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Abstract 

In peach, pollen sterility, expressed as absence of pollen in the anthers, segregates as an undesired trait in 

breeding programs.  Pollen fertility screening in progenies is not a common practice mainly because it does 

not affect fruit set since cross-pollination is frequent. It is also a time-consuming activity that coincides 

with the busy pollination season. Segregation for this trait could be avoided by using molecular markers to 

identify appropriate parents or male sterile plants for early culling in progenies expected to segregate, thus 

increasing breeding efficiency. In peach, pollen sterility is determined by a recessive allele in homozygosis 

of the major gene, Ps/ps, located on chromosome 6. In this work, using a conventional mapping approach 

combined with bulked segregant analysis using resequencing data, we fine mapped Ps to a region of almost 

160 kb and developed molecular markers for marker-assisted breeding. These markers were validated in 

plant materials from three peach breeding programs, including progenies, advanced selections and cultivars, 
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allowing us to determine that the frequency of the ps allele is high (0.23) and also to infer the genotypes of 

a large collection of cultivars and advanced breeding lines. 
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Introduction 

Male sterile individuals are sometimes found in segregating progenies of peach [Prunus persica L. 

(Batsch.)]. Flowers from male sterile individuals have no pollen and the anthers are smaller and with a paler 

color than in normal flowers. Sterile individuals should be discarded from breeding programs because they 

have low fruit production when grown in monovarietal plots. However, pollen sterility is usually observed 

in breeding programs when heterozygous individuals are used in crosses. The male or pollen sterility (PS) 

trait in peach was found to be determined by a single gene (Ps/ps) by Scott and Weinbeger (1944), where 

the recessive ps allele in homozygosis causes the phenotype. While identification of male sterile individuals 

can be straightforward, distinguishing whether fertile parents carry the ps allele is a long-term activity that 

requires progeny test analysis. When the PS genotype of the parents is unknown, it is likely that this trait 

will segregate in various breeding programs. During the flowering season, peach breeders concentrate on 

crossing, and pollen fertility is seldom assessed in the progenies, meaning male sterile individuals will only 

be detected by chance, often at the end of the selection process, when advanced selections are evaluated in 

larger monovarietal plots. At this stage, male sterile cultivars have low production and the problem is easily 

identified, but only after a substantial and unprofitable investment in space and time. The availability of 

efficient molecular markers tightly linked to the Ps gene, will allow peach breeders to detect and eliminate 

male sterile material, early and easily, from their breeding programs, and to plan crosses taking into 

consideration the possible segregation of this trait in their progenies. 

A marker linked to the Ps locus has been described by Jun et al. (2004) using a bulked segregante analysis 

(BSA) approach with RAPD markers, and shortly after this, the gene was mapped to the proximal end of 

linkage group 6 (G6) by Dirlewanger et al. (2006). Other genetic causes of male sterility described in peach, 

include another gene (Ps2), identified in the cultivar 'White Glory' (Chaparro et al 1994; Werner and Creller 

1997), and cytoplasmic male sterility induced by almond cytoplasm, with fertility recovered by two 

independent restorer factors from almond located on G2 and G6 (Donoso et al. 2015). The restorer gene on 

G6 and Ps are close on the chromosome, although they appear to be determined by different genes (Donoso 

et al. 2015).  

Recent advances in genome analysis in peach and other Prunus (Aranzana et al. 2019) facilitates the 

adoption of marker-assisted selection in the improvement of these species. For peach, marker assisted 

selection has been used in several peach breeding programs worldwide for various major genes: melting 

flesh (Peace et al. 2005, Gu et al. 2016); fruit shape (Picañol et al 2013); fruit flesh color (Falchi et al. 2013, 
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Adami et al. 2013); acidity (Eduardo et al. 2014); glabrous skin (Vendramin et al. 2014); slow ripening 

(Eduardo et al. 2015); peach external color (Bretó et al. 2017, Sandefur et al. 2017); stony hard (Pan et al. 

2015, Cirilli et al. 2018) and brachytic dwarfism (Hollender et al. 2015, Cantín et al. 2018). Using linkage 

mapping and whole genome sequence analysis, in this paper we fine mapped the Ps gene and validated two 

tightly linked markers, a simple sequence repeat (SSR) and a single nucleotide polymorphism (SNP), that 

were genotyped in a large set of breeding progenies and a broad germplasm collection. These markers can 

be useful for the early selection of this character in peach breeding programs and to identify heterozygous 

parents that when crossed may produce male-sterile plants in their offspring.  

 

Material and Methods 

Plant material and male-sterility phenotyping 

For map construction we used two populations segregating for PS from the breeding program of IRTA 

(Lleida, Spain) consisting of the self pollinated progenies of two selections, PN732 and PN788, with 84 

and 75 individuals respectively. For marker validation we used 935 individuals, including 373 genotypes 

(197 cultivars and 176 advanced selections) from the Cultivar and Advanced Selections Collection (CASC; 

Supplementary Table S1), and 562 individuals from 13 different segregating progenies (Supplementary 

Table S2). The CASC materials come from three research organizations: IRTA (Experimental Station at 

Gimenells, Spain), CREA (Experimental Station at Forli, Italy) and EMBRAPA (Experimental Station of 

Pelotas, Brazil) and those from segregating progenies from IRTA and CREA. All trees were cultivated 

using standard agricultural practices in their respective growing regions and data from PS phenotypes were 

collected in the springs between 2012 and 2019.  

Male sterile phenotypes (Figure 1) were identified by visual inspection and manually squeezing mature 

anthers in recently opened flowers or in the stage immediately preceding opening in the field or in the lab. 

The male sterile phenotype does not produce pollen grains, and has smaller, empty anthers, white or cream 

colored, compared to the yellow of normal, fertile anthers. The phenotype is somewhat more difficult to 

identify in anthocyanic anthers, although their size and complete absence of yellow coloration is 

recognizable. Uncertain cases were examined with a binocular lens to identify the presence or absence of 

pollen grains. 

 

Molecular markers 
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All DNA extractions were done from young leaf tissue using the Doyle and Doyle (1990) protocol in 

Eppendorf tubes or adapted to 96 well plates. For SSR genotyping, PCR reactions were carried out in a 

total volume of 10 µL using a PE9700 Thermal Cycler (PE/Applied Biosystems, Foster City, Calif., USA) 

under the following conditions: 1 min at 95 °C, 30 cycles of 15 s at 95 °C, 15 s at the appropriate annealing 

temperature, and 1 min at 72 °C, followed by a 5-min extension at 72 °C. Products were analyzed by 

capillary electrophoresis using the ABI/Prism 3130xl (PE/Applied Biosystems) automatic sequencer as in 

Aranzana et al. (2003), whereas 5% non-denaturing polyacrylamide gels were used to detect CPP21395 

alleles in CREA germplasm. 

Based on the known position of Ps on G6, we designed primers for 13 new SSRs located at the beginning 

of G6 using Primer3 software (Untergrasser et al. 2012) and the Prunus genome sequence and SSR 

annotation. Primer sequences are given in Table S3. InDels were identified visually using the IGV software 

(Thorvaldsdóttir et al. 2013) and the alignment files obtained from resequencing data. InDels were called 

manually when in a specific region there were no reads or around 50% of reads compared to the surrounding 

regions. PCR conditions were the same as that for SSRs but with extension time adapted to the size of each 

InDel. Genotyping was done visually using ethidium bromide 2% agarose gels.  

InDel024900 was genotyped using a Kompetitive Allele Specific PCR (KASP) SNP assay following the 

instructions provided by the LGC group (https://www.biosearchtech.com). The primers used were: A1- 

GAAGGTGACCAAGTTCATGCTCAGTTGAAGATGTGATAACAGGGC, A2-

GAAGGTCGGAGTCAACGGATTCCAGTTGAAGATGTGATAACAGGGT and C1-

GTTGGGTTGCAATACACCGATTTCCAT. An 8 μL sample mix containing 4 μL of KASPar 2x 

Mastermix, 0.11 μL of the KASP assay primer mix (allele specific primers at 12 μM and the common 

reverse primer at 30 μM), 1.89 μL of water and 2 μL of DNA at 20-40 ng/ μL was used. Samples were 

analyzed using a Lightcycler 480 Instrument II (Roche Life Science) and the Lightcycler 480 software. 

 

Linkage map 

JoinMap v.4.1 (van Ooijen et al. 2011) was used for map construction for both PN732 and PN788 

segregating populations that were treated as F2 progenies. Grouping was performed with a threshold of 

LOD≥3.0 and distance was calculated with the Kosambi function. Linkage group terminology was 

according to the Prunus reference map (TxE) (Dirlewanger et al. 2004). The MapChart 2.1 software 

(Voorrips 2002) was used to draw the maps. 

https://www.biosearchtech.com/
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Bulked Segregant Analysis using resequencing data 

In parallel with conventional linkage mapping we attempted a second strategy consisting of obtaining 

resequencing data from three groups of individuals with different genotypes at the Ps locus and comparing 

the observed polymorphisms searching for a genomic region encompassing Ps with the approach described 

as Bulked Segregant Analysis (BSA) by Paran et al. (1993). For that we selected six cultivars from IRTA 

collection: two, ‘Ghiaccio-2’ and ‘BtxNr-6’ (‘BigTop’ × ‘Nectaross’) were male sterile (psps), two were 

Psps heterozygotes (‘BigTop’ and ‘Nectaross’), and two were PsPs homozygotes (‘Armking’ and 

‘Tifany’). In the case of ‘Big Top’ and ‘Nectaross’ we know that they are heterozygous for Ps because their 

progeny segregates for male sterility, whereas progeny of ‘Tifany’ and ‘Armking’ cultivars crossed with ps 

carriers have been identified in the IRTA breeding program as not segregating for male sterility, therefore 

we assumed they are not ps carriers. After the variant calling analysis described below, we looked for 

regions of the genome that were homozygous in the two male sterile cultivars, heterozygous in the two 

cultivars heterozygous for ps, and had the reference alleles in the two cultivars that did not carry the ps 

allele.  

DNA was extracted from ‘BtxNr-6’, ‘Ghiaccio-2’, ‘BigTop’, ‘Nectaross’, ‘Tifany’ and ‘Armking’ and sent 

to CNAG (Centre Nacional d’Anàlisi Genòmica, Barcelona) for library preparation and sequencing. Paired-

end sequencing (2 × 100) was run using an Illumina HiSeq 2000 sequencer (Illumina Inc, San Diego, CA, 

USA). The average depth of sequencing coverage was 35×. Adapter removal and quality-based trimming 

of the raw data was done with Trimmomatic v0.36 (Bolger et al. 2014). FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) was used for read quality control before and 

after trimming. High quality reads were mapped to the peach genome version 2.0 

(ftp://ftp.bioinfo.wsu.edu/species/Prunus_persica/Prunus_persica-

genome.v2.0.a1/assembly/Prunus_persica_v2.0.a1_scaffolds.fasta.gz) using the BWA-MEM algorithm 

(v0.7.16a-r1181; http://bio-bwa.sourceforge.net/bwa.shtml) with default parameters. Alignment file 

sorting, indexing and filtering of multi-mapped reads was done using samtools v1.5 (Li 2011). Raw 

Illumina data for the six peach individuals (BtxNr-6, Ghiaccio-2, BigTop, Nectaross, Tifany and Armking) 

can be found at the European Nucleotide Archive (ENA) under the accession numbers ERS4539604, 

ERS4539605, ERS3508163, ERS1801615, ERS1801617 and ERS1801609.  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
ftp://ftp.bioinfo.wsu.edu/species/Prunus_persica/Prunus_persica-genome.v2.0.a1/assembly/Prunus_persica_v2.0.a1_scaffolds.fasta.gz
ftp://ftp.bioinfo.wsu.edu/species/Prunus_persica/Prunus_persica-genome.v2.0.a1/assembly/Prunus_persica_v2.0.a1_scaffolds.fasta.gz
http://bio-bwa.sourceforge.net/bwa.shtml
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Three software tools were used for variant calling on the filtered alignment data: BCftools v1.5 (Danecek 

et al. 2016), platypus v0.8.1 (Rimmer et al. 2014) and GATK v3.8.0 (McKenna et al. 2010).  We removed 

reads with mapping quality of less than 10 and bases with quality of less than 20 and discarded variants 

with less than eight supporting reads. Additionally, for the bcftools dataset, we discarded variants with less 

than eight supporting reads and genotype quality of less than 30. For the GATK data set we discarded 

variants with less than eight supporting reads, RMSMappingQuality of less than 30 and FisherStrand bias 

of more than 60. From the filtered variants we kept only those that were called with all three tools used. 

Functional annotation of the variants was performed using the SnpEff software v4.3 (Cingolani et al. 2012). 

 

Results 

Pollen sterility phenotyping 

Pollen sterility was scored in all individuals from breeding programs and for all progenies of the mapping 

populations. Out of the 373 cultivars and accessions, 139 gave information about the PS genotype 

(Supplementary Table S1), whereas we had expected most of those with no PS phenotype would be fertile, 

particularly in the case of cultivars. Phenotypes were easily identified except for a few Brazilian accessions 

that had a pollen sterile phenotype but some pollen grains when looked at under the binocular microscope. 

Occasional pollen grains in sterile individuals has been reported previously (Hesse 1975), and these 

individuals were considered as pollen sterile for this study. 

 

Mapping the Ps locus 

Dirlewanger et al. (2006) found that the closest marker to Ps was FG40, an RFLP located 4.8 cM apart. 

However, it could not be physically located in the reference peach genome sequence because the DNA 

probe has not been sequenced. Instead we used another RFLP marker, FG215, 8.8cM from Ps and 

concentrated at Pp06:4,178,846 on the peach genome sequence, as a reference to search for SSRs 

concentrated in the region near the Ps locus (Supplementary Table S3).  Only four markers segregated in 

the PN732 and PN788 populations and were succesfully mapped. All individuals had genotypes compatible 

with their origin as selfed progeny from their parents (Supplementary Figure S1). Ps was located between 

markers CPP21395 (Pp06:1,130,915) and CPP21490 (4,723,809) in both populations. The closest marker 

was CPP21395 (3.4-4.5 cM). 
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CPP21395 marker validation in peach breeding programs 

CPP21395 was genotyped in 359 genotypes of the CASC using capillary electrophoresis (Table S1). 

CPP21395 had 6 alleles (187, 190, 194, 196, 198, 200) and 10 different genotypes (Table 1). Fourteen 

additional samples that were genotyped using acrylamide gels, where only allele 187 could be clearly 

assigned, were excluded from the allele frequency analysis. Assuming that individuals with a single allele 

were homozygotes, the frequency of this allele being associated with sterility was 0.23. For the other alleles, 

200 and 198 were very abundant (frequencies of 0.46 and 0.30, respectively) and the remaining (190, 194, 

196) were rare with frequencies ranging from 0.001 to 0.003.  

 

We obtained reliable phenotypic and genotypic information regarding pollen fertility of 139 cultivars or 

advanced selections. Of the 22 male sterile individuals, 20 had only the 187 allele (187/-) while two from 

Brazil were 187/200 and 196/198. As expected from a male sterile cultivar, ‘JH Hale’ had the 187/- 

genotype. Four out of the 117 individuals with fertile pollen were homozygous for the 187 allele, three of 

them from Brazil and one from Spain. Of the 27 individuals known to be carriers of male sterility (Psps), 

21 had allele 187 and another allele, one was 187/- and the remaining five did not carry the 187 allele.  

 

CPP21395 was also validated as a potential marker for marker assisted selection (MAS) for Ps in several 

progenies of a Spanish and an Italian peach breeding programs. All the individuals from unselected 

progenies were genotyped with CPP21395 and phenotyped for pollen fertility. A total of 562 individuals 

from 13 different progenies were analyzed (Supplemetary Tables S2, S4). Fourteen individuals 

homozygous for the 187 allele had fertile pollen while the other 122 were male sterile. In the case of the 

heterozygous individuals for the 187 allele, six were male sterile while the remaining 250 individuals were 

fertile. Finally, two individuals that did not have the 187 allele were male sterile, while the remaining 168 

were fertile. These results indicate that CPP21395 could predict the Ps phenotype with an efficiency of 

96.1% (22 mistakes with 562 individuals). Considering that the unexpected genotypes were caused by 

crossovers between Ps and CPP21395, the recombination frequency estimated from these data is r=0.02 

equivalent to ~2 cM Kosambi, lower than the estimation based on the linkage map, which is consistent with 

the fact that some crossovers could not be identified due to the dominance of the pollen fertility character. 

 

Ps fine mapping with BSA 
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Using the resequencing data from six individuals with contrasting Ps/ps genotypes, we used two strategies 

to identify additional markers for the selection of the pollen sterility locus. The first consisted of finding 

SSRs and InDels that were polymorphic in the resequenced genotypes and located in the region of the 

CPP21395 marker. With this approach we identified five SSRs and three InDels (see Supplementary Table 

5S) that were genotyped in the parents of PN732 and PN788 populations. Four segregating markers, 

InDel1860, CPP21215, CPP21230 and CPP21245, were added to the genetic maps (Figure 2). In population 

PN732, Ps cosegregated with marker CPP21245 and was flanked by Indel1860 and CPP21230, defining a 

genomic region of 1.6 cM, spanning ~232 Kb, between Pp06: 1,860,920 and Pp06: 2,192,629. In PN788 

neither CPP21245 nor CPP21215 segregated and Ps was located between InDel1860 and CPP21490, and 

cosegregated with CPP21230. 

 

BSA analysis using resequencing data indicated two target regions that were homozygous in the two male 

sterile cultivars, heterozygous in the two cultivars heterozygous for ps and had the reference alleles in the 

two cultivars that did not carry the ps allele. One was on G5 (13,622,325 to 14,502,877bp) and one on G6, 

coinciding with the chromosomal fragment where Ps mapped to (1,956,981 to 2,116,368bp). Twenty-seven 

annotated genes were identified in the latter region (Table 2), and we estimated the effects of the 90 SNP 

and InDel variants detected. Only one polymorphism, located in gene Prupe6G024900 (Pp06:1,996,812), 

had an insertion polymorphism with a predicted high impact variant, producing a splicing variation (G>GC) 

that would cause a loss of function. This gene is annotated in the Peach genome v2.0 as a cellulose synthase. 

Sixty cellulose synthase genes are annotated in the peach genome, four of them forming a cluster containing 

gene Prupe6G024900. A blastx analysis showed that our gene is similar to proteins of other species 

annotated as cellulose synthase-like protein E1.  

Cellulose is an important component of the pollen cell wall intine (Wu et al. 2015) and male sterile cultivars 

with defects in pollen grain cell walls have been described in several species including cotton (Wu et al. 

2015), rice (Xu et al. 2017) and sorghum (Petti et al. 2015), so we selected this gene as a possible candidate 

for the pollen sterile phenotype. We cannot discard the possibility that PS phenotype is a case of 

cytoplasmic male sterility (CMS). In the 27 candidate genes listed in Table 2, there are two genes 

(Prupe6G024500 and Prupe6G026400) annotated as pentatricopeptide repeat proteins (PPR), which are 

usually restorer genes of CMS (Gaborieau et al. 2016). 
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Genotyping with InDel024900 and comparison with CPP21395 

A marker based on the variant of Prupe6G024900 was developed (InDel024900) and used to genotype 259 

individuals from the CASC (Supplementary Table 1S). This marker was diallelic and the individuals were 

classified as A (homozygous for the insertion), B (homozygous for the alternative allele) and H 

(heterozygous), where we expected A to be associated with pollen sterility. For 92 of the individuals studied 

we had the genotype of InDel024900 and the PS phenotype and the test was as expected in 86 of them (93% 

success rate). All six erroneous cases were fertile individuals (with the A genotype). Based on the 

information from the CASC we obtained an approximate value for the recombination frequencies between 

the three loci (CPP21395, InDel024900 and Ps) of 0.12 for CPP21395-InDel024900, 0.05 for CPP21395-

Ps and 0.06 for InDel024900-Ps, indicating that Ps is flanked by the two markers at similar genetic distance. 

The recombination fractions were higher than those estimated with conventional segregating progenies as 

they are produced with a collection of individuals where more generations have likely occurred during their 

history. From these data, the sum of the recombination fractions of the two marker-Ps combinations (0.11) 

was smaller than that of the two markers (0.12). 

 

Discussion 

The Ps locus was mapped following a conventional mapping strategy using SSR and indel markers 

distributed along peach chromosome 6, reducing its region to approximately 333 kb, between markers 

Indel1860 and CPP21230 (Ps06:1.859.488 to Ps06:2.192.785). Then, applying a BSA mapping strategy, 

we used resequencing data from six cultivars with known pollen fertility phenotype, which independently 

identified a region of 159 kb (Pp06:1.956.981 to Pp06: 2.116.368) within the region detected using the 

linkage map. This demonstrates the validity of the BSA approach with DNA resequencing data, identifying 

a smaller genome fragment than that obtained with linkage mapping. BSA has previously been assayed in 

peach by Hollender et al. (2018), although we used a much smaller number of individuals, six vs. 74, and 

obtained a higher resolution (159 kb vs. 2 Mb). Our success with BSA was in part determined by the 

separate analysis of three genotypic classes, PsPs, Psps and psps, whereas Hollender et al. (2018) used only 

two classes. Another important aspect is the probable single origin of the pollen sterility mutation in the 

materials studied, as individuals carrying male sterility alleles from independent mutations would have 

likely complicated the analysis. 
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We selected two markers for further analysis, the CPP21395 SSR, at approximately 3 cM from the Ps locus 

based on the linkage maps, and InDel024900, in the region detected by the BSA analysis that produced a 

single base insertion with a predicted major effect Prupe.6G024900, a cellulose synthase E1 that we 

considered a candidate gene for the PS phenotype. Genotyping with these markers in a large collection of 

peach cultivars and breeding materials of widely varying origin determined that CPP21395 and 

InDel024900 flanked the Ps locus. The Prupe.6G024900 gene was discounted as causal for Ps as several 

recombination events were found between Ps and InDel024900, leaving the PPR genes in this region as 

probable candidates for the PS phenotype, which should be confirmed in further experiments. Recently, 

genome-wide association analysis (Li et al. 2019) in a collection of peach materials detected a strong 

association between the PS phenotype and a SNP near the region defined by CPP21395 and InDel024900 

(Pp06:1.996.812), but outside of it (Pp06:2.014.933), suggesting that this SNP would not improve our 

prediction of male sterility. Both CPP21395 and InDel024900 could be used as efficient tools to identify 

pollen sterile individuals in breeding populations, with 96% and 93% accuracy, respectively. Combining 

the information of both markers, the phenotype was correctly predicted in the CASC collection of cultivars 

and breeding accessions, except for nine individuals out of 92 (10%) that, based on the two markers, were 

recombinants with unpredictable phenotype. The fact that recombination fractions of the two marker-Ps 

combinations (0.11) was smaller than that of the two markers (0.12) could be because for nine recombinant 

individuals between the two markers having the pollen fertile phenotype (corresponding to the Ps- 

genotype) it was not possible to establish the position of the recombination breakpoint(s) within the 

CPP21395-Ps-InDel024900 fragment, and we counted only the recombinations between the two markers. 

Overall, both markers had a similar resolution for marker-assisted selection. 

 

The ps allele was very frequent in the collection of materials studied (0.23). Assuming a distribution of 

genotypic frequencies similar to a Hardy-Weinberg equilibrium, a reasonable hypothesis in peach materials 

from modern breeding programs (Aranzana et al. 2003; Li et al. 2013) as most of the genotypes examined 

here, one would expect a 5 % pollen sterile plants, compared to the 9 % (6 of 64) that we had only in the 

cultivars with phenotypes obtained in this project. While these results are not significantly different (Chi-

squared = 2.11; n.s.), they give an idea of the magnitude of the problem, where having 10% of the progenies 

being pollen sterile is not unusual.  
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There is great interest in controlling the generation of PS individuals, and the best option in a breeding 

program is to know the parental genotypes and either avoid crosses between parents carrying the ps allele 

or, if these crosses are performed, eliminate the psps individuals with marker assisted selection using tightly 

linked markers, such as those developed in this paper. Alternatively, PS individuals have to be identified 

by their phenotype in the field. Using the two markers, here, in 167 cultivars and advanced lines without a 

known phenotype, we were able to predict, with high probability, that three were male sterile, 155 male 

fertile (92 PsPs, 39 Psps, and 24 PsPs or Psps) and nine were recombinants with uncertain PS phenotype 

(Table 1S). Additionally, for the 66 accessions with male-fertile phenotype but lacking information on their 

genotype, 42 were inferred to be PsPs, 14 Psps and 10 were either Psps or PsPs. This information is very 

helpful for breeders to plan their crosses more efficiently and to be able to apply MAS for this trait in 

breeding programs.  

The high frequency of the ps allele in breeding materials comes from the history of this character in the 

breeding programs of western countries, where most of the accessions studied here come from. Modern 

breeding in peach started in the US about a century ago from a limited number of founders that are the basis 

of the breeding gene pool used today in Europe and the US. About a dozen of cultivars were recurrently 

used in these programs (Hesse 1975; Scorza et al. 1985), some with known or suspected presence of the ps 

allele. Three of the most important founders are ‘JH Hale’, a male sterile cultivar resulting from self-

pollination of another founder, the fertile ‘Elberta’, and ‘Chinese Cling’, the seed-parent of ‘Elberta’, also 

male sterile (Connors 1927; Werner and Creller, 1997; Okie 1998; Hesse 1975). Another major founder, 

‘Belle of Georgia’, is also progeny of ‘Chinese Cling’, and others, such as ‘Fay Elberta’ and ‘Early Elberta’, 

were developed from seeds of ‘Elberta’ and are likely to carry the ps allele. The pedigrees of most of these 

varieties have been validated with molecular markers (Aranzana et al. 2010). These founders determined a 

high frequency of ps in the initial steps that, in spite of the selection against male sterile individuals, has 

seen no major decrease in the materials currently used. It is possible that this character could only be 

selected against in homozygosis, and the number of generations from the founders to the modern varieties 

is also low (3-6) with limited opportunity for selection. In addition, we cannot discard favorable effects of 

the ps allele or alleles of neighboring genes on other aspects of peach production and fruit quality that may 

have been unwittingly selected for by breeders. The information provided in this paper would be helpful to 

design experiments to determine the possible value of the ps haplotype or to decrease its frequency in 

breeding materials to avoid unwanted selection of male sterile trees. 
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Fig 1 Peach flowers with male sterile (left) and fertile (right) anthers 
 

Fig 2 Linkage mapping of Ps in the G6 of F2 populations PN732 and PN788 
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Table 1 Summary of the CPP21395 genotypes in the cultivar and advanced selections collection studied 

with capillary electrophoresis 

 

Genotype Nb. 
individuals 

Pollen 
sterile 

Pollen 
fertile 

Unknown 

200/- 96 - 23 73 
198/200 72 - 21 51 
198/- 49 - 16 33 
196/200 1 - - 1 
196/198 1 1 - - 
194/198 1 - - 1 
187/200 64 1 27 36 
187/190 1 - - 1 
187/198 45 - 17 28 
187/- 29 15 4 10 

Total 359 17 108 234 
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Table 2 Genes annotated in the peach genome v2.0, in the region where ps was located (Pp06:1.956.981 to Pp06:2.116.368) 

Name Location BLAST 
Prupe.6G024400 Pp06:1958444..1974196 AT1G55860.2 ubiquitin-protein ligase 1 
Prupe.6G024500 Pp06:1974865..1979965 AT5G55840.1 Pentatricopeptide repeat (PPR) superfamily protein 
Prupe.6G024600 Pp06:1980829..1984139 AT5G55850.3 RPM1-interacting protein 4 (RIN4) family protein  
Prupe.6G024700 Pp06:1984407..1986778 AT3G07680.1 emp24/gp25L/p24 family/GOLD family protein 
Prupe.6G024800 Pp06:1988969..1992904 AT1G55850.1 cellulose synthase like E1 
Prupe.6G024900 Pp06:1993594..1997839 AT1G55850.1 cellulose synthase like E1 
Prupe.6G025000 Pp06:2000316..2004155 AT1G55850.1 cellulose synthase like E1 
Prupe.6G025100 Pp06:2004661..2008198 AT1G55850.1 cellulose synthase like E1 
Prupe.6G025200 Pp06:2015242..2018105 AT1G67500.2 recovery protein 3  
Prupe.6G025300 Pp06:2020454..2025425 AT5G55860.1 Plant protein of unknown function (DUF827) 
Prupe.6G025400 Pp06:2025597..2029476 AT4G26620.1 Sucrase/ferredoxin-like family protein 
Prupe.6G025500 Pp06:2029993..2034716 AT1G55840.1 Sec14p-like phosphatidylinositol transfer family protein 
Prupe.6G025600 Pp06:2037432..2041407 AT5G47750.1 D6 protein kinase like 2  
Prupe.6G025700 Pp06:2042999..2045381 AT5G27990.1 Pre-rRNA-processing protein TSR2, conserved region  
Prupe.6G025800 Pp06:2045776..2050416 AT1G60620.1 RNA polymerase I subunit 43 
Prupe.6G025900 Pp06:2054131..2054415 hypothetical protein 
Prupe.6G026000 Pp06:2064771..2065342 AT4G26590.1 oligopeptide transporter 5 
Prupe.6G026100 Pp06:2069708..2073473 AT4G26590.1 oligopeptide transporter 5 
Prupe.6G026200 Pp06:2079104..2083027 AT4G26590.1 oligopeptide transporter 5 
Prupe.6G026300 Pp06:2083270..2087321 AT5G55930.1 oligopeptide transporter 1 
Prupe.6G026400 Pp06:2087469..2089362 AT5G48910.1 Pentatricopeptide repeat (PPR) superfamily protein 
Prupe.6G026500 Pp06:2089883..2092148 AT5G55940.1 Uncharacterised protein family (UPF0172) 
Prupe.6G026600 Pp06:2092736..2096757 AT3G13224.2 RNA-binding (RRM/RBD/RNP motifs) family protein  
Prupe.6G026700 Pp06:2100008..2107565 AT3G07660.1 Kinase-related protein of unknown function (DUF1296) 
Prupe.6G026800 Pp06:2106907..2110035 AT5G55950.1 Nucleotide/sugar transporter family protein 
Prupe.6G026900 Pp06:2111266..2114599 AT1G55830.2 unknown protein 
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