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Graphical abstract 

 

Highlights 

 The indoor air from agrifood research laboratories comprise a complex COVs mixture. 

 Black yeasts reduce the total VOCs concentration from indoor air by more than 95%. 

 Fungal hydrophobicity and biodegradation capacity play a major role in VOCs removal. 

 The emission of fungal volatile metabolites is rather low and species-specific. 

 Black yeasts might be used advantageously in the biofiltration of indoor air. 

 

 

Abstract 

ACCEPTED M
ANUSCRIP

T



Cultures of melanized fungi representative of the black yeast orders Capnodiales 

(Cladosporium cladosporioides and Neohortaea acidophila) and Chaetothyriales 

(Cladophialophora psammophila) were confined with indoor air from the laboratory during 

48 hours. Volatile organic compounds (VOCs) from the headspace were analyzed by thermal 

desorption gas chromatography time-of-fly mass spectrometry (TD-GC-ToFMS, detection 

threshold 0.1 µg·m-3) and compared against an abiotic control. A mixture of 71 VOCs were 

identified and quantified in the indoor air (total concentration 1.4 mg·m-3). Most of these 

compounds were removed in the presence of fungal biomass, but 42 newly formed putative 

volatile metabolites were detected though at comparatively low total concentrations (<50 

µg·m-3). The VOCs emission profile of C. cladosporioides, a ubiquitous and well-known 

species often associated to the sick building syndrome, was consistent with previous literature 

reports. The specialized C. psammophila and N. acidophila, isolated respectively from 

gasoline polluted soil and from lignite, displayed rather specific VOCs emission profiles. 

Mass balances on the fungal uptake and generation of VOCs resulted in overall VOCs 

removal efficiencies higher than 96% with all tested fungi. Applied aspects and biosafety 

issues concerning the suitability of black yeasts for the biofiltration of indoor air have been 

discussed. 
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1. INTRODUCTION 

People in Western Europe spend in average more than the 80% of their time in indoor 

environments, so that they are significantly exposed to the pollutants contained therein [1]. 

The sick building syndrome (SBS) has been defined by the World Health Organization as a 

medical condition where people in a building suffer from unspecific symptoms of illness or 

feel unwell for no apparent reason. SBS has commonly been linked to poor indoor air quality 

because of failures in heating, ventilation and air conditioning (HVAC) systems. The ultimate 

causes, though, have been attributed to the accumulation of volatile organic compounds 

(VOCs) emitted by construction materials and appliances, cleaning products, etc. The buildup 

of anthropogenic but also biogenic VOCs (e.g. the phytohormone ethylene) compromises the 

efficiency of closed bioregenerative life support systems (CBLSS) in space missions [2]. 

Airborne fungi are increasingly gaining importance in view of health hazards caused by 

aerosolized spores, identified as one of the major indoor allergens [3]. Spores might also carry 

mycotoxins and even cause infectious diseases. Indoor fungi are also known to emit a wide 

array of volatile primary and secondary metabolites that might contribute further to the SBS 

[4]. Hence, most research on mold contamination of building materials has been focusing on 

highly sporulating and mycotoxin producing species in the genera Aspergillus, Cladosporium, 

Fusarium, Paecylomyces, Penicillium, and Stachybotrys [3, 5]. These taxa were also reported 

in the sealed environment of the MIR space station, where fungal colonization became a 

serious problem after 15 years in orbit [6].  

Contrariwise, fungi have also been investigated thoroughly in relation to their capacity to 

remove volatile contaminants in air biofilers [7]. With this technology, polluted air is flown 

through a porous matrix that serves as a support for the development of microorganisms. By 
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controlling the humidity of the support, fungi can be enriched over bacteria and the lack of a 

free-flowing water layer enhances the direct transfer of hydrophobic VOCs from the gas 

phase onto the fungal biofilm, where they are eventually biodegraded [8]. Most biofilter 

applications have been devised for the treatment of industrial off-gases containing rather 

simple VOCs mixtures in the mg·m-3 – g·m-3 concentration range [9]. Biofiltration has also 

been proposed for the treatment of indoor air, which is characterized by having very complex 

mixtures of VOCs that are present at the ng·m-3 – µg·m-3 range. However, such low 

concentrations might not support microbial growth and limit biodegradation kinetics in 

biofilters [10]. Constrains related to poor pollutant transfer from gas phase to biofilm, low 

biodegradability of recalcitrant substances, and potential biohazard from aerosolized 

microorganisms have also been highlighted [11]. 

Several fungal species have been studied concerning their physiological adaptation to biofilter 

conditions and their metabolic capacity to biodegrade toxic volatile compounds, but the so-

called black yeasts appear to be particularly suitable for this purpose [12]. This functional 

group of fungi owe its name to their strongly melanized thallus and by an ability to grow 

either as filaments, budding cells, or by forming meristematic structures. Such physiological 

flexibility and melanin pigmentation enables them to colonize a wide range of hostile 

environments, so that many species are considered as polyextremophilic eukaryotic 

microorganisms [13]. Black yeasts have primarily been classified into two clearly delimited 

orders: Dothideales, and Chaetothyriales. Yet, several members in the Dothidiales have 

recently been assigned to the Capnodiales on the basis of new molecular evidence [14]. 

Dothidialean/capnodialean species tend to be isolated from the environment in relation to 

conditions of extreme pH and temperature, high salinity, desiccation, and radiation. Some 

species have also been isolated from environments that are rich in aromatic hydrocarbons and 
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phenols, ranging from the specialized Neohortaea acidophila growing on brown coal at pH as 

low as 0.6 [15], to the cosmopolitan Cladosporium cladosporioides, which has been found on 

creosoted wood but also on a wide variety of plants, and is very common in the indoor air 

[16]. A very few species in this group are opportunistic human pathogens, but virulence is 

comparatively low, mostly limited to superficial skin infections and allergic reactions when 

inhaling spores [17]. Conversely, the vast majority of the black yeasts isolated from clinical 

cases of severe deep mycoses belong to the Chaetothyriales and, in particular, to the family 

Herpotrichiellaceae. One of the most surprising findings of the recent years is the consistent 

isolation of herpotrichiellaceous fungi from environments that are contaminated with volatile 

alkylbenzene hydrocarbons [12]. The assimilation of bulk industrial pollutants such as toluene 

and styrene as the sole carbon and energy sources has been demonstrated with different 

species from the Herpotrichiellaceae, primarily in the genera Exophiala and 

Cladophialophora (e.g. C. psammophila) and its biotechnological application in purposely 

inoculated air biofilters packed with synthetic supports has already been tested successfully 

[18].  

Despite the benefits of using black yeasts in biofiltration, to our knowledge there are no 

reports on the application of these fungi for the treatment of indoor air. The present study is 

aimed at filling this gap by determining the effect of fungal biomass from different melanized 

fungi on the reduction of a complex VOCs mixture from an indoor environment. The obtained 

results might shed new insights into the potential contribution of the black yeasts to the SBS, 

but also on the viability of developing biofiltration units based on these fungi for the treatment 

of indoor air in CBLSS. 

2. MATERIALS AND METHODS 

2.1. Fungal cultures and experimental procedure 
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The fungal strains used in the present study were obtained from the culture collection of the 

Westerdijke Fungal Biodiversity Institute (Utrecht, The Netherlands). The selected species 

corresponded to Cladosporium cladosporioides (Fresen.) G.A. de Vries (CBS 101367), 

Cladophialophora psammophila Badali, Prefaneta-Boldú, Guarro & de Hoog (CBS 110553, 

type strain), and Neohortaea acidophila (Hölker, Bend, Pracht, Tetsch, Tob.Müll., M. Höfer 

& de Hoog) Quaedvlieg & Crous, (CBS 113389, type strain). Fungi were cultivated on potato 

dextrose agar plates (PDA, Pronadisa, Madrid, Spain) from 11 to 28 days, depending on the 

growth rate of the strain, by inoculating three colonies on the agar per petri dish. Three agar-

plate cultures of every fungus were introduced in Nalophan™ gas sampling bags (Foodpack 

BV, Harderwijk, NL) and filled with 2.0 L of the laboratory ambient air. This procedure was 

repeated with C. cladosporioides, but only one agar plate was introduced into the sampling 

bag because of the significantly larger colonies formed by this fungus. Two additional bags 

containing three uninoculated agar plates were prepared, the first was filled with the same 

laboratory indoor air as an abiotic control, while the second was filled with nitrogen gas 

(purity > 9.999%, Abelló Linde, Barcelona, Spain) in order to monitor the contribution of the 

used materials to the VOCs profiles. Both the abiotic and materials controls were processed 

exactly in the same manner as the bags with fungal cultures were. After 48 hours of 

incubation at room temperature, 1.5L of the air content from every bag was transferred to 

stainless-steel tubes (length: 3 in × 0.5 in; o.d.: 0.25 in) filled with a multisorbent bed of 350 

mg of Tenax/Carbograph 5TD (Markes International Limited, Llantrisant, UK) through a 

manual pump (Easy-VOC, Markes International Limited, Llantrisant, UK). Before each use, 

tubes were conditioned by thermal cleaning (335ºC for 40 minutes) under a nitrogen flow rate 

of 50 mL min-1 (purity 99.999%) by a tube conditioner device (TC20, Markes International 

Limited, Llantrisant, UK). 

2.2. Analytical methods 
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Full quantitative scans on VOCs from the previously collected samples were carried out in a 

TD-GC-ToFMS system. This instrument was composed of a thermal desorption unit (Unity, 

Markes International Limited, Llantrisant, UK), a gas chromatographer (7890, Agilent, USA), 

and a time-of-flight mass spectrometer (BenchTOF-dx model, Almsco, Germany). A mid 

polar DB-624 column was used for chromatographic separation (60 m, 250 µm, 1.4 µm; 

Agilent, USA). The specific parameters and experimental conditions of the analysis have been 

summarized in Table 1. Desorption tubes were heated to 300ºC with a helium flow rate of 50 

mL min-1 for 10 min (first desorption stage). Desorbed analytes were then directed to a 

hydrophobic general purpose cold trap (10ºC, thermoelectric cooling), filled with Tenax TA 

and graphitised carbon. After flash-heating of the cold trap to 320ºC during 5 min (second 

desorption stage), analytes were injected into the chromatographic column for further 

separation, which took about 48 minutes. Molecules reaching the ToFMS detector were 

fragmented by electron impact ionization (EI) at 70 eV at a mass range of 28-330 amu. 

Deuterated toluene-d8 (Sigma Aldrich) was used as an external standard for quantification. 

This compound was injected (10 ng) into an independent thermodesorption tube and was 

analyzed by following strictly the same methodology as with the samples. Given the 

sensitivity of the method, two unused thermodesorption tubes were analyzed as blanks, in 

order to exclude any potential contamination arising from these materials during the analysis. 

2.3. Data processing 

The deconvolution process for the chemical identification of the VOCs that were present in 

each analyzed sample was carried out with the software TargetView v3 (ALMSCO 

International, Germany). This algorithm identified the compounds of the chromatogram 

automatically based on an updated version of the NIST11 library [19]. Chemical 

identifications were confirmed with at least 80% certainly. The identified molecules were 
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manually check for their presence in the Microbial Volatile Organic Compound Database 

(mVOC), so that potential microbial metabolites were identified [20]. The air to water 

partition coefficients (Henry constant) was estimated from the Estimation Programs Interface 

(EPI) Suite™ v4.1 (US Environmental Protection Agency, USA). General information on the 

usage and occurrence of the identified chemicals was obtained from the PubChem database 

[21]. 

3. RESULTS AND DISCUSSION 

3.1. Profiling of the indoor air VOCs 

Seventy-one VOCs belonging to 13 chemical families were identified and quantified in the 

headspace of a Nalophan™ sampling bag filled with a model laboratory indoor air, after 24 

hours of incubation in the presence of non-inoculated agar plates (Indoor abiotic control; 

Table 2). The contribution of the agar plates and the sampling bag material to the observed 

VOCs profile was evaluated in a second bag filled only with nitrogen gas and incubated under 

the same conditions (Materials control). Thirty-three VOCs were measured in this latter 

control (125.4 µg·m-3), 20 of which were also found in the Indoor control. The most abundant 

compounds (>10 µg·m-3) 3-methylbutanal, 2-methylpropanal and acetone have previously 

been identified as important volatiles released in baked potato flesh [22, 23], and might 

therefore arise from the PDA cultivation medium used in this study. Other characteristic 

VOCs from baked potatoes were also detected in minor amounts the Materials control (<10 

µg·m-3): pentanal, heptanal, nonanal, ethyl acetate, and methanethiol. Most of the remaining 

13 VOCs that were exclusive from the Materials control were present at low amounts (<1 

µg·m-3) and might just be below the detection limit in the Indoor control. Trace VOCs 

contained in the Materials control might arise from environmental contaminants trapped in 

the agar. 
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The measured total VOCs concentration in the Indoor control of 1.4 mg·m-3 was slightly 

above most values reported for non-industrial indoor environments, which are usually below 1 

mg·m-3 [1]. The European Collaborative Action on Indoor Air Quality (ECA-IAQ) 

recommends a minimum list of 63 VOCs to be included in non-industrial indoor air quality 

investigations [1]. Yet, only 15 of those reference VOCs were found in the present study 

(Table 2). This apparent quantitative and qualitative specificity of the studied VOCs profile is 

because of its representativeness of a laboratory environment, rather than the domestic, office, 

and public environments discussed in the ECA-IAQ report. The IRTA premises comprise an 

array of research laboratories on analytical chemistry, molecular biology, plant physiology 

and animal sciences. It is thus not surprising to find common solvents among the most 

abundant VOCs (50 – 250 µg·m-3): pentane, tetrachloroethylene, toluene, dichloromethane, 

ethanol, trichloromethane (chloroform) and acetone [21]. Low amounts of the laboratory-

related chemicals methyl ethyl ketone, hexane, heptane, 1,2,3,4-tetrahydronaphthalene 

(tetralin) and of the broad-spectrum antibiotic cycloserin, used as an additive in microbial 

selective cultivation media, were also detected (Table 2). 

Ubiquitously present xenobiotics were found as well, like the halomethanes 

dichlorodifluoromethane (Freon 12), used as a refrigerant and spray propellant prior to the 

1994 Montreal Protocol ban because of its ozone layer-depletion potential, and 

bromodichloromethane primarily formed as a by-product from drinking water chlorination 

[21]. Several fuel-related chemicals were detected, like BTEX (benzene, toluene, 

ethylbenzene and xylene isomers) and complex monoaromatic hydrocarbons substituted with 

multiple alkyl groups present in kerosene and gasoline blends, gasoline oxygenates 2-

methoxy-2-methylpropane (MTBE) and 2-ethoxy-2-methylpropane (ETBE), and C4-C5 

aliphatic hydrocarbons that probably originate from gas cylinders and spray propellants. Other 

VOCs might be emitted from manufactured materials from the indoor environment, such as 
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plastics, resins and rubber (styrene, cyclopentane, dibutyl phthalate, methacrolein, and 

benzocyclobutane) [21].  

A few compounds might have a natural origin like carbonyl sulfide, the most abundant sulfur 

compound naturally present in the atmosphere (the concentration reported here fits in the 

range of the natural background), and even biological like the plant metabolite and aroma 

compound 3-hexenyl benzoate. In fact, 41 of the identified VOCs from the indoor air (58%) 

have also been reported as microbial volatile metabolites [20], and so they could have a 

biological origin. It is unlikely that such microbial intermediates arise from the 

biodeterioration of building materials, but some of them could be released from biological 

samples that are processed in the aforementioned laboratories (digestate from anaerobic 

reactors, compost, plant and animal materials, etc.). 

3.2. Fungal metabolism of VOCs 

Important quantitative and qualitative differences were observed between the VOCs profiles 

of the Indoor sample, used here as an abiotic control, and those from fungal incubations 

(Tables 2 and 3). The presence of fungal biomass reduced the mass of the VOCs present in 

the indoor air by 99.6%, 98.9%, and 98.4% when incubated with cultures of C. 

cladosporioides, C. psammophila, and N. acidophila (Table 4). A few VOCs were reduced by 

less than 90%, which ranged from the biodegradable hydrophilic methanol and hydrophobic 

butane, to the more recalcitrant benzene, dibutyl phthalate, and cycloserine. Some of these 

VOCs are known to be fungal volatile metabolites as well and so a low reduction, and even 

increase in some cases, might be the result from biosynthesis. In fact, 42 VOCs from the 

fungal incubations were not detected in the abiotic control and, thus, must be considered as de 

novo biosynthesized fungal metabolites (Table 3). The fact that only 18 of these fungal 

metabolites are reported as such in the Microbial Volatile Organic Compound Database 
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(mVOC) highlights our limited knowledge on the chemical diversity of volatile fungal 

metabolites. Information compiled in the mVOC database is limited to relatively few fungal 

species that are relevant in the production of aromas and as spoilage bioindicators in food, 

biodeterioration of materials, as semiochemicals in biotic interactions, and in medical 

diagnostics [20]. 

Cladosporium cladosporioides displayed both the highest elimination of indoor VOCs and 

emission of volatile metabolites (49.5 µg·m-3, 17 compounds; Tables 3 and 4). Such 

observation could be because of the larger biomass/air contact area of this fungus, which also 

grows at a much faster rate than the other tested strains. Cladosporium cladosporioides has 

frequently been reported in SBS cases and was included in this study as a reference. A 

previous comparative qualitative assessment concluded that C. cladosporioides produced far 

less volatile metabolites than other common SBS species, such as Aspergillus versicolor, 

Paecilomyces variotii, and Penicillium commune [24]. The VOCs profile of C. 

cladosporioides in that study comprised 1-octene, 3-methylfuran, 3-pentanone and minor 

amounts of an unidentified sesquiterpene. The sesquiterpene caryophyllene was later 

proposed as a bioindicator of apple contamination with this fungus [25]. Here, we were able 

to quantify 17 VOCs for C. cladosporioides, which included relatively high concentrations of 

1-octene (15.5 µg·m-3), while 3-methylfuran and caryophyllene were also found in minor 

amounts (Table 3). Trace contents of other terpenes (ß-pinene, D-limonene, and o-cymene) 

were also detected as specific metabolites of C. cladosporioides. Interestingly, iodomethane 

was the most abundant fungal metabolite from the whole study (24.6 µg m-3) and was also 

produced exclusively by this fungus. Biogenic emissions of halomethanes were previously 

reported for ectomycorrhizal fungi and have been considered as an important natural source of 

ozone-depleting gases [26]. Cladosporium cladosporioides has also been associated with an 

accumulation of carbonyl sulfide, which was already present in the indoor air. This compound 
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was detected in filters from HVAC units colonized with Cladosporium and Penicillium 

species as compared with non-colonized units [27]. 

The concentration of newly formed VOCs reached its lowest value with C. psammophila, but 

the number of identified compounds was instead the most numerous (8.6 µg m-3, 20 

compounds; Table 3). Interestingly, in the comparative assessment mentioned earlier [24], no 

volatile metabolites were detected for closely related Phialophora fastigiata, also in the 

Chaetothyriales. Here, the most abundant metabolite, which appears to be exclusive of C. 

psammophila, was 3-methyl-1-butanol (2.4 µg m-3). An increased concentration (1.8 µg m-3) 

of 2-methyl-1-propanol, already present in the indoor air, was also detected along with trace 

amounts (< 1 µg m-3) of the isomer 2-methyl-1-butanol. All these three organic alcohols have 

been reported among the most commonly produced volatile metabolites by SBS fungi [24]. 

Methylamine was detected as the second most abundant metabolite (1.1 µg m-3) and was also 

emitted by the other studied fungi, though in lower amounts. Its presence might be explained 

as product of the arginine demethylation pathway in eukaryotic organisms [28]. The 

remaining metabolites were below 1 µg·m-3 and were characterized by the occurrence of 

several aliphatic and alkylbenzene hydrocarbons, largely absent in the other fungi. Whether or 

not this specific profile is related to the metabolic capacity of C. psammophila to grow on 

certain alkylbenzenes as the sole source of carbon and energy [29], remains as an interesting 

research question. 

The slowest growing cultures of N. acidophila displayed a somewhat intermediate profile in 

quantitative terms in the emission of new VOCs (15.8 µg m-3, 16 compounds; Table 3). The 

main metabolite 1-(dimethylamino)-2-propanone (10.1 µg m-3) was present well above the 

rest of the emitted volatile compounds (<1 µg m-3). Specific metabolites for this fungus 

included decanal, 2-methyl-1-pentene, octane, nonane, acetophenone, dimethyl sulfide, 

methanethiol, diisobutyl phthalate, 2-methyl-2-oxazoline, and (dimethylamino)acetone. Other 
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minor metabolites were shared with C. psammophila: 1-pentene, 1-heptene, nitroethane, and 

cyclofenchene. Several of these compounds are already known from previous research on the 

SBS [3, 5, 30, 31] and on fungal metabolites [20], but some others might have been detected 

for the first time thanks to the very high sensitivity of the implemented GC-ToFMS analytical 

approach. 

3.3. Potential application of melanized fungi for removing indoor VOCs 

To this day, a satisfactory technology for the removal of indoor VOCs has yet to be developed 

[10, 11]. Physicochemical processes have the disadvantage of requiring relatively high 

amounts of energy and chemicals (UV light, ozone), expensive maintenance and materials 

(membranes), or generate wastes that require further treatment (activated carbon). Biological 

processes might therefore be preferred, particularly in completely confined environments 

where resources are scarce. However, the VOCs elimination efficiency in conventional 

biofilters is affected in the long term by clogging due to the excess of biomass. Using 

specialized slow-growing fungi such as Cladophialophora psammophila and Neohortaea 

acidophila, rather than the generalist and faster-growing Cladosporium cladosporioides, 

might therefore be an advantage (Table 4). The mass-transfer of hydrophobic contaminants 

from air to the liquid/biofilm phase can also limit the biofiltration process, particularly in the 

treatment of indoor air [32]. The air/water partition coefficient (Henry's Law constant; KAW) 

has been proposed as an indicator for the VOCs susceptibility of being removed by biological 

systems, so that the biofiltration treatability limit would be for VOCs with a KAW < 10 [33]. 

Yet, we have previously shown that in scarcely irrigated biofilters packed with hydrophobic 

supports, VOCs with a very high KAW can still be removed from complex mixtures [34]. 

Sustained operations under such conditions requires the enrichment of xerophilic 

microorganisms that are able to thrive and biodegrade the adsorpted COVs. 
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The results from the present study with melanized fungi are very promising in that the balance 

between elimination of indoor VOCs and volatilization of metabolites was clearly in favor of 

the first (Table 4). Considering both elimination and generation, the fungal cultures reduced 

the total VOCs content by 96.1% (C. cladosporioides), 98.3% (C. psammophila), and 97.3% 

(N. acidophila). The very hydrophobic aliphatic hydrocarbons (KAW > 10) were effectively 

removed below the detection limit (0.1 µg·m-3; Table 2). The most likely explanation for 

these very high removal efficiencies is because of the adsorption of VOCs to the hydrophobic 

fungal wall. A comparative study between a number of melanized and hyaline fungal strains 

[35], showed that the highest hydrophobicity occurred in strains of C. cladosporioides and 

Cladosporium minourae. The second species has recently been reclassified as 

Cladophialophora minourae, within the order Chaeothyriales [36], and is a close relative of 

C. psammophila. Our results would also agree with previous observations in HVAC units of a 

multi-story office, in that colonization with Cladosporium spp. (along with Penicillium spp.) 

was related to less VOCs emissions, compared to other units with no fungal presence [27].  

Cell hydrophobicity might be an evolutionary trait of the black yeasts for scavenging traces of 

volatile substrates and survive on very little available organic carbon, thus explaining 

oligotrophy in several species in the group. Recent laboratory evidence based on fungal 

species in both Chaetothyriales and Capnodiales suggest that, besides a protective role, 

melanin might also act as an antenna pigment that captures high energy photons (from 

ultraviolet to gamma rays) and yields metabolic energy for growth [37]. The concurrence of 

such extraordinary physiological traits: xerotolerance, oligotrophy, radiotrophy, low 

emissions of volatiles, cell-wall hydrophobicity, and biodegradation capacity, makes black 

yeasts ideal candidates for the biofiltration of indoor air in CBLSS.  
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However, biosafety assurance is a key issue in the implementation of biological solutions for 

the treatment of indoor air. All strains tested in this study have been classified as BSL1, 

category that comprises well-characterized microbes which do not cause disease in healthy 

humans. Yet, there are some specific issues that must be considered when selecting a 

candidate species for application. The main concern with C. cladosporioides (Capnodiales) is 

its fast growth and profuse production of spores, which are prone to aerosolization. A 

vacuolar serine protease has been identified as a major allergen in this fungus, which might 

cause rhinitis and even severe asthma when spores are inhaled [38]. This fungus has 

sporadically been reported in cutaneous and subcutaneous infections, generally in 

immunocompromised individuals [17]. 

The biosafety of antropized environments regarding the presence of black yeasts from the 

Herpotrichiellaceae family (Chaetothyriales) is currently under discussion. Extremophilicity 

and utilization of toxic alkylbenzenes, but also the capacity to cause severe infections in 

otherwise healthy individuals appear to be common ecological traits in several species from 

this group [12]. Recent studies have demonstrated that herpotrichiellaceous black yeasts are 

more common in the domestic environment than previously thought [39]. Conversely to the 

countless number of C. cladosporioides strains that are available in public culture collections, 

to this day only one isolate of C. psammophila is known [29]. This fungus was isolated from a 

gasoline contaminated soil and has de capacity to grow on alkylbenzenes as sole carbon and 

energy sources, feature that appears to be shared by other related species in the genus 

Exophiala that are classified under BSL2 [40]. No direct evidence of alkylbenzene 

assimilation has been reported for the related and very dangerous BSL3 pathogenic 

Cladophialophora bantiana and Rhinocladiella mackenziei, known exclusively from clinical 

cases, but recent genomic evidence points to the existence of specific genes for the 
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assimilation of alkylbenzenes in the later species [41]. However, despite its phylogenetic 

proximity to C. bantiana, C. psammophila has proven to be non-pathogenic [29].  

While phylogeny and ecophysiology delimitations in the Herpotrichiellaceae are still in 

progress, the use of specialized and slow-growing fungi from the Capnodiales offers an 

alternative with minimum biohazard. Neohortaea acidophila is also known from a single 

isolate obtained from extremely acidic lignite and so it might display a highly specialized 

ecology [15]. It excretes and acidotoloerant laccase for the biodegradation of phenolic 

compounds and forms slimy non-sporulating yeast-like colonies under common culture 

conditions. Niche specialization, low growth rates under common culture conditions, and non-

sporulation might also prevent dispersion. Growth under acidic conditions might prevent 

microbial contamination with other species and favor the absorption of ammonia, a common 

inorganic indoor air contaminant. However, the related halophilic species Hortaea werneckii 

can grow in saturated NaCl solutions but it also causes tinea nigra, a rare superficial and non-

invasive skin infection [42]. 

4. CONCLUSIONS 

A total of 71 volatile chemicals (total concentration 1.4 mg·m-3) were identified and 

quantified above the detection limit (0.1 µg·m-3) in a model laboratory indoor air. Such 

complex VOCs profile contained several xenobiotic and biogenic compounds, and thus might 

act as a proxy indoor air for highly technified locked environments, such as those in 

prolonged space missions. The total VOCs content from this model indoor air was reduced by 

more than 96% when incubated in the headspace of confined pre-grown agar cultures of black 

yeasts, after 48 hours of exposure and in relation to the abiotic control. The hydrophobicity of 

the fungal cell wall is proposed as a major factor in the removal of VOCs from the gas phase. 

The three assayed species belonging to the orders Capnodiales and Chaetotyriales also 
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produced 42 putative volatile metabolites, which were rather species-specific. Most of these 

fungal metabolites were present at the low concentration range (<1 µg·m-3) and had a little 

quantitative impact on the final total VOCs concentration. The VOCs emission profile of C. 

cladosporioides (Capnodiales), a ubiquitous and well-known species often associated to the 

SBS, was consistent with previous literature reports. The other two selected species, C. 

psammophila (Chaetothyriales) and N. acidophila (Capnodiales) known from single 

isolations, display a rather specialized ecophysiology associated to the biodegradation of 

recalcitrant compounds with no history of clinical cases, and are characterized by slow-

growing yeast-like colonies in agar cultures. Therefore, these species might represent suitable 

biocatalysts for the treatment of indoor air polluted with VOCs. Further research is still 

needed on the phylogeny and ecophysiology of the black yeasts in order to guarantee the 

biosafety and scalability of biofiltration applications based on these fungi. 
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TABLES 

 

Table 1. Analytical parameters of the TD-GC-ToFMS method implemented in the present 

study. 

Unit Parameter Value Unit 

Thermal Desorption 

He flow 50 mL·min-1 

Desorption time 10 min 

Desorption temperature 300 ºC 

Desorption flow 50 mL·min-1 

Cold trap temperature 10 ºC 

Final cold trap temperature 320 ºC 

Trap hold 5 min 

Gas-Chromatographer 

Initial temperature 40 ºC 

Time 5 Min 

Rate 2 ºC·min-1 

Final temperature 45 ºC 

Time  48.5 Min 

Rate 5 ºC·min-1 

Final temperature 230 ºC 

Time 4 Min 

Mass Spectrometer 

He flow 1.6 mL·min-1 

Column type DB-624 (60 m; 250 µm; 1.4 µm)  

Filament 1.6 V 

m/z range 28-330 uma 

Transfer line temperature 250 ºC 

Ion Source temperature 230 ºC 
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Table 2. Quantification of VOCs detected after 48 hours of confined incubation of non-inoculated agar plates with nitrogen 

gas (Materials) and the tested indoor air (Indoor), as well as agar plate cultures of C. cladosporioides (Ccl), C. psammophila 

(Cps), and Neohortaea acidophila (Nac) with the indoor air. The air/water partition coefficient and environmental 

occurrence have also been indicated. 

Chemical family and compound CAS nr KAW
 a Occurrence b 

Concentration (µg·m-3) c 

Materials Indoor Ccl Cps Nac 

Alcohols 

Methanol 67-56-1 1.74E-04 Fm, Bm 4.8 4.1 1.4 0.5 7.4 

Ethanol 64-17-5 2.32E-04 Fm, Bm 19.4 151.3    

1-Propanol 71-23-8 3.08E-04 Fm, Bm 0.1     

1-Butanol 71-36-3 4.08E-04 SBS, Fm, Bm  10.0    

2-Butanol 78-92-2 4.08E-04 Fm, Bm  0.1    

2-Methyl-1-propanol 78-83-1 4.08E-04 Fm, Bm 0.1 0.8  1.8 0.2 

Propargyl alcohol 107-19-7 2.40E-05   0.3    

Aldehydes 

Acetaldehyde 75-07-0 2.77E-03 Fm, Bm  9.3 2.6 4.5 6.9 

2-Methylpropanal 78-84-2 4.89E-03 Fm, Bm 17.3 17.4    

Methacrolein 78-85-3 2.29E-03   5.3    

Propanal 123-38-6 3.68E-03 Fm, Bm 0.4     

2-Propenal 107-02-8 1.46E-03  0.1     

Butanal 123-72-8 4.89E-03 SBS, Fm 4.2 10.2    

3-Methylbutanal 590-86-3 6.49E-03 Fm, Bm 35.5 109.8    

2-Methylbutanal 96-17-3 6.49E-03 Fm, Bm  38.9    

Pentanal 110-62-3 6.49E-03 SBS, Fm, Bm 0.3 0.1    

Heptanal 111-71-7 1.14E-02 Fm, Bm 0.1     

Nonanal 124-19-6 2.02E-02 SBS, Fm, Bm 0.7 0.9    

Benzeneacetaldehyde 122-78-1 2.24E-04 Fm, Bm  0.8    

Carboxylic acids 

Acetic acid 79-20-9 2.24E-05 Fm 0.1     

Formic acid 107-31-3 3.07E-05  0.1     

Isovaleric acid 503-74-2 5.24E-05 Bm 0.1     

cis-3-Hexenyl benzoic acid 25152-85-6 5.15E-03   0.7   0.4 

Aliphatic hydrocarbons 

Isobutane 75-28-5 3.96E+01  5.6 2.3  0.2  

Butane 106-97-8 3.96E+01 Bm 1.2 2.6 0.3 0.7  

Propane 74-98-6 2.98E+01 Fm, Bm 1.4     

(E)-2-Butene 624-64-6 9.82E+00   0.1    
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2-Methyl-1-propene 115-11-7 9.82E+00   1.7    

2-Methyl-butane 78-78-4 5.26E+01   0.7    

3-Methyl-1-butyne 598-23-2 1.16E+00   0.1    

Pentane 109-66-0 5.26E+01 Fm  107.7    

n-Hexane 110-54-3 6.98E+01 SBS, Fm  12.5  2.1 0.5 

Heptane 142-82-5 9.27E+01 SBS, Fm, Bm  8.9    

Aromatic hydrocarbons 

Benzene 71-43-2 2.20E-01 SBS, Fm  2.1  4.8 5.1 

Toluene 108-88-3 2.43E-01 SBS, Fm, Bm  203.0    

Ethylbenzene 100-41-4 3.23E-01 SBS, Fm, Bm  3.0    

m-, p-Xylene 108-38-3/ 

106-42-3 

2.68E-01 SBS, Fm, Bm  3.4    

Styrene 100-42-5 1.13E-01 SBS, Fm, Bm  84.2    

Propylbenzene 103-65-1 4.28E-01 SBS  0.7    

1-Ethyl-3-methylbenzene 620-14-4 3.56E-01 Fm, Bm  1.2    

1,2,3-Trimethylbenzene 526-73-8 2.96E-01 Bm  0.2  0.4  

1-Ethyl-4-methylbenzene 622-96-8 3.56E-01   0.2    

(1-Methylpropyl)-benzene 135-98-8 5.69E-01   0.1    

1,2,4-Trimethylbenzene 95-63-6 2.96E-01 SBS, Fm, Bm  0.3    

1,3-Diethylbenzene 141-93-5 4.73E-01   0.6    

1-Ethenyl-2-methylbenzene 611-15-4 1.25E-01   0.6    

Butylbenzene 104-51-8 5.69E-01   0.3    

1,2-Diethylbenzene 135-01-3 4.73E-01   0.2    

1-Ethyl-2,3-dimethylbenzene 933-98-2 3.93E-01   0.8    

1,2,4,5-Tetramethylbenzene 95-93-2 3.27E-01   0.3    

2-Ethenyl-1,3-dimethylbenzene 2039-90-9 1.38E-01   0.6    

Cyclic hydrocarbons 

Cyclopropane 75-19-4 4.46E+00   0.8 0.1 0.1 0.5 

Cyclopentane 287-92-3 7.86E+00   0.7    

1,2,3,4-Tetrahydronaphthalene 119-64-2 2.08E-01 Bm  0.5    

1-Methyl-indan 767-58-8 2.08E-01   0.9    

Esters 

Methyl acetate 79-20-9 1.17E-03 Fm 0.1 0.1    

Ethyl acetate 141-78-6 9.52E-03 SBS, Fm, Bm 1.6 2.7    

Dibutyl phthalate 84-74-2 5.00E-05 Bm  0.3  0.3  

Ethers 

Dimethyl ether 115-10-6 3.52E-02 Fm, Bm 1.1 0.1    
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2-Methoxy-2-methylpropane 1634-04-4 8.25E-02   0.1    

2-Ethoxy-2-methylpropane 637-92-3 1.09E-01   2.7    

Ketones 

Acetone 67-64-1 2.03E-03 Fm, Bm 22.6 64.8    

Methyl ethyl ketone 78-93-3 2.69E-03 Fm, Bm 4.0 6.1    

Methyl isobutyl ketone 108-10-1 4.74E-03 Fm, Bm  0.1    

Furans 

Furan 110-00-9 2.20E-01 Fm, Bm 1.1 2.3    

2-Methylfuran 534-22-5 2.43E-01 Fm, Bm  0.2    

2-Ethyl-furan 3208-16-0 3.22E-01 Fm, Bm  0.2    

Organohalogen compounds 

Dichloromethane 75-09-2 3.74E-01  0.5 185.1    

Trichloromethane 67-66-3 1.32E-01 Fm, Bm 0.2 73.8    

Dichlorodifluoromethane 75-71-8 1.17E+01   0.2    

Bromodichloro-methane 75-27-4 4.31E-02   0.2    

Tetrachloroethylene 127-18-4 6.76E-01 SBS, Bm  232.9    

Benzoyl bromide 618-32-6 3.16E-03   8.7    

Nitrogen organic compounds 

Acetonitrile 75-05-8 1.25E-03 Fm, Bm  15.4    

Butyronitrile 109-74-0 2.20E-03  0.1     

Isobutyronitrile 78-82-0 2.20E-03   0.1    

2-Methylbutanenitrile 18936-17-9 2.92E-03  0.1     

Cycloserine 68-41-7 2.65E-10   0.5   0.3 

Organosulfur compounds  

Methanethiol 74-93-1 1.07E-01 Fm, Bm 0.1     

Carbonyl sulfide 463-58-1 2.01E+00   0.3 0.8   

Carbon disulfide 75-15-0 1.24E+00 Fm, Bm 0.9 14.5    

Dimethyl disulfide 624-92-0 4.96E-02 Fm, Bm 0.1 0.8   1.1 

Organosilicon compounds  

Hexamethylcyclotrisiloxane 541-05-9 2.60E+00 Bm 1.0     

Octamethylcyclotetrasiloxane 556-67-2 3.57E+00  0.4     

  Total concentration: 125.4 1413.5 5.2 15.4 22.4 

Number of compounds: 33 71 5 10 9 

a Obtained from the EPISuit™ interface (bond estimate). 

b SBS: priority pollutant in relation to the SBS, as listed in the ECA-IAC report [1]. Fm: fungal metabolite and Bm: bacterial 

metabolites according to the mVOC database [20]. 

c Quantification in relation to deuterated toluene, added as an external standard. 

   – : not reported or not detected. 
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Table 3. Quantification of fungal volatile metabolites detected after 48 hours of confined incubation of cultures 

of C. cladosporioides (Ccl), C. psammophila (Cps), and Neohortaea acidophila (Nac). The air/water partition 

coefficient and environmental occurrence have also been indicated. 

Chemical family and compound CAS nr KAW
 a Occurrence b 

Concentration (µg·m-3) c 

Ccl Cps Nac 

Alcohols 

2-Methyl-2-propanol 75-65-0 4.08E-04  0.2 0.2 0.2 

3-Methyl-1-butanol 123-51-3 5.42E-04 Fm, Bm  2.4  

(S)-2-Methyl-1-butanol 1565-80-6 5.42E-04   0.7  

Aldehydes 

Benzaldehyde 100-52-7 5.49E-04 SBS, Fm, Bm 0.5  0.5 

Decanal 112-31-2 2.68E-02 Fm, Bm   0.5 

Aliphatic hydrocarbons 

1-Pentene 109-67-1 1.10E+01 Fm  0.1 0.1 

2-Methyl-pentane 107-83-5 6.98E+01 SBS, Fm 0.2   

2-Methyl-1-pentene 763-29-1 1.73E+01    0.2 

1-Heptene 592-76-7 1.95E+01 Fm  0.4 0.8 

1-Octene 111-66-0 2.58E+01 Fm 15.5   

Nonane 111-84-2 1.63E+02 SBS, Fm, Bm   0.3 

2,2-Dimethyl-octane 15869-87-1 2.17E+02   0.1  

Aromatic hydrocarbons 

1,3,5-Trimethylbenzene 108-67-8 2.96E-01 Fm, Bm  0.1  

2-Ethyl-1,4-dimethylbenzene 1758-88-9 3.93E-01   0.2  

1-Ethyl-2,4-dimethylbenzene 874-41-9 3.93E-01 Fm  0.8  

1,2,3,4-tetramethylbenzene 488-23-3 3.27E-01   0.3  

Cyclic hydrocarbons 

Cyclopentene 142-29-0 2.04E+00 Bm 0.1   

Cyclooctene 931-88-4 4.77E+00 Fm 0.8   

Cyclofenchene 488-97-1 6.30E+00   0.3 0.3 

Esters 

Benzyl acetate 140-11-4 5.79E-04 Bm 0.4   

Methyl benzoylformate 15206-55-0 5.65E-06   0.3  

Diisobutyl phthalate 84-69-5 5.00E-05    0.3 

Ethers 

1,3-Dioxolane 646-06-0 9.12E-04  0.1   
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2-Methyl-1,3-dioxolane 497-26-7 1.21E-03  4.0 0.5  

Ketones 

Cyclohexanone 108-94-1 2.09E-03 SBS, Bm  0.2  

Acetophenone 98-86-2 4.01E-04 SBS, Fm, Bm   0.4 

1-Cyclopropyl-ethanone 765-43-5 1.57E-03   0.1  

Furans 

3-Methylfuran 930-27-8 2.43E-01 Fm, Bm 0.2   

Tetrahydrofuran 109-99-9 3.45E-03 SBS  0.2  

Organohalogen compounds 

Iodomethane 74-88-4 2.25E-01 Bm 24.6 0.1  

1,3,5-Trifluorobenzene 372-38-3 3.50E-01  0.1 0.1  

Nitrogen organic compounds 

Nitroethane 79-24-3 2.29E-03   0.4 0.3 

2-Methyl-2-oxazoline 1120-64-5 1.36E-03    0.1 

(Dimethylamino)acetone 15364-56-4 2.00E-05    10.1 

Methylamine 74-89-5 3.10E-04 Bm 0.6 1.1 0.7 

Organosulfur compounds 

Dimethyl sulfide 75-18-3 3.21E-02 Fm, Bm   0.9 

Terpenes 

ß-Pinene 127-91-3 6.59E+00 SBS, Fm, Bm 0.4   

D-Limonene 5989-27-5 1.55E+01 SBS 0.1   

o-Cymene 527-84-4 4.73E-01 Fm, Bm 0.4   

ß-Caryophyllene 87-44-5 2.82E+01 Fm 1.1   

Total concentration: 49.5 8.6 15.7 

Number of compounds: 17 20 16 

a Obtained from the EPISuit™ interface (bond estimate). 

b SBS: priority pollutant in relation to the SBS, as listed in the ECA-IAC report [1]. Fm: fungal metabolite and 

Bm: bacterial metabolites according to the mVOC database [20]. 

c Quantification in relation to deuterated toluene, added as an external standard. 

   – : not reported or not detected. 
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Table 4. Fungal growth kinetics and VOCs mass balance in PDA plate cultures of C. cladosporioides 

(Ccl), C. psammophila (Cps), and Neohortaea acidophila (Nac) after confined incubations with 2 L of a 

model laboratory indoor air during 48 hours. 

Fungal growth kinetics / VOCs mass balance Ccl Cps Nac 

Pre-growth incubation time (d) 11 21 28 

Radial growth rate (mm·d-1) 2.10 0.45 0.14 

Apparent fungal/air contact area during VOCs exposure (cm2) 50.2 25.0 4.6 

Indoor air VOCs mass (ng) 5.2 15.4 22.4 

Fungal volatile metabolites mass (ng) 49.5 8.6 15.7 

Total VOCs mass (ng) 54.7 24.0 38.1 

Indoor air VOCs removal efficiency (%) a 99.6 98.9 98.4 

Overall VOCs removal efficiency (%) a, b 96.1 98.3 97.3 

a In relation to the total VOCs mass of 2827 ng present in the indoor air of the abiotic control. 

b Including the de novo generated fungal metabolites. 
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