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Abstract

The presence of batch effects is a well-known problem in experimental data analysis, and single-

cell RNA sequencing (scRNA-seq) is no exception. Large-scale scRNA-seq projects that generate

data from different laboratories and at different times are rife with batch effects that can fatally

compromise integration and interpretation of the data. In such cases, computational batch correction

is critical for eliminating uninteresting technical factors and obtaining valid biological conclusions.

However, existing methods assume that the composition of cell populations are either known or the

same across batches. Here, we present a new strategy for batch correction based on the detection

of mutual nearest neighbours in the high-dimensional expression space. Our approach does not rely

on pre-defined or equal population compositions across batches, only requiring that a subset of the

population be shared between batches. We demonstrate the superiority of our approach over existing

methods on a range of simulated and real scRNA-seq data sets. We also show how our method can

be applied to integrate scRNA-seq data from two separate studies of early embryonic development.

1

.CC-BY-NC 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted July 18, 2017. . https://doi.org/10.1101/165118doi: bioRxiv preprint 

https://doi.org/10.1101/165118
http://creativecommons.org/licenses/by-nc/4.0/


1 Introduction

The decreasing cost of single-cell RNA sequencing experiments (D. A. Jaitin et al. 2014; Klein et al.

2015; Macosko et al. 2015; Gierahn et al. 2017) has encouraged the establishment of large-scale projects

such as the Human Cell Atlas, involving the profiling of the transcriptomes of thousands to millions of

cells. For such large studies, logistical constraints inevitably dictate that data are generated separately

– i.e. at different times and with different operators. Moreover, data may also be generated in multiple

laboratories using different cell dissociation and handling protocols, library preparation technologies

and/or sequencing platforms. All of these factors result in batch effects (Hicks et al. 2017; Tung et al.

2017), where the expression of cells in one batch differ systematically from those in another batch due

to technical reasons. Such differences can mask the underlying biology or introduce spurious structure

in the data, and must be corrected prior to further analysis to avoid misleading conclusions.

The most popular existing methods for batch correction are based on linear regression. The limma

package provides the removeBatchEffect function (Ritchie et al. 2015), which fits a linear model con-

taining a blocking term for the batch structure to the expression values for each gene. Subsequently,

the coefficient for each blocking term is set to zero and the expression values are computed from the

remaining terms and residuals, yielding a new expression matrix without batch effects. The ComBat

method (Johnson, Li, and Rabinovic 2007) uses a similar strategy but performs an additional step

involving empirical Bayes shrinkage of the blocking coefficient estimates. This stabilizes the estimates

in the presence of limited replicates by sharing information across genes. Other methods such as RU-

Vseq (Risso et al. 2014) and svaseq (Leek 2014) are also frequently used for batch correction, but focus

primarily on identifying unknown factors of variation, e.g., due to unrecorded experimental differences

in cell processing. Once these factors are identified, their effects can be regressed out as described

previously.

Typical applications of existing batch correction methods to scRNA-seq data assume that the com-

position of the cell population within each batch is identical. Any systematic differences in the mean

gene expression between batches are attributed to technical differences that can be regressed out. How-

ever, in practice, population composition is usually not identical across batches in scRNA-seq studies.

Even assuming that the same cell types are present in each batch, the abundance of each cell type

in the data set can change depending upon subtle differences in cell culture or tissue extraction, dis-

sociation and sorting, etc. Consequently, the estimated coefficients for the batch blocking factors are

not purely technical, but contain a non-zero biological component due to differences in composition.

Batch correction based on these coefficients will thus yield inaccurate representations of the cellular
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expression profiles, potentially yielding worse results than if no correction was performed.

Here, we propose a new method for batch correction based on the presence of mutual nearest

neighbours (MNNs) between batches. MNNs are identified in the high-dimensional expression space

and represent pairs of cells of similar type or state in different batches. The difference in expression

values between cells in a MNN pair provides an estimate of the batch effect, which is made more

precise by averaging across many such pairs. A correction vector is obtained from the estimated batch

effect and applied to the expression values to perform batch correction. Our approach automatically

identifies overlaps in population composition between batches and uses only the overlapping subsets

for correction, thus avoiding the assumption of equal composition required by other methods. We

demonstrate that our approach outperforms existing methods on a range of simulated and real scRNA-

seq data sets. We also show how our method can be used to integrate scRNA-seq data sets from two

separate studies of mouse gastrulation, demonstrating its utility in a real-life setting.

2 Matching mutual nearest neighbours for batch correction

Our approach identifies cells between different experimental batches or replicates that have mutually

similar expression profiles. We infer that any differences between these cells in the high-dimensional

gene expression space are driven by batch effects and do not represent the underlying biology. Upon

correction, multiple batches can be “joined up” into a single data set (Figure 1a).

The first step of our method involves global scaling of the data using a cosine normalization. More

precisely, if Yx is the expression vector for cell x, we define the cosine normalization as:

Yx ←
Yx

||Yx||
(1)

Subsequently, we compute the Euclidean distance between the cosine-normalized expression profiles of

pairs of cells (i.e., the cosine distance; see Supplementary Note 1). Cosine distances are appealing as

they are scale-independent and robust to technical differences between batches (Bendall et al. 2014).

In contrast, Euclidean distances computed using the original expression values are affected by batch-

specific factors such as sequencing depth and capture efficiency.

The next step involves identification of mutual nearest neighbours. Consider a scRNA-seq

experiment consisting of two batches b = 1 and 2. For each cell i1 in batch 1, we find the k cells in

batch 2 with the smallest distances to i1, i.e., its k nearest neighbours in batch 2. We do the same

for each cell in batch 2 to find its k nearest neighbours in batch 1. If a pair of cells from each batch
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are contained in each other’s set of nearest neighbours, those cells are considered to be mutual nearest

neighbours (Figure 1b). We interpret these pairs as containing cells that belong to the same cell type

or state, despite being generated in different batches. This means that any systematic differences in

expression level between cells in MNN pairs must represent the batch effect.

Our use of MNN pairs involves three assumptions: (i) there is at least one cell population that

is present in both batches, (ii) the batch effect is orthogonal to the biological subspace, and (iii)

batch effects variation is much smaller than the biological effects variation between different cell types

(Supplementary Note 2). The biological subspace refers to a set of basis vectors, each of length equal

to the number of genes, which represent biological processes. For example, some of these vectors may

represent the cell cycle; some vectors may define expression profiles specific to each cell type; while

other vectors may represent differentiation or activation states. The true expression profile of each

cell can be expressed as a linear sum of these vectors. Meanwhile, the batch effect is represented by

a vector of length equal to the number of genes, which is added to the expression profile for each

cell in the same batch. Under our assumptions, it is straightforward to show that cells from the

same population in different batches will form MNN pairs (Supplementary Note 2). This can be more

intuitively understood by realizing that cells from the same population in different batches form parallel

hyperplanes with respect to each other (Figure 1b). We also note that the orthogonality assumption is

weak for a random one-dimensional batch effect vector in high-dimensional data, especially given that

local biological subspaces usually have much lower intrinsic dimensionality than the total number of

genes in the data set.

For each MNN pair, a pair-specific batch correction vector is computed as the vector difference

between the expression profiles of the paired cells. While a set of biologically relevant genes (e.g.

highly variable genes) can facilitate identification of MNNs, the calculation of batch vectors does not

need to be performed in the same space. Therefore, we can calculate the batch vectors for a different

set of inquiry genes and without the cosine normalisation such that the batch corrected output is on

log-transformed scale akin to the input data. A cell-specific batch correction vector is then calculated as

a weighted average of these pair-specific vectors, computed using a Gaussian kernel (see Supplementary

algorithm box 1). This approach stabilizes the correction for each cell and ensures that it changes

smoothly between adjacent cells in the high-dimensional expression space. We emphasize that this

correction is performed for all cells, regardless of whether or not they participate in a MNN pair.

This means that correction can be performed on all cells in each batch, even if they do not have a

corresponding cell type in the other batches.
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Figure 1: (a) A schematic representing how our MNN method exploits matching subpopulations of cells to learn
and apply batch effect correction across several batches. Dotted lines indicate corresponding subpopulations between
batches. (b) Identification of matching subpopulations based on mutual nearest neighbours. Cells in each batch are
distributed across a smooth manifold, the shape and location of which are specific to each batch (represented by the
blue and red lines). For each cell, the set of its nearest neighbours in the other batch are those where the smallest
possible radius circle, centered at that cell, lies on the tangent to the other batch manifold (indicated by the dashed
arc). Therefore, mutual nearest neighbours are those pairs of cells whose tangent regions are approximately parallel to
each other and can only be identified when the two batches are exactly or nearly parallel to each other. To illustrate,
for each of two cells W and Y in the red batch, the set of nearest neighbours in the blue batch are identified and
marked with a dashed arc. Cell W lies in the set of nearest neighbours of V, but the set of nearest neighbours of W
does not include V. This means that W and V are not mutual nearest neighbours. In contrast, cell Y is in the set of
nearest neighbours of cell Z and vice versa. Thus, Y and Z are mutual nearest neighbours of each other.

3 Results

3.1 MNN correction outperforms existing methods on simulated data

We generated simulated data for a simple scenario with two batches of cells, each consisting of vary-

ing proportions of three cell types (Methods 7.1). We applied each batch correction method – our

MNN-based correction method, limma and ComBat – to the simulated data, and evaluated the results

by inspection of t-stochastic nearest-neighbour embedding (t-SNE) plots (Maaten and Hinton 2008).

Proper removal of the batch effect should result in the formation of three clusters, one for each cell

type, where each cluster contains a mixture of cells from both batches. However, we only observed this

ideal result after MNN correction (Figure 2). Expression data that was uncorrected or corrected with

the other methods exhibited at least one cluster containing cells from only a single batch, indicating

that the batch effect was not fully removed. This is fully attributable to the differences in population

composition, as discussed earlier. Repeating the simulation with identical proportions of all cell types

5

.CC-BY-NC 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted July 18, 2017. . https://doi.org/10.1101/165118doi: bioRxiv preprint 

https://doi.org/10.1101/165118
http://creativecommons.org/licenses/by-nc/4.0/


in each batch yielded equivalent performance for all methods (Supplementary Figure 1).

(a) (b)

(c) (d)

Figure 2: t-SNE plots of simulated scRNA-seq data containing two batches of different cell types, (a) before and
after correction with (b) our MNN method, (c) limma or (d) ComBat. In this simulation, each batch (closed circle or
open triangle) contained different numbers of cells in each of three cell types (specified by colour).

3.2 MNN correction outperforms existing methods on haematopoietic data

To demonstrate the applicability of our method on real data, we considered two haematopietic data

sets generated in different laboratories using two different scRNA-seq protocols. In the first data

set, Nestorowa et al. 2016 used the SMART-seq2 protocol (Picelli et al. 2014) to profile single cells

from hematopoietic stem and progenitor cell (HSPC) populations in 12-week-old female mice. Using

marker expression profiles from fluorescence-activated cell sorting (FACS), known cell type labels were

retrospectively assigned to cells (see Methods Section 7.2). This included multipotent progenitors

(MPP), lymphoid-primed multipotent progenitors (LMPP), haematopoietic stem and progenitor cells

(HSP), haematopoietic stem cells (HSC), common myeloid progenitors (CMP), granulocyte-monocyte

progenitors (GMP), and megakaryocyte-erythrocyte progenitors (MEP). In the second data set, Paul

et al. 2015 used the MARS-seq protocol to assess single-cell heterogeneity in myeloid progenitors for 6-

to 8-week-old female mice. Again, indexed FACS was used to assign a cell type label (MEP, GMP or

CMP) to each cell.
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To assess performance, we performed t-SNE dimensionality reduction on the (log-scale) highly

variable genes of the uncorrected data and the corrected data obtained using each of the three methods

(MNN, limma and ComBat) (Figure 3). Only MNN correction was able to correctly merge the cell

types that were shared between batches, i.e., CMPs, MEPs and GMPs, while preserving the underlying

differentiation hierarchy (Figure 3e, Nestorowa et al. 2016; Paul et al. 2015). In contrast, the shared

cell types still clustered by batch after correction with limma or ComBat, indicating that the batch

effect had not been completely removed. This is attributable to the differences in cell type composition

between batches, consistent with the simulation results. To ensure that these results were not due

to an idiosyncrasy of the t-SNE method, we repeated our analysis with an alternative dimensionality

reduction approach (principal components analysis; PCA) using only the common cell types between

the two batches. MNN correction was still the most effective at removing the batch effect compared to

the other methods (Supplementary Figure 2).

HSPC

CMP
LMPP

MPP

LTHC

GMPMEP

(a)

(c)

(b)

(d)

(e)

MEP
GMP
CMP
HSPC
LHSC
MPP
LMPP
Unsorted

SMART-seq2 MARS-seq

Figure 3: t-SNE plots of scRNA-seq count data for cells from the haematopoietic lineage, prepared in two batches
using different technologies (SMART-seq2, closed circle; MARS-seq, open circle). Plots were generated (a) before
and after batch correction using (b) our MNN method, (c) limma or (d) ComBat. Cells are coloured according to
their annotated cell type. (e) The expected hierarchy of haematopoietic cell types.

3.3 MNN correction outperforms existing methods on a pancreas data set

We further tested the ability of our method to combine more complex data sets generated using a

variety of different methods. Here, we focused on the pancreas as it is a highly heterogeneous tissue
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with several well-defined cell types. We combined scRNA-seq data on human pancreas cells from four

different publicly available datasets (Grün et al. 2016; Muraro et al. 2016; Lawlor et al. 2017; Segerstolpe

et al. 2016), generated with two different scRNA-seq protocols (SMART-seq2 and CEL-seq/CEL-seq2).

Cell type labels were taken from the provided metadata, or derived by following the methodology

described in the original publication – see Methods Section 7.3 for further details of data preprocessing.

We applied MNN, limma and ComBat to the combined data set and examined the corrected data.

All three batch correction methods improve the grouping of cells by their cell type labels (Figure 4).

This is not surprising, as the discrepancy between cell type composition in the four batches is modest

(Supplementary Table 1). However, even a small difference in composition is sufficient to cause ductal

and acinar cells to be incorrectly separated following correction with limma or ComBat. By comparison,

both cell types are coherently grouped across batches following MNN correction, consistent with the

simulation results. To determine the effect of correction on the quality of cell type-based clustering, we

assessed cluster separateness by computing the average silhouette widths for each cell type (Fig. 4e, see

Methods Section 7.5.1). The average silhouette coefficient after MNN correction is significantly larger

than those in the uncorrected, limma- and ComBat-corrected data (pvalue < 0.05 Welch’s t-test). Thus,

MNN correction is able to reduce the between-batch variance within each cell type while preserving

differences between cell types. We also computed the entropy of mixing (see Methods Section 7.5.2) to

quantify the extent of intermingling of cells from different batches. We observed that batch corrected

data using MNN and ComBat show higher entropy of mixing compared to the uncorrected data and

batch corrected data using limma (Supplementary Figure 3). This indicates more effective removal of

the batch effect for this data set by MNN and ComBat.

3.3.1 Merging data sets with MNN correction improves differential expression analyses

Once batch correction is performed, the corrected expression values can be used in routine downstream

analyses such as clustering and differential gene expression identification. To demonstrate, we used

the MNN-corrected expression matrix to simultaneously cluster cells from all four pancreas data sets.

Our new cluster labels were in broad agreement with the previous cell type assignments based on the

individual batches (adjusted Rand index of 0.85). Importantly, we obtained clusters for all batches

in a single clustering step. This ensures that the cluster labels are directly comparable between cells

in different batches. In contrast, if clustering were performed separately in each batch, there is no

guarantee that a (weakly-separated) cluster detected in one batch has a direct counterpart in another

batch.

We used our new clusters to perform a differential expression (DE) analysis between the δ-islet
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cluster and the γ-islet cluster. Using cells from all batches, we detected 71 differentially expressed genes

at a false discovery rate (FDR) of 5% (Supplementary Figure 4b). This set included the marker genes

for the cells included in the analysis (PPY, SST ), genes involved in pancreatic islet cell development

(PAX6 ) and genes recently implicated in δ-islet function and type 2 diabetes development (CD9,

HADH ) (Lawlor et al. 2017). For comparison, we repeated the DE analysis using only cells from one

batch (Muraro et al. 2016). This yielded only 6 genes at a FDR of 5%, which is a subset of those

detected using all cells (Supplementary Figure 4c). Merging data sets is beneficial as it increases the

number of cells without extra experimental work; improves statistical power for downstream analyses

such as differential gene expression; and in doing so, provides additional biological insights. To this

end, our MNN approach is critical as it ensures that merging is performed in a coherent manner.

(b)

(e)(d)(c)

(a)

CEL-seq
Sm

art-seq2 (I)

CEL-seq2
Sm

art-seq2 (II)

Figure 4: t-SNE plots of four batches of pancreas cells assayed using two different platforms, CEL-seq and Smart-seq,
for (a) uncorrected (raw) data and the data corrected by (b) our MNN method, (c) limma and (d) ComBat. Different
cell types are represented by different colours, while different batches are represented by different point shapes. (e)
Boxplots of average silhouette coefficients for separatedness of cell type-based clusters. Whiskers extend to a maximum
of ± 1.5-fold of the interquartile range. Single points denote values outside this range.

3.4 MNN correction enables better interpretation of early mouse development

Single-cell approaches are particularly amenable to studying early development, where the small number

of cells in the developing embryo precludes the use of bulk strategies. One especially important stage
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of development is gastrulation, when the basic body plan is laid down and many of the cell types that

ultimately manifest themselves in the adult are established. Combining data sets generated by different

labs at different developmental stages provides a powerful strategy for studying this process.

To demonstrate this, we considered two datasets: one focusing on mouse data from embryonic days

E5.5, E6.5 and E6.75 (Mohammed et al. in press), and another focusing on mesodermal diversification

by probing cells from E6.5 and E7.0 (Scialdone et al. 2016, Methods Section 7.4). Examination of

a t-SNE plot generated from the uncorrected data demonstrated that cells clustered by experiment

(Fig. 5a), which is especially clear for the E6.5 epiblast cells. After applying our MNN approach, we

observed that cells were arranged chronologically from earliest developmental stage (E5.5) to the latest

stage (E7.0), consistent with the underlying biology. We overlaid the expression of the key mesodermal

regulator Brachyury (encoded by T ) onto the t-SNE plots. We observed sporadic expression across

disparate clusters in the uncorrected data, in contrast to its coherent expression at one end of the

chronological progression in the adjusted data. This coherent expression is consistent with the role

of Brachyury in early development, where it is up-regulated in cells ingressing through the primitive

streak as they commit to a mesodermal cell fate (Scialdone et al. 2016). Our ability to correctly recover

this pattern from the combined datasets clearly demonstrates the power of our approach to correct

for batch effects and thus increase power to recover true biological signals. Importantly, this coherent

expression pattern is also not captured by limma- or ComBat-based corrections (Supplementary Figure

5).
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(a)

(c)

(b)

(d)

High expression

Low expression

Figure 5: t-SNE plots of scRNA-seq data of mouse cells during gastrulation, prepared in two laboratories (Mohammed
et al. in press, triangles; Scialdone et al. 2016, circles). Plots were generated (a) before and (a) after MNN correction,
with cells coloured by the cell type (epi: epiblast; ps: primitive streak; blood.pr: blood precursor, meso.pr: mesoderm
precursor, post.mes: posterior mesoderm, epi-ps: epiblasts transitioning to the primitive streak). Cells were also
coloured based on their expression of Brachyury (T), (c) before and (d) after MNN correction.

4 Discussion

Proper removal of batch effects is critical for valid data analysis and interpretation of the results. This

is especially pertinent as the scale and scope of scRNA-seq experiments increase, exceeding the capacity

of data generation within a single batch. To answer the relevant biological questions, merging of data

from different batches – generated by different protocols, operators and/or platforms – is required.

However, for biological systems that are highly heterogeneous, it is likely that the composition of cell

types and states will change across batches, due to stochastic and uncontrollable biological variability.

Existing batch correction methods do not account for differences in cell composition between batches

and fail to fully remove the batch effect in such cases. This can lead to misleading conclusions whereby

batch-specific clusters are incorrectly interpreted as distinct cell types. We demonstrate that our MNN
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method is able to successfully remove the batch effect in the presence of differences in composition, using

both simulated data and real scRNA-seq data sets. We also show the benefits of merging batches to

obtain useful conclusions from a study of gastrulation that was split across several time-based batches.

One prerequisite for our MNN method is that each batch contains at least one shared cell pop-

ulation with another batch. This is necessary for the correct identification of MNN pairs between

batches. Batches without any shared structure are inherently difficult to correct, as the batch effects

are completely confounded with biological differences. Such cases provide a motivation for using “cell

controls”, i.e., an easily reproducible cell population of known composition (say, from a cell line) that

is spiked into each sample for the purpose of removing batch effects across samples.

A notable feature of our MNN correction method is that it adjusts for local variations in the batch

effects by using a Gaussian kernel. This means that our method can accommodate differences in the

size or direction of the batch effect between different cell subpopulations in the high-dimensional space.

Such differences are not easily handled by methods based on linear models (as this would require explicit

modelling of pre-defined differences between cells, which would defeat the purpose of using scRNA-seq

to study population heterogeneity in the first place). This also has some implications for the use of cell

controls. Our results for the pancreas data set suggest that considering cell-specific batch effects (the

default setting of MNN) rather than a globally constant batch effect for all cells, improves batch removal

results (see Supplementary Figure 6). An important consequence is that a single control population

might not suffice for accurate estimation of local batch effects. Rather, it may be necessary to use an

appropriately mixed population of cells to properly account for local variation.

Batch correction plays a critical role in the sensible interpretation of data from scRNA-seq studies.

This includes both small studies, where logistical constraints preclude the generation of data in a single

batch; as well as those involving international consortia such as the Human Cell Atlas, where the nature

of the project involves scRNA-seq data generation on a variety of related tissues at different times and

by multiple laboratories. Our MNN method provides a superior alternative to existing methods for

batch correction in the presence of compositional differences between batches. We anticipate that it

will improve the rigour of scRNA-seq data analysis and, thus, the quality of the biological conclusions.

5 Accession codes

The GEO accession numbers for the published data sets used in this manuscript are provided in the

Methods section. An open source software implementation of our MNN method is available as the

mnnCorrect function in version 1.4.1 of the scran package on Bioconductor (https://bioconductor.
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org/packages/scran). All code for producing results and figures in this manuscript are available on

Github (https://github.com/MarioniLab/MNN2017).
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7 Methods

7.1 Generation and analysis of simulated data

We considered a three-component Gaussian mixture model in two dimensions (to represent the low

dimensional biological subspace), where each mixture component represents a different simulated cell

type. Two data sets with N = 1000 cells were drawn with different mixing coefficients (0.2/0.3/0.5

for the first batch and 0.05/0.65/0.3 for the second batch) for the three cell types. We then projected

both data sets to G = 100 dimensions using the same random Gaussian matrix, thus simulating high-

dimensional gene expression. Batch effects were incorporated by generating a Gaussian random vector

for each data set and adding it to the expression profiles for all cells in that data set.

7.2 Processing and analysis of the haemaopoetic data sets

Gene expression counts generated by Nestorowa et al. 2016 on the SMART-seq2 platform (1920 cells in

total) were downloaded from the NCBI Gene Expression Omnibus (GEO) using the accession number

GSE81682. Expression counts generated by Paul et al. 2015 on the MARS-seq platform (10368 cells

in total) were obtained from NCBI GEO using the accession GSE72857. For batch correction, we

identified a set of 3937 common highly variable genes between the two data sets, by applying the

method described by Brennecke et al. 2013 to each data set. For both data sets, we performed library

size normalization before log-transforming the normalized expression values. A priori cell labels were

assigned to each cell based on the original publications.

7.3 Processing and analysis of the pancreas data sets

Raw data were obtained from NCBI GEO using the accession numbers GSE81076 (CEL-seq, Grün et al.

2016), GSE85241 (CEL-seq2, Muraro et al. 2016) and GSE86473 (SMART-seq2, Lawlor et al. 2017); or
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from ArrayExpress, using the accession E-MTAB-5061 (SMART-seq2, Segerstolpe et al. 2016). Count

matrices were used as provided by GEO or ArrayExpress, if available. For GSE86473, reads were

aligned to the hg38 build of the human genome using STAR version 2.4.2a (Dobin et al. 2013) with

default parameters, and assigned to Ensembl build 86 protein-coding genes using featureCounts version

1.4.6 (Liao, Smyth, and Shi 2014).

Quality control was performed on each data set independently to remove poor quality cells (>20

% of total counts from spike-in transcripts, <100,000 reads, >40% total counts from ribosomal RNA

genes). Sparse cells and genes (≥ 90% zero values) were also removed, leaving a total of 7236 cells

available across all 4 data sets. Normalization of cell-specific biases was performed for each data set

using the deconvolution method of Lun, Bach, and Marioni 2016. Counts were divided by size factors to

obtain normalised expression values that were log-transformed. Highly variable genes were identified in

each data set using the method of Brennecke et al. 2013. We took the intersection of the highly variable

genes across all four data sets, resulting in 2496 genes that were used in MNN analysis. The set of 6407

shared gene names among all data sets was used as the inquiry gene set for the batch correction.

Cell type labels for each data set were assigned based on the provided metadata (GSE86473, E-

MTAB-5061) or, if the labels were not provided, were inferred from the data using the method employed

in the original publication (GSE81076, GSE85241). After correcting for batch effects with each method,

we randomly subsampled 1000 cells from each batch prior to applying t-SNE, to overcome the O(n2)

computational cost involved in calculating all pairwise distances between cells.

To demonstrate the use of the corrected data in downstream analyses, we applied dimensionality

reduction (t-SNE) to the MNN-corrected expression matrix from the pooled pancreas data sets. We

performed k-means clustering on the first two t-SNE dimensions with the expectation of recovering 8

cell type clusters (see Figure 4 and Supplementary Figure 5). To assign specific cell type labels to these

clusters, we examined the expression of the marker genes that were used for cell type assignment in the

original publications. Specifically, GCG was used to mark α-islets, INS for β-islets, SST for δ-islets,

PPY for γ-islets, PRSS1 for acinar cells, KRT19 for ductal cells, COL1A1 for mesenchyme cells. Cells

in the cluster with the highest expression of each marker gene were assigned to the corresponding cell

type. All remaining cells were allocated into an additional “Unassigned/Unknown” cluster.

The differential expression analysis was performed using methods from the limma package (Ritchie

et al. 2015). We chose limma as it is fast and valid for large numbers of cells where the central limit

theorem is applicable. For the analysis on all cells, we parameterized the design matrix such that each

batch-cluster combination formed a separate group in a one-way layout. We used this design to fit

a linear model to the normalized log-expression values for each gene, and performed empirical Bayes

14

.CC-BY-NC 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted July 18, 2017. . https://doi.org/10.1101/165118doi: bioRxiv preprint 

https://doi.org/10.1101/165118
http://creativecommons.org/licenses/by-nc/4.0/


shrinkage to stabilize the sample variances. A moderated t-test was applied to compare the δ- and

γ-islet clusters across all batches. Specifically, we tested whether the average expression of each cluster

across all batches was equal. Differentially expressed genes between the two clusters were defined as

those detected at a FDR of 5%. For comparison, we repeated this analysis using only cells from one

batch (Muraro et al. 2016). Here, we used a design matrix with a one-way layout constructed from the

original cell type assignments. δ- and γ-islet cell types were directly compared within this batch.

7.4 Gastrulation data

Expression counts generated by Mohammed et al. in press on the Hi-seq platform were acquired from

the GEO accsession GSE100597. We selected the E5.5, E6.5 and E6.75 stages (466 cells in total) from

this data set. Expression counts generated by Scialdone et al. 2016 were downloaded from NCBI GEO

using the accession GSE74994. Here, we selected the E6.5 and E7.0 stages (615 cells in total). A set of

13464 matching gene names between the two data sets and the union of highly variable genes according

to Brennecke et al. 2013 (3589 genes in total) were used for batch correction. Counts were size-factor

normalized using the scran R package and log-transformed prior to downstream analysis.

7.5 Quantitative assessment of batch correction methods

7.5.1 Silhouette coefficient

To assess the separatedness of the cell types for the pancreas data, we computed the silhouette coefficient

using the kBET package in R. Here, each unique cell type label defines a cluster of cells. Let 〈a(i)〉 be

the average distance of cell i to all other cells within the same cluster as i and 〈b(i)〉 be the average

distance of cell i to all cells assigned to the neighbouring cluster, i.e., the cluster with the lowest average

distance to the cluster of i. The silhouette coefficient for cell i is defined as:

s(i) =


1− 〈a(i)〉

〈b(i)〉 , if 〈a(i)〉 < 〈b(i)〉

0 if 〈a(i)〉 = 〈b(i)〉

〈b(i)〉
〈a(i)〉 − 1, if 〈a(i)〉 > 〈b(i)〉

(2)

A larger s(i) implies that the cluster assignment for cell i is appropriate, i.e., it is close to other cells in

the same cluster yet distant from cells in other clusters. As dimension reduction by t-SNE facilitates

more reasonable clustering results compared to clustering in the high dimensions, we calculated the

silhouette coefficients using distance matrices computed from the t-SNE coordinates of each cell in the
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batch-corrected and the uncorrected data.

7.5.2 Entropy of batch mixing

Entropy of mixing (Brandani et al. 2013) for c different batches is defined as:

E =
c∑

i=1

xi log(xi) (3)

where xi is the proportion of cells in batch i such that
∑c

i=1 xi = 1. We assessed the total entropy of

batch mixing on the first two PCs of the batch-corrected and the uncorrected pancreas data sets, using

regional mixing entropies according to Equation 3 at the location of 100 randomly chosen cells from

all batches. The regional proportion of cells from each batch was defined from the set of 50 nearest

neighbours for each randomly chosen cell. The total mixing entropy was then calculated as the sum

of the regional entropies. We repeated this for 100 iterations with different randomly chosen cells to

generate boxplots of the total entropy (Supplementary Figures 3e and 4f).
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