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Abstrak 

Acute Myeloid Leukimia (AML) merupakan salah satu jenis penyakit kanker yang 

menyerang sel darah putih jenis myeloid. Subtipe AML M1, M2, dan M3 dipengaruhi oleh tipe 

sel yang sama yaitu myeloblast, sehingga untuk klasifikasi diperlukan analisis yang lebih rinci. 

Metode klasifikasi yang digunakan adalah Momentum Backpropagation. Dalam penerapannya, 

pemilihan arsitektur, learning rate, dan momentum yang optimal masih dilakukan dengan cara 

random trial. Hal inilah yang menjadi salah satu kekurangan Momentum Backpropagation. 

Penelitian ini menggunakan algoritma genetika (GA) sebagai metode optimasi untuk mendapat 

arsitektur, learning rate, dan momentum terbaik dari JST. Algoritma genetika adalah salah satu 

teknik optimasi yang meniru proses evolusi biologi. 

 Data set yang digunakan dalam penelitian ini adalah data fitur numerik hasil dari 

segmentasi citra sel darah putih yang diambil dari penelitian sebelumnya yang dilakukan oleh 

Nurcahya Pradana Taufik Prakisya. Berdasarkan data tersebut dilakukan proses evaluasi 

terhadap pemilihan parameter Momentum Backpropagation random trial dengan algoritma 

Momentum Backpropagation dengan Algoritma Genetika. Selanjutnya dilakukan perbandingan 

yang mampu memberikan hasil yang lebih akurat dengan data yang digunakan dalam 

penelitian ini.  

Hasil penelitian menunjukkan bahwa pelatihan dan pengujian dengan optimasi 

algoritma genetika terhadap parameter JST menghasilkan rata-rata akurasi memorisasi 

sebesar 83,38% dan akurasi validasi 94,3%. Sedangkan pelatihan dan pengujian dengan 

momentum backpropagation random trial menghasilkan rata-rata akurasi memorisasi 76,09% 

dan akurasi validasi 88,22%. 
 

Kata kunci— Acute Myeloid Leukimia, Jaringan Syaraf Tiruan, Momentum Backpropagation, 

Algoritma Genetika 
 

Abstract 

 Acute Myeloid Leukimia (AML) is a type of cancer which attacks white blood cells 

from myeloid. AML subtypes M1, M2, and M3 are affected by the same type of cells called 

myeloblasts, so it needs more detailed analysis to classify.Momentum Backpropagation  is used 

to classified. In its application, optimal selection of architecture, learning rate, and momentum 

is still done by random trial. This is one of the disadvantage of Momentum Backpropagation. 

This study uses a genetic algorithm (GA) as an optimization method to get the best architecture, 

learning rate, and momentum of artificial neural network. Genetic algorithms are one of the 

optimization techniques that emulate the process of biological evolution. 

The dataset used in this study is numerical feature data resulting from the segmentation 

of white blood cell images taken from previous studies which has been done by Nurcahya 

Pradana Taufik Prakisya. Based on these data, an evaluation of the Momentum 

Backpropagation process was conducted the selection parameter in a random trial with the 

genetic algorithm. Furthermore, the comparison of accuracy values was carried out as an 
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alternative to the ANN learning method that was able to provide more accurate values with the 

data used in this study.  

The results showed that training and testing with genetic algorithm optimization of 

ANN parameters resulted in an average memorization accuracy of 83.38% and validation 

accuracy of 94.3%. Whereas in other ways, training and testing with momentum 

backpropagation random trial resulted in an average memorization accuracy of 76.09% and 

validation accuracy of 88.22%. 
 

Keywords— Acute Myeloid Leukimia (AML), Neural Network, Momentum Backpropagation, 

Genetic Algorithm 

 

 

1. INTRODUCTION 

 

Acute myeloid leukimia (AML) is characterized by an increase in the number of 

myeloid cells in the marrow and an arrest in their maturation, frequently resulting in 

hematopoietic insufficiency (granulocytopenia, thrombocytopenia, or anemia), with or without 

leukocytosis[1]. Five-year survival rates during this period were less than 15 percent. Over the 

past decade, refinements in the diagnosis of subtypes of AML and advances in therapeutic 

approaches have improved the outlook for patients with AML. Despite these improvements, 

however, the survival rate among patients who are less than 65 years of age is only 40 percent. 

The primary reason for the outbreak of this cancer is still a mystery. Moreover, weakness, fever, 

tiredness or pain in joints and/or bones are also symptoms associated with AML just like other 

common ailments. Since the cancer is acute, it is even more important to detect it while it is in 

its primary stages of growing. Thus, it is very important to have a system that can detect AML 

accurately[2]. 

Artificial Neural Network (ANN) provide main features, such as : flexibility, 

competence, and capability to simplify and solve problems in pattern classification, function 

approximation, pattern matching and associative memories[3]. ANN has the aptitude for 

random nonlinear function approximation and information processing which other methods does 

not have. Different techniques are used in the past for optimal network performance for training 

ANNs such as backpropagation neural network (BPNN) algorithm. However, the BPNN 

algorithm suffers from two major drawbcaks: low convergance rate and instability. The 

drawbacks are caused by a risk of being trapped in a local minimum, and possibility of 

overshooting the minimum of the error. Another weakness found that is in the application of 

high levels of difficulty and complex combinations of the given criteria, namely learning speed, 

size, generalization ability, and resistance to data disturbances and increasing size and 

complexity, making artificial neural networks trapped in local optimal[4]. 

The combination of architectural parameters, initial weights, and initial biases greatly 

determines the learning ability of artificial neural networks [5]. Predictions generated by ANN 

so far there are no standard rules regarding how many optimal hidden layers. Each case 

certainly has a different number of hidden layers that will be used to get the optimal solution. In 

addition to some of the parameters previously mentioned, an increase in the value of learning 

rate can cause an increase in the speed of training in reaching the point of convergence but can 

also reduce the value of predictive analysis, especially in the value of precision in each class. 

The trial and error method is usually used in finding the highest parameter values used in 

learning ANN to get the highest accuracy, precision, sensitivity, and specificity[6]. 

Evolutionary computation is often used to train the parameter of neural network. In 

recent years, many improved learning algorithms have been proposed to overcome the weakness 

of gradient-based techniques. Genetic algorithms are widely used for optimization problems in 

artificial neural networks, for example research related to the diagnosis of breast cancer using 
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genetic algorithms[7].  The same thing was done in detecting skin cancer. The combination of 

genetic algorithms and artificial neural networks can also provide better accuracy results than 

the methods used previously[8].  

Genetic algorithms can be hybridized with other algorithms. For example, gradient-

based methods can be used to enhance the performance of genetic algorithms. The global search 

capability of genetic algoithms is used to ensure a high probability of finding global optimality, 

whereas the derivatives or local information can be used to speed up local search. For this 

approach, genetic algorithms can be combined with various other algorithms to use the 

advantage of both algorithms[9]. 

2. METHODS 

In this section, the proposed method is explained in detail. This Includes data 

descriptions, preprocessing of data, and methods in classifying subtype cells myeloblast, 

promyelocyte, monoblast, and support cell by using hybrid genetic algorithms backpropagation. 

2.1 Subtype cells AML (Myeloblast, Promyelosit, Monoblast, and Support) 

Acute Myeloid Leukemia (AML) is a type of cancer that develops rapidly which attacks 

blood cells and spinal cord. The method often used in AML classification was developed by 

French-American-British (FAB), which classifies AML nine subtypes, namely M0, M1, M2, 

M3, M4, M4Eo, M5, M6, M7 [1]. The characteristic of each cell can be shown in Table I. 
 

Table I. Cell Characteristics 
Subtype General Name 

(% case) 

Description 

M1 Acute myeloblastic 

leukimia without 

maturation (15-

20%) 

Auer-Rods that are seen 

in the indentation of the 

nucleus, 

morphologically are still 

undifferentiated 

M2 Acute myeloblastic 

leukimia with 

maturation (25-

30%) 

There are blast cells with 

clear basophilic 

cytoplasm with pale 

perinucleus (Golgi 

zone), sometimes 

translocation can be seen 

M3 Acute 

promyelocytic 

leukimia (5-10%) 

There is an atypical 

granular promyelocyte 

with cytoplasm filled 

with Auer-rods 

2.2 Data Description  

Sources of data in this study using research data on previous researchers [10]. The data 

used is in the form of discrete data from segmented image features. The data used in this study 

has six features consisting of area, edge area or perimeter, roundness, nucleus ratio, mean, and 

standard deviation.  

Table II. Information of these datasets 
Subtype Cells  

Total Myeloblast Promyelosit Monoblast Support 

201 6 0 17 224 

161 20 19 25 225 

17 101 10 157 285 

379 127 29 199 734 
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2.3 Preprocessing Data (Data Normalization) 

The classification data used in this study is numerical data consisting of six feature 

parameters, namely area area, edge area, cell roundness, nucleus ratio, mean, and standard 

deviation. The data that has been obtained then passes the normalization process, this is 

necessary because the extraction results have a variety of values. The range of feature values 

can be described : area and edge area have a range of integer (integer) values, The roundness 

and nucleus ratio has a range of real number values between 0 to 1, mean and standard 

deviations are real numbers with a range of values ranging from - to 255. All feature data will 

be normalized, before entering the training process, use (1) 

 

    
       

         
      (1) 

where: 

   = The value to-i before normalized 

  
  = The value to-i after normalized  

     = The minimum value of the data 
     = The maximum value of the data 

2.4 Backpropagation 

 The very general nature of backpropagation training method means that a 

backpropagation net (a multilayer, feedforward net trained by backpropagation) can be used to 

solve problems in many areas[11]. In tis study Backpropagation model can be grouped into 

three layers, namely, input layer, hidden layer and output layer, Fig 1 represents the 

architecture. 

 
Figure 1 Represents the architecture  

 

ANN modeling is divided into two stages (i.e. training and testing). The first part of the 

modeling is the training stage in which formulation of the initial structure of ANN is executed. 

Subsequently, validation is stage to ensure teh accuracy of the final model. In addition, the 

datasets are distributed using k-fold cross validation, k=3. 

2.5 Genetic Algorithm 

There are many advantages of genetic algorithms over traditional optimization 

algorithms[9]. GA is a method for solving both constrained and unconstrained optimization 

problems. The key concept of GA mechanism bases on natural selection, the process that drives 

biological evolution.  The method begins with a set of individuals, called an initial population. 

GA repeatedly modifies a population of individual solutions. At each generation, GA selects 

individuals from the current population to be parents and uses them to produce the children for 

the next generation. Over successive generation, the population evolves to an optimal solution. 
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2.5.1 Initialization 

 Populations contain a group of individuals as a solution to the problems represented on 

chromosomes. Each chromosome contains genes which are information from individuals. The 

length of the chromosome is designed not to be fixed because the determination of the search 

area for the solution are learning rate, momentum, the number of hidden layers and the number 

of neurons. The chromosome representation in this study uses a real number encoding 

representation scheme where each hyperparameter in ANN: learning rate, momentum, the 

number of hidden layers, and the number of neurons in each hidden layer into genes. 

 
Figure 2. Structure of GA Chromosomes 

 

The individual shown in Figure 2, an individual will have a hidden layer structure of 1 

to 3 with neurons in each layer having a different number with a range of 0 to 100 units. 

Chromosomes will be divided into three parts, 1 gene for learning rate, 1 gene for momentum, 

and 1-3 non-fix genes that indicate the number of neuron in each hidden layer. In the third part 

of the chromosome the denormalization process will be carried out to get the number of neurons 

in each hidden layer. Calculation of denormalization on chromosome part 3 can use the formula 

(2). 
                   (2) 

where : 

    = normalization data  

     = Chromosomes i 

 

2.5.2 Fitness Function or Evaluation Function 

The objective function of genetic algorithm in this study is to minimize errors. Fitness 

values state how an individual can be the solution of the problem that is defined. This fitness 

function can be used to see which individual is producing the smallest error value. Fitness 

function calculations can be obtained from the average root value of errors in the system or 

commonly called MSE (Mean Square Error). Optimal value is obtained by getting the smallest 

MSE value so that the greater the value of fitness. For optimal value problems, the fitness 

function shown (3). 

Fitness = 
 

   
      (3) 

 

Based on the results of the fitness function: learning rate, momentum, the number of 

hidden layers, and the number of neurons in each hidden layer will be obtained that corresponds 

to the individual from the calculation process. 

In our framework based on GA, we have employed the following algorithm/methods 

Roulette Wheel Selection, Whole Arithmatic Crossover, flip mutation and Elitism. 

 

2.5.3 Termination criteria 

 In this enhanced GA Backpropagation approach, the learning /evolutionary process is 

terminated, if it meets the condition that number of fitness evaluation reaches its maximum 

count. 

 

2.6  Process 

In this study will be constructed model of architecture based on these data, an 

evaluation of the Momentum Backpropagation process was conducted the selection of a random 
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trial parameter  with the genetic algorithm. Genetic algorithm method used to analyze and 

classify myeloblast, promyelocyte, monoblast, and support cell to determine the number of 

hidden layers, number of neurons, learning rate, and momentum in backpropagation neural 

networks. The expected output is to get the best-classified result value with the smallest MSE 

value. The best-classified value results can be obtained by testing the amount of data, as well as 

testing on the genetic parameters: population size, crossover probability, and mutation 

probability. 

 
Figure 3 Flowchart diagram for Myeloblast, Promyelosit, Monoblast, and Support  with Genetic 

Algorithm 

The first step is to specify the input data to be used, then preprocessing the data using 

the Min-Max (0 – 1) normalization. Training data and normalised test data for easy calculation. 

The next step is to determine the type of kernel and the value of the parameters to be used, then 

the process of initializing parameters the user is given the choice to determine the architecture 

manually or with genetic algorithms. This process is the focus of research where the results of 

these two methods will be compared to be able to see the difference in terms of accuracy with 

the aim of seeing whether this method can provide better learning ability than standard methods 

without GA modification. After sequential process of selecting parameters with GA, population 

initialization is done by arousing individuals with real representation chromosomes. After that, 

the calculation of fitness values by looking at the accuracy of the training process ANN which 
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represents each individual in the population that has been raised. Individuals who have met 

maximum epoch will be stored for later use in training data that will be compared with 

momentum backpropagation with the generation of parameters in a random trial without GA. 

The process of loading test data, entering testing data that will be used in the testing process. 

Broadly, the system design plot is depicted in the flowchart in Figure 3. 

 

 

3. RESULTS AND DISCUSSION 

The results are derived from experiments that have been performed on each genetic 

parameters. The test parameter is attempted based on the constraints of the parameter value that 

has been defined. Based on this test, there will be a pair of the best parameter values of each 

fitness based on the smallest MSE value. There are several tests conducted on the system 

including testing the learning process of genetic algorithms which includes the influence of 

genetic parameters on fitness values and comparative analyzes with backpropagation 

momentum without GA of the resulting accuracy. 

3.1  The influence of genetic parameters on fitness values 

(a)  
 

 

 

 

 

 

 

 

 

 

 

(b) 
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Figure 4  Effect of parameter changes (a) Popsize; (b) Crossover Probabilitiy; (c) Mutation 
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Figure 4 (a) is a plot test result of popsize population size on the system on its fitness 

value. The first experiment was started by taking population size = 10, Pc = 0.5, and Pm = 0.01. 

The next experiment is by increasing the population size but the other parameter values are 

fixed.. In this test, the best fitness value 62.5 which can be achieved in experiments with a 

population size of 80. Figure 4 (b) is a plot graph of the effect of crossover probability change. 

As seen in the test results shows that the best fitness value occurs when the Pc value of 0.7 with 

a large fitness value of 100.4. The experiments were carried out using the best population size in 

the previous observations and the initial Pc value. Then for the next PC is determined by the 

user. In this discussion the influence of Pc value on fitness value will be observed. The best 

population size that has been obtained previously is 80. The first experiment used was a 

population size of 80, Pc 0.1, and Pm 0.01 followed by experiments with other Pc values 

increase constantly. Figure 4 (c) is a plot graph that regulated by using the parameters of the 

previous observations namely the population of 80 and Pc 0.7. Furthermore, for the next Pm 

value the user will be determined. The first experiment used a Pm value of 0.01, a population of 

80, and a Pc of 0.01. Subsequent experiments will add regular Pm values with a fixed 

population and Pc. 

 

3.2 Comparative Analyzes by Resulting Accuracy 

The results obtained in 10 calibration of backpropagation momentum training data 

testing produce an average accuracy of 76.09%. These results are obtained by randomizing 

parameters by looking at the possibility of the best parameters in the previous discussion. The 

highest results in testing using this training data obtained with an accuracy of 84.06%. 

In addition using testing data, experiments were conducted using the k-fold cross 

validation method with k = 3, this method did the test three times in accordance with the 

number of folds. The test results combined to calculate the value of the confusion matrix and its 

predictive analysis. Details of the test three times per algorithm using the k-fold cross validation 

method concluded that the average of GA testing produced higher results than the momentum of 

backpropagation without GA. The average of GA testing obtained an average value 94.3%, 

while the momentum of backpropagation testing without GA obtained an average value of 

88.22%. 

 

 
 

Figure 5. The average test accuracy (%) 
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4. CONCLUSIONS 

 

Based on the research that has been done, it can be concluded that genetic algorithm as 

an alternative method of learning momentum backpropagation is able to provide cell prediction 

results that are closer to the actual value compared to momentum backpropagation with 

parameters obtained by random trial. This is evidenced by the acquisition of ten times the 

calibration test results with this pattern with an average memorization accuracy of 83.38% and a 

three-calibration test for the validation accuracy of 94.30%. These results indicate a higher 

accuracy compared to ANN without algen optimization with an average memorization accuracy 

of 76.09% and validation accuracy of 88.22%. 

The scheme of combining ANN with Algen in the data used in this study can be an 

alternative learning that is able to produce ANN hyperparameter without random trial. 

Hyperparameter optimized in this study includes learning rate, momentum, and the number of 

hidden layers and each neuron of each hidden layer. 
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