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 SIMULATION OF ROBOTS’ INVERSE KINEMATICS IN 
ENGINEERING EDUCATION: AN APPROACH BASED ON 

GENETIC ALGORITHMS 
José Tarcísio Franco de Camargo1, Eliana Anunciato Franco de Camargo2, Estéfano Visconde Veraszto3, 

Gilmar Barreto4, Jorge Cândido5 

ABSTRACT 

The study of articulated robots necessarily goes through the development of their kinematic models. 

In turn, the kinematics of a robot can be described through its direct and inverse models. The 

inverse kinematic model, through which the state of the joints is obtained as a function of the 

desired position for the free end of the robot, is usually described algebraically. However, this 

representation is often difficult to obtain. Thus, while the exact determination of the inverse 

kinematic model is unquestionable, the use of genetic algorithms in the design stage can be very 

attractive because it allows predicting the behavior of the robot before the formal development of its 

model. In this sense, the results of this work present a relatively fast way to simulate the inverse 

kinematic model, which can be useful in teaching robotics in engineering, allowing the student to 

have a broader view of the model, coming to identify points that must be corrected or that can be 

optimized in the structure of a robot. It can be concluded that the use of genetic algorithms in 

robotics is feasible, having as main advantages its easy computational implementation and its 

precision in the representation of kinematic models. 
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INTRODUCTION 
 

The motion described by a manipulator 

robot can be represented by its direct and 

inverse kinematic models, as described in 

Craig (2017). Through the direct kinematic 

model it is possible to determine the position 

and orientation of the robot’s end effector in 

terms of the state of its joints or degrees of 

freedom (DOF). Obtaining the direct 

kinematic model is relatively simple, which is 

defined by a set of transformations among the 

coordinate systems of each DOF. 

 The inverse kinematic model, in turn, 

allows the determination of the state of the 

joints of a robot according to the desired 

position for its tool. In this way, when a 

trajectory for the tool is defined, it is possible 

to determine the set of joint positions that will 

allow the robot to describe the desired 

movement (Miller 2017). 

 Obtaining the inverse kinematic 

model, however, tends to be more complex 

than obtaining the direct kinematic model, 

since it involves the solution of a system of 

non-linear equations that can admit more than 

one solution. Even in relatively simple cases, 

the definition of the inverse kinematic model 

is not trivial. 

 In this way, being able to predict the 

behavior of a robot in a relatively simple way, 

before the formal development of its inverse 

kinematic model, can become a relevant 

factor for learning robotics in an engineering 

course. Through the use of genetic algorithms 

(GAs) it is possible to simulate the behavior 

of a robot, determining with relative precision 

the state of its joints in function of the desired 

position for its free end, allowing design 

failures to be detected, as well as the 

identification of possible points for 

optimization. 

 Thus, this paper aims to present the 

theme of GAs in the context of simulation in 

robotics, trying to present a generic solution 

capable of representing the behavior of 

inverse kinematic models of articulated robots 

in a practical, efficient and relatively simple 

way, with a view to explore optimization 

opportunities in robotic projects, during an 

engineering course. 

 

KINEMATICS FOR A GENERIC 

ROBOT 
 

 The study of the direct and inverse 

kinematic models in robotics can be 

introduced by the concept of 

“transformations” among coordinate systems, 

which will be attached to the DOF of a robot. 

Figure 1 represents an example where a 

transformation can be defined between frames 

{0} and {1}. 

 
Figure 1 – Two coordinate systems that can be 

associate by a transformation. 

 

 

 
 

 This transformation can be represented 

by a rotation matrix, that represents the 

orientation between the frames, and a vector, 

that represents the distance between the 

systems. The matrix form that defines the 

transformation between the coordinate 

systems in Figure 1 is described in Equation 

(1). 

 

   (1) 

 

 In this transformation, the orientation 

between these systems can be stated as the 

rotation matrix presented in Equation (2). 

 

   (2) 

 

 In its turn, Equation (3) represents the 

distance vector between these systems. 
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    (3) 

 

 In general, for a robot with n DOF, 

there will be a reference coordinate system 

attached to each DOF. This way, the 

transformation matrix between the inertial 

reference frame {0} and the last frame {n} 

attached to the robot’s end effector will 

determine the position and orientation of the 

tool regarding the inertial coordinate system. 

This transformation matrix can be described 

by Equation (4). 

 
   (4) 

 

 In Equation (4),  represents the 

transformation between frames {0} and {1} 

and so on. This way, for a robot with only 

rotational joints, Equation (4) can be rewritten 

as shown in Equation (5). 

 
   (5) 

 

 Equation (5) means that, for a robot 

built only with rotational joints, the 

transformation between frames {i-1} and {i} 

depends only on its respective rotational angle 

. In turn, the transformation among frames 

{0} and {n} will depend on all rotational 

angles: . 

 Thus, for a n DOF robot, the direct 

kinematic model can be achieved as described 

in Frame 1. Details about how to assign a 

transformation matrix to a robot’s DOF can 

be found in Craig (2017). 

 
Frame 1 – Steps to evaluate de direct kinematic 

model for a n DOF robot. 

 

 

1. For each DOF {i} of the robot, using Eq. (1), 

determine its respective transformation matrix 
regarding to the previous coordinate system {i-1}. This 

transformation matrix will be dependent on . 

2. Determine the transformation matrix between the 

inertial frame {0} and the end effector frame {n} using 

Eq. (5). This transformation will be dependent on 

. 

3. For specific values of the rotational joints, determine 

the orientation and position of the robot’s tool. 

 

 

 Inverse kinematics will require a more 

complex procedure to determine the angles 

 for a desired position/orientation 

of the robot’s end effector. Thus, simulate the 

inverse kinematic model may be an 

interesting strategy to acquire knowledge 

about the robot's behavior. 

 One way to simulate the inverse 

kinematics of a robot without the explicit 

definition of this model is the use of GAs. 

These algorithms have great vocation for the 

solution of optimization problems, as this 

model can be treated. In this way, a GA can 

be built in a way that, given an initial estimate 

for the values of  and a target 

function (get as close as possible to the 

position/orientation desired for the robot’s 

tool), this estimate can be refined towards an 

optimal solution. By means of this strategy, in 

a very simple way, the GA can be initially fed 

by a random estimate for the values of 

, evolving this solution until a 

certain condition of minimum 

position/orientation error is achieved.  

 This way, through the use of GAs, it is 

possible to determinate the inverse kinematics 

of a robot without the formal specification of 

its model, allowing certain behaviors to be 

identified by the genetic algorithm. Thus, the 

robotics’ study proposed here is driven to the 

use of GAs, as an alternative to conventional 

methods for the determination of the inverse 

kinematic model of a manipulator robot. 

 

FUNDAMENTALS OF GENETIC 

ALGORITHMS 
 

 The use of genetic algorithms in 

optimization problems was initially proposed 

in Holland (1975), being popularized through 

Goldenberg (1989) and Haupt (2004). Briefly, 

it can be said that GAs are an analogy to 

Charles Darwin's Theory of Evolution of 

Species (Darwin 2009), which, in turn, began 

with the integration of concepts between 

natural selection and genetics carried out by 

Gregor Mendel (Miller 2009). In summary, in 

a computational environment, we aim to 

search for the evolution of a given solution to 

a problem, from an initial estimate, possibly 

rough, to an optimal one. To do so, the 
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optimization process requires a search space, 

formed by “individuals” of a “population”, 

where the optimal solution is sought for the 

studied case, as well as an objective function, 

which leads to the pursuit towards the best 

possible solution (Bing 2016; Gupta 2016; 

Kramer 2017). 

 In this context, the use of GAs implies 

a stochastic process, where possible solutions 

are grouped into a population, being all of 

which evaluated simultaneously, with higher 

scores attributed to the best individuals, i.e., 

to the best solutions. Thus, possible solutions 

to the problem are treated as individuals 

within a population of solutions.  

 In turn, the evolution of the population 

towards optimized solutions passes through 

events where individuals combine with each 

other, in “crossover” processes, or suffer 

“mutations”, similarly to what occurs in 

biological populations. Such evolution gives 

rise to new generations that should represent 

better solutions to the problem addressed. 

 

The binary genetic algorithm 
 

 The computational implementation of 

a GA is relatively simple, but it is important 

to code the individuals of a population in a 

binary representation, for the proper 

application of the algorithm proposed here. 

Thus, from the initial population of 

individuals that constitutes a space of search 

towards the best solution of the problem, as 

long as a certain evolutionary criterion is not 

reached, the steps presented in Frame 2 must 

be repeated. 

 
Frame 2 –  Basic steps of a GA. 

 

 

1. Each of the individuals of the population is 

evaluated, assigning to the same grades that represent 

their respective “fitness” for the solution of the treated 

problem. Such grades are obtained from the objective 

function, which represents the north for the best 

solution. The higher the score of an individual, the 

closer it is to the optimal solution. 

2. The best individuals of the population are selected, 

so that they can be combined in pairs determined by 

sortition, in a process called “crossover”. Through 

these crossings, individuals, in pairs, exchange part of 

their bits, giving rise to a new generation for the 

population. 

3. Each individual of the new generation is subjected to 

an eventual “mutation”. In this process, bits of a 

particular individual can change their value, upon 

occurrence of a low probability event. 

4. “Elitism” is applied in the new generation. This 

implies bringing the best individuals of the current 

generation to the new one, thus preserving the best 

solution obtained so far. 

5. This procedure is repeated again from the initial step 

until the expected evolutionary criterion is met, that is, 

the population or one of its individuals reaches the 

limits of the optimal solution. 

 

 

 The fitness of an individual xi of the 

population can be represented by a function 

f(xi), which indicates how close this individual 

is to the optimal solution to the studied 

problem. Thus, in a population composed by 

N individuals, each of them will have its own 

fitness defined through f(x).  

 The analysis and comparison of the 

fitness of the individuals from a population 

will establish the probability p(xi) that an 

individual i will have to generate descendants, 

through the crossover process. In the case 

where this probability is directly proportional 

to the numerical value of f(x), then it can be 

calculated by equation (6). 

 

   (6) 

 

 If the probability increases as the 

numerical value of the objective function 

tends to zero, as is the case of the model 

discussed in this paper, then the probability of 

selecting an individual shall be calculated as 

shown in equation (7). 

 

   (7) 

 

 The crossover procedure, to which 

individuals with better fitness will be 

subjected, can be understood from Figure 2. 
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Figure 2 – Crossover procedure between two 

individuals of a population. 

 

 
 

 Prior to the crossover, a “cut point” 

must be defined at random, which will 

indicate the region to be exchanged between 

the two individuals. Through Figure 2 it can 

be observed that, from the cut point, there is 

the exchange of information between the pair. 

 In turn, the mutation procedure is 

represented by Figure 3. 

 
Figure 3 – Mutation occurred in one of the 

individuals of the population. 

 

 

 Mutation is a random event of low 

probability, which may occur to reverse the 

value of one or more bits of individuals in a 

given population. When applying the 

mutation procedure in a GA, care must be 

taken to do not make this process an event 

with high frequency, which could cause 

degeneration of the solution represented by 

the group. 

 In an GA, “elitism” aims to preserve 

the best characteristics of the current 

generation, transporting it to the next 

generation. Specifically, the fittest individual 

(or those who are most fit) passes directly 

from the current generation to the next 

generation, without undergoing any 

modifications.  
 

GENETIC ALGORITHMS AND 

THE KINEMATICS OF A ROBOT 
 

 This section describes the adopted 

procedure regarding the use of a GA to solve 

the inverse kinematic problem of a generic 

robot. The solution to the model described at 

the beginning of this paper requires the 

determination of joint angles, θ1, θ2, … , θn 

which satisfy the positioning of the free end 

of the robot at a certain point and orientation 

in 3D space. 

 At first, consider a desired position, 

, and orientation, , for the end effector 

of the robot. According to equations (2) and 

(3), these can be respectively described as the 

3D vector in equation (8) and the rotation 

matrix in equation (9). 

 

   (8) 

 

  (9) 

 

 Calculation through a GA leads to an 

approximation for desired position and 

orientation. Consider, in equations (10) and 

(11) respectively, the calculated 

approximations for position and orientation. 

 

   (10) 

 

  (11) 

 

 From equations (8) and (10), the 

Euclidean distance between the desired and 

the calculated position can be presented as in 

(12). 

 
   (12) 
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 In turn, considering equations (9) and 

(11), it is possible to determine the Frobenius 

norm for the difference between  and . 

This norm is presented in Equation (13). 

 

 (13) 

 

 Finally, equations (12) and (13) will 

be used to determine the objective function, 

which will be applied in the optimization 

process, as presented in equation (14). 

 
   (14) 

 

 The value of d calculated in (14) 

represents a measure of “distance” between 

desired and calculated position/orientation. 

Specifically, the considered distance will be 

the higher value between  and . 

According to the purpose of the algorithm, the 

lower the value of d, the closer the calculated 

solution will be to the desired 

position/orientation. 

 For the implementation of the GA, as 

previously described, it is necessary to code 

the variables θ1 to θn in a binary format. 

Considering that the values of these angles 

will be constrained to the interval between 0 

and 2π, we opted for a codification where the 

three most significant bits are reserved to the 

integer part of the angle, and the other bits are 

reserved to the fractional part. 

 The computational implementation of 

the GA also requires that an individual be 

represented by the following data structure: 

 

Structure Individual 

{ 

Real  θ1; 

Real  θ2; 

… 

Real  θn; 

Real  fitness; 

Real  selection probability; 

}; 

 

 In this structure, θ1 … θn define the 

solution represented by the individual; 

“fitness” synthesizes the grade assigned to 

this solution and “selection probability” 

represents the probability of the individual 

being selected for the crossover procedure. 

 Fitness will be calculated by equation 

(14), being remembered that, because it 

represents a distance, the less its numerical 

value, the greater will be the fitness of the 

individual. This implies the use of equation 

(7) for the calculation of the selection 

probability of an individual. 

 In turn, a population with N 

individuals will describe the space for the 

search and evolution towards the optimal 

solution. This population is described as a 

vector with N individuals in the 

computational implementation of this 

algorithm. 

 

Individual Current_Generation[N]; 

 

 Thus, from an initial generation with N 

individuals, the algorithm in Frame 3 can be 

used to determine future generations, until an 

optimal solution is reached. 

 
Frame 3 – GA for the solution of the inverse 

kinematics of the planar robot. 

 

1. Select, at random, N individuals for the 

first. generation of the population. 

 If there are individuals whose values of ϴ1 

… ϴn are outside the permitted limits (0 ≤ ϴ < 2π), 

replace these individuals for others. 

2. Calculate the fitness of each individual, 

through equations (8) to (14). 

3. Calculate the selection probability of each 

individual, through Equation (7). 

4. Find the individual with higher fitness in 

this generation. 

5. While the higher fitness does not meet the 

criterion of stop: 

6. To start a new generation, repeat N/2 times: 

7. Select, by sortition, based on the selection 

probability, two individuals of the current 

generation. 

8. Perform the crossover of the two selected 

individuals. 

9. Store the two individuals generated by 

crossover in the new generation. 

 End of repeat for step 6. 

10. Submit all individuals of the new 

generation to an eventual mutation process. 

12. If in the new generation there are 

individuals whose values of ϴ1 … ϴn are outside the 
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permitted limits (0 ≤ ϴ < 2π), replace  these 

individuals for the fittest of the current generation. 

13. Select the less fit individual of the new 

generation and replace it with the fittest individual 

of the current generation. 

14. Calculate the fitness of each individual of 

the new generation. 

15. Calculate the selection probability of each 

individual of the new generation. 

16. Select the fittest individual of the new 

generation. 

17. Make the new generation be the current 

generation. 

 End of while for step 5. 

 End of the algorithm. 

 

 Some points of this algorithm are 

highlighted at next. A considerable advantage 

of this is the fact that it does not require a 

predetermined solution so that it can evolve 

towards an optimal solution. In this way, Step 

(1) of the algorithm allows us to create a 

random initial generation as a starting point. 

As the only constraint, consider that the 

values of θ1 to θn of this first generation must 

be within the allowed range (0 ≤ θ < 2π). 

 Step (2) calculates the individual 

fitness from the values of θ1 to θn. Through 

equations (8) to (14) the distance between the 

desired and the obtained position/orientation 

will be evaluated. This distance represents the 

fitness of the individual, being better the 

lower is its numerical value. 

 The probability of selecting a 

particular individual for crossover, pointed in 

Step (3), derives from its fitness, that is, from 

the distance that its respective solution 

represents. This probability, calculated 

through Equation (7), takes into account the 

fitness of the other individuals, having a 

greater probability of selection the one which 

is at a shorter distance from the desired 

position/orientation. Given its relative 

character, the sum of the probabilities of each 

individual should be equal to 1. 

 Finding the individual with the highest 

fitness, as provided in Step (4), allows us to 

verify how far the simulation is from its 

stopping criterion. This criterion, pointed out 

in Step (5), can be adjusted in several ways. 

In the simulation developed in this work, it 

was chosen to establish as a criterion of 

stopping for the evolution of the population 

the highest individual fitness, with numerical 

value inferior to a pre-established limit. Other 

stop criteria to be considered may be a given 

number of generations, loss of diversity of a 

population or convergence to a given solution 

after a certain number of generations (Holland 

1975). 

 The selection of individuals for 

crossover by sortition, indicated in Step (7), 

can be interpreted through the format of a 

“lottery”, based on the fitness and on the 

probability of an individual being selected. In 

this model of sortition, a set of “lottery 

tickets” is distributed to each individual of the 

population, which is proportional to its 

probability of selection. Thus, through the 

draw of the “winning ticket”, it is defined the 

individual (“owner of the ticket”) that will be 

selected for the crossover. 

 The crossover, indicated in Step (8), is 

the event that will trigger the birth of a new 

generation, different from the current. 

Moreover, this new generation may pass 

through a mutation process, as provided in 

step (10), increasing the diversity of the 

population. As previously indicated, mutation 

is an event that should be used with caution in 

GAs, since high mutation rates may lead to 

degeneration of the population and, therefore, 

the loss of the solution that it represents. 

 Crossover and/or mutations are 

procedures that may eventually give rise to 

“degenerate” individuals, that is, whose 

values of θ1 to θn are outside the permitted 

limits. This kind of occurrence may be 

circumvented through the replacement of the 

degenerate individuals by the fittest 

individuals from the current generation (Step 

12). In this same sense, with or without 

degenerate individuals, it is convenient to 

preserve the fittest individual of the current 

generation (elitism). To do so, Step (13) 

proposes to replace the less fit individual of 

the new generation with the fittest of the 

present generation. 

 Once the new generation is defined, 

the fitness and the selection probability of 

each individual must be recalculated. Finally, 
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the new generation is made the current 

generation and, if the stop criterion has not 

been reached, the procedures are repeated for 

the creation of another generation. 

 

RESULTS AND DISCUSSION 
 

 The model presented throughout this 

text was simulated for a PUMA 560 robot, 

with 6 DOF, using the structural parameters 

described in Frame 4. 

 
Frame 4 – PUMA 560 parameters for the 

simulation. 

Param

-eter 

Value 

(mm) 

Description 

A2 431.80 Length of the arm 

A3 20.32 Offset between elbow 

and wrist 

D3 149.09 Offset between shoulder 

and elbow 

D4 433.07 Length of the forearm 

 

 According to Craig (2017), the link 

transformations for this robot are described in 

equations (15.a) to (15.f). 

 

             (15.a) 

 

             (15.b) 

 

             (15.c) 

 

           (15.d) 

 

             (15.e) 

 

             (15.f) 

 

 Where  stands for ,  stands 

for  and so on. 

 

 Thus, the transformation that relates 

the rotational joint in the end effector and the 

inertial reference frame, , can be calculate 

through equation (15.g).  

 
               (15.g) 

 

 The executed simulation consists in a 

translation/rotation starting from  to  

as described in equations (16) and (17). 

 

   (16) 

 

 (17) 

 

 And for each step in this trajectory the 

GA must calculate the values for the joint 

angles .  

 The angles θ1 to θ6, which define the 

solution represented by an individual, were 

encoded in 24 bits, being 3 bits dedicated to 

the representation of the integer part of the 

angle and 21 bits destined to the 

representation of the fractional part. It should 

be stressed that the angles are restricted to the 

interval 0 ≤ θ < 2π. 

 In the developed implementation, a 

population of 40 individuals was used. The 

cut point for the crossover is set at random, 

each time this operation is performed, being 

limited to a maximum of 87,5% of the bits, 

counted from the least significant bit. In turn, 

the probability of mutation was limited to 2%, 

in order to avoid population degeneration. 

 The stop criterion used to finish the 

calculation of the angles θ1 to θ6 associated 

with a position/orientation consists in 

obtaining a distance “d” of less than 0.001 

units (Equation 14). It must be stated that 

there are eight possible solutions available for 

the PUMA 560. Figures 4 to 6 present three 

solutions obtained with GA simulation. 
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Figure 4 – Comparation between algebraic solution and GA simulation for PUMA 560 (first solution). 

 

 
 

 

Figure 5 – Comparation between algebraic solution and GA simulation for PUMA 560 (second solution). 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Comparation between algebraic solution and GA simulation for PUMA 560 (third solution). 
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 In figures 4 to 6, solid lines 

( ) represent the 

algebraic solution for the inverse kinematic 

model, as presented in Craig (2017). In turn, 

dots sequences ( ) 

represent the simulation obtained through 

GA. 

 Tables 1 to 3 present the numerical 

values for figures 4 to 6. 

 

 

 

Table 1 – Comparation between algebraic solution and GA simulation for PUMA 560 (first solution). 

 

ϴ1c (˚) ϴ1s (˚) ϴ2c (˚) ϴ2s (˚) ϴ3c (˚) ϴ3s (˚) ϴ4c (˚) ϴ4s (˚) ϴ5c (˚) ϴ5s (˚) ϴ6c (˚) ϴ6s (˚)

24,42 24,42 47,83 47,83 149,19 149,19 0,00 0,04 342,98 343,00 155,57 155,50

24,06 24,06 48,91 48,91 147,91 147,91 0,00 0,02 343,18 343,18 160,94 160,92

23,68 23,68 50,00 50,00 146,64 146,64 0,00 0,02 343,37 343,38 166,31 166,29

23,29 23,29 51,10 51,10 145,37 145,37 0,00 0,05 343,53 343,55 171,71 171,66

22,88 22,88 52,22 52,22 144,11 144,11 0,00 0,03 343,66 343,67 177,11 177,11

22,45 22,45 53,36 53,36 142,87 142,87 0,00 0,07 343,77 343,77 182,40 182,44

22,01 22,01 54,52 54,52 141,62 141,62 0,00 0,00 343,85 343,89 187,95 188,00

21,55 21,55 55,70 55,70 140,39 140,39 0,00 0,08 343,90 343,88 193,32 193,36

21,07 21,07 56,91 56,91 139,16 139,16 0,00 0,06 343,93 343,94 198,78 198,80

20,58 20,58 58,14 58,14 137,94 137,94 0,00 0,00 343,92 343,92 204,33 204,34

20,05 20,05 59,40 59,40 136,73 136,73 0,00 0,08 343,87 343,88 209,79 209,82

First solution

 
 

Table 2 – Comparation between algebraic solution and GA simulation for PUMA 560 (second solution). 

 
ϴ1c (˚) ϴ1s (˚) ϴ2c (˚) ϴ2s (˚) ϴ3c (˚) ϴ3s (˚) ϴ4c (˚) ϴ4s (˚) ϴ5c (˚) ϴ5s (˚) ϴ6c (˚) ϴ6s (˚)

24,43 24,43 283,90 283,90 36,18 36,18 180,00 179,94 140,09 140,08 -24,43 -24,48

24,06 24,06 283,69 283,69 37,47 37,46 180,00 179,94 141,15 141,17 -19,06 -19,10

23,68 23,68 283,49 283,49 38,74 38,74 180,00 179,98 142,23 142,26 -13,69 -13,68

23,29 23,29 283,32 283,32 40,00 40,00 180,00 179,99 143,32 143,33 -8,29 -8,31

22,88 22,88 283,17 283,17 41,26 41,26 180,00 180,03 144,43 144,43 -2,89 -2,84

22,46 22,46 283,05 283,05 42,51 42,51 180,00 180,02 145,56 145,59 2,54 2,56

22,02 22,02 282,95 282,95 43,75 43,75 180,00 179,99 146,70 146,72 7,98 7,97

21,56 21,56 282,89 282,88 44,98 44,98 180,00 180,00 147,87 147,86 13,44 13,47

21,08 21,08 282,85 282,85 46,21 46,21 180,00 179,93 149,06 149,06 18,92 18,86

20,58 20,58 282,84 282,84 47,43 47,43 180,00 180,00 150,27 150,27 24,32 24,29

20,06 20,06 282,87 282,87 48,65 48,65 180,00 180,00 151,52 151,54 29,94 29,91  
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Table 3 – Comparation between algebraic solution and GA simulation for PUMA 560 (third solution). 

 

ϴ1c (˚) ϴ1s (˚) ϴ2c (˚) ϴ2s (˚) ϴ3c (˚) ϴ3s (˚) ϴ4c (˚) ϴ4s (˚) ϴ5c (˚) ϴ5s (˚) ϴ6c (˚) ϴ6s (˚)

245,57 245,57 256,10 256,10 149,19 149,19 0,00 0,05 134,72 134,72 294,43 294,45

245,94 245,94 256,31 256,31 147,91 147,91 0,00 0,05 135,78 135,77 299,06 299,08

246,32 246,32 256,51 256,51 146,64 146,64 0,00 0,06 136,86 136,85 303,68 303,72

246,71 246,71 256,68 256,68 145,37 145,37 0,00 0,02 137,95 137,98 308,29 308,31

247,12 247,12 256,83 256,83 144,11 144,11 0,00 0,04 139,06 139,03 312,88 312,90

247,54 247,54 256,95 256,95 142,87 142,87 0,00 0,03 140,18 140,15 317,46 317,49

247,98 247,98 257,05 257,05 141,62 141,62 0,00 0,00 141,33 141,24 322,02 321,99

248,44 248,44 257,11 257,12 140,39 140,39 0,00 0,03 142,50 142,49 326,56 326,57

248,92 248,92 257,15 257,15 139,16 139,16 0,00 0,01 143,69 143,69 331,08 331,10

249,42 249,42 257,16 257,16 137,94 137,94 0,00 0,01 144,90 144,90 335,48 335,50

249,94 249,94 257,13 257,13 136,73 136,73 0,00 0,02 146,14 146,13 340,06 340,06

Third solution

 
 

 

Regarding the simulation itself, the presented 

results were obtained by predicting, in the 

algorithm, the presence of crossover, 

mutations and elitism. However, for testing 

purposes, the simulation was also performed 

using only crossover and elitism and only 

mutations and elitism. These variations led to 

some empirical observations, which are 

presented bellow. 

 

• When applied only crossover and 

elitism, without mutations, it was noted 

that the algorithm hardly converged 

toward the stopping criterion. Such an 

occurrence can be explained by the fact 

that the crossover used reached only the 

least significant part of the bits and did 

not allow the exchange of these in a ratio 

higher than 87,5%. Thus, with the three 

most significant bits preserved, the 

algorithm tends not to converge. Such a 

situation can be circumvented if a 

crossover with a higher rate and more than 

one cut point is used. 

• When used mutation and elitism, 

without crossover, it was noticed that the 

algorithm presented very slow 

convergence, but the stopping criterion 

was achieved most of the time. This 

occurrence can be explained by the fact 

that mutation, although a phenomenon of 

low probability, can occur in all bits of the 

individual. Thus, the occurrence of 

mutations in the most significant bits of 

the individual, associated with elitism, 

allowed the algorithm to show 

convergence. 

• The combination of crossover, 

mutation and elitism causes the algorithm 

to present its best results, with 

convergence occurring, most of the times, 

after a few number of iterations. 
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CONCLUSIONS 
 

 The results of this study demonstrate 

that the use of genetic algorithms for the 

solution of the inverse kinematic problem of 

robotics is feasible, especially in situations 

where the explicit determination of the inverse 

model is costly. A considerable advantage for 

the use of a GA in this type of problem is its 

relatively simple computational 

implementation. The presented algorithm is 

also parallelizable, being able to be 

fragmented in a cluster of computers, reducing 

the calculation time to obtain more precise 

solutions. Regarding the precision of the 

algorithm, it depends heavily on the number of 

digits used for the binary encoding of an 

individual. Another significant advantage in 

the use of GAs in optimization problems is 

their high flexibility, which makes them easily 

adaptable to other robot models or even other 

types of optimization problems.  
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