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Transcriptomics and proteomics reveal a
cooperation between interferon and T-helper
17 cells in neuromyelitis optica
Agnieshka M. Agasing1,2, Qi Wu3, Bhuwan Khatri4, Nadja Borisow5, Klemens Ruprecht 6,

Alexander Ulrich Brandt5,7, Saurabh Gawde1,2, Gaurav Kumar1, James L. Quinn1,2, Rose M. Ko1,

Yang Mao-Draayer 3, Christopher J. Lessard4, Friedemann Paul5,6 & Robert C. Axtell 1,2✉

Type I interferon (IFN-I) and T helper 17 (TH17) drive pathology in neuromyelitis optica

spectrum disorder (NMOSD) and in TH17-induced experimental autoimmune encephalo-

myelitis (TH17-EAE). This is paradoxical because the prevalent theory is that IFN-I inhibits

TH17 function. Here we report that a cascade involving IFN-I, IL-6 and B cells promotes TH17-

mediated neuro-autoimmunity. In NMOSD, elevated IFN-I signatures, IL-6 and IL-17 are

associated with severe disability. Furthermore, IL-6 and IL-17 levels are lower in patients on

anti-CD20 therapy. In mice, IFN-I elevates IL-6 and exacerbates TH17-EAE. Strikingly, IL-6

blockade attenuates disease only in mice treated with IFN-I. By contrast, B-cell-deficiency

attenuates TH17-EAE in the presence or absence of IFN-I treatment. Finally, IFN-I stimulates

B cells to produce IL-6 to drive pathogenic TH17 differentiation in vitro. Our data thus provide

an explanation for the paradox surrounding IFN-I and TH17 in neuro-autoimmunity, and may

have utility in predicting therapeutic response in NMOSD.
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Type I interferons (IFN-I), which include IFN-β and the
various IFN-α molecules, are a family of pleotropic cyto-
kines known to have antiviral, antitumor, and immune-

modulatory functions1,2. In autoimmunity and inflammation,
IFN-I possess both pro- and anti-inflammatory functions,
depending on the context of the pathology. IFN-β is a widely
prescribed treatment for multiple sclerosis (MS)3, yet, it con-
sistently worsens disease in patients with neuromyelitis optica
spectrum disorder (NMOSD)4,5. The molecular mechanism
behind the dual function of IFN-I in neuro-inflammatory diseases
is currently unknown.

NMOSD is an autoimmune inflammatory disorder of the
central nervous system primarily affecting the optic nerves and
the spinal cord. In all, 60–90% of NMOSD patients have circu-
lating IgG antibodies against the astrocyte water channel protein,
aquaporin 4 (AQP4)6. Recent studies have also reported that a
subgroup of NMOSD patients have autoantibodies against myelin
oligodendrocyte glycoprotein (MOG)7. Several studies have
shown that NMOSD patients have elevated TH17 signatures8–10

and have increased frequency of relapses when treated with IFN-
β4,5,8,11,12.

The animal models of autoimmune CNS inflammation, col-
lectively called experimental autoimmune encephalomyelitis
(EAE), can be initiated by the adoptive transfer of myelin-specific
TH17 or TH1 cells (TH17-EAE or TH1-EAE)9,13–15. We and
others have found that TH17-EAE and TH1-EAE have strikingly
different pathologies that reflect NMOSD and MS, respectively.
Like NMOSD, EAE induced with TH17 cells manifests with
severe optic neuritis, involves neutrophil infiltration into the CNS
and has elevated levels of IL-179,13. Even more striking are the
differential effects of IFN-β treatment on TH17-EAE and TH1-
EAE14. TH17-EAE mice had increased paralysis and increased
inflammatory cell infiltration in the spinal cords when treated
with IFN-β. Conversely, IFN-β treatment of TH1-EAE mice
significantly reduced paralysis and inflammation in the CNS.
These observations position TH17-EAE models as useful tools to
study how IFN-I and TH17 drive pathology in diseases such
as NMOSD.

The cooperative effects of TH17 cells and IFN-I in NMOSD
and TH17-EAE were unexpected observations. The prevailing
theory is that IFN-I inhibits the differentiation of TH17 cells and
it has been speculated that the efficacy of this therapy in MS is
achieved by inhibiting the function of the TH17 pathway16–18.
This paradox represents a major knowledge gap in the field of
neurology.

In this study, we perform biomarker studies in NMOSD
patients and experiments in mice with TH17-EAE to resolve this
paradox. Our data suggest the mechanism by which IFN-I con-
tributes to the pathogenicity of TH17 cells is through the
induction of IL-6 in B cells.

Results
RNA profiles stratify NMOSD based on IFN-I signatures. We
performed whole-blood RNASeq to determine the transcriptional
signatures that are associated with NMOSD disease compared
with healthy controls. In our cohort of NMOSD patients, 62% of
patients were on rituximab, 21% were on non-B-cell-depleting
therapy and 17% of patients were not on disease-modifying
therapy at blood draw (Supplementary Table 1). Rituximab-
treated patients would skew our analysis of differentially
expressed genes (DEGs) towards genes affected by B-cell deple-
tion and away from genes associated with NMOSD etiology. In
fact, when compared with healthy controls, we found that
Rituximab-treated NMOSD (NMO-Ritux) patients had many
more downregulated genes compared with NMOSD patients who

were not on Rituximab (NMO-Other Tx) or who were untreated
(NMO-Untreated) (Fig. 1a–c, Supplementary Data 1–3). In order
to determine gene expression signatures that are associated with
NMOSD regardless of the therapy, we determined which DEGs
were shared between NMO-Ritux, NMO-Other Tx, and NMO-
Untreated. We found that 27 DEGs were shared between NMO-
Ritux, NMO-Other Tx, and NMO-Untreated (Fig. 1d). Further-
more, using the Ingenuity Pathway Analysis software and the
INTERFEROME database19, we identified that 25 of the
27 shared DE genes were IFN-I-inducible genes (Fig. 1d). We
found no statistical difference between the transcriptomes of
NMOSD patients seropositive for AQP4 autoantibodies (AQP4-
IgG+) or MOG autoantibodies (MOG-IgG+) and both had ele-
vated expression of the IFN-I gene signatures compared with
healthy controls (Supplementary Fig. 1).

In lupus, there is an association between the expression of IFN-
I signature genes and variations in clinical features20. Therefore,
we sought to determine whether IFN-I signatures can distinguish
clinical differences in the NMOSD population. We found that
hierarchal clustering of the 25 IFN-I genes (identified above)
grouped NMOSD patients into two distinct subsets, patients with
high IFN-I signatures (IFN-high) and patients with low IFN-
signatures (IFN-low) (Fig. 1e). Patients on Rituximab, patients on
other treatments, and untreated patients were represented in
both, IFN-high and IFN-low groups (Fig. 1e).

Proteomic signatures in IFN-high and IFN-low NMOSD. We
next determined which inflammation-related protein bio-
markers were associated with the IFN-I transcriptional sig-
natures. We used a multiplex approach (OLINK) to assess the
levels of 91 inflammatory proteins in the IFN-high patients and
IFN-low patients compared with healthy volunteers. Using
multivariate analysis of variance, we found that 26 inflamma-
tory proteins were significantly elevated (with adjusted p values
of <0.05 and Log2FC > 0.5) in the IFN-high NMOSD patients
compared with healthy controls (Fig. 1f, Supplementary
Data 4). In comparison, only three proteins were elevated in the
IFN-low NMOSD patients compared with healthy controls
(Fig. 1f, Supplementary Data 4). As expected, we found that
chemokines induced by IFN-I (CXCL9, CXCL10, CXCL11,
MCP-3/CCL7) were elevated in the IFN-high patients but not
in the IFN-low patients. We also found that IL-17A, the pro-
totypic TH17 cytokine, and CCL20, a chemokine that promotes
TH17 trafficking into inflamed tissue, were elevated in the IFN-
high patients but not the IFN-low patients. Finally, we observed
that IL-6 was among the most elevated proteins in the IFN-high
patients (Fig. 1f). These data show that patients with high IFN-I
also display elevated levels of serum IL-6 and proteins asso-
ciated with the TH17 pathway.

Blood markers are associated with disability in NMOSD. Next,
we examined whether IFN-I transcriptional signatures were
associated with clinical features in NMOSD patients. Strikingly,
we found that IFN-high NMOSD patients had significantly higher
scores in the expanded disability status scale (EDSS) as compared
with IFN-low NMOSD patients (Fig. 1g). However, the two
groups did not differ in terms of relapse rates, age, and auto-
antibody status to AQP4 or MOG antigens (Fig. 1h–j). We also
assessed the utility of serum proteins to stratify patients based on
EDSS. Here, we found that MCP-3 and IL-6 were significantly
elevated in patients that had high EDSS scores compared with
patients with low EDSS scores (Fig. 1k, l).

In addition, we assessed whether specific effector T helper
subsets in PBMCs correlated with disability. For this, we obtained
a collection of PBMC samples from a cohort of untreated
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NMOSD patients (Supplementary Table 2) and determined
whether TH17 cells (CXCR3–CCR6+CD161+), TH17.1 cells
(CXCR3+CCR6+CD161+), or TH1 cells (CXCR3+CCR6−

CD161−) correlated with EDSS. We found no clear correlation
between TH17 and TH17.1 with EDSS (Fig. 2a, b). However,
combined frequencies of TH17 and TH17.1 showed a significant
positive correlation with EDSS (Fig. 2c). We did not observe a

positive correlation with EDSS and TH1 cells (Fig. 2d). In
addition, we found that the percentage of TH17 cells, but not
TH1 or TH17.1, was higher in the NMOSD patients compared to
healthy volunteers (Supplementary Fig. 1).

Taken together, these data provide evidence that transcrip-
tomic, proteomic, and Cell-Based-Assays can stratify NMOSD
patients based on disability. Furthermore, these data suggest that
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the cooperative effects of IFN-I, TH17, and IL-6 drive excessive
CNS tissue damage that result in severe disability in NMOSD.

Effects of B-cell-depleting therapy in NMOSD. A popular
therapy for NMOSD is B-cell depletion with anti-CD20 anti-
body21. In our cohort, 62% of the patients were on rituximab at
the time of serum sample collection (Supplementary Table 1). To
determine the transcriptional effects of rituximab treatment, we
compared DEGs in patients treated with rituximab with patients
not treated with rituximab (Supplementary Data 5). Since we
found no significant difference in the transcriptomes of NMO-
Untreated and NMO-Other Tx patients, we combined these
patients for this comparative analysis. Based on the expression of
DEGs, patients were clustered into two groups, which we defined
as B-cell-deficient and B-cell-sufficient (Fig. 3a). We found that
all patients in the B-cell-deficient group were on rituximab
therapy. We also found that 14 of the 18 patients in the B-cell-
sufficient group were not on rituximab or other B-cell-depleting
therapies (Fig. 3a). Based on similar expression patterns in the
population, the DEGs were divided into four gene clusters
(Fig. 3a, b). Genes in clusters 1–3, which were reduced in the B-
cell-deficient group, were determined to be predominantly
expressed in B cells using the cell-specific RNA database (http://
www.proteinatlas.org) (Fig. 3b)22. Conversely, genes elevated in
the B-cell-deficient patients in cluster 4 were expressed in cell
types other than B cells (Fig. 3b).

To determine whether B-cell depletion affects the IFN-I
signature of NMOSD patients, we assessed the distribution of

IFN-high and IFN-low NMOSD patients in the B-cell-deficient
and B-cell-sufficient groups (Fig. 3c). The percentage of IFN-high
and IFN-low NMOSD patients were similar in both B-cell-
deficient and B-cell-sufficient patients (Fig. 3c). In addition,
composite IFN scores, defined as an average read count of IFN-I
genes, were not different between B-cell-deficient and B-cell-
sufficient patients that were IFN-high or IFN-low (Fig. 3d). These
data indicate that B-cell depletion with rituximab treatment does
not impact IFN-I gene expression in NMOSD.

However, we did observe that serum protein profiles were
significantly different in B-cell-deficient patients compared with
B-cell-sufficient patients (Fig. 3e, Supplementary Data 6). Inter-
estingly, we found that serum levels of IL-6, IL-17, and MCP-3
are highest in the IFN-high B-cell-sufficient NMOSD patients and
were reduced in the B-cell-deficient IFN-high group (Fig. 3e,
Supplementary Data 6). We also compared levels of IL-6, IL-17
and MCP-3 in NMO-Untreated, NMO-Other Tx, NMO- Ritux,
and healthy controls. Serum IL-6 levels were elevated in NMO-
untreated and NMO-Other-Tx patients, but not in NMO-Ritux
patients; serum IL-17 was elevated in the NMO-Other Tx
patients; and MCP-3 was elevated in the NMO-Untreated
patients (Fig. 3f). These data suggest that B cells are a key cell
type in elevating IL-6, IL-17, and MCP-3 in NMOSD patients.

Recent studies have suggested that the efficacy of B-cell
depletion differs in AQP4-IgG+ and MOG-IgG+ NMOSD
patients23. In our cohort, we compared annualized relapse rates
in AQP4-IgG+ and MOG-IgG+ B cell-sufficient and B-cell-
deficient patients. In the B-cell-sufficient patients, we found no
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differences in relapse rates between AQP4-IgG+ and MOG-IgG+

patients (Fig. 4a). In the B-cell-deficient group, we found that
relapse rates were significantly higher in the MOG-IgG+ patients
compared with AQP4-IgG+ patients (Fig. 4b). We next assessed
serum IL-6 and MCP-3 levels in these patient groups and,
strikingly, we found that both IL-6 and MCP-3 were elevated in
the patients that were B-cell-sufficient and AQP4-IgG+ (Fig. 4c,
d).

IFN-I drives expression of IL-6 in human memory B cells. The
data above suggest that B cells are the major producers of IL-6 in
NMOSD. We next questioned whether IFN-I drives IL-6
expression in B cells. In B-cell-sufficient NMOSD, we found
significant positive correlations between IL-6 and IFN scores and
between IL-6 and CXCL11 protein (Fig. 5a). In contrast, no
correlation between IL-6 and IFN scores or between IL-6 and
CXCL11 was seen in B-cell-deficient NMOSD patients (Fig. 5a).
In healthy controls, no correlation was observed between IL-6
and IFN scores but there was a significant correlation between IL-
6 and CXCL11 protein (Fig. 5a). Together, these correlations
suggest that IL-6 is induced by IFN-I in B cells. To directly test
this hypothesis, we isolated CD27− naive and CD27+ memory B
cells from PBMCs of healthy donors. Both B-cell subsets were
activated through CD40 and B-cell receptor in the presence or
absence of IFN-β. We found that IFN-β stimulation did not alter
CD80 and CD86 expression in naive B cells but significantly
increased their expression in memory B cells (Fig. 5b, c). We also
found that IFN-β stimulation did not alter IL-6 expression in
naive B cells but significantly increased IL-6 expression in
memory B cells (Fig. 5b, c). Thus, these data from patient sera
and B-cell cultures from healthy donors provide strong evidence
that IFN-I drives memory B cells to produce high levels of IL-6 in
NMOSD.

IFN-I exacerbates disease and elevates IL-6 in TH17-EAE.
Animal models are necessary to identify disease mechanisms

which cannot be experimentally addressed in humans. We and
others have reported that TH17-EAE mimics several features of
NMOSD9,13,14. Like NMOSD, we previously identified that IFN-β
treatment is not an effective therapy for TH17-EAE and instead
exacerbates disease14. However, the mechanism by which this
occurred was not identified. Consistent with our previous
observations, IFN-β exacerbated paralysis (Fig. 6a) and increased
the infiltration of immune cells and demyelination in the spinal
cords of mice with TH17-EAE (Fig. 6b). Since IFN-I signatures
and serum IL-6 were associated with increased disease burden in
NMOSD patients (Fig. 1g, l), we tested if IFN-β treatment ele-
vated IL-6 in mice with TH17-EAE. We found that IFN-β
treatment significantly elevated serum levels of IL-6 (Fig. 6c). In
addition, we found that numbers of T helper cells were elevated in
the spinal cords of IFN-β treated mice (Fig. 6d). T-helper cells co-
expressing IL-17 and granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF) were also elevated in the CNS of TH17-EAE
mice treated with IFN-β (Fig. 6e). We also measured B cells in the
spinal cords of TH17-EAE mice treated with vehicle or IFN-β.
We found that IFN-β treatment did not alter the number of B
cells in the CNS of TH17-EAE mice (Fig. 6f). Our EAE data
indicate that treatment of TH17-induced disease with IFN-I is
associated with high levels of IL-6 and increased numbers of CNS
infiltrating, inflammatory TH17 cells.

Blocking IL-6 ameliorates IFN-I-treated TH17-EAE. IL-6 is a
potent inflammatory cytokine that is critical for the induction and
pathogenic function of TH17 cells24,25. However, it has been
reported that blocking IL-6 has little effect on TH17-EAE26. We
observed that IFN-β treatment induces higher levels of IL-6, so we
hypothesized that blocking IL-6 would ameliorate disease in
TH17-EAE mice treated with IFN-β. To address our hypothesis,
TH17-EAE mice were treated with IFN-β or vehicle as well as
with an antagonistic anti-IL-6R antibody or isotype control. We
found that treatment with anti-IL-6R did not ameliorate TH17-
EAE in vehicle-treated mice (Fig. 7a). In agreement with the
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clinical course of vehicle-treated mice, we found no significant
difference in the number of T helper cells secreting GM-CSF or
IL-17 (Fig. 7b) and no difference in the number of neutrophils or
inflammatory monocytes (Supplementary Fig. 3a) in the spinal
cords of vehicle-treated mice. This result is similar to previous
reports showing that inhibition of IL-6 does not effectively reduce
adoptive transfer EAE26,27. In contrast, we found that treatment
with both IFN-β and anti-IL-6R significantly attenuated TH17-
induced EAE (Fig. 7c). Reduced numbers of GM-CSF+ and IL-17
+ TH cells (Fig. 7d) and neutrophils (Supplementary Fig. 3b) was
observed in the CNS of mice treated with both IFN-β and anti-IL-
6R. These data thus show that IFN-I drives an inflammatory
function of IL-6 in TH17-EAE.

B-cell-deficiency reduces TH17-EAE regardless of IFN-I. Sev-
eral studies support the importance of B cells in driving TH17-

induced neuroinflammation28–30. However, how Type I IFN affects
the function of B cells during TH17-EAE is not known. To address
this question, we induced TH17-EAE in C57BL/6 mice and in B-
cell-deficient, µMT mice and then treated with either vehicle or
IFN-β. We found that vehicle-treated µMT mice had a significant
delay in the onset of TH17-EAE disease as compared to vehicle-
treated C57BL/6 mice (Fig. 8a). However, we found that at the
experimental endpoint, μMT mice had similar disease scores to
C57BL/6 mice. In fact, at disease endpoint, we found no significant
difference in the number of T helper cells secreting GM-CSF or IL-
17 in the spinal cords of vehicle-treated µMT and C57BL/6 mice
(Fig. 8b). IFN-β-treated µMT mice had significantly attenuated
disease severity throughout the entire course of disease in com-
parison with C57BL/6 mice (Fig. 8c). In agreement with the disease
course of IFN-β-treated mice, there was a significant reduction in
the number of T helper cells expressing GM-CSF or IL-17 in the
spinal cords of µMT mice (Fig. 8d). Together, these findings show
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that B cell-deficiency reduces TH17-EAE disease severity, regardless
of IFN-I treatment. Furthermore, our data also show that protection
of disease by B cell-deficiency is prolonged in IFN-I-treated mice
compared with vehicle-treated mice.

IFN-β stimulates B cells to drive pathogenic TH17 cells. Our
data demonstrate a link between IFN-I, B cells, and IL-6 to ele-
vated inflammatory TH17 responses in neuro-inflammation.
These observations led us to hypothesize that B cells are the
inflammatory mediator between IFN-I and TH17 during
inflammation. To test this hypothesis, we designed the following
culture experiment. We first stimulated B cells isolated from
healthy or EAE mice in the presence or absence of IFN-β, washed
the B cells of IFN-β, then co-cultured these B cells with CD4+

T cells from 2D2 mice31 in the presence of the myelin peptide
antigen, MOG35–55 (Supplementary Fig. 4a).

Prior to treatment with IFN-β, we observed that B cells isolated
from EAE mice had a more mature phenotype (IgMhiIgDhi and
IgMloIgDhi) compared with B cells from healthy mice (Supple-
mentary Fig. 4b). We also evaluated the expression of IFN-αβ
receptor (IFNAR) and found no difference in IFNAR expression
in B cells from healthy and EAE mice (Supplementary Fig. 4c).
We found that IFN-β directly increased the expression of CD80,
CD86, and MHCII on B cells isolated from both healthy and EAE
mice (Fig. 9a, b, Supplementary Fig. 4d), suggesting that IFN-β
enhances the antigen-presenting function of B cells. IFN-β
stimulation of B cells isolated from healthy mice had marginal
effects on IL-6, IL-12/IL-23p40, and IL-10 secretion (Fig. 9c).

Strikingly, IFN-β stimulation of B cells from EAE mice led to an
abundance in secretion of IL-6 and IL-12/IL-23p40 but not IL-10
(Fig. 9c). These data suggest that IFN-β has a direct effect on a
population of mature B cell that results in its skewing towards a
more inflammatory phenotype.

We next assessed for 2D2 T-helper cell proliferation and
cytokine production from the co-culture assay. We observed that
there was no significant effect on T-cell proliferation following
co-culture with IFN-β-stimulated B cells from healthy mice
(Fig. 9d, Supplementary Fig. 4e). In contrast, IFN-β stimulation of
EAE-derived B cells significantly increased T-cell proliferation
(Fig. 9e, Supplementary Fig. 4e). In addition, IFN-β-stimulated B
cells from healthy mice did not impact the secretion of IL-17,
GM-CSF and IL-10 by T helper cells (Fig. 9f). However, we found
enhanced secretion of GM-CSF and IL-17, but not IL-10, from T
helper cells co-cultured with IFN-β-stimulated B cells isolated
from EAE mice (Fig. 9f). These cell culture assays demonstrate
that IFN-β acts directly on antigen-experienced B cells to elevate
their expression of CD80, CD86, MHCII, IL-6, and IL-12/IL-23
p40, which in turn drive the proliferation of inflammatory T
helper cells that secrete elevated levels of IL-17 and GM-CSF.

Discussion
The complex interplay between IFN-I and TH17 cells plays a
significant role in the pathology of certain autoimmune diseases,
notably, MS, NMOSD, psoriasis, systemic lupus erythematosus
and ulcerative colitis32. The ability of IFN-I to drive or inhibit
inflammation relies on the disease context. IFN-β remains a
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widely prescribed treatment for MS. As a therapy, IFN-I reduces
relapse rates and lesion formation in MS patients and a pre-
dominant theory behind its efficacy is through the inhibition of
TH17 differentiation and function17. Paradoxically, strong evi-
dence from NMOSD and TH17-EAE indicate that IFN-I and
TH17 cells cooperate to drive disease progression10,33–35. Our
study now defines a mechanism by which IFN-I cooperates with
TH17 to drive severe disease in NMOSD.

We now show that IFN-I signatures stratify NMOSD patients
into two subsets: IFN-high & IFN-low. Our data indicate that
IFN-high NMOSD patients have elevations in IL-6 and cytokines
related to the TH17 pathway. Most strikingly, IFN-I signatures
and serum IL-6 stratify patients based on disability highlighting
their potential utility in clinical tests for the prognosis of
NMOSD. In addition, we found that patients treated with ritux-
imab had reduced IL-6 and IL-17 levels in IFN-high NMOSD
patients. Currently, the precise mechanisms through which
rituximab mediates its therapeutic effects is unclear, but these
data suggest that the therapeutic mechanism is through the
reduction of IL-6. This observation is congruent with previous
reports showing that reducing IL-6 expressing B cells is critical for
the therapeutic effects of rituximab in mice with EAE36. There-
fore, we speculate that IL-6 levels could be used to monitor
treatment response to B cell-depleting therapies in NMOSD. Our
data also indicate that IFN-I stimulation is responsible for the
elevated IL-6 production from memory B cells. In NMOSD, we
found a significant correlation between IFN-I signature

expression and IL-6 levels, and this correlation is absent in
patients treated with rituximab. B cell cultures also determined
that the human memory B cell population produces high levels of
IL-6 after IFN-I stimulation. In summary, these data suggest an
inflammatory cascade that is initiated by IFN-I to induce IL-6
from memory B cells, which then affects other inflammatory
pathways, such as, the generation of inflammatory TH17 cells and
autoantibody production.

Classification of MOG seropositive patients in the NMO spec-
trum is currently being re-evaluated37. In our cohort, we find that
both AQP4-IgG+ and MOG-IgG+ patients have elevated IFN-I
signatures compared to healthy controls. This suggests that IFN-I
pathway drives disease in both MOG-IgG+ and AQP4-IgG+

patients and perhaps therapeutic strategies that block IFN-I
would be effective in both patient subsets. Recent studies have
identified that MOG-IgG+ NMOSD patients do not respond
equally well to B cell depletion compared to AQP4-IgG+

patients23. In addition, another study suggested that IL-6R inhi-
bition might be more effective in AQP4-IgG+ patients than in
AQP4-IgG− patients38. Our data revealed that relapse rates of B
cell depleted MOG-IgG+ patients were significantly higher than
relapse rates of B cell depleted AQP4-IgG+ patients. We did not
observe differences in the transcriptomes or serum proteins in
B cell depleted AQP4-IgG+ or MOG-IgG+ patients. Interestingly,
in B cell-sufficient patients, we found elevated serum levels of IL-6
and the IFN-I chemokine, MCP-3 in AQP4-IgG+ but not MOG-
IgG+ patients. Although longitudinal studies are needed, we
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speculate that IFN-I and IL-6 pathways are involved in the
responsiveness to B cell depletion and IL-6R inhibition in AQP4-
IgG+ NMOSD patients.

The TH17-EAE model in C57BL/6 mice mimics several aspects
of NMOSD9,13, which demonstrates the usefulness of this animal
model for mechanistic studies of NMOSD. Here, we found that
the results from our TH17-EAE experiments were congruent with
the observations made with the NMOSD patient specimens. We
found that creating an IFN-I-high TH17-EAE model, with IFN-β
injections, resulted in increased serum IL-6, elevated TH17
responses and exacerbated paralysis in mice. Clinical trials
demonstrate that IL-6R inhibition and B cell depletion are pro-
mising therapies for NMOSD39. To address how IL-6 blockade
would affect IFN-β treatment of TH17-induced disease, TH17-
EAE mice were treated in vivo with or without IFN-β as well as
with anti-IL-6R or an isotype control. Surprisingly, IL-6 blockade
in TH17-EAE without IFN-β treatment did not ameliorate dis-
ease. A possible explanation for this observation is that IL-6 is
required for the generation of inflammatory TH17 cells and
blockade is no longer effective in the adoptive transfer model of
EAE where TH17 are already activated. In striking contrast, IL-6
blockade significantly attenuated TH17-EAE treated with IFN-β,
demonstrating that IL-6 is a critical inflammatory mediator
induced by IFN-I which exacerbates disease. Contrary to IL-6R
inhibition of TH17-EAE, we found that B cell-deficiency

attenuates disease in TH17-EAE regardless of IFN-β treatment.
These data suggest that B cells play a key role in initiating disease
in TH17-EAE mice, which is not mediated through a IFN-I/IL-6
cascade but likely through antigen presentation40,41. The differ-
ences in efficacy of IL-6 inhibition and B cell-deficiency in IFN-β
treated TH17-EAE may provide insights into how IFN-high and
IFN-low NMOSD patients will respond to these therapies. In this
study, we use the adoptive transfer of MOG-specific TH17 cells
to induce disease that reflects many aspects of NMOSD, especially
in regards to IFN-I. The development of a mouse model with
a neuro-autoimmune disease that targets AQP4 has been a
challenge. Recent developments have shown that T cells from
AQP4-deficient mice recognize distinct AQP4 epitopes and these
AQP4-specific T cells require TH17 programming to induce
severe optico-spinal inflammation42. These data confirm
the importance of the TH17 pathway in driving NMOSD-like
disease in mice. However, how IFN-I affects the AQP4-specific
animal model remains to be tested.

One predominant theory behind the efficacy of IFN-β is that this
therapy reduces disease by inhibiting TH17 differentiation and
function16–18. However, MS and NMOSD patients with high
TH17 signatures and mice with TH17-induced EAE have exacer-
bated disease when treated with IFN-β4,5,8,10,11,14,43. Our cell cul-
ture experiments provide key insights into how IFN-β paradoxically
increases TH17 pathology (depicted in Fig. 10). IFN-β indirectly
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enhances the pathological functions of TH17 cells by increasing
IL-6 and IL-12p40 (IL-23) secretion from activated/memory B cells.
Since auto-reactive B cells are integral in NMOSD and other
autoimmune diseases, it would be of interest to determine if IFN-I
would have different effects on self-reactive B cells and foreign-
reactive B cells in diseased and healthy individuals.

Altogether, this study provides novel insights into how IFN-I
drives pathology in diseases with elevated TH17 signatures, such as
NMOSD. Our data from patient sera and mice with TH17-EAE
indicate that IFN-I induces IL-6 to drive TH17 neuro-

inflammation. Our observations suggest that IFN-I alters both the
transcriptional and cytokine profiles towards an inflammatory
phenotype during TH17-mediated disease. IFN-I-driven TH17
pathogenicity occurs in an indirect manner and is partly attributed
to the effect of IFN-I on B cells. Overall, these findings broaden our
understanding of what biological pathways drive severe disease in
NMOSD and provide potential markers for the clinical manage-
ment of these patients. Further studies from larger cohorts are
underway to confirm the clinical relevance of IFN-I and TH17
biomarkers in this devastating neuro-inflammatory disease.

Methods
Clinical classification of NMOSD. We obtained serum and PAXGene tubes from
42 patients with NMOSD from the Charité-Universitätsmedizin Berlin (Supple-
mentary Table 1). Serum proteins were measured in all 42 patients. Thirty-eight of the
42 NMOSD RNA samples passed quality control and were analyzed by RNAseq. Of
the 42 patients, EDSS was available for 40 patients and relapse rates were available for
41 patients. We obtained PBMCs from seven NMOSD patients, six of which had
EDSS scores, from the University of Michigan (Supplementary Table 2). NMOSD
diagnosis was fulfilled using clinical criteria defined by Wingerchuk et al.44. All
NMOSD patients were tested for AQP4-IgG or MOG-IgG using cell-based assays
(CBA)45,46. No patient was on steroid therapy during blood draw. Serum and
PAXgene tubes were obtained from 18 healthy volunteers, 18 passed quality control
and were used in transcriptomic and proteomic analysis. PBMCs were obtained from
13 healthy volunteers and used for FACs analysis. Written informed consent was
obtained from individuals prior to participation in the study, which was approved by
the Charité Universitätsmedizin Berlin, University of Michigan and the Oklahoma
Medical Research Foundation’s Institutional Review Boards. Assays on the samples
were performed blinded from the clinical data.

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

Veh +IFN� Veh +IFN�

Healthy EAE

�CD40/IFN��CD40

C
D

19
-B

V
71

1
a

CD86-PE

13.5 49.6

CD80-FITC

6.16

103

103

–103

0

104

105

103

103

0

104

105

103

0

104

105

103

0

104

105

103

0

104

105

103

0

104

105

103

103

0

104

105

103

–103

0

104

105

103

–103

0

104

105

103

103

0

104

105

103

–103

0

104

105

103

103

0

104

105

104 1050 103 104 1050 103102 104 1050

103102 104 1050

103102 104 1050

103102 104 1050

103 104 1050

103 104 1050

103 104 1050 103 104 1050

103 104 1050

103 104 1050

26.6

27.0 90.8

8.67 16.3

b

CD86-PE

CD80-FITC

C
D

19
-V

71
1

H
ealthy

E
A

E

IL
-1

0 
(n

g 
m

l–1
)

c f

IL
-1

0 
(n

g 
m

l–1
)

Veh +IFN� Veh +IFN�

Healthy EAE

IL
-1

7A
 (

ng
 m

l–1
)

Veh +IFN� Veh +IFN�

Healthy EAE

0.00

0.07

0.14

0.21

0.28

G
M

-C
S

F
 (

ng
 m

l–1
)

Veh +IFN� Veh +IFN�

Healthy EAE

C
D

4-
P

E

Ki-67-FITC

C
D

4-
P

E

V
eh

IF
N

- �
V

eh
IF

N
- �

H
ealthy

E
A

E

B cells B cell/T cell Co-culture

d

e

26.4

17.5

39.1

58.3

Ki-67-FITC

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Healthy

Veh +IFN�

IL
-6

 (
ng

 m
l–1

)

Veh +IFN�

EAE

p = 0.0008

p = 0.0049

0.00

0.05

0.10

0.15

0.20

0.25

EAEHealthy

Veh +IFN� Veh +IFN�

IL
-1

2/
23

 p
40

 (
ng

 m
l–1

)

p < 0.0001

p < 0.0001

p = 0.0038

p = 0.0048

p = 0.0386

p = 0.0024

p = 0.0285

p = 0.0603

p = 0.0357

Fig. 9 Effect of IFN-β-stimulated B cells on TH17 cells. Purified B cells from spleens of healthy or EAE mice (n= 5) were stimulated with anti-CD40 ± IFN-
β for 3 days. Following stimulation, B cells were washed and co-cultured with CD4+ T cells from 2D2 mice in the presence of MOG35–55 antigen. Following
IFN-β stimulation, B-cell phenotype and cytokine production were assessed by a, b FACS and c ELISA, respectively. Stimulated B cells were washed and co-
cultured with antigen-specific 2D2 T-helper cells in the presence of MOG35–55 antigen. Representative flow cytometry plots of Ki-67 staining of 2D2 CD4+

T cells cultured with B cells from d healthy (n= 3) or e EAE mice (n= 3). f The cytokines IL-17A, GM-CSF, and IL-10 from the co-culture supernatants were
analyzed by ELISA (n= 3 per group). Statistical significance was determined using paired one-way ANOVA tests with multiple comparison corrections
using the Holm-Sidak’s method. P values < 0.05 were considered significant. Error bars indicate SEM. Source data are provided as a Source Data file.

IFN-I

IL-10

IL-12 p40

IL-6

GM-CSF
IL-17

Inflammatory TH17 cellTH17 cell
Naive
B cell

Activated
B cell

Fig. 10 IFN-I indirectly promotes TH17 pathogenicity. Data from Fig. 9
indicate that IFN-I stimulates the expression of IL-6 and IL-12p40 from
activated B cells which, in the context of auto-antigen, supports the
proliferation of inflammatory TH17 cells. In contrast, IFN-I stimulation of
naive B cells elevates IL-10 and not IL-6 and does not efficiently promote
inflammatory TH17 cell proliferation.
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Peripheral blood RNA transcript isolation. Whole blood was obtained by veni-
puncture into PAXGene tubes (BD company) and RNA was extracted with on-
column DNase digestion (Qiagen). Excess globin transcripts were removed using
GLOBINclear (Ambion). RNA concentrations were determined using a NanoDrop
spectrophotometer and RNA quality was assessed using the RNA 6000 Nano kit on
the Bioanalyzer 2100 (Agilent) with quality threshold RIN scores > 8.

RNASequencing and quality control measures. Starting from the raw FASTQ
files (2 × 100bp), the quality of raw sequence reads was assessed using FASTQC
v0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The reads
were then trimmed using Trimmomatic v0.3547 to remove low-quality reads. The
quality of the reads was then re-assessed using FastQC to confirm quality
improvements. All downstream analyses were based on the clean data with the
highest quality. The raw FASTQ files are aligned to the human reference genome
(GRCh38) using HISAT2 v2.0.448 and the aligned files were sorted to bam files
using SAMTOOLS v1.949. 1.5–2.0 × 108 mapped reads were obtained per sample.
The sequencing performance was assessed for total number of mapped reads, total
number of uniquely mapped reads, strandedness, genes, and transcripts detected,
ribosomal fraction known junction saturation, and reads distribution over known
gene models with RSeQC v3.0.050. Sample quality control was assessed using
ArrayQualityMetrics v3.14.051 in R. Out of a total of 61 samples, five samples were
considered poor-quality and removed from subsequent analyses based on: (a)
deviation of read counts, assigned to features from mean ± 2 SD of all samples, (b)
having strandedness issue detected by RSeQC, and (c) being detected as outliers by
ArrayQualityMetrics. Therefore, RNASeq data from 38 patients with NMOSD and
18 healthy controls were used for subsequent analyses. Transcript counts were
derived from the uniquely aligned unambiguous, strand-specific (reverse-stranded)
reads by Subread:featureCount v1.6.352, yielding 58,052 transcripts per sample. To
assess cell type-based RNA expression, we used a Genome-wide RNA database
(www.proteinatlas.org). IFN scores were calculated as a log2 average read count of
the 25 IFN genes identified as elevated in NMOSD (Fig. 1d).

Serum protein profiling of NMOSD and RRMS patients. Protein arrays were
performed on sera drawn during stable disease from 42 NMOSD patients and 18
healthy volunteers. Concentrations of 91 proteins were assessed by proximity
extension assay (Olink Bioscience, Sweden) using the Inflammation panel. The
assay uses oligonucleotide-labeled antibody pairs allowing for pair-wise binding to
target proteins. When antibody pairs bind target antigens, corresponding oligo-
nucleotides form an amplicon allowing for quantification of protein expression by
high-throughput real-time PCR. Data are presented as normalized protein
expression values, Olink Proteomics’ arbitrary unit on a log2 scale.

Flow cytometric analysis of T helper cells in NMOSD patients. Heparinized
blood was collected from each patient in BD VacutainerTM Sodium HeparinN green
top tubes. The green top tubes were mixed and centrifuged for isolation of PBMCs at
the cell layer. Plasma was then removed, aliquoted and stored at −80 °C. PBMCs were
stained with antibodies to mark T-helper cell subsets and analyzed by flow cytometry
using the BD FACSCantoII system and FlowJo. TH1 cells were defined as CD4+

CXCR3+CCR6−CD161−; TH17.1 were defined as CD4+CXCR3+CCR6+CD161+ and
TH17 cells were defined as CD4+CXCR3−CCR6+CD161+ (Supplementary Fig. 2).

In vitro IFN-β stimulation of human B cells. Fresh PBMCs from four healthy
donors were isolated using Ficoll-Paque Plus (GE Life Sciences). Memory and naïve B
cells were purified from PBMCs with human anti-CD27 conjugated beads (Miltenyi).
0.275 × 106 cells/ml of each B cell subset was stimulated with anti-human IgM/IgG (3
µg/ml Jackson Immunoresearch) and CD40L (1 µg/ml, R&D), with or without IFN-β
(1000U/ml, PBL) for 3 days. Human B cells were Fc blocked (BD Biosciences), stained
with viability dye (Tonbo) and fluorochrome-conjugated anti-human mAbs: CD19
(Biolegend), CD86 (Biolegend) and CD80 (Biolegend). For cytokine staining, B cells
were stimulated with PMA (Sigma-Aldrich), ionomycin (Sigma-Aldrich) and Bre-
feldin A (GolgiPlug, BD Bioscience) for 4 hours. Cells were stained with viability dye
(Tonbo), CD19 (eBioscience), and IL-6 (Biolegend).

Mice. Eight to ten-week-old female C57BL/6, µMT, and 2D2 Tg mice were pur-
chased from Jackson Laboratory, housed in the Oklahoma Medical Research
Foundation animal facility and treated in compliance with the
institutional IACUC.

TH17-EAE induction and treatment. Donor C57BL/6 mice were immunized with
150 μg MOG35–55 peptide (Genemed Synthesis Inc.) emulsified in CFA (5 mg/ml
heat-killed Mycobacterium tuberculosis), subcutaneously. This was followed by an
intraperitoneal (I.P.) injection of 250 ng of Bordetella pertussis toxin (Ptx) (List
Biological Laboratories Inc.) in PBS on day 0 and day 2 post immunization. Donor
mice were killed on day 10 post-immunization. Spleens and lymph nodes were
harvested, mechanically disrupted to obtain a single-cell suspension and 2.5 × 106

cells/ml were stimulated for 3 days with MOG35–55 (10 µg/ml), IL-23 (10 ng/ml;
R&D Systems), and anti-IFN-γ (10 µg/ml; eBioscience) in complete RPMI 1640

(Gibco). C57BL/6 or µMT recipient mice were I.P. injected with 15 × 106 cells and
treated with IFN-β (1000 U/ml; PBL) or PBS on days 0, 2, 4, 6, 8, and 10. Recipient
mice also received Ptx on day 0 and day 2 post transfer. Mice were monitored daily
for clinical scores. Paralysis was assessed using the following standard clinical score:
(0) healthy, (1) loss of tail tone, (2) partial hind-limb paralysis, (3) complete hind-
limb paralysis, (4) forelimb paralysis, and (5) moribund/dead. Transfer EAE mice
were killed on day 15 and spinal cords were fixed and sectioned for histological
analysis using H&E and Luxol fast blue staining. Serum was collected on day 2 post
transfer and IL-6 expression was assessed with an anti-mouse IL-6 ELISA kit
(eBioscience). For in vivo IL-6 blockade, mice were treated with an anti-IL-6R
antibody or IgG2b isotype control (8 mg/dose; BioXCell) on days 1, 6, and 11 post
transfer. Treatments were carried out in a blinded experiment. At disease endpoint,
CNS infiltration by immune cells was assessed by perfusing EAE mice with PBS
and collecting their brains and spinal cords. CNS tissue was homogenized through
mechanical disruption and homogenates were incubated with DNAse (5 µl/ml;
Sigma) and collagenase (4 mg/ml; Roche) at 37 °C for 1 hour. Cells were isolated
using a Percoll gradient and analyzed by FACS.

Flow cytometry of mouse cells. All cells were stained with Fixable Viability dye
(eBioscience, Biolegend) and treated with Fc block (eBioscience) prior to staining
with fluorochrome-conjugated anti-mouse mAbs. mAbs were from Biolegend (F4/
80, Ly6C, Ly6G, IgD, CD19, CD86, CD80, IFNAR, IgG1) and eBioscience (CD11b,
MHCII, IgM).

For intracellular cytokine staining, cells were stimulated with PMA (Sigma-
Aldrich), ionomycin (Sigma-Aldrich) and monensin (BD Biosciences) for 4 hours.
Cells were then stained with anti-mouse CD4 (eBioscience), fixed and
permeabilized with Cytofix/Cytoperm (BD Biosciences) and stained for IL-17
(BioLegend) and GM-CSF (Biolegend). All flow cytometric data were collected on
LSRII (BD Biosciences) and analyzed using FlowJo software (Tree Star Inc.).

For intranuclear staining of Ki-67, cells were stained with anti-mouse CD4
(BDBioscience), fixed and permeabilized using the Foxp3 Transcription Factor
Staining Buffer Set and stained for Ki-67 (Biolegend) to assess for cellular proliferation.

Mouse B cell and T-cell co-culture assays. Spleens from either healthy or EAE
mice (10 days after immunization with MOG35–55/CFA and PTX) were harvested
and processed. Purified B cells from splenocytes were obtained using negative
sorting with magnetic beads (Miltenyi). Isolated B cells (2.5 × 106 cells/ml) were
stimulated with anti-CD40 (1 µg/ml, eBioscience) with or without IFN-β (100 U/
ml) for 3 days. B cells from healthy or EAE mice stimulated with or without IFN-β
were then washed with PBS (1×) and co-cultured with magnetically sorted TH cells
(Miltenyi) from 2D2 mice. B and TH cells were co-cultured (2.5 × 106 cells/ml) at a
1:1 ratio with MOG35-55 antigen.

Statistical analysis. For RNA Sequencing, genes with less than one count per
million for at least in 1/3rd of samples were considered as non-expressed and not used
for differential expression analyses. This resulted in 40,796 transcripts being removed
out of a total of 58,052 transcripts, leaving 17,256 for further analysis. Differential
gene expression analyses were performed using DESeq2 v1.2453, fitting a negative
binomial generalized linear model to find significantly DEGs. Genes with a false
discovery rate of 0.05 and fold change ≥0.58 or ≤0.57 were considered differentially
expressed. All analyses were performed in the R Bioconductor suite.

Data were measurements from distinct biological replicate samples and are
presented as means ± s.e.m. and statistical significance was determined using
two-tailed Student’s t tests or Mann–Whitney tests. In the case of three or more
data sets, means were compared using two-way analysis of variance with
Bonferroni correction or Kruskal–Wallis with a Dunn’s multiple comparison
test. Differences were considered significant for P < 0.05. Statistical analyses were
performed using Prism 6 (GraphPad). All statistical tests were two-tailed.
Cluster analysis of NMOSD patients was performed using hierarchical clustering
with Gene Cluster software, where the log2 cytokine values were centered to the
mean, then ordered by complete linkage clustering54. The clusters were
presented as a heat map using TreeView54.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The consent form signed by the participants in this study does not permit public release
of potentially identifiable data, which includes the deposit of raw RNAsequencing data.
We have provided the read counts in source data file and the raw RNA-sequence data are
available from the authors. All other data are provided in the source data file. Source data
are provided with this paper.
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