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Abstract 25 

Monilinia spp. is the main pathogen responsible for postharvest losses of stone fruit. 26 

Several studies have examined the conditions for Monilinia spp. infection in the field, 27 

but very limited information is available about postharvest. Storing fruit for 24 hours in 28 

cold room and water dump fruit in a water tank are the most common handling 29 

operations during the postharvest of fruit. Then, the aim of this study was to investigate 30 

the risk of Monilinia fructicola infection for peaches and nectarines during cold storage 31 

and water dump operations. The storage of fruit with the presence of M. fructicola 32 

conidia on their surface for up to 30 days at 0 or 4 ºC and 98% Relative Humidity (RH), 33 

did not suppose an important risk of infection since only 3.3% of fruit were already 34 

infected. M. fructicola was not able to infect fruit at 20 ºC when the RH was around 35 

60%, however, it was possible to develop disease if fruit was already infected before the 36 

treatment applications. Conidia of M. fructicola present on the surfaces of nectarines 37 

was not able to infect fruit stored at 0 ºC and 100% RH for 24 hours and then immersed 38 

in the water dump tank, nevertheless it was able to infect 26.3% of peaches in the same 39 

conditions. When fruit was immersed in the dump tank with water containing the 40 

presence of viable conidia of M. fructicola, and then fruit was incubated at 20 ºC and 60 41 

or 100% for 7 days, the infection recorded was between 66.7 and 90%, respectively. In 42 

addition, water dump operation free from M. fructicola conidia favours optimal 43 

conditions to develop infections produced on fruit before the treatment applications. 44 

Therefore, postharvest water dump would provide optimal conditions to infect 45 

inoculated and non-inoculated fruit, increasing the need for water disinfection. 46 

Keywords; Brown rot, Monilinia spp., postharvest, cold storing, water dumping, 47 

peaches, nectarines 48 
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1. Introduction 49 

The main pathogen responsible for stone fruit losses are Monilinia fructicola and 50 

Monilinia laxa both present in Europe and worldwide. However, in Spain, M. fructicola 51 

was not detected until 2009 (De Cal et al., 2009) and it was included in the list of EU 52 

quarantine agencies until the end of 2014. Since its detection, M. fructicola has replaced 53 

M. fructigena and now M. laxa and M. fructicola coexist at the same frequency of 54 

occurrence (Villarino et al., 2013).  55 

In the field, brown rot incidence increases as harvest time approaches and similarly fruit 56 

is more susceptible to infections (Gell et al., 2008; Villarino et al., 2011). When 57 

climatic conditions are favorable for disease development, brown rot losses in 58 

postharvest may be more severe than preharvest, which can be as high as 80% (Usall et 59 

al., 2015). During the postharvest period, brown rot routinely occurs during handling, 60 

storage and transport (Tian and Bertolini, 1999). 61 

Favorable conditions for disease development refers to temperature and humidity  62 

factors that are considered to be the most important abiotic factors affecting germination 63 

(Casals et al., 2010), infection (Biggs and Northover, 1988; Xu and Robinson, 2000) 64 

and the period of incubation and latency of the pathogen (Luo et al., 2001). On the other 65 

hand, there are other factors to be considered on the development of brown rot disease 66 

such as maturity degree (Emery et al., 2000; Lee and Bostock, 2006) or susceptibility of 67 

fruit to be infected by Monilinia spp. (Xu et al., 2007). 68 

Usually, fruit reaching packing houses is apparently healthy but they could actually be 69 

contaminated by Monilinia spp. conidia on their surface or conidia that have already 70 

infected fruit at the orchard but without visible symptoms. Therefore, fruit that arrives at 71 

packing houses can fit in three different scenarios: (i) really healthy fruit (without 72 
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conidia either on surfaces or infected), (ii) fruit with the presence of conidia on their 73 

surface (an interaction between fruit-conidia has not been established) and (iii) fruit 74 

already infected with Monilinia spp. conidia.  75 

Once fruit has reached packing house, they will start an episode of several operations 76 

where the objective is to maintain fruit quality and extend its shelf life. Field heat can 77 

cause rapid deterioration and it is desirable to remove this heat as quickly as possible 78 

after harvest (Dennis, 1984). The most common methods used to cool stone fruit in the 79 

Ebro Valley area is storage in a pre-cooling room at 4 or 0 ºC because it is a simple 80 

technique since it does not need large or special facilities. However, this method needs 81 

around 24 hours to cool a whole load of fruit. After cooling, fruit is sorted starting with 82 

the water dump operation, where water is used to avoid blows caused during fruit box 83 

overturning. Then, fruit is transported from the tank to the lines with a conveyor belt 84 

and rotten fruit is discarded manually (Bernat et al., 2017a). 85 

In addition, immersed fruit in the water dump tank with chlorine has also been used to 86 

sanitize fresh products and could reduce decay by reducing the effective conidia 87 

concentration (Bertrand and Saulie-Carter, 1979). During these operations, infected fruit 88 

without visual symptoms can develop decay inside boxes during postharvest and 89 

conidia or infected tissues could remain adhered to boxes. Therefore, healthy fruit in 90 

contact with contaminated boxes could be infected by Monilinia spp. conidia or other 91 

pathogens during postharvest handling (Tian and Bertolini, 1999) and secondary 92 

inoculum could be epidemiologically important. 93 

The main objective of this study was to investigate the infection risk of Monilinia spp. 94 

on stone fruit during several postharvest operations in packing houses. Specific 95 

objectives were to determinate whether M. fructicola is able to infect: (i) stone fruit with 96 

conidia of M. fructicola on their surface during storage periods in cold rooms at 0 or 4 97 
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ºC, (ii) stone fruit with conidia of M. fructicola on its surface stored for 24 hours at 0 ºC 98 

and then immersed in the dump tank with water, and (iii) stone fruit without conidia of 99 

M. fructicola on its surface and immersed in water with or without conidia of M. 100 

fructicola during the water dump operation. 101 

2. Material and methods 102 

2. 1 Fruit 103 

Fruit from peaches cultivars ‘Baby Gold 6’ and ‘Baby Gold 9’ and nectarine cultivar 104 

‘Fantasia’ was harvested from organic orchards in Lleida (Catalonia). Harvest time for 105 

peaches cultivar ‘Baby Gold 6’ was approximately mid-August, for ‘Baby Gold 9’ mid-106 

September and for nectarine cultivar ‘Fantasia’ early August. Healthy fruit was picked 107 

at an optimum stage of commercial maturation, and with approximately the same size. 108 

Fruit was immersed in 10% commercial chlorine for 1 min, rinsed with tap water for 3 109 

min and, finally, air-dried for 24 hours at room temperature before the experiment. Fruit 110 

not used at the time of harvest was stored at 0 ºC for up to 5 days until use. 111 

2. 2 Fungal isolate and inoculum preparation 112 

The isolate of M. fructicola (CPMC1) used in this study come from the collection of the 113 

Postharvest Pathology Group, IRTA Centre of Lleida (Catalonia, Spain) and this strain 114 

was isolated and classified at the Department of Plant protection, INIA (Madrid, Spain). 115 

The strain was maintained in our laboratory on potato dextrose agar (PDA) medium 116 

(Biokar Diagnostic, 39 gL-1) at 4 ºC in darkness for 5-7 days.  117 

The strain CPMC1 was sub-cultured onto PDA Petri dishes and incubated in the dark at 118 

25 ºC for approximately during 1 week. To ensure conidial production, peach and 119 
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nectarine fruit was inoculated with the isolate separately. Fruit was first wounded by a 120 

sterilized steel rod (1 mm wide and 2 mm long); then conidia and mycelia were 121 

transferred from the PDA culture onto each wound site previously carried out by a 122 

sterilized pipette tip. Fruit inoculated with M. fructicola was incubated at 25 ºC and 123 

85% RH in the dark. 124 

Conidia from infected fruit was scraped with a sterile loop and transferred to a test tube 125 

with 10 ml of sterile distilled water and one added droplet of 80% Tween per litre to 126 

break up conidia. The conidial concentration was adjusted to a desirable concentration 127 

using a haemocytometer.  128 

2. 3 Fruit inoculation 129 

The different scenarios of the fruit that reached packing houses was performed with two 130 

different inoculums; dry inoculum to simulate fruit with Monilinia spp. conidia on fruit 131 

surfaces and wet inoculum to simulate water tank contaminated with Monilinia spp. 132 

conidia. 133 

2.3.1 Dry inoculum 134 

Dry inoculum was prepared using sand from a quarry characterized as having a fine and 135 

homogeneous granulometry, sterilized in the autoclave for 20 min and dried in a stove 136 

at 100 ºC for 24 hours. Then, 10 grams of dried sand was mixed with 500 µl of a M. 137 

fructicola suspension concentrated to 107 conidia ml-1. The mixture of sand and 138 

inoculum was placed in an open plastic Petri dish and was left to dry for 1 hour in a 139 

laminar hold. To check that the conidia mixture with sand was viable, a sample of sand 140 

was scattered onto Petri dishes with potato dextrose agar (PDA) medium and incubated 141 

for 48 hours at 25 ºC. Then, the number of viable conidia were recovered. 142 
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One carton washer (25.4 cm2 of hole) was stuck on the surfaces of each piece of fruit 143 

selected for the experiment and then the fruit was inoculated with 0.10 g of the dry 144 

inoculum of M. fructicola and was deposited in the hole of each washer stuck. Fruit 145 

weas placed in plastic trays to run the experimental treatments described later. 146 

2.3.2 Wet inoculum 147 

Wet inoculum was prepared in a tank with 15 litters of water solution and a final 148 

concentration of 104 conidia ml-1 of M. fructicola. Then, a set of fruit previously 149 

superficially disinfected (proceedings described in 2.1) and apparently healthy without 150 

damage was immerse for 30 seconds in the water tank with M. fructicola conidia.  151 

2. 4 Experimental treatments 152 

All treatments, including the fruit controls described below were performed with four 153 

replicates (each replicate included five fruits) and the tial was performed three times; 154 

with two peach cultivars ‘Baby Gold 9’ and ‘Baby Gold 6’ and one nectarine cultivar 155 

‘Fantasia’. 156 

2.4.1 Effect of cold room operation at 0 or 4 ºC on the infection of inoculated 157 

fruit 158 

To determine if M. fructicola conidia can infect fruit during the cold chamber storage, 159 

fruit was inoculated with dry inoculum as was described previously. Then, inoculated 160 

fruit was stored for 3, 9, 15 or 30 days at 0 or 4 ºC and high RH (98%). After each 161 

storage period, fruit was incubated for up to 14 days at 20 ºC and 60% RH (conditions 162 

where no new infections might be made) and the incidence of infected fruit on the 163 

inoculated area was recovered after 7 and 14 days of incubation.  164 
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Three sets of fruit were used as a control of the cold room treatment and that were 165 

directly incubated after dry inoculation at; (i) 20 ºC and 100% RH for up to 14 days, or 166 

(ii) 20 ºC and 60% RH for up to 14 days, or (iii) 20 ºC and 98% RH for 72 hours and 167 

then at 20 ºC and 60% RH for up to 14 days to ensure that (i) dry inoculum prepared is 168 

viable and it is able to infect healthy fruit when it is incubated at optimal conditions, (ii) 169 

dry viable inoculum prepared is not able to infect fruit when it is incubated at non-170 

optimal humidity conditions and (iii) fruit infections produced during incubation at 171 

optimal conditions are able to develop when it is incubated at non-optimal humidity 172 

conditions 173 

2.4.2 Effect of water dump operation on the infection of inoculated fruit 174 

Fruit was dry inoculated with 2x105 conidia fruit-1 as was described previously and 175 

stored at 0 ºC and 98% RH for 24 hours. After storage, fruit was immersed in a tank of 176 

15 litres of tap water at 15 ºC for 30 seconds with a slight manual shake. Then, fruit was 177 

left to dry and placed again on plastic trays. A set of fruit was incubated for 14 days at 178 

20 ºC and 60% RH (conditions where no new infections of M. fructicola might be 179 

made) and another set was incubated at 20 ºC and 100% RH (optimal conditions for 180 

conidial infection) for 14 days. Finally, the incidence of superficially infected fruit on 181 

the inoculated area was recovered after 7 and 14 days. 182 

2.4.3 Effect of water dumping operation on the infection of non-inoculated 183 

fruit 184 

Fruit was immersed in 15 litres of tap water at 15 ºC containing M. fructicola at 104 185 

conidia ml-1 for 30 seconds with a slight manual shake. Then, fruit was left to dry and 186 

placed on plastic trays. The experiment was repeated exactly as describe above but this 187 
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time the water used in the tank was free from M. fructicola conidia. Fruit was left to dry 188 

and placed on plastic trays.  189 

In both experiments a set of immersed fruit was incubated at 20 ºC and 60% RH 190 

(conditions where no new infections might be made) and another set of immersed fruit 191 

was incubated at 20 ºC and 100% RH (optimal conditions for conidia infection) for 14 192 

days. The incidence of infected fruit was recovered after 7 and 14 days of incubation. 193 

2. 5 Statistical analysis 194 

The incidences of infected fruit were recovered at each assessment time described 195 

before and the percentages of infected fruit were calculated. Data from the three 196 

repeated experiments was used for statistical analysis in all the experiments except for 197 

the water dump operation with fruit previously dry inoculated and stored for 24 hours in 198 

a cold room at 0 ºC. In this case, data was separated between peaches and nectarines 199 

because significant differences between cultivars were observed. All analysese were 200 

done using the JMP®9 statistical software (SAS Institute, Cay, NC, USA). Non-201 

parametric test was selected because incidences of fruit infection data were discrete due 202 

to the experimental design and the Kurskal-Wallis test was used to identify the 203 

significance of treatments. When the analysis was statistically significant, the Tukey 204 

(HSD) test was performed for separation of the means. Statistical significance was 205 

judged at the level P<0.05.  206 

3. Results 207 
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3.1 Effect of cold storage on the infection of inoculated fruit 208 

In any cold storage period, fruit with infection was no higher than 3.3% after 30 days of 209 

storage at 0 ( Fig. 1A) or at 4 ºC (Fig. 1B) and then incubated for 14 days at 20 ºC and 210 

60% RH (conditions where no new infections might be made). In addition, no 211 

significant differences were found between the percentages of infections in fruit stored 212 

for 3, 9, 15 or 30 days both at 0 and 4 ºC and then for 7 and 14 days incubated at 20 ºC 213 

and 60% RH. There were also no significant differences between incidences in fruit 214 

stored at 0 or 4 ºC. 215 

Disease incidences of the three sets of fruit used as controls are shown in Figure 2. 216 

Inoculated fruit with dry inoculum of M. fructicola and incubated at 20 ºC and 100% 217 

RH showed 10.8 and 71.4% of incidence after 7 and 14 days of incubation respectively, 218 

whereas fruit dry inoculated and incubated at 20 ºC and 60% RH for up to 14 days was 219 

not able to develop brown rot disease . In addition, with fruit superficially inoculated 220 

and stored for 72 hours at 20 ºC and 98% RH and then incubated for 14 days at 20 ºC 221 

and 60% RH, the incidence of infected fruit recovered was 10 and 31.7% after 7 and 14 222 

days of incubation respectively.  223 

3.2 Effect of water dump operation on the infection of inoculated fruit 224 

The incidence of infected fruit was statistically higher in peaches than in nectarines 225 

superficially inoculated with dry inoculum of M. fructicola conidia after 24 hours at 0 226 

ºC and 98% RH and then immersed in clean water at 15 ºC for 30 seconds (Figure 3). 227 

Nectarines were not infected by M. fructicola after 14 days of incubation at 20 ºC and 228 

60% RH (restricted conditions to infect) (Fig. 3A). However, when nectarines were 229 

incubated at 20 ºC and 100% RH (optimal conditions for infection), 31.3% of the fruit 230 

was infected after 14 days of inoculation. On peaches, the incidence of infected fruit 231 
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was 26.3% after 14 days at 20 ºC and 60% RH (Fig. 3B). When peaches were incubated 232 

at 20 ºC and 100% RH, the incidence of infected fruit recovered after 7 days of 233 

incubation was 26.9% and 81.9% after 14 days. 234 

3.3 Effect of water dump operation on the infection of non-inoculated fruit 235 

Overall, the incidence of infected fruit was less on fruit immersed in water free from 236 

inoculum than on fruit immersed in water with M. fructicola conidia (Figure 4). After 7 237 

days of incubation, the infected fruit recorded from fruit immersed in water free of 238 

inoculum and incubated at 20 ºC and 100 and 60% RH was 36.7% and 11.7%, 239 

respectively. However, when fruit was immersed in water with the presence of M. 240 

fructicola and then incubated at 20 ºC and 100 or 60% RH, the incidences of infected 241 

fruit were statistically higher and increased to 90% and 66.7% respectively.  242 

After 14 days of incubation at 20 ºC, the differences between treatments were lower and 243 

only the incidence of infected fruit immersed with water free of inoculum and stored at 244 

20 ºC and 60% RH was statistically lower (51.7% incidence of infected fruit) than the 245 

others.  246 

4. Discussion 247 

This is the first time to our knowledge, that the behaviour of Monilinia spp. in relation 248 

to its risk to infected fruit in postharvest has been studied. In this sense, this paper 249 

provides valuable information about the effect of postharvest operations such as cold 250 

storage and water dump on the risk of M. fructicola infecting peaches and nectarines. 251 

Our results have shown that during the storage period in cold rooms, the probability of 252 

M. fructicola present on fruit surfaces of infecting peaches and nectarines was 253 
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extremely low. In addition, the immersion of fruit in the dump tank, increased the risk 254 

of M. fructicola infection.  255 

In the present study we simulated fruit with the presence of M. fructicola conidia on its 256 

surface. The source of this conidia could come from both the field and the packing 257 

house but in a study carried out by Bernat et al. (2016) it is shown that the presence of 258 

Monilinia spp. in the environment of packing houses or on their surface facilities is 259 

really low. In addition, Villarino et al. (2012) reported that the maximum number of 260 

Monilinia spp. airborn conidia registered in the field occurs near harvest or immediately 261 

after harvest. In order to simulate fruit with non-germinated conidia on its surface, in 262 

this study paper we have developed a new methodology to apply dry conidia and avoid 263 

the interference of the water when conidia is applied as a wet inoculum. 264 

The storage of stone fruit with the presence of M. fructicola on its surface coming from 265 

field in cold rooms at 0 or 4 ºC and high humidity for up to 30 days would not suppose a 266 

high risk of infection since only less than 4% of fruit artificially inoculated with dry 267 

conidia was infected during this period in our experiment. Humidity provided during 268 

cold storage is optimal for conidia germination and infection. The maximum 269 

germination which correspond to 90% of M. fructicola conidia in PDA at 0 and 5 ºC 270 

occurred at 99% of aw (water activity) after 4 and 2 days, respectively and, at 87% of aw, 271 

no germination was registered at these temperature conditions (Casals et al., 2010). 272 

Nevertheless, Garcia-Benitez et al. (2017) reported that less than 30% of conidia 273 

germinated on culture medium containing a skin extract of mature fruit at 4 ºC and 274 

100% RH. This difference in the percentage of conidia germination in both studies 275 

should be due to the different substrates of germination indicating that other factors than 276 

temperature and humidity are also involved in conidia germination. In addition, conidia 277 

germination is only the first step to infect fruit and the infection process is more 278 
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complex. Maybe the interaction between temperature and humidity and other factors 279 

such as fruit variety or Monilinia specie, are not entirely known. Infection processes at 280 

low temperatures should be rather slow because Bernat et al. (2017b) reported more 281 

than 40 and 20 days at 0 and 4 ºC, respectively to observe the first symptoms of decay 282 

on stone fruit artificially infected by M. fructicola.  283 

In our study, fruit incubated at optimal environmental conditions (20 ºC and 100% RH) 284 

and at optimal fruit development resulted in all fruit being infected after few days of 285 

incubation. Our results agree with Biggs and Northover (1988) who reported optimal 286 

temperature for peach infection by M. fructicola conidia between 22.5-27.5 ºC in a 287 

wetness chamber. However, fruit incubated at 20 ºC and 60% with M. fructicola conidia 288 

on their surface was not able to be infect but if infection was already produced, brown 289 

rot disease could develop in those conditions.  290 

As far as we know, there are no other Monilinia spp. infection studies with such 291 

extreme humidity tested as most studies of infections are done in field conditions. It 292 

could be that environmental conditions reach such low humidity but it usually happens 293 

for only a short period of time since temperature and humidity fluctuate in orchards. On 294 

the other hand, studies are normally focused on knowing the shortest time with wetness 295 

duration required for infection (Kreidl et al., 2015; Luo et al., 2001; Luo and 296 

Michailides, 2001; Xu et al., 2007). Kreidl et al. (2015) and Xu et al. (2007) concluded 297 

that 3 hours of wet period may be long enough for M. fructicola and M. laxa 298 

respectively to germinate and infect fruit at field temperatures. During postharvest fruit 299 

storage, humidity must be well controlled and kept constant at 60% in order to avoid 300 

new infections. Unfortunately, the conditions of relative humidity at which our results 301 

indicated that no infections occur (60%) are not a recommended practice because fruit 302 
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would lose its firmness and quality reducing the shelf life, however, it could be used as 303 

non-infected conditions for several experiments. 304 

Under commercial postharvest conditions, fruit is usually stored in cold rooms for 24 305 

hours and then immersed in a dump tank with water to avoid blows caused during fruit 306 

box overturning and to clean the fruit surface, which is a common practice in packing 307 

houses of many production areas. Our study has indicated that if the fruit has the 308 

presence of M. fructicola conidia on its surface, during these operations, 26.3% of peach 309 

fruit was infected, while on nectarine fruit no infection was produced. The observed 310 

differences could be due to fruit skin; nectarines are smoother however, peaches are 311 

fuzzier and therefore it is easier to clean nectarine surfaces than peaches. This 312 

explanation agrees with (Scheper et al., 2007) who reported that washing apples with 313 

clean water significantly reduces the number of fungi on apple surfaces. In addition, the 314 

drying period for peach surfaces is longer than for nectarines because peaches are able 315 

to keep higher humidity and consequently it increased the risk of conidia infection. Dry 316 

operation after water dumping would play an important step to remove humidity on fruit 317 

surfaces and decrease the infection probability at packing houses due to reduce surface 318 

fruit humidity. 319 

Our study has also indicated that immersing fruit with non-presence of Monilinia spp. 320 

on their surface in the water tank with clean water should not produce new infection. 321 

Conditions of humidity and temperature are supposed to be optimal for infection and for 322 

developing established brown rot infections. From our results we could conclude that 323 

brown rot disease developed on fruit superficially disinfected and immersed in clean 324 

water is due to infections produced before superficial disinfections, maybe in the field 325 

during the fruit growing season or just before harvest, since Monilinia spp. conidia 326 
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produces infections on fruit but disease is not expressed until conditions become 327 

favourable (Bryde and Willetts, 1977; Gell et al., 2008).  328 

During water dump operations, it is likely that circulating water will become 329 

contaminated due to conidia from infected fruit which are detached in water or when 330 

dirty fruit bins contaminated with conidia from the field are immersed in water. Conidia 331 

detached in water could adhere to healthy fruit immersed and increase decay incidence. 332 

This dynamic of water contamination in packing houses has been reported previously 333 

by different authors (Michailides and Spotts, 1986; Spotts and Cervantes, 1986; Sugar 334 

and Spotts, 1993). This study shows that immersing healthy fruit in a water tank with 335 

viable Monilinia spp. conidia supposes a high risk of infection for fruit after few days 336 

regardless of the subsequent incubation conditions (even 60 % of humidity). This may 337 

be because during water dump operations, conidia adheres to the fruit surface and 338 

infection is produced during immersion water dump or during the subsequent fruit 339 

drying period, in which humidity and temperature are still optimal for infection. Sugar 340 

and Spotts (1993) also reported an increase of Phialophora malorum conidia on pear 341 

surfaces after immersion in an infested water tank. In addition, recirculated used water 342 

during postharvest operations need to be disinfected to prevent new infections. Water 343 

disinfection with 50 mg L-1 of sodium hypochlorite for 3 min was effective to kill 100% 344 

of M. fructicola conidia for the tested temperatures between 4 and 25 ºC (Bernat et al., 345 

unpublished data).  346 

In conclusion, our results showed that stored fruit with Monilinia spp. conidia on its 347 

surface in cold rooms do not suppose a risk of infection and therefore of developing 348 

brown rot symptoms. However, whether fruit is stored in cold room and then immersed 349 

in clean water, infection could develop either because water dump conditions are 350 

optimal for fruit infection or because infections previously produced develop during 351 
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these postharvest operations since water dump operations provide optimal conditions. 352 

Therefore, our results increase the knowledge of the epidemiology of Monilinia spp. in 353 

postharvest helping the packing houses to improve effective methods of water dump 354 

management to avoid infection risks and minimize brown rot development in 355 

postharvest. 356 
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