRR-GM RKHS CNN

1 Additive 0.29 0.16 0.06 0.57 0.60 0.57 0.59
2 Additive 0.16 0.21 0.06 0.35 0.43 0.35 0.32
3 Additive 0.26 0.25 0.05 0.52 0.58 0.51 0.51
4 Additive 0.24 0.23 0.06 0.42 0.52 0.43 0.40
5 Additive 0.35 0.11 0.05 0.42 0.47 0.43 0.38
6 Mixed 0.17 0.19 0.06 0.33 0.44 0.33 0.30
7 Mixed 0.10 0.11 0.08 0.24 0.26 0.22 0.24
8 Mixed 0.16 0.10 0.08 0.29 0.33 0.31 0.28
9 Mixed 0.13 0.16 0.06 0.26 0.30 0.26 0.25
10 Mixed 0.22 0.07 0.07 0.40 0.42 0.40 0.43
11 Epistatic 0.11 0.11 0.21 0.23 0.29 0.24 0.25
12 Epistatic 0.11 0.11 0.33 0.31 0.37 0.32 0.34
13 Epistatic 0.12 0.09 0.23 0.34 0.38 0.35 0.32
14 Epistatic 0.05 0.13 0.21 0.21 0.34 0.23 0.28
15 Epistatic 0.10 0.11 0.15 0.21 0.31 0.23 0.21
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(X) to output (y) variables (Hornik et al., 1990). These problems
include classification or regression tasks, to use the machine
learning jargon. Numerous successful applications of DL in
classification contexts have been published, e.g. pattern
recognition (Drayer and Brox, 2014; Liang and Hu, 2015; Işin
et al., 2016; Badrinarayanan et al., 2017) and natural language
processing (NLP) (Deng and Liu, 2018). The DL implementation in
regression tasks is less abundant and the benefit of using these
methods remains uncertain (Bellot et al., 2018; Montesinos-López
et al., 2018a; Azodi et al., 2019). Most GP problems fall into the
regression task due to the complex nature of quantitative traits
(MacKay, 2009). So far, GP problems have been mainly addressed
using penalized linear models (De Los Campos et al., 2009; Crossa
et al., 2013a). More recently, the prediction of complex traits from
genetic data is receiving attention from DL users (Ma et al., 2017;
Montesinos-López et al., 2018a; Montesinos-López et al., 2019b).
The present work aim was to study the strengths and weaknesses of
applying CNN to GP problems in polyploid species. CNN networks
are attractive for addressing these problems, as they can
accommodate situations where input variables are distributed
along a space pattern, as with the case of SNPs.

Implementing GS in polyploids is challenging. In allopolyploids,
genetic analyses have been traditionally implemented assuming
diploidy, taking advantage of the fact that systems present disomic
inheritance. High predictive performances have been observed in a
variety of allopolyploid species (e.g. cotton, strawberry, wheat) and
traits (Gezan et al., 2017; Gapare et al., 2018; Juliana et al., 2019).
Recently, the importance of accounting for the contribution of
subgenomes— potentially expressing epistatic effects— was
considered in wheat, which shed light on the importance of
accounting for this source of variation within the GP models
(Santantonio et al., 2019). However, the scenario is even more
complex in autopolyploid species. Even with the recent advances in
genotyping and sequencing technologies, the amount of genomic
information, and understanding, in most autopolyploid species is still
limited when compared to allopolyploid crops. One of the challenges
is resolving the allelic dosage of individual locus (Bourke et al., 2018;
Gerard et al., 2018). From a quantitative genetics standpoint, we
emphasize that polyploid species might present higher degrees of
complete and partial intra-locus interactions than diploids (Gallais,
2003; Ferrão et al., 2018). Here, the interest of investigating DL
methods in polyploids is to take advantage of its non-linearity and less
restrictive assumptions for GP in comparison to the traditional linear
model-based methods.

Previous studies (Ma et al., 2017; Bellot et al., 2018;
Montesinos-López et al., 2018a; Montesinos-López et al.,
2019b) have not shown clear advantages of DL over linear
model GP, as conventional models were competitive in terms
of PA, with their added benefit of being faster and with more
biological interpretability. However, DL could be better suited to
explore non-linear components than linear models, especially
when genotypes can be transmitted integrally, as occurs with
asexual propagation. Certainly, the weak performance of classical
additive models in the presence of non-additive variance (e.g.
Figure 6 for percentage of culled fruit) confirms the relevance of
developing methodologies that can incorporate non-linearity
Frontiers in Plant Science | www.frontiersin.org 10
(Ober et al., 2015; Gezan et al., 2017). This purpose can be
attained by different approaches. The simplest one is to
incorporate a general matrix into the linear models made up of
dummy variables. This model contains as many degrees of
freedom as ploidy level per locus and allowing for any
interaction structure between alleles (Enciso-Rodriguez et al.,
2018; Amadeu et al., 2019). RKHS models (Gianola et al., 2006;
Gianola et al., 2008; de los Campos et al., 2009) are also able to
capture complex interaction patterns in a relatively
straightforward manner. Alternatively, a CNN can be
implemented using simply the raw data. Our analyses suggest
that DL can perform better than additive and RKHS models for
traits where the epistatic component is important and where
narrow-sense heritability is low (e.g. percentage of culled fruit,
Figure 6). The simulation study performed in this work
(Table 2) suggested that BRR including additivity, dominance
and the general dummy matrix described above can improve
upon CNNs when the non-additive component is important,
although CNNs were better than strict additive linear models.
Additional analyses with a wider range of phenotypic traits,
genetic structures and in larger datasets are needed to validate
our results.

An underlying goal of our work was to investigate the effect of
accounting for allele dosage in a GP context. Owing to the
complex nature of polyploids, genotype calling can be a challenge
and “diploidization”, i.e., considering a polyploid genome as
diploid is usual (Bourke et al., 2018). Some studies have recently
investigated the effect of accounting the ploidy level in prediction
accuracy in polyploids (Endelman et al., 2018; Nyine et al., 2018;
Amadeu et al., 2019; Lara et al., 2019; Zingaretti et al., 2019). As
in these previous results (de Bem Oliveira et al., 2019; Zingaretti
et al., 2019), here we found that “diploidization”, in which all
heterozygous genotypes are pooled, is as efficient and accurate as
polyploid genotyping for prediction purposes, albeit it is trait
dependent. Therefore, we conjecture that genomic selection,
particularly for low levels of ploidy, can pay off in polyploids
even with simplified genotyping strategies. We need to be careful
though as this approach may not be equally appropriate for all
levels of ploidy and heterozygosity. For instance, this might be an
issue with sugarcane (with ploidy starting from 2n=20) as most
individuals will be heterozygous.

It is traditionally thought that DL requires extremely large
datasets to be trained effectively (Alipanahi et al., 2015; Liang and
Hu, 2015; Xiong et al., 2015). However, this and related works
(Ma et al., 2017; Bellot et al., 2018; Montesinos-López et al.,
2018a; Montesinos-López et al., 2019b) have shown that DL
performance in GP is comparable to those of linear methods.
Furthermore, the largest dataset analyzed so far with DL for
prediction (~100k individuals) did not show a consistent
advantage of DL (Bellot et al., 2018). Therefore, it seems that is
the trait what really influences the success of DL and it appears
not so critical the size of the dataset. This does not preclude, of
course, that a large N is needed to advance in our knowledge on
best GP strategies. In fact, a larger N can be especially
recommended in clonally propagated species. It is well known
that an efficient breeding program tests a low number of crosses
February 2020 | Volume 11 | Article 25
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with a high number of genotypes in each of them. A cross would
need to be tested if not much information is available though.
Numerous clonally propagated species of agricultural interest are
polyploids, leading to high heterozygosity, non-linear
interactions, and scarce prior knowledge about the crosses. In
this scenario, as many cross-combinations as feasible should be
produced to ensure the discovery and evaluation of the best
genotypes (Grüneberg et al., 2009). The actual balance will
depend on the level of epistasis and dominance. If dominance
is large, then the best clone would be within families with good
performance; if dominance is low, this is not necessarily so.

A drawback of DL models is that they lack biological or
process interpretability and neither feature selection nor feature
importance are obvious. In our opinion, GP algorithms are not
too useful for providing biological insight into the genetic basis of
phenotypes; genome wide association studies should be more
appropriate. In all, our results suggest that DL performance
improve as non-additive variance increases, a situation is usually
encountered in fitness related traits.

DL hyperparameter tuning is critical and difficult, especially in
terms of computational resources. Our analysis allows us to provide
some generic recommendations though. First, we and others (Bellot
et al., 2018;Montesinos-López et al., 2018a;Montesinos-López et al.,
2019b) concluded that the predictive accuracy is mainly dependent
of the trait, i.e., the architecture needs to be tuned for each trait
individually. Second, here we show that the popular relu activation
function is not necessarily a universally valid activation function,
that interactions between hyperparameter combinations should be
expected and that the number of convolutional filters and
regularization in the first layers can have an important effect into
the model performance (Figure 5). In general, we and other authors
(Bellot et al., 2018; Waldmann, 2018) have reported that a shallow
network is the best scenario in most cases. Nevertheless, DL can still
be attractive because it does not require feature engineering, a
critical step in most machine learning methods. A further strength
of DL is its flexibility, e.g., it allows to define latent variables by using
autoencoder or embedding as a generative latent variable model. In
addition, networks, even if shallow, can model complex
relationships employing any non-linear activation function.

Overall, there is no evidence that applying DL in GP
applications necessarily improves the prediction accuracy upon
that of classical linear model methods. PA depends on the trait
and is affected by many factors; no one algorithm is uniformly
better for all species and traits (Hu and Greene, 2018; Pérez-
Enciso and Zingaretti, 2019). PA usually decays if heritability is
low or in the presence of high epistatic effects. Even under these
conditions though, Bayesian models were better than CNNs in
almost all cases (Tables S1, S2, Table 2). Even if performance of
DL for GP is not outstanding, we cannot ignore that plant
breeding is based on both genotyping and phenotyping, and
that high throughput phenotyping is critical for genomic
dissection of complex traits (Cobb et al., 2013). Imaging and
computer vision can be employed to measure the physiological,
growth, development, and other phenotypic properties of plants
with the advantage of being fast, non-invasive and a low-cost
strategy (Fahlgren et al., 2015), hyperspectral imaging is useful to
Frontiers in Plant Science | www.frontiersin.org 11
measure plant traits under say disease progression (Bergsträsser
et al., 2015), infrared thermography is able to scan temperature
and transpiration; NMR (nuclear magnetic resonance spectroscopy)
and mass spectrometry (MS) are applied in plants metabolite
evaluation (Hong et al., 2016). These examples should be an ideal
scenario to neural networks as they involve imaging at high scale,
complex, and heterogeneous datasets with multiple variables and
outcome. In summary, we believe that the enormous amount of
data that can be automatically recorded revolutionizing plant
breeding and the flexible nature of neural networks makes them
promising for meeting this future challenge.
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