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1 Introduction

Experiments carried out in the last two decades have categorically confirmed the neutrino

oscillation phenomenon as the mechanism responsible for the flavour transitions observed

in the neutrino fluxes coming from the sun [1–6], the atmosphere [7–9], reactors [10–13] and

accelerators [14–17]. These observations confirm that at least two neutrinos are massive,

such that two independent mass differences ∆m2
ij = m2

i − m2
j (i, j = 1, 2, 3) are non-

zero [9, 18, 19]. In addition, interaction and mass eigenstates are related through the

PMNS lepton mixing matrix [20, 21], defined in terms of three mixing angles and one

CP-violation phase δCP:

UPMNS =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 , (1.1)

where sij = sin θij and cij = cos θij .
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Regardless of the success of the oscillation phenomenon, there is still room for new

physics affecting neutrino phenomenology. In particular, several works have studied non-

standard interactions [22–29], decoherence in oscillations [30–40] and fast neutrino de-

cay [40–63], among other new physics effects [64–68].

In the last years, the interplay between oscillations and fast neutrino decay has been

studied in a model-independent manner [52, 69]. This has been achieved by consider-

ing that the decay products of the neutrino decay are invisible to the detector. Such

a situation can happen, for example, if the decay product consists of lighter, sterile

states [40, 46–51, 53–62]. Throughout this work, we refer to this scenario as invisible decay.

In this situation, one can bound the neutrino lifetime-to-mass ratio τ/m or, alternatively,

the parameter α = E Γ, related to the neutrino width Γ evaluated at the energy E. In

terms of these parameters, the two most important constraints to date are the following:

• For solar neutrinos, the studies in [60, 61] have constrained the lifetime of ν2, giving

τ2/m2 ≥ 7.2× 10−4 s · eV−1 at 99% C.L., equivalent to α2 < 9.1× 10−13 eV2.

• In [53], invisible decay was taken into account within atmospheric neutrino experi-

ments. The authors combined this data with old data from MINOS [70], bounding

the ν3 lifetime. The study gave τ3/m3 > 3.0× 10−10 s · eV−1 at 90% C.L., equivalent

to α3 < 2.2× 10−6 eV2.

Although not as competitive as [53], one should also take into account the work in [59].

Here, MINOS and T2K νµ disappearance data was used to constrain invisible decay, giving

a limit of τ3/m3 ≥ 2.8 × 10−12 s · eV−1, at 90% C.L. . This corresponds to α3 < 2.4 ×
10−4 eV2.

In contrast, not much work has been done in the direction of visible decay, where

the final decay products involve active neutrinos, which can be detected. In oscillation

experiments, this manifests itself as an additional contribution to invisible decay. We refer

to the addition of both visible and invisible contributions as full decay. Nevertheless, in

order to describe the visible contribution, one needs an expression for the differential width,

so it is not possible to carry out this analysis in a completely model-independent way.

Models for fast neutrino decay usually involve the coupling of two neutrinos with a

massless scalar, called a Majoron [71–74]. This interaction can proceed through scalar

(gs) or pseudoscalar (gp) couplings. As we shall see in this paper, both couplings can be

related to the α decay constant by g2
s,p ∼ 16πα/m2, where m is the neutrino mass. It is

then of our interest to understand how such an interaction affects the results of oscillation

experiments, for both possible kinds of coupling.

To this end, we implement a full decay formalism within two experiments: MINOS

and T2K. As mentioned before, the νµ → νµ disappearance channels of both experiments

were used in [59] to study invisible decay. Of course, one of our objectives is to update the

results in these channels within the full decay framework. However, this time we also have

data from the T2K νµ → νe appearance channel, for both neutrinos and antineutrinos. As

far as we are aware of, this is the first time that visible decay is considered as modification

of a neutrino appearance phenomenon, and we find it has important consequences.

– 2 –
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Before we proceed, we need to point out that important constraints on neutrino-

Majoron couplings exist [75–80]. If one assumes that these can be directly translated as

bounds on the decay constant α, and assuming for illustration a neutrino mass m = 0.01 eV,

they would imply constraints as low as α < O
(
10−25

)
eV2. However, this translation is

not always straightforward, and most of the bounds rely on additional assumptions, apart

from the Majoron hypothesis. Thus, constraints coming from neutrino decay within os-

cillation experiments play an important role in transparently understanding the kind of

phenomenology these new couplings bring, as they are established under controlled exper-

imental conditions. Therefore, in the following, in addition to updating the bounds in [59],

we give a detailed explanation of how the neutrino spectrum of long-baseline experiments

is modified, hoping that these insights might be useful in other scenarios.

We present our framework in section 2, and provide insight on how the neutrino tran-

sition operator will be modified by the different kind of coupling. In section 3, we describe

our experimental setup for T2K and MINOS, as well as describe our procedure when car-

rying out the fit. In section 4 we present our results for each experiment, and then combine

the data. Since the combination does not provide a better fit in comparison to the one

from standard oscillations, we extract bounds on our decay parameter α. We conclude in

section 5.

We also include three appendices. In appendix A, we present the general, model

independent, full decay framework, within the oscillation scenario. In appendix B we give

details of the neutrino-Majoron coupling, and explain how we obtain the formulae used

in this work. Finally, in appendix C we describe how we carry out the MINOS and T2K

simulations.

2 Neutrino visible decay in oscillation experiments

We consider a neutrino oscillation experiment, where a neutrino flux is directed towards a

detector located a large distance away. During their propagation, the neutrinos are subject

to an evolution function which takes into account their oscillation and decay, such that the

flux arriving at the detector is modified.

To calculate the flux of νβ and ν̄β arriving at the detector, with energy Eβ , due to the

oscillation and decay of unstable να and ν̄α (α, β = e, µ), we use:

dN s
β

dEβ
=
∑
α,r

∫
dEα P

rs
αβ(Eα, Eβ)φνrα(Eα) . (2.1)

Here, φνrα(Eα) is the original flux of νrα with energy Eα, and P rsαβ(Eα, Eβ) describes the

neutrino oscillation and decay process to νsβ . The r, s = {(+), (−)} indices refer to the

neutrino chirality (i.e. ν(−) for ν, and ν(+) for ν̄). The evolution function P rsαβ(Eα, Eβ) is

obtained by adapting a relevant formula in [52]:

P rsαβ(Eα, Eβ) =

∣∣∣∣∣∑
i

U
(s)
βi U

(r)∗
αi exp

[
−im

2
iL

2Eα

]
exp

[
−αiL

2Eα

]∣∣∣∣∣
2

δ(Eα − Eβ)δrs

+Grsαβ(Eα, Eβ) , (2.2)
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where U (−) = UPMNS and U (+) = U∗PMNS. The Lorentz-invariant variable αi is related to

the total neutrino decay width Γi, such that αi = Eα Γi.

The first term in the evolution function includes the standard oscillation contributions,

multiplied by an exponential governed by the neutrino decay parameter αi. For stable

neutrino mass eigenstates, all αi are zero, and we recover the standard oscillation formula.

In the following, we shall refer to this term as the contribution from invisible decay (ID).

If we included this first term only, we would be describing the decay of the mass

eigenstates into lighter non-interacting states. However, we contemplate the possibility

that these lighter states consist of active neutrinos with lower energy. This is taken into

account by the second term, which we refer to as the contribution from visible decay (VD).

For the rest of this work, we refer to the addition of the two terms as full decay (FD).

The general formula for the visible decay function Grsαβ(Eα, Eβ) can be found on ap-

pendix A. In this work we use a simplified version, considering only one decay channel

(νri → νsfJ , where νri and νsf are on the mass basis). It has the following form:

Grsαβ(Eα, Eβ) =
(
1− e−ΓiL

) ∣∣∣U (r)
αi

∣∣∣2 ∣∣∣U (s)
βf

∣∣∣2 1

Γi

d

dEβ
Γ(νri → νsf J) . (2.3)

We can understand eq. (2.3) in the following way. The term (1 − e−ΓiL) |Uαi|2, when

multiplied by the original flux φνrα , gives the amount of νri mass eigenstates that decay.

When the latter is multiplied by the normalized spectrum, 1
Γi

d
dEβ

Γ(νri → νsf J), we obtain

the number of νsf mass eigenstates, with energy between Eβ and Eβ + dEβ , produced from

the decay. The amount of final νsβ flavour eigenstates is then obtained by changing back

to the flavour basis with |Uβf |2.

The full expression for dΓ(νri → νsf J)/dEβ is derived from the interaction Lagrangian,

which is written in terms of scalar (gs) or pseudoscalar (gp) neutrino-Majoron couplings.

Details are given in appendix B. Furthermore, if we take only one non-vanishing coupling

(either gs or gp), the final expression is greatly simplified:

Grsαβ(Eα, Eβ) =
∣∣∣U (r)

αi

∣∣∣2 ∣∣∣U (s)
βf

∣∣∣2(1− e−αiL/Eα
Eα

)
F ′rsg (Eα, Eβ) , (2.4)

with the visible decay function given by

F ′rsg (Eα, Eβ) =
x2
if

(x2
if − 1)

F rsg (Eα, Eβ)×ΘH(Eα − Eβ) ΘH(x2
ifEβ − Eα) . (2.5)

Here we have xif = mi/mf > 1, the label g = {gs, gp} indicates the non-vanishing coupling,

ΘH(x) is the Heaviside function and we have replaced the total width Γi → αi/Eα. The

F rsg (Eα, Eβ) functions have chirality conserving (r=s) and chirality changing (r 6=s) cases:

F±±gs (Eα, Eβ) =
1

EαEβ

(Eα+xifEβ)2

(xif + 1)2
, F±∓gs (Eα, Eβ) =

(Eα−Eβ)

EαEβ

(x2
ifEβ−Eα)

(xif + 1)2
, (2.6a)

F±±gp (Eα, Eβ) =
1

EαEβ

(Eα−xifEβ)2

(xif − 1)2
, F±∓gp (Eα, Eβ) =

(Eα−Eβ)

EαEβ

(x2
ifEβ−Eα)

(xif−1)2
. (2.6b)
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Figure 1. Visible decay functions F ′rsg , as functions of final energy Eβ and xif . The top (bottom)

row shows the function for a scalar (pseudoscalar) coupling, while the left (right) column shows

the ones for chirality conserving (changing) processes. We have fixed the initial neutrino energy as

Eα = 3 GeV.

For a given xij and energy, we have that ±± and ±∓ transitions are complementary, which

is expected, since F±±g + F±∓g = 1.

Studying the behaviour of these functions is important in order to understand how

scalar and pseudoscalar couplings affect our analysis of T2K and MINOS. To this end,

we show in figure 1 the functions F ′rsg , defined in eq. (2.5), for fixed Eα = 3 GeV, and

for several values of xif , as a function of Eβ . On the top (bottom) rows we show results

for scalar (pseudoscalar) couplings. The left column shows chirality-conserving transitions

(±±), while the right columns shows chirality-changing transitions (±∓).

For large xif (purple curve), we see that both scalar and pseudoscalar couplings have

the same behaviour (compare purple curve within the same column). For Eβ close to

Eα, we find that ±± processes (left column) are favoured, while for lower energies, ±∓
processes (right column) dominate.

For lower xif (dashed blue curve) we have a different behaviour depending on the

coupling. For scalar couplings, we see that ±± transitions dominate all final energies.

Meanwhile, pseudoscalar couplings have a mixed behaviour, with a clear preference for ±∓
transitions.

From now on, we assume a normal ordering scenario, with ν3 unstable and decaying

exclusively into ν1. We label α3 → α, m1 → mlight and (gs,p)31 → gs,p (see appendix B).
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Notice that cosmological bounds [81] require
∑

imi < 0.23 eV. For normal ordering, and

taking squared mass differences at their best fit points, for example, this would rule out

x31 < 1.24. This bound is taken into account in our final result.

3 Experimental setup and fitting procedure

3.1 T2K

The T2K experiment [82] has been running in the latest years, sending a neutrino beam

to the Super-Kamiokande (SK) detector [9], located 295 km away from the source. The

detection process uses Cerenkov radiation to identify neutrinos, however, this is blind to

the charge of the associated lepton. Thus, it is unable to distinguish between neutrinos and

antineutrinos, as a consequence, in this work we shall sum the neutrino and antineutrino

contributions when calculating the number of events. The experiment has two running

modes, called “neutrino” and “antineutrino” runs.

The neutrino run of the T2K experiment consisted in delivering a primarily ν
(−)
µ beam

to the SK detector, with a final luminosity of 7.48× 1020 protons on target (POT). Their

results in the ν
(−)
µ → ν

(−)
µ disappearance channel imposed strong bounds on the sin2 2θ23

and ∆m2
32 parameter space [15, 82]. In addition, through the observation of ν

(−)
µ → ν

(−)
e

appearance channel, it provided the first indication of non-zero θ13 [83].

In the current antineutrino run, a primarily ν
(+)
µ beam illuminates the SK detector.

The luminosity released to the public corresponds to 7.47×1020 POT, and the combination

of both runs has given hints favouring a negative value of δCP [84, 85]. In our analysis we

use both datasets.

On the following, we shall focus on the T2K neutrino run. For the antineutrino run,

the same analysis applies, taking the CP conjugates of the states.

Given that ν
(−)
µ is the largest component in the beam [82], we use the FD mode

(visible and invisible contributions), for both appearance and disappearance channels. For

the other components of the flux (ν
(+)
µ , ν

(−)
e and ν

(+)
e ), we only include the FD when the

visible part is not negligible.

For the νµ disappearance channel, we include FD for ν
(−)
µ → ν

(±)
µ and ID for ν

(+)
µ →

ν
(+)
µ . As usual, the signal consists of charged-current quasielastic (CCQE) interactions,

while the main background includes the charged-current non-quasielastic (CCnQE) and

neutral current (NC) interactions.

The νe appearance channel has many contributions. As mentioned previously, we

consider the FD for ν
(−)
µ → ν

(±)
e . In this case, we also include the FD for ν

(+)
µ → ν

(±)
e , but

take only the ID contribution for ν
(±)
e → ν

(±)
e . Both CCQE and CCnQE interactions are

considered part of the signal. The background consists of the ν
(±)
e → ν

(±)
e processes, as

well as NC contributions.

We also include full decay when considering the NC contribution to the events. Notice

that the latter shall now depend on the neutrino mixing angles, due to the non-unitarity

of the decay mechanism [40].

We give more details on the generation of events at T2K in appendix C.1.

– 6 –
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3.2 MINOS

MINOS was a long-baseline neutrino experiment [16] which used two detectors and was

exposed to a neutrino beam produced at Fermilab (NuMI beam line [86]). The latter is a

two-horn-focused neutrino beam that can be configured in two ways: forward Horn Cur-

rent (FHC), to produce a beam optimized for muon neutrinos, and Reverse Horn Current

(RHC), for a beam optimized for muon anti-neutrinos. The Near and the Far Detectors

are located at 1 km and 735 km from the target, respectively.

The data set used in our analysis comes from FHC mode with 10.71× 1020 POT. The

beam composition was 92.9% of ν
(−)
µ , 5.8% of ν

(+)
µ , and 1.3% of ν

(±)
e . We use the data

set that comprises the charged current (CC) contained-vertex neutrino and anti-neutrino

disappearance data [16, 87].

Notice that, in contrast to T2K, the MINOS magnetized muon espectrometer does

distinguish between neutrinos and antineutrinos. Thus, even though we only use the FHC

mode, we do include the ν
(−)
µ and ν

(+)
µ beam components in our analysis, separately.

In order to probe the decay framework against the ν
(−)
µ disappearance data we consider

the FD for the ν
(−)
µ → ν

(−)
µ channel and only the VD ν

(+)
µ → ν

(−)
µ contribution. Analo-

gously, for ν
(+)
µ disappearance data, we take into account the FD for ν

(+)
µ → ν

(+)
µ and the

VD ν
(−)
µ → ν

(+)
µ .

The details about the MINOS reconstruction data can be found in appendix C.2.

3.3 Statistical analysis for T2K and MINOS

The relevant parameters in this study, which we shall vary, are s2
23, s2

13, δCP, ∆m2
32, α and

mlight. We keep fixed s2
12 = 0.306 and ∆m2

21 = 7.5× 10−5 eV2.

To perform the fit for T2K, we use a χ2 function similar to the one used in [82]. In order

to take into account systematic errors, we include normalisation and energy calibration

nuisance parameters, nx and tx, respectively, for signal (x = s) and background (x = b). For

a given set of oscillation and decay parameters, and for each channel, the χ2 is minimized

with respect to nx and tx, adding appropriate pull factors [88, 89]:

χ2(s2
23, s

2
13, δCP, ∆m2

32, α, mlight) =∑
β=e,µ

min
{nx, tx}

(
2
∑
bins

(Nβ, fit −Nβ, obs logNβ, fit) +

{
n2
s

σ2
ns

+
n2
b

σ2
nb

+
t2s
σ2
ts

+
t2b
σ2
tb

}
β

)
. (3.1)

Here, Nβ, fit is the sum of expected signal and background events per bin, which also

involve the nuisance parameters. Denoting the numerical prediction per bin for signal and

background ν
(±)
β events as N

(±)
β, s and N

(±)
β, b , respectively, we have

Nβ, fit =
∑
x=s,b
r=+,−

(
1 + nx + tx

Ebin − Ê
Emax − Emin

)
β

N r
β, x , (3.2)

where Emin (Emax) is the minimum (maximum) energy in the analyzed neutrino spectrum,

Ebin is the average bin energy, and Ê = 1
2(Emax + Emin) is the average energy of the

spectrum.

– 7 –
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The other parameters appearing in eq. (3.1) are Nβ, obs, which is the observed num-

ber of ν
(−)
β and ν

(+)
β events [84, 85], and σnx and σtx are the respective uncertainties in

normalisation and tilt, set both equal to 10%.

In the case of MINOS, using a similar notation, we use the following χ2 function:

χ2 =
∑
bins

r=+,−

(
(1 + ns)N

r
µ, s + (1 + nb)N

r
µ, b −Nµ, obs

σbin

)2

+
n2
s

σ2
ns

+
n2
b

σ2
nb

. (3.3)

The parameter σbin represents the statistical and systematic uncertainty extracted from

data set, while σns, σnb are equal to 14.7% and 4%, respectively [14].

Finally, we can also include information from reactor data. For example, the Daya

Bay experiment [90] has given the most precise bound on s2
13, which is sin2 2θ13 = 0.092±

0.017 [11]. We have estimated the impact of neutrino decay on this experiment, and find

that the ratio of the background-subtracted spectra to prediction assuming no oscillation

is modified within the given error bars [91]. We then assume that no reactor disappearance

experiment is affected by neutrino decay. Thus, only for our final result constraining the

decay parameter α, we include an additional pull factor on our χ2 function:

χ2
reactor =

(
s2

13 − s2
13,reactor

σ13,reactor

)2

, (3.4)

with s2
13,reactor = 0.0243 and σ13,reactor = 0.0026, following the same procedure as in [82].

In our fit, we vary mlight and α logarithmically, from 5× 10−3 to 10−1 eV and 2× 10−6

to 5 × 10−4 eV2, respectively. The oscillation angles θ13 and θ23 are also scanned, with

0 ≤ s2
13 ≤ 0.05 and 0.32 ≤ s2

23 ≤ 0.86. The phase δCP is scanned between −π and π, while

the squared mass difference ∆m2
32 is varied between 1.6× 10−3 and 2.8× 10−3 eV2.

4 Impact on oscillation parameter regions

4.1 Analysis in T2K

In the following, we explore how the inclusion of the neutrino FD distorts the currently

allowed regions for oscillation parameters, obtained from standard oscillations (SO).

In figure 2, we show the spectrum of neutrino appearance and disappearance events

for the neutrino run, for SO, ID and FD. We have fixed s2
23 = 0.532, s2

13 = 0.022 and

∆m2
32 = 2.545× 10−3 eV2, which correspond to the best-fit parameters for T2K data. We

have set α = 4× 10−5 eV2, which is roughly 10% of the mean lifetime that T2K should be

sensitive to (≈ E/L). We have also set mlight = 7 × 10−2 eV to maximize the difference

between the scalar and pseudoscalar scenarios (see figure 1).

The top panels show neutrino disappearance events. We see that for the chosen value

of α, there is no big difference between the SO and FD scenarios. Nevertheless, even though

not shown, one finds that for larger values of α the decay scenario erases the oscillation dip.

This is due to neutrino decay behaving as a decoherence term in the oscillation formulae.
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Figure 2. Spectrum of disappearance (top row) and appearance (bottom row) events, for the

neutrino run. The spectrum for SO is shown in red, dotted (dashed) for δCP = −π/2 (+π/2). The

spectrum for ID is shown dashed, in black, and the spectrum for FD is shown solid, in black. For

both we set δCP = +π/2. We show results for scalar (pseudoscalar) couplings on the left (right).

T2K data is shown in gray [84].

The bottom panels show neutrino appearance events. Here, the SO scenario is shown

for δCP = ±π/2. Notice that one obtains a larger amount of events when δCP = −π/2. In

contrast, we show ID and FD scenarios only with δCP = +π/2. A first important feature is

that, although the ID contribution is similar to the SO result (for the same value of δCP),

when comparing the FD and ID spectra it is evident that the VD contribution is sizeable.

Thus, this decay scenario has a stronger impact on appearance than on disappearance

measurements. A second important feature is that the FD scenario, with δCP = π/2,

can have a similar number of events as the SO result with δCP = −π/2 at the cost of

bringing some distortion to the low-energy (high-energy) part of the spectrum, for scalar

(pseudoscalar) couplings.

We show in figure 3 the corresponding spectra for the antineutrino run. For disap-

pearance events (top row), the conclusions are similar to those for figure 2, that is, for the

given value of α, neutrino decay does not significantly modify the spectrum.

On the other hand, as in figure 2, for the appearance spectrum we show SO with

δCP = ±π/2. On this case, δCP = −π/2 leads to a smaller number of events compared to

δCP = +π/2. We again show the spectrum for ID and FD with δCP = +π/2, and again

find the VD contribution to be sizeable. However, contrary to the neutrino run, this time

the number of events greatly exceeds the SO prediction for δCP = −π/2. In fact, the ID
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Figure 3. As in figure 2, but for the antineutrino run, with T2K data from [85].

contribution alone is already too large. This means that the antineutrino run shall be

relevant when disentangling the value of δCP within the decay scenario.

On both figures we find that the FD results differ for scalar and pseudoscalar couplings.

The reason for this is that we have chosen a large mlight. In the previous section (figure 1),

we found that for scalar couplings, large values of mlight (x31 → 1) favour ν(±) → ν(±)

over ν(±) → ν(∓) transitions. The opposite behaviour is seen in pseudoscalar couplings,

which allow a much larger proportion of chirality-changing transitions. This, of course,

shall modify results, as ν(−) and ν(+) states have different cross-sections.

Given the argument above, we see that on the neutrino run the peak of the spectrum is

smaller for the pseudoscalar than for the scalar coupling. As said previously, pseudoscalar

couplings give a larger rate of ν(+), and since these have a smaller cross-section, the number

of events is lower. Furthermore, for the antineutrino run, the pseudoscalar coupling gives

a larger rate of ν(−), which have higher cross-sections, and thus lead to more events.

In figure 4, we show allowed regions in several subspaces of the parameter space,

under the hypothesis of the FD scenario. In all plots, red (blue) curves refer to scalar

(pseudoscalar) couplings. Moreover, we show the corresponding regions on the SO scenario

in shades of grey.

If we concentrate on the s2
23 −∆m2

32 subspace (top right panel), dominated by disap-

pearance measurements, we notice that the resulting allowed regions for scalar and pseu-

doscalar couplings are equal, and very similar to those for the SO scenario. This confirms

that the FD scenario has little impact on neutrino disappearance events.
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Figure 4. Correlations in neutrino parameters, for scalar (red) and pseudoscalar (blue) couplings,

using data from the T2K neutrino and antineutrino runs. The dashed lines show 1σ contours,

while the solid line indicates the 90% C.L., as is done in the original T2K analysis. Shaded regions

show corresponding contours in the SO scenario. The black dot, red × and blue + indicate the

best-fit points.

The FD scenario has a much larger impact in the s2
13 − δCP region (top left panel),

where appearance measurements are crucial. We find that the upper bound to s2
13 is similar

to the one for SO, for both scalar and pseudoscalar couplings. However, the lowest possible

value of s2
13 decreases. Moreover, we find that a large region of positive δCP is ruled out,

in agreement with the T2K fit for the SO scenario.

One can get a better insight on the situation in appearance measurements from the

other panels, where we show the allowed values of α as a correlation with s2
13 and mlight.

On the bottom left panel, we see that for low values of α, the allowed range for s2
13

is well bounded (consistent with SO). Then, as α increases, the FD formalism starts to

influence, and the range for s2
13 is shifted to smaller values. This means that the lower
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number of neutrinos from oscillations, due to the smaller s2
13, is compensated by the extra

neutrinos coming from decay. Finally, in both cases, too large values of α generate too

many appearance events, which is incompatible with T2K data, restricting the allowed α

to values of O
(
10−5

)
eV2. This automatically leaves unaffected the s2

23 −∆m2
32 subspace,

which requires much larger values of α to modify significantly the spectrum.

On the other hand, on the bottom right panel, one finds the confidence level contours

for α as a function of mlight. For scalar (pseudoscalar) couplings, we find that for large

values of mlight, the contours reach higher (lower) values of α. For pseudoscalar couplings,

large mass values favour chirality-changing transitions, which gives tensions when applied

to both neutrino and antineutrino runs, as seen in figures 2–3. Thus, in this case, smaller

values of α are compatible with data. Opposed to the latter case, for scalar couplings with

large mlight, chirality-changing transitions are minimized, so visible decay has a smaller

impact, and larger values of α are allowed. In contrast, for smaller mlight, both scalar

and pseudoscalar curves tend to the same value of α. This means that in this limit both

couplings are undistinguishable, as expected from figure 1 (for example, for x31 = 100).

Notice that the best-fit points correspond to non-vanishing values of α. As we shall see

later, these points are not statistically significant. Thus, from the T2K-only χ2 analysis,

we conclude that the FD solution does not improve the quality of the fit in a statistically

significant way. Therefore, from T2K data we will later obtain constraints on α (see

figure 8).

4.2 Analysis in MINOS

In figure 5, we show the spectrum of muon neutrino (top panels) and antineutrino (bottom

panels) disappearance events of FHC mode, for SO, ID and FD scenarios. The first (second)

column shows the scalar (pseudoscalar) couplings case. The panels follows the convention

presented in section 4.1, where we have fixed the oscillation parameters s2
23 = 0.41, s2

13 =

0.0243, ∆m2
32 = 2.41× 10−3 eV2, which correspond to the best fit of MINOS to standard

oscillation model, and δCP = 0, because it is not sensitive in MINOS. When the decay is

present, we have set α = 3.0× 10−4 eV2, and mlight = 0.05 eV to investigate the difference

between the scalar and pseudoscalar scenarios in MINOS (see figure 1).

It is interesting to compare the ID with the FD case to see the effect of adding visible

neutrino decay. As explained in the previous section, and in figure 1, when we fixed a

large value of mlight, this means that for scalar couplings we have a preference for ±±
transitions. In contrast, pseudoscalar couplings have a clear preference for ±∓ transitions.

This explain why the visible neutrino decay contribution for muon neutrino spectrum is

more significant in the scalar case. This happens because the NuMI beam configuration

was composed of more than 90% of muon neutrinos favoring the transition ν
(−)
µ → ν

(−)
µ .

By the other side, looking the muon anti-neutrino spectrum, we see that the contribution

of visible neutrino decay is higher for pseudoscalar case. Using the same previous reason,

this occur because the transition ν
(−)
µ → ν

(+)
µ is favored for the value of mlight chosen.

The best fit obtained for ID and FD scenario were for an α different from zero. Then,

in MINOS, this effect results in an impact on oscillation parameters compared to the one

obtained for SO. This same effect is observed at ref. [59]. However, if we take the minimum
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Figure 5. The spectrum of muon and anti-muon neutrinos events is presented for the SO, ID and

FD scenarios. We fixed the oscillation paramenters in ∆m2
32 = 2.41 × 10−3 eV2, s223 = 0.41, s213 =

0.0243, and δCP = 0. We also fixed the decay parameter α = 3.0× 10−4 eV2 and mlight = 0.05 eV.

The MINOS data points were taken from refs. [16, 87].

χ2 for FD and SO, which are 42.04 and 45.62 respectively, and taking into account the data

bins and different number of parameters in each scenario, one can demonstrate through

the Akaike Information Criterion [92, 93] that there is no statistical difference between

both models.

In figure 6, we show the 1σ and 90% C.L. allowed regions for many combination of the

relevant parameters, already computing ν
(−)
µ combined with ν

(+)
µ . The red (blue) curves

refer to scalar (pseudoscalar) couplings. To compare the effect of neutrino decay, we add

as well the limit when α→ 0, which corresponds to SO scenario (full gray) in eq. (2.2).

The allowed region in the (s2
23−∆m2

32) plane show that the FD scenario has a significant

impact when compared with SO scenario. This means that for MINOS, the contribution

of events coming from visible decay is not enough to constrain the asymmetry at the

probability of ID scenario. Another important observation is that we do not find significant
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Figure 6. The allowed regions for the cases scalar and pseudoscalar using the disappearance signals

from MINOS at FHC mode. The projections shown are to respect the oscillation parameters and

the decay parameter.

differences between scalar and pseudoscalar couplings except by a region in (s2
23 −∆m2

32)

plane. We can see it for small values of ∆m2
32 and higher for s2

23.

We also present the two-dimensional projections (α−∆m2
32) and (α− s2

23) in figure 6.

We can observe that for large values of α, the contours increase the range in ∆m2
32, and

either allow higher values of s2
23.

The right bottom panel in figure 6 show the correlation between α and mlight. We

can conclude by it, that MINOS is not able to distinguish the α constraint for scalar and

pseudoscalar couplings.

4.3 Combination of T2K and MINOS

In order to combine T2K and MINOS data, for every points in the parameter space we

have added the respective χ2 values for each experiment. We show the result in figure 7.

The panels follow the same conventions as in figures 4 and 6.
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Figure 7. As in figures 4 and 6, but combining T2K and MINOS data.

On the top right panel we show the allowed s2
23 − ∆m2

32 subspace. We find that the

resulting allowed area is not as large as the one in the MINOS-only analysis, in fact, for

both scalar and pseudoscalar scenarios, the contours match those for the SO result. This

is due to the value of α being strongly constrained by νe appearance, down to values where

MINOS has no sensitivity. This is analogous to the T2K-only case, where we saw that no

effects were visible for νµ disappearance. Therefore, the T2K analysis dominates the fit.

On the top left panel, we show the s2
13 − δCP region. The allowed area in the pseu-

doscalar scenario is very similar to the T2K-only result. For the scalar scenario, however,

when compared to the T2K-only analysis, we find that the regions allow even smaller values

of s2
13. In addition, in this scenario no value of δCP is ruled out at 90% C.L.

The qualitative behaviour observed on the bottom left panel, showing the s2
13−α plane,

is very similar to the one of figure 4. An evident difference is that, for both couplings, the

best-fit for α is increased to a value of O
(
10−5

)
. This implies that the MINOS data

shall still relevant when bounding this parameter. Nevertheless, we shall find these best-fit

values not to be statistically relevant.
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Figure 8. Curves showing ∆χ2 as a function of α for T2K (blue), MINOS (green) and the full T2K

and MINOS combination (red). Dashed lines show the same information, with the additional pull

function from reactor data. We show the scalar (pseudoscalar) scenario on the left (right) panel.

Finally, on the bottom right panel, we can understand why all values of δCP are allowed

in the scalar coupling scenario. In the SO scenario, if we fix s2
13 at the reactor best-fit value,

positive δCP implies too few (too many) events in the T2K neutrino (antineutrino) run. If

we only consider data from the T2K neutrino run, we would find in both FD scenarios that

positive δCP is incompatible with a vanishing value of α. This means that the lesser number

of events in the neutrino run, coming from the oscillation contribution, is compensated by

the additional contribution from visible decay. This was previously explained in section 4.1

(see the lower panels of figure 2). Nevertheless, the data from the T2K antineutrino run

is incompatible with this solution (lower panels of figure 3), such that positive δCP is not

allowed. This is precisely what happened in figure 4. However, when adding the MINOS

data, we find that the latter pulls the fit towards larger α, for all values of δCP for both

couplings, reintroducing the ambiguity in δCP for the scalar case. This ambiguity with δCP

does not happen for the pseudoscalar case, as we have seen, the incompatibility of a value

of α of O
(
10−5

)
, for δCP = +π/2, in front of antineutrino data is much more serious. One

would expect that, if further T2K antineutrino data exhibits the same preference for SO,

the positive δCP solution would eventually also be excluded for scalar coupling.

In figure 8 we present show ∆χ2 as a function of α, for the two scenarios (scalar and

pseudoscalar couplings) and three fits (T2K, MINOS and T2K+MINOS) considered. We

also add additional curves showing the impact of including reactor data, as explained in

section 3.3.

As we can see, the MINOS solution for non-zero α is excluded by T2K data, which

is compatible with a null value for this parameter. Therefore, we place bounds on α.

The T2K-only 90% C.L. bounds are α . 5.6 × 10−5 eV2 (α . 6.3 × 10−5 eV2) for the

pseudoscalar (scalar) scenario. As expected, the constraint on this parameter for the

T2K+MINOS combination is slightly weaker: 6.9 × 10−5 eV2 (7.8 × 10−5 eV2) for the

pseudoscalar (scalar) case.

The addition of reactor data adds a strong pull factor towards non-zero s2
13. However,

as the solutions for both couplings involve values of s2
13 compatible with reactor data, the

addition of the latter does not modify significantly the results.
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5 Conclusions

In this work we have studied the implications of visible neutrino decay on T2K and MINOS

experiments. We have considered that the decay proceeds through the coupling of two

neutrinos and a Majoron, which can be either of scalar or pseudoscalar nature. We present

our results for both couplings, separately, and describe their effects in detail.

In our analysis we consider neutrino disappearance and appearance channels, both in

T2K and MINOS. The results for MINOS point towards a non-zero α as a best-fit solution.

Nevertheless, the inclusion of T2K neutrino and antineutrino data excludes this result,

being consistent with a vanishing α. Consequently, we put bounds on this parameter.

The power of the T2K data lies on the strong influence that visible neutrino decay

has on appearance channels. The additional events from the full decay framework are

significant even for values of α much smaller than the characteristic E/L where the neutrino

experiment has its largest sensitivity. In contrast, for the neutrino disappearance spectrum,

the inclusion of visible and invisible neutrino decay components does not differ from what

is obtained when considering only the invisible component.

Our results depend on the type of non-zero coupling. If we denote the allowed values

of α, given the coupling c, due to the experiment exp, by α
(c)
exp, the best constraint we find

at 90% C.L. is:

α
(s)
T2K < 6.3× 10−5 eV2 , α

(p)
T2K < 5.6× 10−5 eV2 , (5.1)

α
(s)
TK2+MINOS < 7.8× 10−5 eV2 , α

(p)
TK2+MINOS < 6.9× 10−5 eV2 . (5.2)

Notice that these bounds depend crucially on the T2K antineutrino data, which is

currently in its first years of data taking. We expect that the bounds shall improve with

further data.
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A Full formula for visible neutrino decay

The Grsαβ(Eα, Eβ) function describing visible neutrino decay can be derived from the orig-

inal formula of [52], using the methods of [69]. Assuming the final state neutrinos do not

oscillate, the result is:

Grsαβ(Eα, Eβ) =

3∑
i=2

i−1∑
j=1

3∑
m=2

m−1∑
n=1

2Eα
4α2
〈im〉 + (∆m2

im)2

√
d

dEβ
Γ(νri → νsjJ)

d

dEβ
Γ(νrm → νsnJ)

{
<e
[
Kβαsr
jinm

](
2α〈im〉

[
cos

(
ωsrijmn

2

)
− cos ∆sr+

ijmn exp

(
−
α〈im〉L

Eα

)]
−∆m2

im

[
sin

(
ωsrijmn

2

)
+ sin ∆sr−

ijmn exp

(
−
α〈im〉L

Eα

)])
−=m

[
Kβαsr
jinm

](
2α〈im〉

[
sin

(
ωsrijmn

2

)
− sin ∆sr+

ijmn exp

(
−
α〈im〉L

Eα

)]
+∆m2

im

[
cos

(
ωsrijmn

2

)
− cos ∆sr−

ijmn exp

(
−
α〈im〉L

Eα

)])}
(A.1)

Here, we have Kβαsr
jinm = U

(s)
βj U

(r)∗
αi U

(s)∗
βn U

(r)
αm. Notice that, following eq. (1.1), the PMNS

matrix has been defined without the Majorana phases. In eq. (A.1), the latter are taken

into account within the parameter ωsrijmn = γsjj − γrii − γsnn + γrmm. We also denote:

α〈im〉 =
αi + αm

2
, (A.2)

∆sr±
ijmn =

∆m2
im

2Eα
L±

ωsrijmn
2

. (A.3)

If we only have one unstable neutrino, this expression can be considerably simplified.

We chose νr3 to be unstable, which means we fix i = m = 3 in eq. (A.1), so we obtain:

Grsαβ(Eα, Eβ) =

(
1− e−α3L/Eα

α3/Eα

)∣∣∣U (r)
α3

∣∣∣2{ 2∑
j=1

∣∣∣U (s)
βj

∣∣∣2 d

dEβ
Γ(νr3 → νsjJ) (A.4)

+ 2<e
[
U

(s)
β2 U

(s)∗
β1 exp

(
i
ωsr3231

2

)]√
d

dEβ
Γ(νr3 → νs1J)

d

dEβ
Γ(νr3 → νs2J)

}
.

Furthermore, if only one decay channel is allowed (for example, νr3 → νs1J , obtained

by fixing j = n = 1 in eq. (A.1)), we have:

Grsαβ(Eα, Eβ) =

(
1− e−α3L/Eα

α3/Eα

)∣∣∣U (r)
α3

∣∣∣2 ∣∣∣U (s)
β1

∣∣∣2 d

dEβ
Γ(νr3 → νs1J) . (A.5)

One must note that the previous formulae have been written in the convention m1 <

m2 < m3, which coincides with the normal hierarchy. To obtain results for the inverted

hierarchy, one either must write m1 → m3, m2 → m1 and m3 → m2, or modify the full

PMNS matrix such that:

U · diag
(

1, ei
γ22
2 , ei

γ33
2

)
→ U ·

 0 1 0

0 0 1

1 0 0

 · diag
(
ei
γ33
2 , 1, ei

γ22
2

)
. (A.6)
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B Formulae for visible neutrino decay rates

In the following, we shall concentrate on the differential decay width dΓ(νri → νsfJ)/dEβ ,

for the general case where several decay channels exist. Our procedure follows [69], where

we have a neutrino-Majoron coupling:

Lint =
(gs)ij

2
ν̄iνjJ + i

(gp)ij
2

ν̄iγ5νjJ , (B.1)

where the neutrinos are on the mass eigenstates basis.

With this, the partial decay rates of a neutrino with energy Eα are [69, 94]:

Γ(ν
(±)
i → ν

(±)
f J) =

m2
i

16π

1

xifEα

[
(gs)

2
if f(xif ) + (gp)

2
if g(xif )

]
, (B.2a)

Γ(ν
(±)
i → ν

(∓)
f J) =

m2
i

16π

1

xifEα

(
(gs)

2
if + (gp)

2
if

)
k(xif ) , (B.2b)

where xif = mi/mf > 1, and:

f(x) =
x

2
+ 2 +

2

x
log x− 2

x2
− 1

2x3
, (B.3a)

g(x) =
x

2
− 2 +

2

x
log x+

2

x2
− 1

2x3
, (B.3b)

k(x) =
x

2
− 2

x
log x− 1

2x3
. (B.3c)

For our description of neutrino decay, we need the differential decay rate:

d

dEβ
Γ(νri → νsfJ) =

mimf

4πE2
α

(
1− m2

i

E2
α

)−1/2 ∣∣M(νri → νsfJ)
∣∣2 Θ(Eα, Eβ) . (B.4)

The Θ(Eα, Eβ) function fixes the angle between the momenta of the incoming and outgoing

neutrinos:

cos θ =
2EαEβ − (m2

i +m2
f )

2|~pi||~pf |
, (B.5)

which effectively imposes the following bound on Ef :

Eα
2

(
1 +

m2
i

m2
f

)
− |~pi|

2

(
1− m2

i

m2
f

)
≤ Eβ ≤

Eα
2

(
1 +

m2
i

m2
f

)
+
|~pi|
2

(
1− m2

i

m2
f

)
. (B.6)

On the relativistic limit, this reduces to:

Eα
x2
if

≤ Eβ ≤ Eα . (B.7)

Thus, in terms of the Heaviside function ΘH , we have:

Θ(Eα, Eβ) = ΘH(Eα − Eβ) ΘH(x2
ifEβ − Eα) . (B.8)
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The neutrino decay amplitudes M(ν
(±)
i → ν

(±)
f J) can be computed as a function of (gp)

2
if

and (gs)
2
if , the neutrino masses and the neutrino energies [69, 94]. These can be recasted

using the partial width of neutrinos, given by eqs. (B.2). We first define:

αif = Eα (Γ(νi → νfJ) + Γ(νi → ν̄fJ)) , (B.9)

such that αi = EαΓi =
∑

f αif . We can invert the eq. (B.9) and solve for one coupling,

such that either the scalar or the pseudoscalar couplings is written:

(gp)
2
if =

16παif
m2
i

x4
if

(xif + 1)(xif − 1)3
− (gs)

2
if

(
xif + 1

xif − 1

)2

, (B.10a)

(gs)
2
if =

16παif
m2
i

x4
if

(xif + 1)3(xif − 1)
− (gp)

2
if

(
xif − 1

xif + 1

)2

. (B.10b)

Using eqs. (B.10), we can re-write the expression of the amplitudeM(ν
(±)
i → ν

(±)
f J) [69, 94]

in terms of αij and one coupling. For example, in terms of (gif ), we have:

∣∣∣M(ν
(±)
i → ν

(±)
f J)

∣∣∣2 =
xif

(xif − 1)2

[
4παif
m2
i

(
x3
if

x2
if − 1

)
(A− 2) + (gs)

2
if

(
1

xif
+ xif −A

)]
∣∣∣M(ν

(±)
i → ν

(∓)
f J)

∣∣∣2 =
xif

(xif − 1)2

[
4παif
m2
i

(
x3
if

x2
if − 1

)
− (gs)

2
if

](
1

xif
+ xif −A

)
. (B.11)

Alternatively, in terms of (gp)if , we find:

∣∣∣M(ν
(±)
i → ν

(±)
f J)

∣∣∣2 =
xif

(xif + 1)2

[
4παif
m2
i

(
x3
if

x2
if − 1

)
(A+ 2)− (gp)

2
if

(
1

xif
+ xif −A

)]
∣∣∣M(ν

(±)
i → ν

(∓)
f J)

∣∣∣2 =
xif

(xif + 1)2

[
4παif
m2
i

(
x3
if

x2
if − 1

)
+ (gp)

2
if

](
1

xif
+ xif −A

)
. (B.12)

For both cases, we have defined:

A =
1

xif

Ei
Ef

+ xif
Ef
Ei

. (B.13)

These results are very useful, as they allow us to simplify the differential decay width. If

we go to the limit where one coupling is zero, the other coupling is automatically determined

by the value of αif . If, in addition, there exists only one allowed decay channel, then the

whole process is governed by αi.

These sort of considerations lead us to the principal formula used in this work, eq. (2.4).

C Formulae for T2K and MINOS

In order to obtain the number of events within an energy bin, one needs to multiply eq. (2.1)

by the νsβ cross-section and perform the Eβ integral considering the particular bin width,
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efficiency and energy resolution function. We calculate the number of events in the energy

bin i, with chirality s and going through interaction int, using:

N s,int
i,β =

∫
dEβK

int
i (Eβ)σs,int

β (Eβ)
dN s

β

dEβ
, (C.1)

where σs,int
β (Eβ) denotes the appropriate cross section, and the “detection kernel” K int

i (Eβ)

for bin i is defined:

K int
i (Eβ) =

∫ Ei,max

Ei,min

dEbin ε
int
β (Ebin)R(Eint

β,rec − Eβ , ς int
β ) . (C.2)

Here, εint
β (Ebin) denotes the detector efficiency, while the resolution function R(Eint

β,rec −
Eβ , ς

int
β ) reflects our capacity to reconstruct the true neutrino energy Eβ . In both experi-

ments we model this using a gaussian function:

R(∆E, ς int
β ) =

1√
2πς int

β

exp

[
− (∆E)2

2(ς int
β )2

]
. (C.3)

The variable Eint
β,rec is related to the bin energy Ebin by a possible energy shift, and ς int

β

denotes the energy resolution width.

C.1 T2K

For T2K, the neutrino fluxes appearing in eq. (2.1) are obtained from [82], and the cross

sections are taken from GENIE [95].

For νµ disappearance, we take the shift and resolution width ς int
µ from [96]:

ECCQE
µ,rec = Ebin , ECCnQE

µ,rec = Ebin − 0.34 GeV , (C.4)

ςCCQE
µ = 0.085 GeV , ςCCnQE

µ = 0.130 GeV . (C.5)

with equal values for neutrino and antineutrino channels.

For νe appearance, we use the “migration matrix” from [97], which is equivalent to us-

ing:

ECCQE
e,rec = Ebin − (0.025Eβ − 3.75×10−3 GeV) ECCnQE

e,rec = Ebin − (0.325Eβ + 0.146 GeV)

(C.6)

ςCCQE
e = 0.065Eβ + 0.049 GeV , ςCCnQE

e = 0.2Eβ − 0.04 GeV , (C.7)

ECCQE
ē,rec = Ebin − 0.02 GeV , ECCnQE

ē,rec = Ebin − (0.2Eβ + 0.16 GeV) ,

(C.8)

ςCCQE
ē = 0.015Eβ + 0.049 GeV , ςCCnQE

ē = 0.1Eβ + 0.045 GeV . (C.9)

For NC events, we fit the shape of the spectra shown in [84, 98]. We set:

ENC
µ,rec = Ebin − 0.310 GeV , ENC

e,rec = Ebin − 0.265 GeV (C.10)

ςNC
µ = 0.06 GeV , ςNC

e = 0.08 GeV . (C.11)

Finally, the detector efficiency functions are obtained by fitting the number of events

on each bin in figures 20, 28 and 41 in [82] as well as relevant plots in [84, 85, 98].
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C.2 MINOS

The φrνα(Eα) described in eq. (2.1) is the flux at Far Detector for MINOS. It was obtained

by the product of the flux at the Near Detector (ND) and the Beam Matrix fF/N (Eα, Eβ),

following:

φrνα(Eα) =
∑

φ(ND)r
να (Eα) · fF/N (Eα, Eβ) , (C.12)

where Eα is the bin energy and Eβ are the adjacent bins of Eα. The ND flux φ
(ND)r
να (Eα) was

taken from references [14, 99]. To construct the Beam Matrix fF/N (Eα, Eβ), we used the

matrix M(Eα, Eβ) extracted from reference [100], and also two Gaussian functions Gl(Gr)

with resolutions widths having energy dependence in the maximum until the second order.

So, the fF/N (Eα, Eβ) can be described as:

fF/N (Eα, Eβ) =
Gl(Eα, Eβ) +Gr(Eα, Eβ)

2
×M(Eα, Eβ) . (C.13)

The functions Gl(Gr) is responsible for extrapolate the flux of higher (lower) to lower

(higher) energies.

In MINOS, the only considered interaction is CC. The cross sections σs,CC
β are taken

from references [101, 102]. We have taken ECC
µ,rec = Ebin, and assume the resolution widths

ςCC
β (Eβ) to be linear in energy. The efficiency εCCβ of the detector was extracted from

reference [14].
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