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Abstract

This paper suggests an evolving approach to develop neural fuzzy networks for system modeling. The approach 
uses an incremental learning procedure to simultaneously select the model inputs, to choose the neural network 
structure, and to update the network weights. Candidate models with larger and smaller number of input variables 
than the current model are constructed and tested concurrently. The procedure employs a statistical test in each 
learning step to choose the best model amongst the current and candidate models.  Membership functions can be 
added or deleted to adjust input space granulation and the neural network structure. Granulation and structure 
adaptation depend of the modeling error. The weights of the neural networks are updated using a gradient-descent 
algorithm with optimal learning rate. Prediction and nonlinear system identification examples illustrate the 
usefulness of the approach. Comparisons with state of the art evolving fuzzy modeling alternatives are performed to 
evaluate performance from the point of view of modeling error. Simulation results show that the evolving adaptive 
input selection modeling neural network approach achieves as high as, or higher performance than the remaining 
evolving modeling methods.
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1. Introduction

Evolving fuzzy systems constitute a class of systems 
whose structure and parameters can be adapted 
concurrently in a stepwise manner using data streams. 
Adaptation proceeds continuously and gradually by 
means of incremental learning. Incremental learning 
enables fast processing with low storage cost because 
samples in data streams are processed only once and can 
be discarded1. While learning enables continuous and 
gradual knowledge update changing the structure and 
parameters of models, it maintains the relevant 
knowledge of objects learned so far2. A limitation of the 
current evolving fuzzy modeling approaches concerns 
the non-flexibility to select the input variables as the 
system structure and parameters are adapted. Often, the 
input variables are chosen using a priori knowledge or a 
selection technique. Once chosen, the input variables 
remain the same3.

A major issue in evolving systems research is how 
to incorporate mechanisms for input variables selection 
during the incremental learning process without causing 
damages or discontinuities in the learning process3, 4.
Ideas to introduce adaptive selection methods have been 
presented in Refs. 5 and 6 for classification and in Ref. 
7 for system identification.

More specifically, Ref. 5 proposes a classifier whose 
input variables selection scheme is part of the learning 
algorithm. This method creates and assigns relevance 
weights to a set of candidate variables. The n most 
relevant are selected as input variables. The relevance of 
the input variables are updated at each learning step, but 
once chosen, the number of model input variables 
remains fixed.

Recently, a similar incremental scheme to select 
input variable was proposed in Ref. 6 as part of the 
learning algorithm of the evolving fuzzy classifier 
FLEXFIS-Class8. The scheme also assigns relevance 
weights in the range [0,1] to each input variable. Input 
variables with higher discriminating power have their 
values set close to 1 , while the less relevant variables 
have values close to 0 .  The weights are continuously 
updated during the learning process.

An evolving fuzzy linear regression tree with input 
selection was introduced in Ref. 7. The tree topology is 
incrementally adjusted using a statistical test that 
enables updating the number of tree nodes and of input 
variables as new data are input.

This paper extends the X-eNFN-AFS (eXtended 
Evolving Neural Fuzzy Network with Adaptive Feature 
Selection) approach originally introduced in Ref. 9. The 
X-eNFN-AFS expands the evolving neural network 
constructed with neo-fuzzy neurons (NFN)10 suggested 
in Refs. 3, 11 and 12.

A neural fuzzy network assembled with neo-fuzzy 
neurons and a scheme for adaptive input selection was 
first introduced in Ref. 3. Called NFN-AFS  (Neural 
Fuzzy Network with Adaptive Feature Selection), the 
input selection scheme starts with one or more input 
variables and, using the input data stream and a statistic 
test, decides if a new input variable should be added, 
and if an existing variable should be maintained or 
excluded. The number of fuzzy sets that granulate the 
input variables domains is chosen a priori and kept the 
same during operation.

Later, Ref. 11 developed an evolving fuzzy network 
with neo-fuzzy neurons called eNFN (Evolving Neural 
Fuzzy Network). The eNFN uses an incremental 
learning procedure to add or delete membership 
functions simultaneously with weights update. The 
learning procedure uses input data to estimate current 
modeling error and verify if adaptation should proceed 
varying the number of membership functions for each 
input.

Next, an evolving neural fuzzy network with 
adaptive input selection eNFN-AFS (Evolving Neural 
Fuzzy Network with Adaptive Feature Selection) was 
built12. Essentially, eNFN-AFS combines the two 
previous approaches, namely NFN-AFS and eNFN. The 
eNFN-AFS adaptation proceeds by including or 
excluding input variables, and either add or exclude 
membership functions. Adaptation is done 
simultaneously with adjustments of the neural network 
weights. eNFN-AFS granulates the input variables 
domains choosing membership functions from a fixed 
set of membership functions, one set of each input 
variable.

Differently from eNFN-AFS, the X-eNFN-AFS 
approach addressed in this paper uses input data to 
granulate the input variables domains of a current and a 
candidate model. Both, current and candidate models 
have an associated set of membership functions for each 
of the corresponding input variables and, similarly as in 
the previous approaches, input variables selection is 
done using the modeling error and a statistical test. 
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Variable selection, input domains adaptation, and 
weights are updated simultaneously. 

The remaining of the paper is organized as follows. 
After this introduction, Section 2 details the evolving 
learning algorithm with adaptive input selection 
suggested herein. Section 3 addresses prediction and 
nonlinear system identification application examples, 
and evaluates and compares the performance of X-
eNFN-AFS against state of the art evolving modeling 
approaches. Section 4 concludes the paper with a 
summary of its contributions and suggestions for further 
studies.

2. Evolving Neural Fuzzy Network with 
Adaptive Input Selection 

Figure 1 depicts the structure of the X-eNFN-AFS 
neural network.  The input variables at t are xt1,..,xtn, the 
individual outputs are denoted by yt1,..,ytn, the network 
weights are qi1,..,qimi, and the network output is ŷt .

Figure 1. Structure of the X-eNFN-AFS neural.

The X-eNFN-AFS uses an incremental learning 
algorithm to select the inputs, to evolve the network 
structure, and to adjust the neural network weights 
concurrently to produce an output. Computations in 
each of these steps are recursive and there is no need to 
store past data. The input selection step uses a 
statistical test to decide if a new variable should be 
added, or if an existing variable should be removed or 
maintained. The network structure evolves by adding or 

deleting a membership function based using the input 
data and the modeling error. The weights of the neural 
network are updated using one-step gradient descent 
algorithm with optimal learning rate. An overview of 
the steps of the learning algorithm for X-eNFN-AFS is 
as follows: 

Choose initial input variables and set current and 
candidate models. This step is performed only once 
to start the algorithm.
Choose initial parameters of the membership 
functions, i.e. their modal values bi . This step is 
performed only once from the lower ( minxi ) and 
upper ( maxxi ) bounds of the input variables 
domains.
Check if the input xti is greater than the upper 
bound ( maxxi ) or smaller than lower bound 
( minxi ). Decide if the value of the bounds should 
be updated.
Compute the membership degrees Aij of input 
xti , find the most active membership function and 
update its modal value.
Compute the neural network output ŷt .
Update the neural network weights qij .
Choose the best candidate model. Decide if the best 
candidate model should replace the current model.
Check whether the most active membership 
function represents well the neighborhood of input 

tix . Decide if a new membership function should 
be created to refine the neighborhood of xti .
Find the oldest inactive membership function. 
Decide if this membership function should be 
removed.

The details of each of these steps are given next.

2.1. Step 1: Initial Input Variables and Initial 
Current and the Candidate Models

Variable selection requires pre-selection of a set of input 
variables. One or more variables of this set are selected 
to start learning. The initial set of input variables can be 
constructed either from a priori knowledge, or 
employing ranking methods12.

Input variable selection considers the current model 
and two candidate models. The first candidate model is 
constructed adding new variables to the current model. 
The second candidate model is constructed excluding 
an existing variable from the current model. The idea is 
to check if it is worth replacing the current model by 
either a more complex (first) or simpler (second) 
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candidate models, the one which improves modeling 
performance.

Let n be the total number of input variables and a
be the number of input variables of the current model. 
Thus, we can choose any of the remaining ( )n a
variables and add them in the current model to assemble 
a candidate model with ( 1)a input variables. On the 
contrary, any of the a variables of the current model 
can be removed to obtain a simpler candidate model 
with ( 1)a input variables. Figure 2 illustrates the idea. 
The set of input variables {x1, x2, x3} has 3n elements. 
The current model (highlighted in red) has two input 
variables x1, and x2, and 2a . The first candidate
model has the variable x3 as an added input. There are 
two candidate models: the first has x2 as input (x1

removed) and the second has x1 as input (x2 removed). 

2.2. Step 2: Initialization Membership Functions 

Initially the domain of each input variable is uniformly
partitioned using triangular membership functions. 
Triangular membership functions are defined by their 
modal values, and by the lower and upper bounds of 
their support. We denote the modal value of the k-th
membership function (and refer to the membership
function itself) by kb . The lower bound of its support is 
at the modal value of the (k -th adjacent membership 
function 1kb , and upper bound of its support is at the 
modal of the (k+1)-th adjacent membership function 

1kb . The initial number of membership functions can 
be chosen empirically, based on a priori knowledge, or 
using a clustering technique14. In this paper, initially 
current and candidate models start with two 
membership functions for each input variable. The 
modal values of the initial membership functions are 
chosen as follows:

,1 min

,2 max

bi xi

bi xi
(1)

where i indexes the input variable, minxi is the lower 
bound, and maxxi the upper bound of the i-th input 
variable domain. Adding and/or removing membership 
functions, depending on the input data and modeling 
error, refine granulation of the input domain. The 
procedures to add and to delete a membership function 
are detailed in Sections 2.8 and 2.9, respectively.

Steps 1 and 2 are performed only once and starts the 
X-eNFN-AFS learning and adaptation.

Figure 2. Candidate models.

2.3. Step 3 - Context Adaptation 

In data stream-based applications there may be changes 
in operating conditions that enable the emergence of 
data whose values are outside the minxi and maxxi
bounds. Therefore, it is important to update the bounds 
of the input variables. A simple way to update minxi
and maxxi is as follows:

If minxti xi
, then

min xx tii
and min1bi xi

, (2)

If maxxti xi
, then

max xx tii
and maxbim xi i

, (3)

in other words, the maximum and minimum bounds for 
each input variable are updated as the algorithm 
receives new samples that exceed current bounds. This 
step is performed whenever new data are input.

2.4. Step 4 - Modal Value Update 

This step updates the modal value of the most active 
membership function enabled by current input xti, i =
1,…, n. It works as follows. For each input variable, 
let *bi be the index of the most active membership 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

6



Adaptive Input Selection

function. The membership function indexed by *bi is 
updated according to the following rules:

If * 1bi and *b mi i , then

* * *
new old oldb b x bti
ib ib ibi i i

,
(4)

where is a learning rate chosen empirically. A typical 
value, the one adopted in this paper, is 0.01 .

If * 1bi or *b mi i , then
the modal value is kept the same because in this  
case the modal values corresponds to upper and 
lower bounds, respectively.

2.5. Step 5: Model Output 

Each model (candidate or current) mirrors a set of zero-
order Takagi Sugeno (TS)15 rule-based model, one for 
each input variable. We detail only the procedure for the 
current model for short. The procedure for the 
candidate models is, mutatis mutandis, the same. The 
output ŷt of the model at step t is the sum of 
individual outputs of the current model, i.e.:

ˆ ,
1

a
y yt ti

i

(5)

where a is the number of input variables for the current
model.

The domain of each input variable xti is granulated 
using mi membership functions. Because partitions are 
uniform, at most two of the membership functions are 
active for a given input xti (Figure 3).

Figure 3. Uniform partition and active membership functions.

The individual outputs yti are computed using the 
active membership functions only, that is:

,1 1y A x q A x qti ik ti ik ik ti iki i i i (6)

where A xik tii and 1A xik tii are the activation 
degree of membership functions Aiki

and 1Aiki
, ki

and 1ki indexes the active membership functions, and 
qiki and 1qiki are the network connection weights.

2.6. Step 6: Network Connection Weights Update 

Only membership functions Aiki
and 1Aiki

are active 
for each input xti and only the corresponding 
connection weights are updated. The updating 
mechanism uses a gradient-descent mechanism:

ˆ( )q q y y A xtiik ik t t t iki i i
,

ˆ( )1 1q q y y A xtiik ik t t t iki i i
, (7)

where yt is the desired output, ŷt is the network 
output, and t is the learning rate. In this paper we 
adopt a closed formula to compute the value of t that 
gives zero error at each learning step. The optimal 
learning rate14 is:

1
.

2 2
1

1

t n
A x A xik ti ik tii i

i (8)

Steps 4, 5, and 6 are repeated for all candidate
models.

2.7. Step 7: Adaptive Input Variable Selection 

Adaptive input variable selection is based on the F
test16. The F test evaluates the quality of models, 
considering their accuracy and number of free 
parameters. Two models are evaluated, one simpler and 
other more complex than the current model. Here, 
model complexity refers to the number of input 
variables and the number of membership functions of 
the model. F test analyzes the cost-benefit between 
more precise and more complex models.

The F test16 uses the following statistic:

,
RSS RSS S pa c cF

RSS p pc c a

(9)

where S is the number of samples used to estimate the 
parameters of the models, RSSa and RSSc are, 
respectively, the sum of squared residuals for the 
current and candidate model, and pc and pa are the 
number of free parameters of each model. The number 
of parameters p is f the number of input variables times 
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the number of membership functions. Assuming that 
residuals distribution is normal, F follows a Fisher 
distribution with ( ,p p S pc a c ) degrees of freedom.

In the F test the model parameters are estimated 
using the same samples, but the number of samples used 
to estimate the parameters may not be the same at each 
learning step. This is because new candidate models are 
created whenever the current model is replaced by a 
candidate model. The new current model continues 
with the same number of parameters and statistics, but 
the new candidate models start from scratch. Therefore, 
the number of samples used to estimate the current
model parameters will always be equal to or greater 
than the number of samples used for the candidate
models.

A modification of the e F test suggested in Ref. 17 is 
particularly attractive for incremental algorithms. In 
Refs. 7, 17 and 18 the F test is used in incremental 
linear regression tree learning. This variation of the F
test is used in this work to compare the current model 
with the candidate models.

The statistic Finc (10) of the candidate model that 
has a new variable added to the current model is 
computed as follows:

,
RSS RSS S pa c c cFinc RSS S S p pc c a a c

(10)

where Sa e Sc are the number of samples used to 
estimated the parameters of the current and candidate
model, respectively. Finc follows a Fisher distribution 
with ( ,S S p p S pc a a c c c ) degrees of freedom.

The statistic Fexc (11) is used by the candidate
model that has a variable removed from the current
model. Fexc follows a Fisher distribution with 
( ,S S p p S pc a c a c c ) degrees of freedom.

.
RSS RSS S pa c c cFexc RSS S S p pc c a c a

(11)

The Finc and Fexc statistics requires p_values to be 
found for all candidate models. The candidate with the 
smallest p_value is the best candidate model, and it 
replaces the current model only if its p_value is smaller 
than a significance level . Because the hypothesis test 
is done times using the same data, it is necessary to 
consider multiple comparison approaches17 such as the 
Bonferroni scheme. Therefore, the significance level 
must be divided by the number of tests, and a candidate
model replaces the current model only

If p_value (12)

where is ( )n a for Finc and a for Fexc . Typical 
values for the significance level are 0.01 and 0.05 .

The adaptive input variable selection algorithm can 
be summarized as follows.

Procedure  Input_Selection
nc: number of candidate models
For l = 1 : nc

compute lF
compute p_value l

end For
find candidate model with smallest p_value
CreateExclude=1
Model replacement test
If p_value z /

CreateExclude=0
replace the current model by the candidate model z
current model keeps statistics/parameters of z
set new candidate models

end If

2.8. Step 8: Creation of the Membership 
Functions

Creation of membership functions aims to refine input 
domains granulation, and to reduce the output error 
uniformly. Granulation of input domains is performed 
using the error caused by the currently active 
membership functions. The mean value of the local 
output errors of the rules corresponding to the active 
membership functions are compared against the mean 
value of the global modeling error. If the local mean 
error value is greater than the overall mean error, then 
the local region is refined adding new membership 
function as follows.

For each new input xt , the mean value ˆ gt
and 

variance 2ˆ gt
of the overall modeling error are found as 

follows:

ˆ ˆ ˆ ˆ( ( )),
1 1

y yg g g t tt t t
(13)

2 2 2ˆ ˆ ˆ ˆ(1 )( ( ( )) ).
1

y yg g g t tt t t
(14)
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Similarly, for the input xt the local mean error 

ˆ *bti
corresponding to the most active membership 

function *bi is computed recursively using:

ˆ ˆ ˆ ˆ( ( ))* * *
1 1

.y yt tb b bt i t iti

(15)

To prevent excessively fine granulation, a threshold 
is used to limit the smallest distance between the 

modal values of adjacent membership functions. If 
* 1bi and *b mi i , then the distance is found using:

* *1 1
.

3

b bib ibi idist
(16)

On the contrary, if the most active function is such 
that * 1bi or *b mi i , then the dist is computed by (17) 
and (18), respectively.

* *1
.

2

b bib ibi idist
(17)

* * 1
.

2

b bib ibi idist
(18)

The number of rules is not fixed a priori and it 
depends of the learning process and data only. This 
mechanism avoids complex models and overfitting. 
Indirectly, the threshold controls of the number of 
rules. Limit is computed using:

(max min )
,

x xi i (19)

where is a user-defined parameter. Typically 
[5, 25] .
A membership function is created and added:    

If 2ˆ ˆ ˆ* g gb t tti
and .dist (20)

Insertion of a new membership function requires 
updating the granulation of the i-th input variable 
domain. This can be done as follows:

If * 1bi and *b mi i , then
the most active function is replaced by two new  
membership  functions  whose modal values are 
found from (21) and (22).

.1 *1 1
b b distnew ibi

(21)

2 * .1 *1 1
b b distnew ibi

(22)

If * 1bi , then
a new membership  function  is  inserted between 
the first and second, and its modal value is found 
by:

*b b distnew ibi
. (23)

If *b mi i , then
the new membership function is inserted between 
the   last   and   the   previous, with  modal  value 
computed by:

*b b distnew ibi
. (24)

The procedure Create_Function summarizes the 
mechanism to create and add membership functions.

Procedure Create_Function
find *bi

compute ˆgt , 2ˆgt
, *ˆbti

, , dist

If 2ˆ ˆ ˆ*b gt gti t
and dist

create and add new function
update parameters

end If

2.9. Step 9: Exclusion of the Membership 
Functions 

This step is a mechanism to reduce the number of 
membership functions using the concept of age19, 20. The 
idea of age is used to determine for how many steps a 
membership function has been inactive. The age of a 
membership function is:

,age t ai i (25)

where ai is the step at which i-th membership function 
turn active first and t is the current step.

The scheme to exclude a membership function is as 
follows. For each input variable i , find bi , the index of 
the least active membership function enabled by xti .
The membership function indexed by bi is excluded
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If agebi and 2mi , (26)

where is a threshold. Typically, the value of is 
chosen between 50 and 250 .

After a membership function is excluded, input 
domains granulation is updated as follows:

If 1bi and b mi i , then

the function is excluded and the lower and upper 
bounds of the adjacent membership functions 
adjusted. Both, upper and lower bounds change 
to keep partition uniform.

If 1bi , then
the function is excluded and the modal values of 
the adjacent membership functions are set as 
minxi .

If b mi i , then
the function is excluded and the modal values of 
the adjacent membership functions are set as 
maxxi .

The procedure to exclude membership functions is: 

Procedure  Exclude_Function
update agei
find bi
If ( agebi ) and ( 2mi ),

remove membership function indexed bi
update parameters

end If

Steps 8 and 9 are repeated for all candidate models.

2.10. X-eNFN-AFS Learning Algorithm

The steps the X-eNFN-AFS learning algorithm can be 
summarized as  follows.  

Inputs xt , yt , , , ,
Output ŷt
initialize bij
set initial current and candidate models
For t = 1, 2,...

input xt , yt
check context adaptation

Current Model
compute A xik tii , 1A xik tii
compute ŷt
compute t
update bij , qiki , 1qiki , RSSa , Sa , pa
Candidate Models
nc: number of candidate models
For l = 1:nc

compute A xik tii , 1A xik tii

compute ˆlyt

compute l
t

update lb ij , lq
iki

,
1

lq
iki

, lRSS
c

, lSc , lpc
end For
//Procedure Input_Selection
If CreateExclude=1

nm : number of models (current and candidates)
For l=1:nm

For i = 1: n                              
Procedure Create_Function
Procedure Exclude_Function

end For
end For

end If
end For

3. Computational Results

In this section, the evolving neural fuzzy network with 
adaptive input selection X-eNFN-AFS is evaluated and 
compared with other six approaches representative of 
the state of the art in evolving fuzzy systems modeling, 
namely: DENFIS21, eMG22, eNFN11, eNFN-AFS12,
eTS23 and xTS24.  All approaches are evaluated using 
prediction and nonlinear system identification examples. 
Simulations process data as a stream. The parameters 
and the structure of the models evolve as each data 
sample is input.

The dataset is split into two subsets with 50% of the 
samples each. The first subset is used to find the best 
parameters of the models using exhaustive search 
whereas the second is used to evaluate the performance 
of the models. The best parameters, i.e., the parameters 
values that produce the lowest modeling error, are used 
for performance evaluation. The modeling error 
measure adopted is the Root Mean Squared Error 
(RMSE):
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1
21 2ˆ ,

N 1

N
RMSE y yt t

t

(27)

where N is the number of samples, yt is the desired 
output, and ŷt is the model output.

3.1. Predicting the Position of a Magnetic 
Levitation Sphere 

Performance evaluation is done using models to predict 
the position of a sphere of a magnetic levitation system 
(MagLev). The position of the sphere is one of the state 
variables whose value depends on the voltage applied to 
the coil that produces the magnetic field. The data set 
used in simulations was extracted from an actual 
magnetic levitation system25, 26. The MagLev was run 
for 60 seconds with a sampling rate of 10-3 seconds (1 
ms), resulting in a total of 60000 samples. Initially the 
desired position is a sine function whose magnitude is 
0.5 and frequency 0.5 Hz. At t = 17 seconds the desired 
position becomes a square wave with 0.4 of the 
magnitude and 0.5 Hz, a step function with magnitude 
between -1 and –2 at t = 31 seconds, the sine function
again at t = 41, and finally the square function after t =
51. The purpose to change the desired position as 
described above is to evaluate the behavior of the 
evolving model when operating condition changes.

The aim of the computational experiments is to use 
the model to predict the position of the sphere one step 
ahead. The model has the following form25:

ˆ , , , ,5 5 4 3y f dp mp mp mpt t t t t (28)

where ŷt is the model output at t , dp is the desired 
position, mp is the measured position.

A total of 60000 samples were produced, 3000 to 
estimate the parameters, and 30000 to evaluate the 
performance of all models. Models with adaptive input 
selection eNFN-AFS and X-eNFN-AFS start with all 
four inputs. DENFIS, eMG, eNFN, eTS, and xTS start 
with and keep all four inputs dpt-5, mpt-5, mpt-4, mpt-3,
respectively. The actual position and the X-eNFN-AFS 
prediction are shown in Figure 4. 

Figure 4. X-eNFN-AFS prediction of the sphere position.

Figure 5 illustrates how the X-eNFN-AFS evolves 
its structure and selects the input variables as each new 
sample is input. The adaptive input variable selection 
scheme of the X-eNFN-AFS selected 
( , ,5 5 4dp mp mpt t t ) as inputs.

Figure 5. Structure evolution and variable selection of X-
eNFN-AFS for the MagLev system.

The RMSE performance, the number of input 
variables, and the number of rules of the modeling 
approaches evaluated are summarized in Table 1. The 
best performance is achieved by X-eNFN-AFS followed 
by eNFN-AFS, eNFN and eMG. The performance of 
the X-eNFN-AFS, eNFN-AFS, eNFN and eMG are 
higher than DENFIS, eTS and xTS by one order of 
magnitude. The best values of the models parameters 
found through exhaustive search are shown in Table 2.

Table 1. Sphere position prediction performance.

Model
Input 

Variables
Number 
of rules RMSE

DENFIS 04 13 1.5815  
eMG 04 11 0.0832   
eNFN 04 09 0.0737   
eNFN-AFS 03   06 0.0731   
eTS 04 02   1.7912   
X-eNFN-AFS 03 08 0.0711   
xTS 04 02 1.7892
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Table 2. Best model parameters: sphere position 
prediction.

Model Parameters
DENFIS 0.1dthr , 4mofn
eMG                  
.                         
.

0.05 , 20 , 0.01 ,
110 11Iinit

eNFN 0.01 , 100 , 10 ,
eNFN-AFS 0.01 , 100 , 10 , 0.05
eTS 0.04r , 750
X-eNFN-AFS 0.01 , 100 , 10 , 0.05
xTS 750

3.2. System Identification  

In this section the evolving modeling approach is 
evaluated using a system identification problem.  The 
nonlinear system11, 22 to be modeled is:

1 ,
21

1

m
yt i

iy ut t im
yt i

i

(29)

where sin(2 / 20)u tt , 0y j for 1,...,j m to 10m .
The aim is to use the model to predict the current output 
yt using past inputs and outputs. The model has the 

following form22:

ˆ , ,..., , , ,1 2 9 10 1y f y y y y ut t t t t t (30)

where ŷt is the model output at t .
Here a total of 3300 samples, 1650 to estimate, and 

the remaining 1650 to evaluate the performance of all 
model. Figure 6 illustrates the actual and X-eNFN-AFS 
model outputs. 

Figure 6. Nonlinear system identification.

Figure 7 shows how the structure of X-eNFN-AFS 
modifies as data are input. The adaptive input selection 
scheme of X-eNFN-AFS selected ( ,1yt

,2yt , , , , ,3 5 6 7 8 10y y y y y yt t t t t t ) as input 
variables.

Figure 7. Structure evolution and variable selection of X-
eNFN-AFS  for nonlinear system identification.

Table 3 shows the RMSE, the number of input 
variables, and the number rules after simulation ends. 
The X-eNFN-AFS has similar performance as eMG, 
eNFN and eNFN-AFS, and better performance than 
DENFIS, eTS and xTS. The best parameters of the 
models are given in Table 4.

Table 3. Modeling performance for nonlinear system 
identification.

Model
Input 

Variables
Number 
of rules RMSE

DENFIS 11   13 0.2080  
eMG 11 10 0.1244   
eNFN 11 107 0.1210   
eNFN-AFS 08 65 0.1401  
eTS 11 09 0.8303   
X-eNFN-AFS 08   59 0.1234  
xTS 11 03 0.8316  

Table 4. Best model parameters: nonlinear system 
identification.

Model Parameters
DENFIS 0.1dthr , 4mofn
eMG                  
.                         
.

0.05 , 10 , 0.01 ,
110 11Iinit

eNFN 0.01 , 100 , 15
eNFN-AFS 0.01 , 100 , 10 , 0.05
eTS 0.04r , 750
X-eNFN-AFS 0.01 , 100 , 10 , 0.05
xTS 750

4. Conclusion

This paper has suggested an approach for adaptive 
modeling with input variable selection using neo-fuzzy 
neural network called X-eNFN-AFS. The X-eNFN-AFS 
uses a learning procedure that simultaneously selects  
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the  input  variables,  adapts  the granulation of   the 
input variables domains, and updates the parameters of 
the neural network. The approach uses current and 
candidate models of distinct complexity, input data, and 
the statistic F test to select model inputs.

Prediction and nonlinear system identification 
application problems were used to evaluate and 
compare the X-eNFN-AFS against current state of the 
art evolving modeling approaches. Simulation results 
indicate that the X-eNFN-AFS has comparable or better 
performance than the remaining evolving models.

Future work shall consider the dependencies 
between input variables, extend the network for multiple 
outputs, and investigate mechanisms to reduce the 
complexity of the input selection algorithm. 
Mechanisms to automatically select user-defined 
parameters to turn X-eNFN-AFS more autonomous are 
also important for future work.
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