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RESUMO

Uma abordagem de Elementos Finitos Galerkin Descontínuo (DG) para as equações de
Navier-Stokes com Média de Reynolds (RANS) complementadas pelo modelo Spalart-
Allmaras (SA) é implementada e validada para alguns casos de teste básicos. As variáveis
de campo do problema são interpoladas usando expansões modais com polinômios de
Jacobi. A comunicação entre os elementos é garantida pelo uso dos fluxos numéricos de
Roe e HLLC para os termos convectivos e BR1 para os dissipativos. A integração temporal
é realizada usando-se um esquema implícito Standard-Newton GMRES Backward Euler.
O software desenvolvido neste trabalho tem intensivamente usado e expandido o pacote
de aplicações para fluidodinâmica da plataforma de código aberto Manticore, de forma a
permitir a construção da infraestrutura dos modelos RANS.

Keywords: RANS; DG-FEM, Spalart-Allmaras, Soluções Manufaturadas.



ABSTRACT

A Discontinuous Galerkin Finite Elements (DG) approach for the Reynolds-Averaged
Navier-Stokes Equations (RANS) complemented by the closure model Spalart-Allmaras
(SA) is implemented and validated for some basic test cases. The problem field vari-
ables are interpolated using modal expansions of Jacobi polynomials. The communication
between the elements is enforced by using the numerical fluxes Roe and HLLC for the
convective terms and BR1 for the dissipative ones. The time-integration is performed by
using an implicit Standard-Newton GMRES Backward Euler scheme. The software devel-
oped in this work has extensively used and expanded the fluid dynamics toolbox of the
open-source framework Manticore in order to construct the infra-structure of the RANS
models.

Keywords: RANS; DG-FEM, Spalart-Allmaras, Manufactured Solutions.



Theories are nets cast to catch what we call the ’world’: to rationalize, to explain, and to
master it. We endeavour to make the mesh ever finer and finer.

Karl Popper
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1 INTRODUCTION

A noticeable obstacle for the union of the Computational Fluid Dynamics
(CFD) and the most traditional high order methods, such as the classical Finite Element
Method (FEM), is their difficulty to make compatible the continuity requirements of such
methods in the presence of shock propagation, a common phenomenon in the compressible
flow cases. In order to circumvent this issue, an alternative way has been developed in the
last decades, the Discontinuous Galerkin Finite Element Method (DG-FEM) (HESTHA-
VEN; WARBURTON, 2008).

The DG-FEM is a variation of the classical FEM, from where it inherits its
principal characteristics, such as the use of domain tessellation into sub-domains, weak
form relaxation and elementwise interpolation. However it differs of the original method
for not directly imposing the continuity element-to-element. The continuity between two
neighbours sub-domains is guaranteed by means of a numerical flux, a technique imported
from the finite volume method (LEVEQUE, 2004). The numerical flux schemes available
in the literature ensure the required robustness and flexibility for detecting both continu-
ous and discontinuous solutions in the element interfaces, allowing to perform cases not
covered for the classical FEM due to its natural limitations.

The DG-FEM had important results in a number of applications in the last
decades, for linear and non-linear problems. Specifically for compressible flows, DG-FEM
has attracted attention due to its basic features, most part of them derived from the high
locality of the method, centering the operations in the element and its interfaced neigh-
bourhood. Some of these characteristics enable parallelization capability and flexibility in
the interpolation order, making simpler to have different regions of the simulation domain
with the necessaries hp-adaptivity.

However, in counterpart of these benefits, the DG-FEM also inherits the chal-
lenge of dealing with the co-existence of discontinuities and non-linearities in case of
higher interpolation orders, which may lead to the propagation of numerical oscillations.
In order to ensure stability, it is almost indispensable the application of oscillation control
schemes that fatefully imply in interference of the solution. However the high locality of
these schemes reduce the global interference and make the effect rather negligible.

Turbulence presents another usual numerical challenge due to its multi-scale
structure with a wide range of characteristic scale-lengths, consequently, it has a natural
difficulty to be described considering the current capacity of the computers available. In
this context, the RANS methods offer an achievable solution by replacing the complete
scale description by time-averaged variable fluctuations, quantified by using additional
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models (usually named closures). Surely, the scales condensing into mean values implies
in an unavoidable physical description loss of local phenomena, but still allows to outline
the behaviour of a complex flow and extract important aspects of it. No wonder RANS
still is one of the standard approaches in current industrial applications.

Although RANS makes use of assumptions for simplifying the turbulence si-
mulations, the technique has some numerical difficulties, such as the time-integration
stability and the emergence of non-physical values in the auxiliary variables. As the time-
discretization is a crucial for a accurate evaluation of the fluctuations, the time steps can
be something restrictive, mainly considering the conditions at the simulation start up.
In addiction, many non-realistic scenarios can arise, leading to non-physical responses of
the turbulence models. For controlling the time-instability is imperative the use of well-
conditioned implicit time-integration and the non-physical behaviour can be handled by
using additional limiting mechanisms.

The software here used has been developed based on Manticore, a free and
open-source DG-FEM framework implemented in Python 3 (https://bitbucket.org/cantao/
manticore/). The present work has contributed to the project Manticore on three ways:
testing the inviscid and laminar Navier-Stokes modules using the benchmarks of the lite-
rature, implementing the RANS modules (and the auxiliary infrastructure necessary for
that) and implementing the current post-processing tools available on the Manticore’s
repository.

The scope of the flow simulations is subdivided in three categories in this
work: inviscid (also named Euler) validation, laminar Navier-Stokes validation and RANS
models validation, all of them in subsonic conditions. Therefore, no shock discontinuity
is observed in the tests array. At first glance such approach may seem a contradiction
considering the DG-FEM numerical characteristics. However, it is necessary to highlight
that the method presents others important features (as previously cited), and the field
discontinuities handling is only one of those. Besides, even though this work does not
intend to cover the transonic and supersonic cases, it aims to be a basis step, validating
and implementing essential modules for enabling a continuous developing of the platform
Manticore, allowing others topics be approached in future works.

1.1 Purpose

This work intends to implement and validate a numerical software for Reynolds-
Averaged Navier-Stokes (RANS) simulation applied to basic validation cases. For a sake of
a complete consistency checking, inviscid and laminar cases are also validated. This work
uses the high-order numerical methods, instead of the most traditional methods (based
on low order methods, as the Finite Volume Methods) The capacity of the higher order

https://bitbucket.org/cantao/manticore/src/master/
https://bitbucket.org/cantao/manticore/src/master/
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methods to describe the complexity of the phenomenon can tightly outweigh their higher
computational costs.

1.2 Outline

The work is organized as follows. The Chapter 2 is a bibliographic review of the
fundamental theory in CFD and DG methods. In Chapter 3 it is introduced and explained
the basics physical theory about the phenomena considered in this work. Chapter 4 deals
with the numerical formulation employed in the software implementation. In Chapter
6, the validation tests are performed and compared to the benchmarks available in the
literature.
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2 BIBLIOGRAPHIC REVIEW

2.1 Fundamentals in Fluid Dynamics

A comprehensive explanation about any field of Fluid Dynamics requires the
establishment (or revision) of some basic concepts:

• Fluid and Flow characteristics:

– Continuum Hypothesis

– Compressibility

– Transport

– Viscosity

– Boundary Layer

– Flow Regime

• Fundamentals of the Mathematical Modeling :

– Control Volume

– Characteristic Variables

– Conservation Laws

– Differential Form

2.1.1 Continuum Hypothesis

The fundamental consideration in Fluid Mechanics is to suppose the fluid as a
continuous medium. This assumption is valid because in mesoscale, in absence of chemical
reactions, the molecular effects on fluid are negligible.

2.1.2 Transport

In the context of the Fluid Dynamics, pure transport is the transfer of mass
and energy by means the displacement of the flowing matter along non-intersecting tra-
jectories, named streamlines. The characteristic transport variable are the velocity field
and the terms regarding are denominated inertial terms. When the presence of viscosity,
the purely transport behaviour can be disturbed by the interaction between the two forces
and the consideration about the trajectories is violated.
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2.1.3 Viscosity

Viscosity is the measure of internal stickiness of a fluid (ÇENGEL; CIM-
BALA, 2010). Stickiness is, roughly speaking, the resistance of a fluid do motion. It can
be correlated with the shear stress in the flow sections. In a special class of fluids, deno-
minated Newtonian (such as air and water), the shear stress can be modelled as linearly
proportional to the rate of deformation of the flow section.

2.1.4 Boundary Layer

The Boundary Layer is the contact region between the fluid and a surface
where the viscous effects are significant in comparison with the inertial ones. Thus, there
are a transition between the pure transport region, where the inertial terms are prevailing,
and the a static condition, where the stickiness show up completely.

2.1.5 Flow Regime

Roughly speaking, the flow regime denotes the fluid motion behaviour in terms
of its smoothness level. The regime classification covers three subdivisions, laminar, tran-
sition and turbulent The regime is primarily distinguished by visual aspects, that are
correlated to quantified indicators. In the laminar case, the fluid particles are disposed in
an organized and highly predictable motion whereby is possible to recognize a streamline
flow. The turbulent situation occurs when the interaction between the inertial and the vis-
cous forces in the boundary layer becomes unstable and a swirling structures arises along
the flow. In this state, the disordered motion becomes predominant. The transition is just
a intermediary situation between the laminar and turbulent state where characteristics
of both the extreme conditions are observed, but the turbulence still are not completely
evolved. The most traditional dimensionless parameter for quantifying the regime is the
Reynolds number (Re), that are given as following:

Re = ρU l

µ
(2.1)

Where ρ is the density of the fluid, U is a characteristic velocity, l is a cha-
racteristic length (usually related to the geometry interacting with the flow) and µ is a
the dynamic viscosity. The Reynolds number represents the ratio between inertial (ρU l)
and viscous time scales (µ) and gives a notion about the fluid dynamical stability in the
flow. As the Reynolds number rises, the role of the viscous effects becomes decreasingly
significant and, at the limit case, negligible.
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2.1.6 Control Volume

A control volume is a delimited region in the space where a flow are studied. A
control volume is different of a closed system, because its boundary can exchange matter
and energy. The boundary of a control volume is usually denominated surface control.

2.1.7 Characteristic Variables

The analysis of a control volume is performed by means a set of conservative
or extensive variables. The extensive variables are dependent on the size of the control
volume, such as, mass , momentum and energy. Locally, it is possible to determine the
primitive or intensive variables. The intensive variables are independent of the control
volume dimensions, for instance, density, velocity, pressure and temperature.

2.1.8 Conservation Laws

The expressions derived from the global balances of the conservative variables
are denominated conservation laws. In a generic way, a conservation law can be enunciated
as following: The global balance applied to a extensive variable B in a static control volume
Ω surrounded by a surface control ∂Ω yields the conservation law of B:

d
d t

(∫
Ω
ρB̄ dV

)
+
∫
∂Ω

ρB̄U · ndS (2.2)

Where B̄ is the variable B per mass unit (that corresponds to its intensive vari-
able). The general form of the global balance to conservative variables is named Reynolds
Transportation Theorem.

2.1.9 Differential Form

The equations of the global conservation laws written so far are denominated
integral form. From the integral form is possible to derive the differential form by means
of the Divergence Theorem from Calculus. In the differential form, the conservation laws
are rewritten in terms of the intensive variables.

2.2 Turbulence Numerical Modelling

When talking about turbulence numerical issues it is necessary to introduce
some basic definitions used in such matter with regard to the approaches employed to
model turbulence itself. We can subdivide the turbulence numerical simulation techniques
in three major categories:
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• DNS (Direct Numerical Simulation) - The Navier-Stokes equations are solved in
their original form and all the turbulent length scales are considered in the numerical
computation.

• LES (Large Eddy Simulation) - Extra schemes are used to separate the larger scales
from the smaller ones. The large length scales are computed and a mathematical
model is used to the smaller ones.

• RANS (Reynolds Averaged Navier-Stokes) - Approach based in the time-averaging
of the Navier-Stokes equations. The individual scales are condensed into a mean
value and computed at a time.

2.3 Turbulence Theory

Reynolds (KÁRMÁN, 1938) gave the fundamental step for constructing the
statistical approach of turbulence by introducing the concept of statistical mean values
on fluid dynamics. Reynolds also introduced the decomposition of the instantaneous field
variables into a time-averaged and a fluctuation components (MCDONOUGH J., 2007).
That basic concept, afterwards known as Reynolds decomposition, is the principle of the
Reynolds-averaged Navier-Stokes equations (RANS).

Taylor (TAYLOR, 1935) formalized the notion of turbulence eddy scale by
defining the scale length concept as an analogous for the turbulence modelling of the free
mean path from the kinetic gas theory. Taylor also introduced the concept of isotropic
turbulence, as a condition where the mean squares and mean products of the velocity field
components are invariant with respect to the coordinate system rotation and reflection.
(TAYLOR, 1935), (KÁRMÁN, 1938).

Turbulence is qualitatively characterised as a multi-scale phenomenon (MC-
DONOUGH J., 2007). The Kolmogorov’s work conceives the energy cascade as a model
for describing the energy transfer throughout the energy spectrum (MCDONOUGH J.,
2007), according to this hypothetical system, the largest scale, named integral scale, takes
energy from the free flow and continuously transfers it from the larger to the smaller scales
and so on, until the molecular or Kolmogorov’s scale, in which the energy is dissipated as
the form of heat and vibration.

Kolmogorov models the energy transfer in the intermediary eddies as inviscid
(MCDONOUGH J., 2007), with energy dissipation only in the molecular scale. However,
in order to not violate the energy cascade chain, it is necessary to consider the complete
eddy scale range to accurately describe the turbulence phenomenon. It corresponds to
directly solve the Navier-Stokes equations in its non-modified form for high Reynolds
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numbers, such approach is usually denominated Direct Numerical Simulation (DNS) on
the CFD community.

According to the Kolmogorov’s laws, which correlates the flow regime and
the eddy scale parameters, the characteristic length of the smallest scale rapidly decays
with the increase of the Reynolds number (MCDONOUGH J., 2007) making the DNS
domain discretization almost impractical for capturing all the phenomenon features. On
the scope of the numerical simulation, this feature can represent an insurmountable barrier
considering the current computational resources.

Due to the critical limitation of the DNS method, alternative ways have been
developed for achieving a good trade-off between accuracy and computational cost. The
alternative analytical and numerical approaches, such as RANS, basically describes all
scales together, ignoring their individual aspects. In this scenario, where the structural
approaches present limitations concerning to the numerical analysis, the statistical theory
becomes relevant as a way to comprehend the main features of the turbulence phenome-
non.

The RANS system is obtained by decomposing the flow field into mean and
fluctuating components following the Reynolds decomposition and, applying an integral
time-averaging operation over the Navier-Stokes equations (LANDMANN, 2008). The
final RANS equations describe the field variables in terms of their time-averaged values
in addition to a fluctuation component, whose momentum term is commonly referred
as Reynolds stress tensor. The RANS technique basically replaces the treatment of the
individual scales for an integral time-average of the entire spectrum. Thus, turbulence
scales are considered as a condensed entity.

Nonetheless, the RANS model itself does not supply a complete equation sys-
tem, since there are not an expression for direclty relating the fluctuations and the field
variables. This, it requires the use of an additional model, commonly named closure, for
the RANS equations (MCDONOUGH J., 2007).

The most difficulty aspect of closuring the RANS equations lies in dealing
with the non-linearity of the Reynolds stress tensor, where there are products between
fluctuation values. In order to circumvent this feature, Boussinesq proposed to model the
Reynolds stress tensor as a linear correlation between the viscous gradient tensor and a
parameter denominated turbulent or eddy viscosity (LANDMANN, 2008).

Based on the Boussinesq’s approximation, algebraic and differential closure
models have been proposed in order to evaluate the eddy viscosity and its derived vari-
ables. In this work we follow the developments from the differential models in which the
eddy viscosity treatment is satisfied by creating new partial differential equations to be
included on the RANS equations system.
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Although the Boussinesq’s hypothesis had gained a large acceptance in de-
veloping the closure models, the validity and generality of such assumption has been
contested in more recent works. Schimitt (SCHMITT F, 2007) compared the correspon-
dence between the Reynolds stress tensor and the symmetric part of the viscous gradient
tensor using representative cases of DNS, LES and experimental datasets and demons-
trated weak correlations between the Boussinesq’s hypothesis and the above-mentioned
baseline dataset for the most part of the simulation domains.

Jones and Launder proposed a two-equations system for low Reynolds num-
bers, so-called k − ε models, in which the eddy viscosity is modelled as a function of two
auxiliary variables, the turbulent kinetic energy (k) and the energy dissipation rate (ε)
(JONES; LAUNDER, 1972).

The original k − ε was applied in a large variety of flow situations and impro-
ved in subsequent works. Meanwhile, the technique presented a number of shortcomings
from the aerodynamic and numeric viewpoints, such as the lack of sensitivity to adverse
pressure gradients and the intrinsic numerical stiffness when treating the viscous sub-layer
(MENTER, 1994).

Wilcox proposed a two-equations model, referred as k − ω. Wilcox assumed
the eddy viscosity as an algebraic function of two extra variables and introduced a new
partial differential equation for each one of them together with some calibration constants
and functions (WILCOX, 1988).

Menter modified the original k − ω eddy viscosity evaluation function by em-
bodying a limiter in order to reduce the turbulent shear-stress overprediciton and avoid
the instantaneous response of the flow shear-stress to the shear-strain rate observed in the
original model. The improved model was called Shear Stress Transport (SST) (MENTER,
1994).

Spalart and Allmaras proposed an one-equation method for indirectly mo-
delling the eddy viscosity by means of an auxiliary viscosity variable. The Spalart and
Allmaras’s model (SA) makes use a set of parameters in order to calibrate the method
for aerodynamical purposes (SPALART; ALLMARAS, 1992)

Spalart and Allmaras subsequently modified the original SA model in order
to enhance stability and robustness in dealing with adverse aerodynamical cases. One of
these modifications was to introduce a limiting scheme for preventing negative values of
the modified viscosity (S̃) in the near-wall region (ALLMARAS et al., 2012a).
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2.4 Advances in DG-FEM

DG-FEM was introduced by Reed and Hill (REED; HILL, 1973) to appro-
ximate the linear neutron transport equation using regular triangular meshes. In this
approach the flux terms are directly interpolated over the element interfaces using one-
dimensional Lagrange polynomials with no direct continuity imposition to the field va-
riables. This work started a new research thread for the development of new DG-FEM
techniques reaching a broad set of applications.

Cockburn et al. (COCKBURN; SHU, 1991) (COCKBURN et al., 1989)
produced the most prominent advances for adapting the DG techniques to non-linear
problems by constructing a framework to solve non-linear time-dependent systems of
equations using fundamental concepts from high order FEM and FV such as high order
polynomial interpolation within elements and exact or approximated Riemann’s solvers to
evaluate the numerical fluxes at the element boundaries. The approach presented in these
works, called RKDG, employs explicit Total Variation Diminishing (TVD) Runge-Kutta
in order to perform the time discretization (LANDMANN, 2008).

Bassi and Rebay (BASSI; REBAY, 1997) (BASSI; REBAY, 2000) lead off
a new branch of techniques to treat elliptic operators, based on a mixed formulation
(OLIVER, 2008), in which the second-order system of equations is converted to a first-
order one and discretized via DG method. Bassi and Rebay constructed two versions of
their mixed formulation, known as BR1 and BR2. BR1 scheme performs contour integrals
along all the element interfaces whereas BR2 performs the same integration using just
the shared edge of two neighbour elements. Such feature of BR2 implies in a shorter
communicating stencil.

Cockburn and Shu (COCKBURN; SHU, 1998) proposed the local discontinu-
ous Galerkin (LDG) schemes as an extension and generalization of the original RKDG
method to convection-diffusion systems. The LDG methodology presented in this work
was devised to approach non-linear, time dependent convection-diffusion systems main-
taining the high parallelism capability, high order accuracy and easy handling of complex
geometries. LDG basically transforms the second-order system to a first-order one by
introducing auxiliary equations to approximate gradients. After that, the DG spatial dis-
cretization is performed by replacing the non-linear flux terms on the element boundaries
by numerical fluxes, that mimics the upwinding scheme which is done always in opposite
directions for the main and auxiliary variables (HESTHAVEN; WARBURTON, 2008, pp.
252).

Peraire et al. (PERAIRE; PERSSON, 2007) developed an alternative ap-
proach for solving elliptic problems by proposing the compact discontinuous Galerkin
(CDG) technique, very similar to the Cockburn and Shu’s LDG approach. In this case
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the second-order equation is converted to a first-order system, but the new additional
auxiliary variables are substituted back in the original equation in a primal form scheme.
When dealing with multiple dimensions the CDG method is able to ensure more com-
pactness by eliminating connections between distant elements.

Warburton and Hesthaven (HESTHAVEN; WARBURTON, 2008) synthesized
the essence of the DG-FEM theory in their book in order to provide a complete conceptual
introduction and implementation guidelines, covering from fundamental ideas to complex
modelling problems. Despite of focusing on nodal interpolation methods, the book presents
a considerable degree of generality, and can be used as a guide for different approaches.

2.5 DG-FEM for Navier-Stokes and RANS equations

Birken (BIRKEN et al., 2012), studied the time-integration problem in 2D
simulation of Navier-Stokes equations using modal DG-FEM discretization. In the Bir-
ken’s work the authors measured the stiffness of the Navier-Stokes system of equations
(for a flow with Reynolds number Re = 100) by evaluating the eigenvalues regarding the
linearized form of the right-hand side operator for a 4th-order interpolation . The large
spectrum of the real parts indicates the difficulty in ensuring the stability during the
time-integration process. In this case, the explicit integration showed a severe limitation
concerning to the time step choice. The implicit approaches have proved to be the most
suitable way for performing the Navier-Stokes and RANS steady-state cases, because they
can be contructed to have unbounded stability regions (BIRKEN et al., 2012).

Bassi et al. (BASSI et al., 2004) applied modal DG-FEM and a second-order
implicit Runge-Kutta time-integrator approach for solving a 2D incompressible RANS
system using the closure model k − ω. The formulation is tested simulating steady-state
flow over a zero pressure gradient flat plate with M = 0.2 and Re = 11.1 × 106, using a
polynomial interpolation order up to p = 2 using a grid with 110×80 elements, 96 elements
in the horizontal direction lying on the plate. The tests are validated by comparing the
solution to the reference law of wall available on the literature, highlighting the influence of
the near-wall grid resolution and the polynomial order in capturing the viscous sub-layer
turbulent behaviour.

Nguyen et al. (NGUYEN et al., 2007) used a modal DG-FEM approach for a
modified version of the 2D incompressible RANS-SA equations in which it is introduced
an artificial viscosity stabilization scheme aimed at enabling high order approximations
even for coarse grids. The validation tests are performed for zero pressure gradient flat
plate, NACA0012 airfoil and flow over a cylinder. The flat plate tests use different grid
resolutions, the coarsest one being a triangularly split 10 × 16 mesh with p=1 and the
finest one a triangularly split 145× 241 mesh with p = 4. The values of the skin friction
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coefficient obtained from the numerical results are compared with experimental data and
the velocity profiles are compared with both experimental and law of wall reference va-
lues. The results of coarsest grid presents a good agreement with the experimental and
theoretical benchmarks when using higher order (p = 4, 37× 61 equivalent resolution).

Landmann (LANDMANN, 2008) implemented a modal DG-FEM approach in
order to study the Navier-Stokes equations for the inviscid, laminar and RANS-turbulent
cases. Employing the RANS models SA and k − ω the study achieved the interpolation
order p = 3 on the turbulent flat plate and airfoil-A cases. For the SA flat plate tests it
was used a triangularly split 44× 13 H-grid with 24 elements along the plate (considered
coarse (LANDMANN, 2008, pp. 108))and for the k − ω tests a 88 × 38 grid with 48
elements along the plate, the test conditions are M = 0.3 and Re = 3×106. The flat plate
results revealed a good agreement with the theoretical skin friction profiles (Blasius and
turbulent theory (LANDMANN, 2008, pp. 108)). The A-airfoil tests are performed using
the SA model and employ a C-grid with 64× 16 quadrilateral elements. The p-refinement
showed a good agreement with the expected experimental results for the pressure and skin
coefficients (LANDMANN, 2008, pp. 115). Landmann observed that the closure models
can violate the positivity of the turbulent variables on part of the domain, leading to non-
physical and potentially unstable solutions. In order to avoid this, the author proposed
the usage of post-processing limiting techniques (LANDMANN, 2008, pp. 44) .

Oliver (OLIVER, 2008) purposed DG-FEM approach allied to a mesh adaptive
algorithm to solve RANS problems closed by the SA model and analyses the dual con-
sistence of the discretization. The work verifies that the mixed formulations are generally
asymptotically dual consistent, nevertheless, the fashion of weighting gradient-dependent
source terms by trial functions and integrating is revealed as dual inconsistent. The va-
lidation of the adaptive scheme is performed by using the zero pressure gradient with
M = 0.25 and Re = 1.0 × 107, the initial mesh has 234 elements and the first layer of
elements has a too large spacing for accurate boundary layer evaluations. According to
the work, by using this mesh the numerical implementation was not able of obtaining
p ≥ 1 convergence for steady-state problems, notwithstanding the unsteady adaptation
algorithm was successful even using a considerable coarse tessellation. Initializing the
problem with homogeneous fields, using p = 3 and dual consistent discretization, the uns-
teady adaptations algorithm eventually converges to a steady-state solution that meets
the established error criteria of 0.2 drag counts.
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3 PHYSICAL MODELLING

Let us to consider Newtonian fluid in motion within a two-dimensional control
volume, in which there can be interchanging of mass and energy in the control surfaces.
The fluid is single-phase and does not undergo chemical reactions. The scale at which the
studied phenomena occurs and the order of magnitude of the the numerical discretization
are sufficiently large to assume the continuum hypothesis. Based on the aforementioned
assumptions and making use of the fundamental conservation laws, it is possible to deter-
mine the governing equations of a general compressible viscous flow for Newtonian fluids,
the Navier-Stokes equations, as can be seen next.

3.1 The Navier-Stokes Equations

The homogeneous Navier-Stokes Equations (NSE) in their vector form are
given3 by:

∂v
∂ t

+∇ ·Fc(v) = ∇ ·Fv(v,∇v), (3.1)

v = v(x), x ∈ R2.

Each vector term of the previous equations system is given by:

v =


ρ

ρU
ρE

 , (3.2)

Fc =


(ρU)T

(ρU)UT + pI
(ρE + p)UT

 , (3.3)

Fv =


0T

τ T

UTτ + q

 , (3.4)

τij = µ

(
∂ui
∂ xj

+ ∂uj
∂ xi
− 2

3
∂uk
∂ xk

δij

)
, (3.5)

E = 1
2UTU + U, (3.6)
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q = −λ ∂E
∂ x

, (3.7)

x ∈ R2. (3.8)

Where ρ is the fluid density, U is the velocity field, E is the energy per mass unit, U is
the internal energy per mass unit, p is the pressure, q is the heat flux on the domain and
τ is the viscous stress tensor for the Newtonian fluids. The thermal conductivity (k) is
given by

k = γ µ

Pr
, (3.9)

Where µ is the dynamical viscosity, γ is the gas compressibility and Pr is the Prandtl
number.

The NSE system given above is a general form that can describe any flow in
which the fluid can be modelled as an ideal gas or a mixture of such gases and its behavior
can be properly modelled using the tensor seen in 3.5. By disregarding the fluid viscosity,
the equations above take a purely hyperbolic form, known as inviscid transport equations
or Euler equations,

∂v
∂ t

+∇ ·Fc(v) = 0, (3.10)

The Euler equations, despite being a non-realistic case, present interesting features from
the numerical viewpoint, given that the absence of viscous dissipation can enable the
emergence of discontinuities during the problem evolution, characteristic which has a
noticeable importance for testing the numerical solvers capability in dealing with severe
gradients. Notwithstanding this work does not cover the cases presenting sharp gradients,
the inviscid transport equations still provide a fundamental testing case for evaluating
the robustness of the numerical implementation in coping with the solution of non-linear
problems at high order of field interpolation and geometry.

The NSE are based on the continuum mechanics hypothesis, therefore it does
not make sense to consider the flow as composed by individual freely-moving molecules,
but as a deformable continuous domain, and the characteristic variables as continuous
maps for any point inside such region. For sufficiently low velocities, a two-dimensional
viscous flow is similar to a sequence of narrow fluid strips slipping one each other in
regular and smooth profiles. Due to such visual aspects, this condition is named laminar
(see 2.1.5 for further explanations). In flows over rigid walls, the transition region between
the moving fluid and the stationary flow in contact with the wall is denominated laminar
boundary layer (see the section 2.1.4). Nonetheless, as the available kinetic energy on the
flow is increased, the laminar stability is disrupted and a new state is configured, the
turbulent condition.
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3.2 The Physics of the Turbulence: A Basic Introduction

The turbulence phenomenon is characterized by the emergence of specific struc-
tures in the viscous flow, denominated eddies. An eddy is basically a rotational structure,
similar to a swirl. The eddies are usually classified according to the order of magnitude
of their action radius. However, even within the action region of an eddy, there can exist
other smaller scale eddies, given that these formations can present a wide spectrum of cha-
racteristic length, ranging from visible vortex formations to whirls in the molecular scale,
compounding a complex flow. Due to that, the turbulence is commonly denominated a
multi-scale phenomenon.

Such swirling structures arise from the struggle between the transport and the
fluid viscosity on the boundary layer. When there is high kinetic energy availability, this
strong interaction is unstabilized, triggering a process where kinetic energy is taken from
the mean flow and sequentially transferred in the eddy scales. The most traditional model
for understanding this process is the Kolmogorov’s theory for turbulence (MCDONOUGH
J., 2007), whose basic assumption is known as energy cascade. According to the cascade
hypothesis, for high Reynolds numbers the dominant direction of the energy transfer
occurs from the largest to the smallest scales (also named molecular scales), the large
eddies are responsible for injecting energy in the system and the smallest for dissipating
it (JOSSERAND et al., 2017), generating heat and vibration. Kolmogorov hypothesized
the intermediary scales transfer energy without dissipation and denominated them inertial
scales.

Following this theoretical framework, the eddies scales can be subdivided into
four fundamental categories (MCDONOUGH J., 2007). The large scale, whose size has
the same order of magnitude as the flow domain, here represented as L. The integral scale,
whose size is a first order fraction of the large scale. The Taylor microscale, which corres-
ponds to intermediary inertial scales of the Kolmogorov’s assumption. The Kolmogorov
scale, the smallest turbulence scales, in which the dissipation effectively occurs according
to the Kolmogorov’s theory.

Making use of the dimensional analysis, it is possible determine an estimative
for the turbulence lengths scale ratio as (MCDONOUGH J., 2007)

η

`
∼ Re3/4, (3.11)

Where η represents the length of the Kolmogorov scale and ` of the integral
length scale.

The Kolmogorov’s theory reveals another important feature of the turbulence
phenomenon, there is not a hierarchy among the scales with regard to their relevancy for
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the model, since all of them have a role in the phenomenon description, therefore, it is not
not physically consistent simply to disregard some of them in an approximated approach.
As the size difference between the largest and the smallest scales can be very significant,
in a traditional numerical scheme, for embracing all of the scales, the discretization of a
flow domain must be sufficiently refined in order to capture the smallest eddies, whose
size can be microscopic.

From the numerical standpoint, let us to consider approaching the turbulence
modelling via Direct Numerical Simulation (DNS) 2.2 in which the Navier-Stokes equa-
tions are discretized in their natural form. Considering a three-dimensional case and as-
suming that the integral scale is one order behind the domain scale, the volume of the
mesh cell necessary for capturing the smallest scale is comparable to L3Re−

9
4 . In addi-

tion, given that the smallest scales also have the more elevated frequencies, a refined time
discretization is likewise necessary.

As the Reynolds number increases, to comprise all the turbulence spectrum
becomes technically impractical for a grid refinement taking into account the computa-
tional infrastructure currently available. That way, the DNS approach is suitable only
for certain cases in which the Reynolds number is sufficiently low for allowing practical
time-spatial discretizations.

On the other hand, the Reynolds-Averaged Navier-Stokes (RANS) methods
2.2, although perform a less detailed description of the phenomenon, are able to ensure a
good predictability for the general physical behavior and require less computational effort
if compared to the DNS approach. Currently, RANS is the standard choice for the most
part of the industrial simulation purposes and still has a great space in the academic
research.

3.3 The Reynolds-Averaged Navier-Stokes (RANS)

As aforementioned, the Navier-Stokes equations in their natural form are not
suitable for the numerical purposes due to the wide difference between the smallest and the
largest eddies scales, that will imply large grid size refinement and small simulation time-
steps (LANDMANN, 2008). In order to circumvent these limitations, it was purposed the
RANS approach, where the Navier-Stokes equations undergo a time-averaging process in
order to condense the information of the different time scales into a mean behavior. Such
approach allows to better deal with the wide spectrum of the turbulence scales enabling
more realistic mesh and time steps.

The field variables vector can be decomposed into a turbulent (∼) and a lami-



33

nar (∧) components according to the Favre decomposition as (LANDMANN, 2008)

v = v̂ + ṽ, (3.12)

v̂ = ρv
ρ
. (3.13)

Where the the notation denotes the Reynolds decomposition.

The Navier-Stokes equations can be written according to the Favre’s decom-
position as

∂

∂ t
(v̂ + ṽ) +∇ ·Fc(v̂ + ṽ) = ∇ ·Fv(v̂ + ṽ,∇(v̂ + ṽ)). (3.14)

Time-averaging both the sides.

1
T

∫ t+T

t

∂

∂ t
(v̂ + ṽ)+∇ ·Fc(v̂ + ṽ) d t

= 1
T

∫ t+T

t
∇ ·Fv[v̂ + ṽ,∇(v̂ + ṽ)] d t.

After simplifications we can write (LANDMANN, 2008, p. 15)

∂v̂
∂ t

+∇ ·Fc(v̂) = ∇ ·Fv(v̂,∇v̂) +∇ ·F t(ṽ). (3.15)

Where

F t =


0

〈ρŨ ŨT 〉
k 〈ρ T Ũ〉

 . (3.16)

The term 〈ρŨ ŨT 〉 is commonly referred as the Reynolds stress tensor and k 〈ρ T Ũ〉 as
the turbulent heat transfer.

3.3.1 The Boussinesq’s Hypothesis

The fluctuations of the variables are unknown at principle. The way to deter-
mine them is to assume the Boussinesq’s hypothesis (LANDMANN, 2008, p. 15), which
states that the Reynolds stress tensor is linearly related to the mean viscous tensor as

〈ρŨ ŨT 〉 =
(
µe
µ

)
τ (Ũ,∇ Ũ)− 2

3 ρK, (3.17)

In which K is denominated turbulent kinetic energy

K = 1
2 〈Ũ ŨT 〉 · I. (3.18)
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Thus, the viscous turbulent flux can be rewritten as

F t =


0(

µe
µ

)
τ (Û,∇ Û) + 2

3 ρK

UT
(
µe
µ

)
τ − ke∇Û

 . (3.19)

µe is the eddy viscosity and ke is the turbulent thermal conductivity coefficient, that can
be related to the eddy viscosity according to the expression

ke = γµe
Pre

, (3.20)

Where γ is the fluid compressibility, Pre is the turbulent Prandtl number, that
can be assumed as constant (LANDMANN, 2008).

Based on the RANS general model is possible to derive a set of turbulence
models for modelling the undetermined coefficients from the Boussinesq’s hypothesis.
The RANS complementary models are usually referred as closure models.

The undetermined parameters, µe and K are estimated by introducing auxili-
ary equations in the RANS system. The general RANS structure take the form

∂v
∂ t

+∇ ·Fc(v) = ∇ ·Fv(v,∇v) +∇ ·F t(v,∇v) + St(v,∇v). (3.21)

The superscripts ̂ of the mean values will be omitted in the upcoming sections for a sake
of simplicity, thus, all the variables with the notation v are already considered in their
mean components. Each vector term seen in the equation 3.21 is now described. v is the
field variables vector and is given by

v =



ρ

ρU
ρE

. . .

vt


, (3.22)

Fc is the convective fluxes vector and it is as follows

Fc =



ρU
ρU UT + p I

(ρE + p)U
. . .

Fct


, (3.23)
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Fv is the viscous flux vector and can be seen below

Fv =



0T

τ T

UTτ + q
. . .

0


, (3.24)

Finally, the turbulent fluxes vector

F t =



0(
µe
µ

)
τ + 2

3 ρK

UT
(
µe
µ

)
τ − ke∇Û
. . .

F t t


(3.25)

and the turbulent source vector

St =



0
0
0
. . .

St t


. (3.26)

In the expressions above vt, Fct, F t t and St t represents the turbulence auxiliary variables,
their convective fluxes, turbulent fluxes and source terms respectively.

3.4 The Spalart-Allmaras Model

The Spalart-Allmaras (SA) approach focuses in modelling the eddy viscosity
µe by introducing an extra field variable to be determined. Therefore,

µe = ρ ν̃ fν 1, (3.27)

where fν 1 is a parameter determined by the method. The variable ν̃ will be referenced
here as the eddy kinematic viscosity and modelled as follows (LANDMANN, 2008):

∂

∂ t
(ρ ν̃) +∇ · (ρ ν̃U) = (3.28)

1
σ
{∇ · [(µ+ ρ ν̃)∇ ν̃] + ρ cb2∇ ν̃ · ∇ ν̃}

+ cb 1(1− ft 2)ρ S̃ ν̃

−
(
cw 1 fw −

cb 1

κ2 ft 2

) 1
ρ

(
ρ ν̃

D

)2

+ ρ ft 1 ΔU2.
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The SA model is fundamentally an empirical approach, constructed with relations based
on Galilean invariance, dimensional analysis and calibration using experimental and direct
numerical simulation data (SPALART; ALLMARAS, 1992). The turbulent kinetic energy
modelling is not covered for the classical SA approach. The effect of the previous limitation
is compensated with the inclusion of a set of parameters experimentally calibrated. Each
parameter of the extra equation is described below.

For the sake of compactness, some terms in this equation will be rewritten.
Each source term can be described by its role in the behavior of the eddy viscosity and
the turbulence phenomenon. Therefore

P = cb 1(1− ft 2)ρ S̃ ν̃, (3.29)

D =
(
cw 1 fw −

cb 1

κ2 ft 2

) 1
ρ

(
ρ ν̃

D

)2
, (3.30)

T = ρ ft 1 ΔU2. (3.31)

Substituting 3.29, 3.30 and 3.31 in 3.28

∂

∂ t
(ρ ν̃) +∇ · (ρ ν̃U) = (3.32)

1
σ
{∇ · [(µ+ ρ ν̃)∇ ν̃] + ρ cb2∇ ν̃ · ∇ ν̃}

+ P −D + T ,

where P is the production term, D is the destruction term and T is the trip term. The
parameters cw 1, cb 1, cb 2 and κ and the functions ft 2, ft 2, fw and fν 1 are calculated or
set by means of the SA methodology correlations (ALLMARAS et al., 2012b). D is a
geometric measure and represents the distance to the nearest wall.

The term S̃ seen in the equation 3.28 is the given by:

S̃ = ||Ω||+ ν̃

κD2 fν 2, (3.33)

where Ω is the vorticity

Ω = ∇ × U. (3.34)

The SA model also employs some auxiliary functions:

fw = g

(
1 + cw 3

6

g + cw 36

) 1
6

, (3.35)
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g = r + cw 2 (r6 − r), (3.36)

r = min
(

ν̃

S̃ κ2 D2
, 10

)
, (3.37)

fν 1 = χ3

χ3 + cν 13 , (3.38)

fν 2 = 1− χ

1 + χ cν 1
, (3.39)

χ = ν̃ ρ

µ
, (3.40)

ft 1 = ct 1 gt exp

[
−ct 1

Ωt
2

ΔU2 (D2 + gt
2 Dt

2)
]
, (3.41)

gt = min

(
0.1, ΔU2

|Ωt|Δxt

)
, (3.42)

ft 2 = ct 3 exp
(
ct 4 χ

2
)
. (3.43)

where Ωt regards to the vorticity of the nearest trip point and Dt the distance to this
point. Besides the auxiliary functions, also there is a set of fixed parameters:

cb 1 = 0.1355, cb 2 = 0.622, (3.44)

σ = 2
3 , κ = 0.41, (3.45)

cw 1 = cb 1

κ2 + 1 + cb 2

σ
, cw 2 = 0.3 cw 3 = 2.0, (3.46)

cv 1 = 7.1, ct 1 = 1.0, ct 2 = 2.0, ct 3 = 1.2, ct 4 = 0.5. (3.47)

The functions ft 2, ft 2, fw, fν 1 and fν 2 have the role of adjusting the model during the
transition to the turbulent regime.
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The functions ft 1 and ft 2 can be set to zero as performed in (NGUYEN et al.,
2007) and (OLIVER, 2008), in considering the flow as fully turbulent. Thus, equations
3.29 and 3.30 can be rewritten as follows:

P = cb 1ρ S̃ ν̃, (3.48)

D = cw 1 fw
1
ρ

(
ρ ν̃

D

)2
, (3.49)

The trip term vanishes and gt is no longer necessary.

The PDE system formed by the RANS equations in addition to the eddy
viscosity correlation is given by

∂v
∂ t

+∇ ·Fc(v) = ∇ ·Fv(v,∇v) +∇ ·F t(v,∇v) + St(v,∇v), (3.50)

v =


ρ

ρU
ρE

ρν̃

 , (3.51)

Fc =


ρU

ρU UT + p I
(ρE + p)U
ρ ν̃ U

 , (3.52)

Fv =


0T

τ T

UTτ + q
0

 , (3.53)

F t =


0(

µe
µ

)
τ

UT
(
µe
µ

)
τ − ke∇U

1
σ
(µ+ ρ ν̃)∇ ν̃

 , (3.54)

St =


0
0
0

ρ cb2
σ
∇ ν̃ · ∇ ν̃ + P −D

 . (3.55)
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3.5 Dimensionless RANS Equations

The different orders of magnitude of the RANS field variables can difficult
the attainment of a proper convergence. In order to avoid such issue, we introduce the
dimensionless form of the RANS equations, which is, a rescaling process that searches to
approximate the orders of magnitude. In order to accomplish it, let us to consider the
method for rescaling the independent and primitive variables such as

t̄ = Uref t

Lref
, x̄ = x

Lref
, ȳ = y

Lref
, D = D

Lref
, µ̄ = µ̄

µref
, (3.56)

ρ̄ = ρ

ρref
ū = u

Uref
, v̄ = v

Uref
, ¯̃ν = ν̃

ν̃ref
, p̄ = p

ρrefUref
2 ,

and the definition of the Reynolds number in

Re = ρrefUrefLref
µref

, (3.57)

which are the basis for rewriting the RANS PDE system.

The reference values (with subscripts ref ) are chosen accordingly the specific
problem. Making use of the assumptions 3.56 and 3.57 we can rewrite each term of the
RANS equations, as

v̄ =


ρ̄

ρ̄U
ρ̄ E

ρ̄¯̃ν

 , (3.58)

Fc =


ρ̄U

ρ̄U UT + p̄ I
(ρ̄E + p̄)U
ρ̄ ¯̃ν U

 , (3.59)

Fv = 1
Re


0T

τ T

UT
τ + q
0

 , (3.60)

F t = 1
Re


0(

µe
µ

)
τ T

UT
(
µe
µ

)
τ − ke∇U

1
σ
(µ+ ρ ν̃)∇ ν̃,

 (3.61)
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St =


0
0
0

ρ cb2
σ
∇ ν̃ · ∇ ν̃ + P −D

 . (3.62)

The production and destruction terms of the eddy viscosity PDE are impacted
by the rescaling, in the following way (LANDMANN, 2008).

P = cb 1ρ S̃ ν̃, (3.63)

D = 1
Re

cw 1 fw
1
ρ

(
ρ ν̃

D

)2

. (3.64)

The dimensionless versions of the modified vorticity and the adjusting para-
meter r are given, respectively, by (LANDMANN, 2008).

S̃ = ||Ω||+ 1
Re

ν̃

κD
2 fν 2, (3.65)

r = min

(
ν̃

ReS̃ κ2 D
2 , 10

)
. (3.66)

For the sake of simplicity, we will omit the superscripts when writing the
variables and consider them in their dimensionless form.

3.6 The general structure of the RANS equations

The structure of the general Reynolds-Averaged Navier-Stokes equations are
given by:

I︷ ︸︸ ︷
∂v
∂ t

+∇ ·Fc(v) =
II︷ ︸︸ ︷

∇ ·Fv(v,∇v) +
III︷ ︸︸ ︷

∇ ·F t(v,∇v) + St(v,∇v) (3.67)

I - Euler terms.
II - Laminar Navier-Stokes term.
III - Turbulence terms.
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4 NUMERICAL ANALYSIS

4.1 An Overview

In the classical Finite Element Method (FEM) the original boundary value
problem is converted to a integral formulation, termed weak form, in which the problem
variables are approximated by expansions over a function space, usually polynomial. In
addition, the definition domain of the boundary value problem is discretized onto subdo-
mains and the integral formulation is imposed in each of them individually. In principle,
there is no limitation regarding the rank of the basis function space, and the FEM is com-
monly referred as a high-order method. In order to ensure the consistency of the solution,
the FEM enforces the continuity of the BVP solution among elements directly equaling
the solution in the neighbors elemental boundaries. This technique, though seemingly
simple, presents difficulties from the computational standpoint, mainly concerning to the
computational parallelism. In addition, the continuity enforcement implies limitations for
the physical modelling, given its natural pitfall in dealing with discontinuities, such as the
shock phenomenon.

By contrast, the Finite Volume Method (FVM) is typically a low order appro-
ach, in which zero order interpolations are performed in each computational cell and the
solution is communicated each time step by using the numerical fluxes, a set of operations
executed in the element boundaries in order to ensure the consistency of the domain discre-
tization. Some variants of the classical FVM enable higher order approximation error, such
as the ENO and WENO approaches. However, these schemes are based on reconstruction
techniques rather than elementwise interpolation. The naturally non-coupled structure of
the classical FVM is interesting from the parallelism viewpoint and flexible enough for
capturing the continuous and the discontinuous profiles on the elemental interfaces.

The Discontinuous Galerkin Finite Elements Method (DG-FEM) is a FEM
variation in which the elements are naturally uncoupled concerning to the solution appro-
ximation. The communication between two neighbors is performed by a numerical flux
rather than the classical FEM direct continuity imposition, being able to detect both the
discontinuous and the continuous solutions. In the numerical analysis scenario, DG-FEM
arises as a hybrid approach, binding the high order interpolation and domain description
typical of the classical FEM approaches, with the flexibility in performing elementwise
operations and information interchanging of the FVM.

Meanwhile, the increasing use of the DG-FEM for studying a wide range of
problems has revealed its limitations with respect to the compatibility between the high
order and discontinuities, leading to the developing of schemes for controlling numerical
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oscillations, that have acquired important results in the recent years. Despite of such
troubles, the DG capability in describing the features of complex phenomena allied to its
computational flexibility justify choosing it as numerical tool for this work.

4.2 Boundary Value Problem

Let Ω be a continuous domain and ∂Ω its closed boundary. Now, consider the
boundary value problem defined over Ω

∂v
∂ t

= −∇ ·Fc(v) +∇ ·Fv(v,∇v) +∇ ·F t(v,∇v) + St(v,∇v), (4.1)

v = v(x, t), x ∈ Ω, t ∈ [0,∞), (4.2)

B(v) = g, x ∈ ∂Ω, (4.3)

where B represents a set of operations for imposing known conditions on the boundary.
Note that the system of equations here considered is the RANS PDE system, presented
in 3.6. We consider that it is sufficiently general for conveying the main characteristics of
the DG discretization process.

In order to simplify the notation, let the right-hand side of 4.1 be represented
as a residual operator such as following:

∂v
∂ t

= R(v,∇v). (4.4)

4.3 Domain Discretization

Consider a consistent tessellation of Ω into a set of Ne non-overlapping sub-
domains. Thus, let T (Ω) be a partition of the domain Ω, such as:

T :
Ne⋃
k=1

Ωk = Ω,
Ne⋂
k=1

Ωk = ∅, (4.5)

Ωh = T (Ω). (4.6)

The sub-domains Ωk are named elements. For practical purposes, we limit
the possible geometry of the elements by considering only simple meshes, triangular or
quadrilateral on R2. In this way, the boundary ∂Ωk of each element is composed by a
determined number Nf of edges:

∂Ωk =
Nk
f⋃

f=1
∂Ωk

f (4.7)

Despite of referring to two or three-dimensional space, we usually refer to the boundaries
components ∂Ωk

f as faces and the elemental domains Ωk as volumes.
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Beyond the spatial discretization, let us consider the approximation solution
as direct a sum of elementwise solutions (HESTHAVEN; WARBURTON, 2008, p. 36):

vh(Ω) =
Ne⊕
k=1

vkh(Ωk) (4.8)

The solutions vkh can be continuous or discontinuous at the element interfaces
according to the problem requirements.

4.4 The DG-FEM weak form

Consider the PDE system given in 4.4 for each element Ωk ⊂ Ω from the
partition 4.5 and an approximated numerical solution vkh for the vector variable v inside
the element. The approximation gives rise to an error term E :

∂vkh
∂ t

= R(vkh,∇vkh) + E(vkh,∇vkh), (4.9)

vkh = vkh(x, t), x ∈ Ωk ⊂ Ω, t ∈ [0,∞), (4.10)

B(vkh) = g, x ∈ ∂Ωk | ∂Ωk ⊂ ∂Ω. (4.11)

The presence of residual is an unavoidable aspect of any numerical solution,
however, making use of an suitable formulation it is possible to obtain an approximation
conditioned to enable the minimal error among the possible solutions.

In order to construct such formulation, we need make use of some fundamental
hypothesis. We take the assumption that the approximated solution vkh inside Ωk can be
represented as an expansion over a function space Φk of dimension Nk

vkh =
N∑
i=1

v̂ki φki | v̂ki ∈ R, i = 1, 2, 3, ..., Nk (4.12)

Φ : φk ∈ Φk, φk = φk(x),x ∈ Ωk. (4.13)

Notice that we assume the possibility of using expansion spaces with different
dimensions for each element k, or different maximum ranks in case of polynomial expansi-
ons. As second assumption, let Φk be a real function space endowed with an inner product
and a p-norm. The space of the real functions over a domain Ω have its inner product
defined as following:

〈u, v〉Ω =
∫

Ω
u v dx | (u, v) ∈ Φ. (4.14)

A p-norm for a real function defined over a continuous domain Ω is defined as

||u||p =
(∫

Ω
up dx

) 1
p

∈ ]0,∞] |u ∈ Φ, p ∈ N. (4.15)
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The norm determines if a space is measurable and establishes a metric to
indicate it. The set of functions which meet the condition 4.15 is represented as Lp.
Considering the aforementioned inner product definition, we just need a second order
normed space for ensuring the integrability of 4.14. Hence, Φ ⊂ L2.

By definition, the set L2 is the set of all real function second order normed
spaces, or second order Lebesgue measurable, over a continuous domain Ω, endowed with
a inner product as stated in 4.14. The elements of Φ are usually referred as expansion
basis, and we will name Φ basis space.

Let Ψk be a non-zero real function space defined over Ωk such as

Ψk : ψk ∈ Ψk, ψk = ψ(x), ψ 6= 0,x ∈ Ωk (4.16)

Considering Ψk ⊂ L2, it has the same functional properties of Φk. Ψk will be here named
trial space for the element Ωk.

Now, we will rewrite the BVP expression by multiplying the PDE system by
ψk ∈ Ψk and integrating over the domain Ωk

∫
Ωk
ψk
∂vkh
∂ t

dx =
∫

Ωk
ψkR(vkh,∇vkh) dx +

∫
Ωk
ψkE(vkh,∇vkh) dx (4.17)

This expression is denominated variational formulation (KARNIADAKIS;
SHERWIN, 2004) of the BVP 4.1.

Through the orthogonality enforcement between the error and the trial space
Ψk, the integral error term 4.17 will vanish. Therefore,

∫
Ωk
ψk
∂vkh
∂ t

dx =
∫

Ωk
ψkR(vkh,∇vkh) dx. (4.18)

In order to enable the orthogonality condition we must guarantee that the
chosen trial and basis spaces have the same dimension dim(Φk) = dim(Ψk) = Nk when
expanding the variables. Then

∫
Ωk
ψkj

Nk∑
i=1

∂v̂ki
∂ t

φki dx =
∫

Ωk
ψkjR(vkh,∇vkh) dx 0 ≤ j < Nk, (4.19)

and
Nk∑
i=1

∫
Ωk

∂v̂ki
∂ t

ψkj φ
k
i dx =

∫
Ωk
ψkjR(vkh,∇vkh) dx 0 ≤ j < Nk. (4.20)

Equation 4.18 is named weak form of the variational formulation (KARNI-
ADAKIS; SHERWIN, 2004). We will not make assumptions about R(vkh,∇vkh) at the
moment because it concentrates all the non-linearity of the problem and requires a more
detailed explanation, as it will be shown later. As we can see in 4.20, for ensuring the
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integrability of each term in the weak form expression is necessary that the basis and trial
spaces can be measured with a L2 norm.

For properly constructing our FEM-based formulation, we need make choices
for the trial (Ψk) and the basis (Φk) spaces. Here we adopt the Galerkin approach, which
defines such spaces as equals. Therefore

Ψk = Φk. (4.21)

Replacing the trial space in accordance with the Galerkin approach, we have

Nk∑
i=1

∫
Ωk

∂v̂ki
∂ t

φkj φ
k
i dx =

∫
Ωk
φkjR(vkh,∇vkh) dx 0 ≤ j < Nk. (4.22)

The left side can be rewritten in the form of a matrix operation. Let us define
the elemental mass matrix Mk of the Galerkin formulation as:

Mk : Mk
ij =

∫
Ωk

φkj φ
k
i dx, 0 ≤ i, j < Nk. (4.23)

Notice that when Φk is an orthogonal basis, Mk will be a diagonal matrix.
The weak form can be written such as following:

Mk ∂v̂k

∂ t
=
∫

Ωk
φkjR(vkh,∇vkh) dx, 0 ≤ j < Nk. (4.24)

In which v̂k represents the vector of expansion coefficients for the field variables
vkh at each element Ωk.

4.5 DG Weak Form of the original BVP

We obtain the DG scheme applied to the RANS PDE system by replacing the
operators notation with the original terms seen in the BVP definition 4.1. The elemental
weak form for the RANS equations is given by

Mk ∂v̂k

∂ t
= −

∫
Ωk
φ k
j ∇ ·Fk

c dx +
∫

Ωk
φ k
j ∇ ·Fk

v dx (4.25)

+
∫

Ωk
φ k
j ∇ ·Fk

t dx +
∫

Ωk
φ k
j Sk

t dx, 0 ≤ j < Nk.

The divergent terms can be rewritten making use of the Product Rule and
Divergence Theorem. Considering a closed domain V delimited by a boundary ∂V , a
vector field F and some function φ ∈ Φ ⊂ L2, the integral∫

V
φ∇ · Fdx (4.26)
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Can be expanded using the Product Rule as∫
V
φ∇ · Fdx =

∫
V
∇ · φFdx−

∫
V

F · ∇φdx. (4.27)

The first integral term of the right-hand side can be rewritten using the Divergence The-
orem as ∫

V
∇ · φFdx =

∮
∂V

n · φFdx, (4.28)

Finally, we obtain the equivalent expression∫
V
φ∇ · Fdx =

∮
∂V

n · φFdx−
∫
V

F∇φdx. (4.29)

Using the relation 4.29 we can rewrite the expression 4.25, giving rise to flux contour
integral terms, as seen in

Mk ∂v̂k

∂ t
=
∮
∂Ωk

n · φ k
j Fk

cdx +
∫

Ωk
Fk

c · ∇φ
k
j dx (4.30)

+
∮
∂Ωk

n · φ k
j Fk

vdx−
∫

Ωk
Fk

v · ∇φ
k
j dx

+
∮
∂Ωk

n · φ k
j Fk

t dx−
∫

Ωk
Fk

t · ∇φ
k
j dx

+
∫

Ωk
φ k
j Sk

t dx 0 ≤ j < Nk.

Reorganizing the terms in 4.30 and condensing them according to similarity criteria, we
obtain

Mk ∂v̂k

∂ t
=
∫

Ωk

(
Fk

c −Fk
v −Fk

t

)
· ∇φ k

j dx (4.31)

+
∮
∂Ωk

n · φ k
j

(
−Fk

c + Fk
v + Fk

t

)
dx

+
∫

Ωk
φ k
j Sk

t dx 0 ≤ j < Nk

4.6 Faces Communication

The elemental weak form 4.31 imposes no a priori restriction at the interfaces
of an element with its vicinity. In the classical FEM methods the solution consistency
over the computational domain is enforced by directly asserting the variables continuity
element to element. In the case of DG-FEM formulations, an ambiguous definition of the
solution is allowed at the elemental boundaries. The consistency is achieved by means of
information interchanging between adjacent elements, which is accomplished via operati-
ons known as numerical fluxes, a scheme originated from the finite volumes method. The
numerical flux defined over the face f of element k with regard to the neighbor face f ′ of
element l is defined such as

Fkf = F(v(∂Ωk
f ),v(∂Ωl

f ′)) (4.32)
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For the first-order terms and

Fkf = F(v(∂Ωk
f ),v(∂Ωl

f ′),∇v(∂Ωk
f ),∇v(∂Ωl

f ′)) (4.33)

For the second-order ones. Considering the reference over the face ∂Ωk
f , and making use

of the notation − for the interior of the element k and + for the exterior, we can write:

Fkf = F(v(∂Ωk
f )+,v(∂Ωl

f )−). (4.34)

For the first-order terms and

Fkf = F(v(∂Ωk
f )+,v(∂Ωl

f )−,∇v(∂Ωk
f )+,∇v(∂Ωl

f )−). (4.35)

As can be noticed, the numerical flux implicitly connect the elemental solutions
vkh on both sides of the face. The numerical flux schemes seeks approximated solutions
for the Riemann’s problem (the discontinuity propagation problem) in order to deal with
possible discontinuities at the element interfaces (HESTHAVEN; WARBURTON, 2008,
p. 22). In case of continuous solutions, the numerical flux schemes are intended to progress
for equaling the solutions at the elemental interfaces.

Considering the expression 4.31, we can introduce the numerical flux terms by
directly replacing the surface integrals of the convective and diffusive physical fluxes with
the numerical ones as can be seen below

Mk ∂v̂k

∂ t
=
∫

Ωk

(
Fk

c −Fk
v −Fk

t

)
· ∇φ k

j dx (4.36)

+
∮
∂Ωk

n · φ k
j

(
−Fk∗

c + Fk∗∗
v + Fk∗∗

t

)
dx

+
∫

Ωk
φ k
j Sk

t dx, 0 ≤ j < Nk,

where the superscripts ∗ and ∗∗ refer to the convective and diffusive numerical fluxes
respectively. In the Manticore implementation, they are available the classical convective
numerical fluxes HLLC (TORO, 2008, p. 322) and Roe (TORO, 2008, p. 345), as well the
diffusive numerical fluxes BR1 (BASSI et al., 2004) and LDG (KIRBY; KARNIADAKIS,
2005).

As stated in 4.7, each element boundary ∂Ωk is composed by a finite number
of faces, Nk

f . Therefore, we can split the closed contour integrals into a summation of
integrals over the elemental faces, as∮

∂Ωk
nk · φ k

j

(
−Fk∗

c + Fk∗∗
v + Fk∗∗

t

)
dx = (4.37)

Nf∑
f=1

∫
∂Ωk

f

nkf · φ k
j

(
−Fkf∗

c + Fkf∗∗
v + Fkf∗∗

t

)
dx (4.38)
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In a general case, the faces domains ∂Ωf
k can be high-order curves, that way, we cannot

simply pull out the face normal nf from the face integrals, since this might depend on
the space. After such modifications, the weak form can be written

Mk ∂v̂k

∂ t
=
∫

Ωk

(
Fk

c −Fk
v −Fk

t

)
· ∇φ k

j dx (4.39)

+
Nk
f∑

f=1

∫
∂Ωk

f

nkf · φ k
j

(
−Fkf∗

c + Fkf∗∗
v + Fkf∗∗

t

)
dx

+
∫

Ωk
φ k
j Sk

t dx 0 ≤ j < Nk

4.7 Local DG-FEM Weak Form

Although considering simple meshes, composed by a single type of element
topology, the mesh generation process produces non-uniform cells, each of them with its
own shape and size. Moreover, the elements can have different curvature orders, making
more complex the evaluation of the operations given in 4.39. In order to avoid that, it is
usual to map all the physical elements to an ideal straight sided reference element Ω̄, also
named standard element.

The square reference element is defined such as (KARNIADAKIS; SHERWIN,
2004, p. 93):

Ω̄ : ξ = (ξ1, ξ2) ∈ Ω̄ | − 1 ≤ ξ1, ξ2 ≤ 1. (4.40)

And the triangular reference element (KARNIADAKIS; SHERWIN, 2004,
p. 93):

Ω̄ : ξ = (ξ1, ξ2) ∈ Ω̄ | − 1 ≤ ξ1, ξ2, ξ1 + ξ2 < 0. (4.41)

For integrating over each elemental region Ωk we must to convert it to the
reference region via some variables transformation, such as

T k(x, ξ) : x→ ξ |x ∈ Ωk, ξ ∈ Ω̄, (4.42)

Likewise, let us consider the following mappings involved in the transformation
of the general-shaped elemental faces to the reference ones:

T kf (x, ξ) : x→ ξ |x ∈ ∂Ωk
f , ξ ∈ ∂Ω̄. (4.43)

In order to integrate within a general-shaped element Ωk, which can be map-
ped to the reference element Ω̄ via the transformation T k, we proceed by evaluating
the integral in terms of the elemental coordinate system, ξ such as (KARNIADAKIS;
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SHERWIN, 2004, p. 157) ∫
Ωk
f(x) dx =

∫
Ω̄
f(ξ)|J k| dξ. (4.44)

In which |J k| is the determinant of the Jacobian matrix J k, due to the transformation
T k (KARNIADAKIS; SHERWIN, 2004, p. 158), defined as

J k =
∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

 (4.45)

Let us to consider some integral terms from the equation 4.39 and rewrite them in terms
of the local coordinates system. The mass matrix can be rewritten as

Mk : Mk
ij =

∫
Ωk

φkj (x)φki (x) dx. =
∫

Ω̄
φkj (ξ)φki (ξ) |J k|dξ. (4.46)

We should notice that even when the basis space Φ is orthogonal, the presence
of the Jacobian correction factor modifies the features of Mk, making it a dense matrix.
Orthogonality is preserved only when the element curvature id firs-order, corresponding
to an affine mapping. The flux terms can be modified likewise∫

Ωk

(
Fk

c(x)−Fk
v(x)−Fk

t (x)
)
· ∇φ k

j (x)dx = (4.47)∫
Ω̄

(
Fk

c(ξ)−Fk
v(ξ)−Fk

t (ξ)
)
· ∇φ k

j (ξ) |J k|dξ.

For the source terms, it is possible to easily rewrite the integral expression as
a local form: ∫

Ωk
φ k
j (x)Sk

t (x) dx =
∫

Ω̄
φ k
j (ξ)Sk

t (ξ) |J k|dξ. (4.48)

Making use of the face mappings defined in 4.43 we can evaluate the contour
integrals on the reference element faces:∫

∂Ωk
f

nkf · φ k
j (x)

(
−Fkf∗

c (x) + Fkf∗∗
v (x) + Fkf∗∗

t (x)
)

dx = (4.49)∫
∂Ω̄f

nkf · φ k
j (ξ)

(
−Ff∗

c (ξ) + Ff∗∗
v (ξ) + Ff∗∗

t (ξ)
)
|J kf |dξ, (4.50)

where n̄f represents the normal of face f the reference element. As the reference element
is a straight sided polygon, the normal is a vector with constant direction. After these
considerations the form

Mk ∂v̂k

∂ t
=
∫

Ω̄

(
Fk

c(ξ)−Fk
v(ξ)−Fk

t (ξ)
)
· ∇φ k

j (ξ)|J k|dξ (4.51)

+
Nf∑
f=1

∫
∂Ω̄f

nkf · φ k
j (ξ)

(
−Fkf∗

c (ξ) + Fkf∗∗
v (ξ) + Fkf∗∗

t (ξ)
)
|J kf |dξ

+
∫

Ω̄
φ k
j (ξ)Sk

t (ξ) |J k|dξ 0 ≤ j ≤ Nk
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is obtained. For a sake of simplicity, the notation indicating the dependency to the coor-
dinate system is omitted in the further sections.

In order to obtain the approximations for the time-derivatives ∂v̂h
∂ t

, of the field
variables we should invert the mass matrix Mk for each element. In case of large meshes,
the storage of element information can represent a significant cost, given that the matrices
need be precomputed and stored in their decomposed form (CHAN et al., 2016).

4.8 Polynomial Expansion

In 4.12 we assumed that the field variables vkh inside each element Ωk can
be approximated by an expansion over a function space. Thereafter, we constructed an
integral form based on this assumption in order to allow . However, no Considering the
reference element, each approximated field uh from vh can be expanded basically in two
ways:

• The modal approach

uk(ξ, t) =
Nk∑
i=1

ûki (t)φi(ξ), φi ∈ Φ,Φ ⊂ L2; (4.52)

• And the nodal approach:

uk(ξ, t) =
Nk∑
i=1

ûki (ξ, t)li, li ∈ N ,N ⊂ L2. (4.53)

In the modal approach, Φ is a hierarchical polynomial space, with all the
spatial information of the expansion term, the coefficients ui are purely time-dependent.
A usual polynomial basis employed on modal expansions is described in terms of Jacobi
polynomials. In the case of the nodal expansion, all the polynomials li have the same
rank and are defined based on points of the domain, denominated nodes. Usual choices
in nodal applications are the Lagrange and the Chebyshev polynomials.

In this work it is employed the modal basis which uses the Jacobi polynomials.
This choice lies in some convenient properties of this approach, mainly concerning the
numerical oscillations controlling, once the hierarchical functions spaces allow more easily
to limit the high order modes contribution and avoid unexpected behaviours.

On a two-dimensional expansion, the polynomial space is generated by ap-
plying tensor product between two one-dimensional hierarchical polynomial spaces, de-
fined over each reference coordinate axis (ξ1 and ξ2, defined in 4.40 and 4.41). Let us
consider the most general case, where the one-dimensional expansion spaces admit diffe-
rent maximum polynomial orders for each coordinate axis of the reference element. Hence,
we can define the approximation space such as described below.
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For the squared regions, we use the full expansion (KARNIADAKIS; SHERWIN,
2004, p. 89):

Φ : φpq = ξp1ξ
q
2, (p, q) ∈ Y , (4.54)

Y : (p, q) | 0 ≤ p ≤ N1, 0 ≤ q ≤ N2.

For the triangular regions, the Serendipity expansion (KARNIADAKIS; SHERWIN,
2004, p. 89):

Φ : φpq = ξp1ξ
q
2, (p, q) ∈ Y , (4.55)

Y : (p, q) | 0 ≤ p, q ≤ N, p+ q ≤ N

N = max(N1, N2)

The Serendipity expansion seeks to remove the higher-order modes by limiting
the rank of the polynomials Φpq. The tensor products can be visualized by using the Pascal
triangle (KARNIADAKIS; SHERWIN, 2004, p. 89-90).

4.9 Numerical Integration

The terms enclosed in the volumetric integrals of the weak form have been
handled in the continuous space, but it is just a theoretical treatment. In fact, for com-
putational purposes, all integral terms need to be discretized and evaluated by means of
a quadrature rule, more specifically a Gaussian quadrature. In a general way, considering
a function f = f(ξ), the Gauss’ quadrature is given by (KARNIADAKIS; SHERWIN,
2004, p. 141): ∫

Ω̄
f(ξ) d ξ =

NQ∑
q=1

wq f(ξq) +R(f), (4.56)

where {wq} is a set of quadrature coefficients defined for weighting the values of the
integrand f evaluated on a set of points {ξq} of Ω̄. R is the integral residue of the appro-
ximation. The integral 4.56 will be exactly evaluated (considering the machine precision)
for a polynomial integrand if the number of quadrature points is properly chosen (KAR-
NIADAKIS; SHERWIN, 2004, p. 141).

Considering a one-dimensional element (basically a line segment), the set {ξq}
is usually chosen to be the roots of the Legendre polynomial of order NQ. That special
set is referred as Gauss-Legendre (GL) distribution and is represented here as {ξL}. The
Gauss-Legendre distribution is chosen because it offers the suitable numerical features
for avoiding interpolation error growth (HESTHAVEN; WARBURTON, 2008, p. 49).
Another usual choice is the Gauss-Legendre-Lobatto (GLL) distribution, which includes
the two extreme coordinates −1 and 1 of the one-dimensional reference element. A GL
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quadrature of order NQ can exactly integrate polynomials f ∈ P2NQ−1 and a GLL qua-
drature of order NQ polynomials f ∈ P2NQ−3 (KARNIADAKIS; SHERWIN, 2004, p. 60).
The non-linear terms from the right-hand side of the weak form 4.39 are composed by
products and sums between polynomial expansions, so, we are able to determine the cor-
rect number of quadrature terms NQ for accurately evaluating each of them in both the
quadrature rules.

Taking the assumption f ∈ P2NQ−1 and considering the use of the correct
number of expansion terms NQ for the integral, zeroing the integral residual R, it is
possible to rewrite the integral 4.56 as the matrix product:∫

Ω̄
f(ξ) d ξ = wTF, (4.57)

where F is a column matrix containing the values of f evaluated on {ξq}.

For higher-dimensional geometry, the coordinates {ξq} are obtained by means
of the tensor product between the Legendre distributions along the reference coordinates
axis.

For square regions, the tensor product is equivalent to Cartesian product:

{ξq} : (ξLp, ξLq) | (p, q) ∈ X , (4.58)

X : (p, q) | 0 ≤ p ≤ NQ1, 0 ≤ q ≤ NQ2.

In case of triangular elements, we consider convenient to employ the collapsed
reference system (KARNIADAKIS; SHERWIN, 2004, p. 93) in order to use the quadra-
ture points described in 4.58.

In both the cases, the total number of quadrature points NQ is given by:

NQ = NQ1NQ2. (4.59)

There is no a priori reason for choosing different numbers of quadrature orders
for each reference axis, so, for the sake of simplicity, we will consider the same order for
both of them NQ1 = NQ2.

4.10 Discrete Local Weak Form

Now we will proceed with the construction of the computational structure used
in the Manticore implementation. The basic step consists in completely discretizating the
integral terms by using the quadrature rule and convert it into matrix form. For this
purpose, we need to define some auxiliary operators. Let us define the Vandermonde
matrix Vk for the element Ωk as follows (KARNIADAKIS; SHERWIN, 2004, p. 125):

Vk : Vkij = φki (ξj), 0 ≤ i < Nk, 0 ≤ j < NQ. (4.60)
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In matrix notation,
vkh = Vkv̂kh (4.61)

The derivative matrix for each element Ωk is defined as

Dkξl :
(
Dkξl

)
ij

= ∂ φi
∂ ξl

∣∣∣∣∣
ξj

, 0 ≤ i < Nk, 0 ≤ j < NQ, l ∈ {1, 2}. (4.62)

It should be noticed that D is defined for each reference direction (ξ1 and ξ2). We also
define the auxiliary Jacobian matrix as:

Jk : J k
ij = |J k|, 0 ≤ i < NQ, j ∈ {1, 2}. (4.63)

In principle, we could consider that each integral term in 4.39 needs a specific
number of quadrature terms in order to be properly evaluated and has its own weights
array w and integration points array. However, that can be unnecessary since we can
choose a fixed number of integration points in order to properly integrate every non-
linear term. Based on this assumption, we can rewrite the local weak form in matrix
notation as

Mk ∂v̂h
∂ t

=wT
k (Dkξ1 ◦ (Fkξ1

c −Fkξ1
v −Fkξ1

t ) ◦ Jk) (4.64)

+wT
k (Dkξ2 ◦ (Fkξ2

c −Fkξ2
v −Fkξ2

t ) ◦ Jk)

+
Nk
f∑

f=1
wT
kf (Vk ◦

(
−Fkf∗

c + Fkf∗∗
v + Fkf∗∗

t

)
nkf ◦ Jk)

+wT
k (Vk ◦ Sk

t ◦ Jkf ),

where the operation ◦ represents the Hadamard product:

C = A ◦B = AijBij. (4.65)

As mentioned in 4.7, in case of curvilinear elements there is a significant com-
putational cost for inverting Mk and store its decomposed form for large tessellations.
In order to circumvent that issue, we can employ the approach proposed by Chan et al.
(CHAN et al., 2016), (Weight-Adjusted Discontinuous Galerkin, WADG) by approxima-
ting the inverse mass matrix as follows:

(
Mk

)−1
≈ M̂

−1
M

1
Jk M̂

−1
, (4.66)

where M̂ is the mass matrix for the reference element and M
1

Jk is defined as:

M
1

Jk : M
1

Jk
ij =

∫
Ω̄
φkj φ

k
i

1
|J k|

dξ. (4.67)
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Based on 4.66 and 4.67, we can evaluate and store
(
Mk

)−1
during the program initiali-

zation and access it when necessary, reducing the processing and storage costs.

Expression 4.64 is evaluated for each element k in order to obtain the time-
derivatives of field variables for being used in the time-integration process. The state of
the neighbor elements and their communication faces are stored for each time-step and
accessed when the numerical fluxes from the right-hand side of 4.64 are estimated. Up to
now, we have ensured a considerable generality level when considering the possibility of
using basis spaces Φk specifically chosen for each elemental domain Ωk.

Although such feature might be important in some specific applications, the
validation tests performed in a further chapter of this work (6) uses a same basis space
for all the elements of the domain tessellations.

4.11 Time-Integration

There are fundamentally two ways for performing time-integration, the explicit
and the implicit techniques. The most conventional way is the explicit approach, where
the field variable vector is evaluated for the next instant just depending of the present
state. Therefore,

vj+1
h = I

(
vjh,

∂v̂h
∂ t

, dt
)
, (4.68)

where I represents a generic explicit time integrator. In certain cases, such as well-behaved
laminar flows over low order geometric curvatures, it has been empirically verified that
the explicit approaches are more convenient to the problem time-evolution. However, the
Navier-Stokes and the RANS equations present severe stiffness (BIRKEN, 2012) (CON-
TENT et al., 2013) as the number of DOFs is increased. This partly arises from the
multi-scale characteristic of the turbulence problem, given that for respecting the time-
integration stability region of the problem, the spatial and time discretization should be
refined in order to contain the fastest eddy scales, which can imply in a major compu-
tational barrier. Furthermore, when solving steady-state problems we are interested in
skipping intermediary states and as rapidly as possible to achieve the stationary solution.
In order to do that, we need to be able to use larger time-steps without undermining the
field variables accuracy. An approach developed to match this requirements is the fully
implicit time integration, which uses present and predicted information, which enables
unconditional stability with respect to the time step.

The implicit integration has the following general structure

vj+1
h = I

(
vjh,v

j+1
h ,

∂v̂h
∂ t

, dt
)
. (4.69)
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It is worth noting that each integration step results in a nonlinear system. In
order to solve this, it is necessary to employ iterative algorithms, as the Newton-Raphson’s
varieties, as a GMRES (BIRKEN, 2012) and JFNK (Jacobian-Free Newton-Krylov)
(CONTENT et al., 2013) schemes.

The fully implicit approach has been used to solve steady-state problems,
(OLIVER, 2008) and (LANDMANN, 2008). Nevertheless, (BASSI et al., 2004) and
(NGUYEN et al., 2007) applied this strategy both for steady and unsteady problems.

At this point the question is mostly computational. Despite these, (BIGA-
RELLA, 2007) accomplished all the integrations using an artificial viscosity aided explicit
addressing, but restricted to the low order domain.

The time-integration of the field and turbulence variables are performed in
a coupled way, that is, the approximated field vector vh also includes the turbulence
variables and all the residual evaluations are simultaneoulsy performed. Although the
literature mentions schemes to solve the uncoupled RANS equations, evaluating the field
and the turbulence variables separately, these methods ensure converged results just for
conditions which are close to the equilibrium, showing difficulties in dealing with unsteady
flows (CONTENT et al., 2013).

Manticore offers pre-implemented options of time-integrators, some of them,
used on this work, are briefly described in the following. For the explicit integration,
The strong-stability Runge-Kutta 54 (SSRKP54) (HESTHAVEN; WARBURTON, 2008,
p. 157), with five steps and 4th-order error. For the implicit case, a standard Newton-
GMRES backward-Euler.

4.12 Positivity Limiting

Even though the imposition of conservation laws throughout of the RANS
solving process, the numerical approximation is not completely safe of arising non-physical
values for the turbulent variables during the time-integration. The eddy viscosity can
became negative in some regions, such as zero-valued regions and regions where the source
terms are very intensive, given that the production and destruction terms can achieve
high values for small wall distances. During the simulation start-up, the occurrence of
negativity in the turbulent variables becomes more frequent due to the great unbalance
produced by the bad fields initialization (such as homogeneous initialization).

Considering the devastating impact of non-physical values propagation all over
the simulation domain, it is mandatory the positivity enforcement via some auxiliary
scheme. The approach adopted in this work is a reconstruction-type technique denomina-
ted hard limiting (LANDMANN, 2008) for the stepwise and the linear cases.
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The stepwise case corresponds to the interpolation order p = 0, either for the
quadrilateral and the triangular meshes, in which there is just one degree of freedom ν̃0

by field variable in each element, equivalent to the mean value over it. If ν̃0 ≤ 0, hard
limiting consists simply in limiting it by imposing some restriction ν̃0 = ε, where ε is a
small value chosen to avoid the negativity without adversely interfering in the vicinity
elements evaluation. The reference (LANDMANN, 2008) uses ε = 0, but in this work the
value of ε set up in the tests is 10−15.

It is necessary to notice that as the stepwise limiting interferes in the mean va-
lue of the element, it affects the elementwise conservation law. However, it is expected that
this interference be proportional to ε when the expected ν̃ is near to zero, or, otherwise,
it is assumed that the limiting scheme was able of conducing the solving process to the
proper values and is no longer active if the numerical implementation was properly done.

The linear limitation is applied to expansions with p ≤ 1 and consists of
adjusting the coefficients of the linear modes in order to avoid the negativity inside the
element, it corresponds to avoid the solution becomes lower than zero in the element
corners (LANDMANN, 2008). For the triangular elements, the positivity algorithm is
(LANDMANN, 2008, pp. 44)

if : ν̃0 < 0, set : ν̃0 = ν̃1 = ν̃2 = ε (4.70)

if : ν̃0 ≥ 0, set : ν̃0 ≤ ν̃0 and ν̃2 ≥ −
ν̃0

2
ν̃1 ≤ ν̃0 − ν̃2 and ν̃1 ≥ ν̃2 − ν̃0

and for the square regions (LANDMANN, 2008, pp. 44)

if : ν̃0 < 0, set : ν̃0 = ν̃1 = ν̃2 = ε (4.71)

if : ν̃0 ≥ 0, set : ν̃1 = sν̃1 and ν̃2 = sν̃2

s = −ν̃0

min(−ν̃1 + ν̃2,−ν̃1 − ν̃2, ν̃1 − ν̃2, ν̃1 + ν̃2)
, 0 ≤ s ≤ 1.

In which the ν̃0, ñu1 and ν̃2 represents the coefficients of the modal expan-
sion, respectively the constant and the linear modes. For elements with modes ranks
higher than 1, the problem of correctly reconstructing the interior of the element avoi-
ding negativity becomes more cumbersome and requires more computationally expensive
approaches (LANDMANN, 2008), given that, the addressing chosen in this work is to
truncate the higher order modes and impose the hard limiting over the lower ones. Once
again, it is necessary to stress that the hard limiting does not substantially affect the
conservation laws in the linear case if the mean value be proportional to the tolerance ε
or becomes completely inactive in any time, as assumed beforehand.
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5 NUMERICAL SOFTWARE IMPLEMENTATION

5.1 Overview

The software developed in this work was implemented by using the framework
Manticore, a free and open-source numerical engine fully-developed in Python 3 and
devised to operate in FEM-based applications. Besides the DG-FEM approach for RANS
problems, it was necessary to implement specialized pre and post-processing operations
as well as auxiliary stabilization schemes in order to enable running the numerical tests.
This work have extended Manticore by a development branch specialized in CFD, but the
Manticore’s scope is a general purpose framework. This chapter intends to summarize the
stages of such implementations by exposing the modules organization whilst introduces
the Manticore’s architecture. It is important to notice that all the references to directories
paths are based in the main directory manticore, created in the local host when the software
is downloaded from the remote repository.

5.2 Manticore’s General Architecture

Manticore is object-oriented and its core is hierarchically organized in order to
maintain encapsulated the increasing complexity of the implementation stages. In other
words, we can handle any high-level operation by a set of lower level pre-constructed
objects. For instance, we can handle a numerical flux boundary integral without directly
dealing with polynomial expansions or quadrature rules, but just invoking the suitable
classes.

Such complexity level hierarchy allows to create new operators or terms in an
equation in a simple way: constructing dedicated classes for the specific operations and
instantiating them in the proper places. Thus, implementing a problem in a framework
such as Manticore is most of time, comparable to assemble prefabricated parts according
to some established logic. Naturally, the software encapsulation can eventually hide the
fundamental operations at a level in which the code loses legibility and becomes difficult
to track origin and content of some objects. However, such matter can be bypassed by
properly employing some basic software engineering techniques.

5.3 Input Reading

Each problem simulated in Manticore at the current development state needs
three input files in order to be executed, namely geometrical mesh file, initialization file
and set up file. The mesh file is originally written in ASCII format using a mesh generator
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program, after that is converted to a binary HDF5-based format before being read by
the simulation software. This work employed the software Gmsh as mesh generator and
implemented the scripts to convert the Gmsh’s text format to the default MDF (Manticore
data format), a binary format built from HDF5 and already specified when this work was
started.

The MDF format seeks to enforce generality by considering a wide scope of
possibilities. The input reading resources available in Manticore was constructed to cover
cases in which different regions of the problem domain could be modelled by specific
systems of equations, for instance, multiphase flow combining solid, liquid and gaseous
fluids, each of them with a specific nature and hence a given mathematical model, that
way, the mesh file is subdivided in groups related to each modelling regions, which store
geometrical and physical information, at the set up time. All the tests performed in this
work are single phase, so, there is just one group in the mesh files. The groups of the mesh
files also can be split into partitions in order to be used in parallel executions, yet that is
not the case of this work, since all tests are serially performed. In other words, there is
just one partition per group whose elements are assessed at a time. The serial execution
was used since the MPI parallelism was not complete at the time of this work.

The initialization file is a MDF file which stores the initial state of the field
variable for each element and group in the problem domain. The set up file is a Python 3
script which controls simulation workflow, determining the mesh and initialization files,
the name of the domain and boundary groups, the modelling system of equations, the
choice of the turbulence models, numerical fluxes and time-integrators. An example of set
up file is available at manticore/models/turbulence/tests/manufactured_solution_setup.py,
where there are multiple test cases in terms of Python functions.

5.4 The Manticore’s Numerical Engine

After reading the input information the solver starts the construction of the
computational mesh, in which each geometrical element is enriched with an interpolation
ansatz and vicinity information. The Manticore numerical engine has been constructed
and tested following the philosophy of ensuring the locality at most when evaluating the
numerical operators, based on that, the fundamental entity, used as basis for constructing
the entire formulation, is the elementwise expansion and able of accessing the most part
of the information necessary during the solving process. The class ExpansionEntity defined
in the module manticore/lops/entity.py is the implementation of an elementwise expansion
and its communication vicinity, taking the role of the element entity itself. The block of
code in the Listing 5.1 shows an example of element class entity, in which the information
of some physical fields is reconstructed and stored in temporary arrays.
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Listing 5.1 – A short block of code for showing the usage of the element entity class.
1 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)
2 dnudx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDX)
3 dnudy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDY)
4
5 np . power ( dnudx , 2 , out=TurbModelWsp_v . flux_aux1 )
6 np . power ( dnudy , 2 , out=TurbModelWsp_v . flux_aux2 )

A more detailed view of the element entity class and its methods can be seen
in the Section A.1 of the Appendix A. From the physical modelling standpoint, the core
entities are the class Equation and its extensions, defined in manticore/models/compres-
sible/equations/equation.py. The classes based on Equation basically defines the primitive
and conservative variables to be modelled and the characteristic right-hand side residue
used to describe the problem. The residue is defined in a specific class and introduced as
an attribute of the equation class during the set up.

The equation terms operate over element entities sets in order to evaluate the
numerical residue of each element individually, since all the necessary information, inclu-
ding the face neighbourhood state, can be obtained from it. The characteristic equation
expressions, such as fluxes and forcing terms, are defined as dedicated Python classes, in
which the __call__ method (a method invoked when the class is executed as a function)
receives an element entity, evaluates the mathematical expressions for the integration
points and returns the values necessary to perform the time-integrations. A view of the
general structure for constructing the convective residue class can be seen in Listing 5.2.

Listing 5.2 – General structure of the factory for constructing the convective residue
1 def factory_weak_dg_convres ( conv_flux_t , turb_model_t ) :
2 " " " Factory f o r the r e s i d u a l o f the weak DG form of the Euler equat ion .
3 Args :
4 conv_flux_t : A template parameter on the kind o f c o n v e c t i v e
5 f l u x we are us ing (Lax−Friedr ich , Roe , HLLC, e t c ) .
6 " " "
7 Workspace_f = conv_flux_t . Workspace_f
8 InverseMassOperator = [ class_wadg_inverse_mas_op , class_rwadg_inverse_mas_op ]
9

10 TurbModel_v = turb_model_t . TurbModel_v
11 TurbModel_f = turb_model_t . TurbModel_f
12
13 class weak_dg_convective_residual (
14 EntityOperator ,
15 model_description_mixin ,
16 equation_domain_signature ,
17 expansion_numbers ) :
18
19 def __init__ ( s e l f , model_desc ) :
20 model_description_mixin . __init__ ( s e l f , model_desc )
21 equation_domain_signature . __init__ ( s e l f )
22 expansion_numbers . __init__ ( s e l f )
23 EntityOperator . __init__ ( s e l f )
24
25 # I n i t i a l i z i n g the c l a s s g l o b a l v a r i a b l e s
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26
27 def setup ( s e l f , eqname , domain ) :
28
29 equation_domain_signature . setup ( s e l f , eqname , domain )
30 matname = s e l f . desc . get_equation ( eqname ) . mat
31 s e l f . f l u i d = s e l f . desc . get_mater ia l (matname)
32
33 S p e c i f i c t e s t case statements
34
35 def conta iner_operator ( s e l f , group , key , c o n t a i n e r ) :
36
37 # Recovering informat ion from the expansion
38 e n t i t i e s .
39
40 def __call__ ( s e l f , e ) :
41
42 # Evaluates the c o n v e c t i v e r e s i d u a l o f a s i n g l e element .
43 # Invoke the a u x i l i a r y methods and manages the e n t i r e process
44
45 def eval ( s e l f , e ) :
46
47 # Evaluates the r e s i d u a l wi thout the i n v e r s e mass matrix .
48 " " "
49 Note :
50
51 ∗ This r e s i d u a l e v a l u a t i o n ’ k e r n e l ’ i s u s e f u l f o r
52 combining with more complex r e s i d u a l s ( e . g . a r t i f i c i a l
53 d i s s i p a t i o n , v i s c o u s f low , e t c . )
54 " " "
55 # F i l l i n g the p r i m i t i v e v a r i a b l e s workspace
56 Primitive_v = PrimitiveWsp_v . get_instance ( s e l f .nQ)
57 Primitive_v . f i l l ( e , s e l f . f l u i d )
58
59 # Zeroing r e s i d u a l s
60 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )
61 Residual_p . ze ro ( )
62
63 # Volumetric opera t ions
64 s e l f . volumeContribution ( e )
65
66 # Facia l opera t ions
67 s e l f . f a c eCont r ibut i on ( e )
68
69 def volumeContribution ( s e l f , e ) :
70
71 # Evaluat ion o f v a l u e s r e l a t e d to the vo lumetr i c f l u x and source i n t e g r a l s
72
73 def f a c eCont r ibut i on ( s e l f , e ) :
74
75 # I t access in format ion about the cho ice o f numerical f l u x e s
76 # in order to e v a l u a t e them .
77
78 for f f in range ( num_faces ) :
79
80 # Evaluates v a l u e s o f the boundary i n t e g r a l s f o r each
81 e l ementa l f a c e
82
83 # end of factory_weak_dg_convres . weak_dg_convective_residual
84
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85 return weak_dg_convective_residual

In the previous code, lines are suppressed in some parts and replaced by short
explanations in order to compress the original long file and present just the main code
structure. The values of the flux terms are used to evaluate the domain and boundary
integrals using Gaussian quadrature, as seen in the code Listing 5.3, in which the method
volumeContribution of the Listing 5.2 is detailed.

Listing 5.3 – Volumetric contribution of the convective terms
1 def volumeContribution ( s e l f , e ) :
2 Primitive_v = PrimitiveWsp_v . get_instance ( s e l f .nQ)
3 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )
4 #Workspace f o r t u r b u l e n c e f a c i a l a u x i l i a r v a r i a b l e s
5 TurbModelWsp_v = TurbModel_v . get_instance ( s e l f . nS , s e l f .nQ)
6
7 J = e . get_jacobian ( )
8 IM = e . get_inv_jacobian_matrix ( )
9

10 #
11 # FIRST EQUATION: rho ∗ [ u , v ]
12 #
13 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)
14 ConvectiveFlux_1_X ( rho , Primitive_v . u , s e l f . Fx )
15 ConvectiveFlux_1_Y ( rho , Primitive_v . v , s e l f . Fy )
16 # S operator , p h y s i c a l −> modal
17 s e l f . innerpg [ e . type ] ( J , IM, s e l f . Fx , s e l f . Fy , Residual_p . rho )
18
19 #
20 # SECOND EQUATION: [ rhou∗u+p , rhou∗v ]
21 #
22 rhou = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHOU)
23 ConvectiveFlux_2_X ( rhou , Primitive_v . u , Primitive_v . p , s e l f . Fx )
24 ConvectiveFlux_2_Y ( rhou , Primitive_v . v , s e l f . Fy )
25 # S operator , p h y s i c a l −> modal
26 s e l f . innerpg [ e . type ] ( J , IM, s e l f . Fx , s e l f . Fy , Residual_p . rhou )
27
28 #
29 # THIRD EQUATION: [ rhov∗u , rhov∗v+p ]
30 #
31 rhov = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHOV)
32 ConvectiveFlux_3_X ( rhov , Primitive_v . u , s e l f . Fx )
33 ConvectiveFlux_3_Y ( rhov , Primitive_v . v , Primitive_v . p , s e l f . Fy )
34 # S operator , p h y s i c a l −> modal
35 s e l f . innerpg [ e . type ] ( J , IM, s e l f . Fx , s e l f . Fy , Residual_p . rhov )
36 #
37 # FOURTH EQUATION: ( e+p )∗ [ u , v ]
38 #
39
40 aux = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHOE) + Primitive_v . p
41 ConvectiveFlux_4_X ( aux , Primitive_v . u , s e l f . Fx )
42 ConvectiveFlux_4_Y ( aux , Primitive_v . v , s e l f . Fy )
43 # S operator , p h y s i c a l −> modal
44 s e l f . innerpg [ e . type ] ( J , IM, s e l f . Fx , s e l f . Fy , Residual_p . rhoe )

self.innerpg is a list of wrapper methods for the classes defined in manticore.lops.modal_dg.phyops2d
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which performs inner product for Gaussian quadrature. The output of the self.innerpg
methods fills the arrays of Residual_p, a Manticore workspace, basically a class contai-
ning sets of arrays used to store temporary values, for the right-hand side of each equation
in the modal coefficients space.

On the top of this scheme, there is a time-integrator class, which evaluates the
residue terms at each iteration and updates the values of the field variables. The explicit
time-integrators are defined in the module manticore/models/compressible/timeint/inte-
grator.py and the implicit time-integrators in manticore/models/compressible/timeint/im-
plicit.py. After updating the field variables state, the values of that are stored in attributes
arrays inside the elemental entity.

The choice for operating locally and distributing the processing is not man-
datory. The numerical engine is flexible enough to cover cases in which all the element
domains are grouped into a global system and the complete set of degrees of freedom sol-
ved at a time. The choice between distributed memory and shared memory ends up to the
classical trade-off between memory and CPU, being both of them valid according to the
goals of the implementation and viable from the Manticore’s numerical engine viewpoint.

5.5 The RANS Structure and Add-ons

The Manticore’s branch for Navier-Stokes simulations covers the evaluation
of convective (Fc) and viscous (Fv) flux terms. In order to construct a structure for
simulating RANS-turbulent problems it was necessary to implement modules for assessing
the turbulent flux (F t) and the turbulent source (St) terms.

The turbulent residue (the turbulent contribution in the form of flux and source
terms) is defined in manticore/models/turbulence/equations/turbres.py and works as a main
module for organising the evaluation of the turbulent residue terms by means of the class
weak_dg_turbulent_res.py. The turbulent flux term is evaluated by using the same struc-
ture of the viscous ones applied to the considered characteristic equations. The turbulent
residue class is shown in the Section A.3 of the Appendix A.

The source terms are defined in the module manticore/models/turbulence/equa-
tions/turbsource.py by the source_terms_res class. The problem definition classes could be
modified according to specific conditions chosen at the simulation set up. A basic poly-
morphism should be ensured and it is done through factory functions. In this case, if-else
conditional statements are used in order to properly return the problem classes with the
necessary features required for the problem conditions. An example of factory function is
shown in the code Listing 5.4.

Listing 5.4 – General structure of a factory function used to construct the source terms
class.
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1 def factory_turbulent_source ( f e a t u r e ) :
2
3 i f f e a t u r e==’ t r ipped_evo lut ion ’ :
4
5 #For cases cons ider ing the t r a n s i t i o n a l s t a t e
6
7 class source_terms_res :
8
9 def __init__ ( s e l f , model_desc , f l u i d ) :

10 s e l f . model_desc = model_desc
11 s e l f . f l u i d = f l u i d
12 # o t h e r s i n i t i a l i z a t i o n commands
13
14 def _others_methods ( s e l f , ∗ args , ∗∗kwargs ) :
15 # commands
16
17 e l i f f e a t u r e==’ f u l l y _ t u r b u l e n t ’ :
18
19 #For cases wi thout cons ider ing the t r a n s i t i o n a l s t a t e
20
21 class source_terms_res :
22
23 def __init__ ( s e l f , model_desc , f l u i d ) :
24 s e l f . model_desc = model_desc
25 s e l f . f l u i d = f l u i d
26 # o t h e r s i n i t i a l i z a t i o n commands
27
28 def _others_methods ( s e l f , ∗ args , ∗∗kwargs ) :
29 # commands
30 else :
31 raise Asse r t i onErro r ( " Case not covered ! " )

The content of the flux and source terms classes is basically a transcription of
the expressions seen in the Chapter 3 to Python code using the Manticore structures, as
exemplified in the code Listing 5.5, in which the first source term (here named dissipation
term) of equation 3.28 is implemented.

Listing 5.5 – Source dissipation implementation
1 def __call__ ( s e l f , e , TurbModelWsp_v , TurbPrimWsp_v , PrimitiveWsp_v=None ) :
2
3 D = s e l f .D. get ( e . ID)
4 TurbPrimWsp_v . f i l l ( e , s e l f . f l u i d )
5
6 ### Source d i s s i p a t i o n
7
8 nu = TurbPrimWsp_v . nu
9

10 #( cb2/sigma )∗{ rho ∗ [ grad (nu ) . grad (nu ) ] }
11 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)
12 dnudx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDX)
13 dnudy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDY)
14
15 np . power ( dnudx , 2 , out=TurbModelWsp_v . flux_aux1 )
16 np . power ( dnudy , 2 , out=TurbModelWsp_v . flux_aux2 )
17
18 np . add (TurbModelWsp_v . flux_aux1 , TurbModelWsp_v . flux_aux2 , \
19 out=TurbModelWsp_v . flux_aux3 )
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20 np . mult ip ly ( rho , TurbModelWsp_v . flux_aux3 , out=TurbModelWsp_v . nu_diss ip )
21 TurbModelWsp_v . nu_diss ip ∗= ( s e l f . cb2 /( s e l f . Re∗ s e l f . sigma ) )

The values of the flux and source terms are evaluated for each integration point at the
element entity e, after that the integral terms of the weak formulation are calculated via
Gaussian quadrature. As mentioned in Section 4.12, the solving process can violate the
positivity of the turbulent variables when seeking the steady-state solution and in order
to control this issue it was purposed the use of positivity limiting. The limiting algo-
rithm is implemented in manticore/models/turbulence/equations/limiters.py and applied as
a post-processing operation over the computational mesh at each iteration of the time-
integration process. See the Section A.4 of the Appendix A to an in-depth view of the
limiter implementation.

5.6 Post-processing the Output

After the convergence has been achieved, the coefficient fields stored in each
element are recovered and used to reconstruct the physical fields in order to be employed
for visualization and error assessment purposes. Both the error evaluation and visualiza-
tion modules are implemented as complementary tools of this work and bequeathed to
the Manticore project. The error metric class, as well as other post-processing operati-
ons, is located in the module manticore/models/turbulence/manager/post_process.py. The
pointwise error in each element is evaluated for all the integration points and subsequently
integrated using the Gaussian quadrature rule, after that the values of all the elementwise
errors are summed. The visualization tool works in two ways, plotting the elementwise
fields one at a time, thus allowing the highlighting of discontinuities between elements,
and the global plot, where the field is smoothed by the inter-elemental interpolation. This
second option in convenient when the computational mesh resolution is still too coarse to
ensure a good visualization. As all the examples tests in the validation section of this work
are smooth and regular, the choice between the two visualization approaches is not crucial.
All the visualization engine implementations are in manticore/visualization/PlotUtils.py.
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6 TESTS AND VALIDATION

6.1 Overview

In order to verify the correctness of the implementation accomplished in this
work, we should to incrementally validate the different mathematical components of the
RANS system, starting with the inviscid Euler equations and subsequently adding the
viscous and turbulent terms, thus checking the overall behavior. That way, the validation
of the framework here implemented is performed in three stages:

• Inviscid terms (Euler) validation.

• Viscous terms (Laminar Navier-Stokes) validation.

• Turbulent terms (Spalart-Allmaras RANS) validation.

The Inviscid validation is performed using two usual test cases: the isentropic
vortex and the smooth bump. Both the cases, despite being idealizations, are physically
grounded problems. The Viscous and turbulent validation are performed using manufac-
tured solutions (ROY et al., 2007), since the complexity of the realistic problems on this
matter demands hardware and software infrastructure still not available for this work.

6.2 Validation of the Convective Terms

6.2.1 Overview

The first step for testing the numeric implementation is to validate the evalua-
tion of the inviscid convective term (Fc). In order to accomplish that, were employed the
Euler equations for modelling two reference problems, the isentropic vortex (HESTHA-
VEN; WARBURTON, 2008, 209) and the inviscid Gaussian bump (GALBRAITH, 2011).
The main purpose was to verify the numerical approximation accuracy, robustness in de-
aling with mesh curvature and adverse boundary conditions.
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6.2.2 The Isentropic Vortex Test Case

The first validation test case is the time-dependent isentropic vortex problem,
which has the exact solution given by (HESTHAVEN; WARBURTON, 2008, p. 209).

u = 1− β e(1−r2)
(
y − y0

2π

)
, (6.1)

v = β e(1−r2)
(
x− x0

2π

)
, (6.2)

ρ =
[
1−

(
γ − 1
16γπ2

)
β2e2(1−r2)

]( 1
γ−1)

, (6.3)

p = ργ, (6.4)

where r =
√

(x− t− x0)2 + (y − y0)2, x0 = 5, y0 = 0, β = 5, γ = 1.4. This test case alre-
ady was implemented in the Manticore framework and is presented here just for validation
purposes.

The problem domain is a square of side L = 10, whose boundaries are under
Dirichlet conditions based on the known solution. The time-integration is performed by
a Strong-Stability Runge-Kutta of five steps and 4th-order accuracy ](HESTHAVEN;
WARBURTON, 2008, p. 157). A sequence of tests was performed in order to evaluate
the robustness of inviscid flow solver. The computational grids are composed of N × N
uniform elements with length of side h = L/N , where N ranges from 5 to 20.

Tables 6.1 and 6.2 present the continuous L2-normed error for each combina-
tion (h, p) (minimum element size and polynomial interpolation order) for the variables ρ
and ρu.

Table 6.1 – L2-error for the variable ρ

p
1 2 3 4 5

h
2 4.00 × 10−1 1.48 × 10−1 1.10 × 10−1 3.99 × 10−2 1.69 × 10−2

1 1.49 × 10−1 5.65 × 10−2 7.80 × 10−3 2.72 × 10−3 7.74 × 10−4

0.5 8.22 × 10−2 4.91 × 10−3 6.15 × 10−4 1.02 × 10−4 1.24 × 10−5

Table 6.2 – L2-error for the variable ρ u

p
1 2 3 4 5

h
2 6.36 × 10−1 2.81 × 10−1 1.51 × 10−1 6.19 × 10−2 2.80 × 10−2

1 2.72 × 10−1 8.79 × 10−2 1.44 × 10−2 5.71 × 10−3 9.56 × 10−4

0.5 4.75 × 10−2 9.15 × 10−3 1.50 × 10−3 1.32 × 10−4 2.76 × 10−5

It is possible to see that the error is reduced as the number of elements and
the order are increased for both the variables, validating the capability of the inviscid
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solver in dealing with the transient problem. The error regarding the variables ρ v and
ρE are not reduced by the hp-refinement. The reason for that cannot be inferred given
that the literature reference (HESTHAVEN; WARBURTON, 2008, p. 210) does not
present results for such variables.

6.2.3 The inviscid smooth bump problem

The second test case consists of a steady-state compressible inviscid flow over
a smooth bump inside a channel. Air moves into the channel at a Mach number M∞ = 0.5
coming from a non-disturbed freestream flow, where the pressure and temperature con-
ditions are stationary (see Figure 6.1). As there is no friction dissipation or heat transfer
in the system, the flow is ideally isentropic. The conditions at the inlet are summarized
in the Table 6.3.

Table 6.3 – Inlet flow conditions.

Inlet Pressure (p∞) 1, 01kPa
Inlet Temperature (T∞) 303K
Inlet Mach Number (M∞) 0.5

A slip wall boundary condition is imposed on the superior channel and the
bump surfaces. The stagnation pressure is fixed in the inlet based on the freestream flow,
and the conditions in the outlet are modelled based on a backward state criterion. The
density and momentum are equalled to that of the internal neighbour element face and the
energy are limited to be evaluated at a fixed static pressure in case of locally supersonic
flow.

In order to starting the solution procedure an uniform field initial condition is
set up and the implicit time integrator scheme is left to run until the achievement of the
convergence criterion.

The test has been performed employing the convective numerical flux of Roe.
An implicit Standard Newton-GMRES integrator is used for conducing the scheme to the
convergence, each time iteration is solved by using a matrix-free GMRES method pre-
conditioned by a diagonal block LU approach. The implicit time-integration is crucial on
such kind of problem, due the intrinsic numerical stiffness of that in accommodating the
steady-state solution to the curved slip boundary, mainly in the start from a non-physical
condition. Explicit approaches would require very limited CFL choices in order to enforce
stability.

6.2.4 Testing workflow

An interpolation order (p) refinement sequence of tests was performed using
a 48 quadrilateral elements mesh with 4th-order curvature. The test array was initiated
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p∞, T∞,M∞

Figure 6.1 – The inviscid flow testing domain.

using p = 0, similar by to a finite volume implementation, and continued until p = 6. The
result of each p was used for initializing the next refinement, so, the stiffness observed on
the higher orders was reduced by the enhancement of the initial condition.

Figure 6.2 – Quadrilateral mesh used in the bump test case.

It is important to stress that using a quadrilateral mesh, the maximum rank of
the expansion modes is equal to 2p, therefore, in case of using p = 6, we have monomials
with rank at most 12 for the interpolation of the field variables. The CFL number was
ramping up as the numerical residue decreased, ranging from 50 to 150 (values empirically
determined). Results for p = 5 can be seen in Figure 6.3.

All the tests were performed using a workstation computer equipped with an
octa-core Intel i7 processor. Such feature enabled the native multithreading parallelism
of the Python library Numpy, extensively used by Manticore. Multithreading is specially
effective when running the higher interpolation and curvature orders, given that is set up
for processing computationally expensive matrix operations.

6.2.5 Validation

Considering that the bump test case does not have an exact solution, the
accuracy of the results were evaluated by using the dimensionless entropy error L2-norm
(YANO; DARMOFAL, 2018), defined as:

EL2 =

√√√√ 1
V

∫
Ω

[
p

p∞

(
ρ∞
ρ

)γ
− 1

]2

dV , (6.5)
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Figure 6.3 – Solution for 48 elements and p = 6.

where p and ρ are, respectively, the pressure and density fields inside the flow domain,
γ the fluid compressibility constant and V the domain volume. This norm measures the
total entropy generation produced by the numerical approximation when compared to the
inlet condition given that it implicitly verifies the preserving of isentropic flow relations.
The entropy error curve is plot in the Figure 6.4, in terms of the number of degree
of freedom (NDOF ), that corresponds to the total number of coefficients used in the
elemental expansions.

Figure 6.4 shows the decreasing of the entropy error in terms of the number of
DOFs, from a coarse approximation with p = 0 to an already significantly low numerical
interference in p = 6. The error orders correspond to that observed in the benchmark
literature for the same range of the NDOF parameter, as can be seen on Wang et al.
(Wang et al., 2014) and Kast (KAST, 2013). The decreasing curve profile validates the
capacity of the numerical implementation in solving a complex inviscid compressible flow
problem using p-refinement.
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Figure 6.4 – Comparison of the entropy error norm to the number of degrees of freedom.

6.3 Validation of the Viscous Terms

6.3.1 Overview

For the validation of the viscus term (Fv) was used a manufactured problem
(ROY et al., 2007). There is main reason for choice of the manufactured expressions, the
limited capability of the Manticore engine to deal with both large meshes and high orders
for realistic problems, which could preclude the p-refinement analysis. In this way, the
manufactured solutions arise as a simple technique for evaluating the correctness of the
implementation without excessive problem-biased issues.

6.3.2 Sinusoidal Manufactured Solution for the Navier-Stokes Equations

The following manufacture solution is considered:

ums = u0 + ux sin
(
auxπ

x

L

)
+ uy sin

(
auyπ

y

L

)
+ uxy sin

(
auxyπ

xy

L2

)
, (6.6)

where ums represents the primitive field variables array u = [ρ, u, v, p]T . The parameters
u0, ux, uy, uxy, aux , auy and auxy are constants specifically chosen for each primitive
variable in u. L is the domain characteristic length.

The manufactured expression 6.6 obviously does not satisfy the Navier-Stokes
equations. When the field variables are replaced by their corresponding expressions an
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extra source term Sms is generated,

∂v
∂ t

+∇ ·Fc(v) = ∇ ·Fv(v,∇v) + Sms. (6.7)

The numerical method is forced to search a solution vh in order to reduce the
right-hand side residue perturbed by the imposed solutions. In some sense, the manufac-
tured expression plays a role very similar to an exact solution. Although the manufactured
expressions have no physical consistency, their use can be valuable for validating the ca-
pability of the software implementation in dealing with the inconsistencies and to attain
the problem convergence, since that expressions exercise all the equation terms (ROY et
al., 2007).

6.3.3 Testing Workflow

The problem domain is a straight rectangle, over which a p-refinement array
of tests was performed using a 64 uniform quadrilateral and a 128 uniform triangular
meshes as can be seen in the Figure 6.5. The analytical expressions of the manufactured
solution are used to impose boundary conditions and the maximum values of them used
as reference values for the non-dimensionalization of the PDE system (see 3.5 for further
explanation).

Figure 6.5 – Meshes employed in the diffusive validation tests.

The flux terms on the faces are approximated using the Roe numerical flux
for the convective terms and the BR1 for the diffusive ones. The dynamical viscosity µ is
constant on the simulation domain and over time. The polynomial order p ranges from 0
to 4. The parameters of 6.6 used in the experiment are listed in Table 6.4 and were based
on the reference literature (ROY et al., 2007).



72

Table 6.4 – Parameters of the manufactured expressions used in the test.

u0 ux uy uxy aux auy auxy
ρ (kg/m3) 1 0.15 -0.1 0.08 0.75 1 1.25
u (m/s) 70 7 -8 5.5 1.5 0.5 0.6
v (m/s) 90 -5 10 -11 1.5 1 0.9
p (kPa) 1.0 0.2 0.175 -0.25 1 1.25 0.75

Table 6.5 lists the physical constants used in the experiment, even though the
manufactured expression has no physical meaning, the choices for the physical parameters
are based on the air properties at the normal atmospheric conditions. The solution using
the quadrilaterals elements mesh with p = 4 is seen in the Figure 6.6.

Table 6.5 – Physical constants used in the manufactured test.

µ (µPa.s) 17.90
Pr 0.7
γ 1.4

Figure 6.6 – Solution for 64 quadrilateral elements and p = 4.

In order to facilitate the attainment of the numerical convergence for the higher
orders, an enhancement of the initial condition was performed using the solution of the
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immediate lower order for each case starting in p = 1,. The order p = 0 was initialized
using a homogeneous field and the problem of solving the higher orders from scratch was
circumvented. The CFL number ranges from 10 to 500. Large values are possible given
the regularity of the mesh used in the test and the good behaviour of the manufactu-
red solutions here used. The tests was performed in a machine equipped with a 40-core
processor Xeon-E5. The high interpolation order enabled the multithreading parallelism
available in Manticore.

6.3.4 Validation

For evaluating the solver accuracy, the L2-norm

EL2 =
√∫

Ω
(v− vms)2 dV , (6.8)

was used and v represents each field variable. The way to the error norm should decre-
ase is related to conditions of the problem tested and the discretization type (SZABO;
BABUSKA, 2011, pp. 195). The manufactured solution 6.6 is continuous and analytic
on the domain simulation Ω and its boundaries, which implies that is a Category A pro-
blem of the Szabó and Babuška’s classification (SZABO; BABUSKA, 2011, pp. 170).
For problems in this category it is expected exponential convergence when p-refinement
is performed (SZABO; BABUSKA, 2011, pp. 195).

Figures 6.7 and 6.8 show the L2 error graphics and the respective angular
coefficients for each variable are given in Tables 6.6 and 6.7. L2 error is reduced for all
the variables, and the rate of convergence is grow, as expected in the literature.
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Table 6.6 – Angular coefficients of the L2 error curves shown in Figure 6.7 for each p
interval.

ρ ρu ρv ρE

p interval
0 − 1 -2.561 -2.223 -2.176 -2.410
1 − 2 -4.215 -3.790 -3.773 -4.157
2 − 3 -5.804 -5.740 -5.435 -5.767
3 − 4 -8.314 -7.671 -7.751 -7.610

Figure 6.7 – L2 error curve for the quadrilateral mesh
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Table 6.7 – Angular coefficients of the L2 error curves shown in Figure 6.8 for each p
interval.

ρ ρu ρv ρE

p interval
0 − 1 -2.834 -2.595 -2.462 -2.918
1 − 2 -4.255 -4.457 -4.126 -4.376
2 − 3 -5.925 6.243 -6.146 -5.895
3 − 4 -7.455 -7.765 -7.878 -8.020

Figure 6.8 – L2 error curve for the triangular mesh.
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6.4 Turbulent Terms Validation

6.4.1 Overview

For the validation of the turbulent terms (F t and St), a similar scheme to that
used for the laminar terms is employed, the use of manufactured expressions. The smooth
and well-behaved manufactured expressions presented in 6.6 are here used given that the
main purpose of this work is to implement RANS schemes in a high order DG framework
for validating them and not to solve realistic turbulent cases. As previously stated, realistic
cases in turbulence demand mesh refinement and software infrastructure (such as MPI
parallelism, multi-grid, among others) currently not available in the Manticore numerical
engine.

6.4.2 Sinusoidal manufactured solution in a regular grid

The manufactured expressions have the form seen in 6.6 and are used as exact
solutions for the primitive variables of the array [ρ u v p ν̃]T . As previously stated, the
manufactured expressions 6.6 are not exact solutions for the RANS PDE system. When
the field variables are substituted by their corresponding expressions, an extra source term
Sms will be generated

∂v
∂ t

+∇ ·Fc(v) = ∇ ·Fv(v,∇v) +∇ ·F t(v,∇v) + St(v,∇v) + Sms. (6.9)

6.4.3 Testing Workflow

The test performed was to use the same manufactured expressions 6.6 (with
an extra equation for the eddy viscosity) and meshes 6.5 employed in the laminar tests
to observe the performance of the RANS implementation in conducing the problem to
convergence. The analytical expressions were used to impose boundary conditions. The
reference values for the non-dimensionalization corresponds to the maximum of the ma-
nufactured expressions.

The numerical fluxes used are the HLLC for the convective and the BR1 for
the diffusive and turbulent ones. The polynomial order p ranges from 0 to 3, and the
CFL number from 0.5 to 30 for all the tests. The dynamical viscosity µ is constant on
the simulation domain and over time. The parameters of 6.6 used in the experiment are
listed in Table 6.8.

The parameters values used for the four Navier-Stokes variables are the same
employed in the laminar tests and are based on the reference literature (ROY et al., 2007).
The values for the turbulent variable was chosen to have at most the same magnitude
order of the dynamic viscosity, seen in Table 6.5. The results for the triangular mesh with
p = 3 is seen in Figure 6.9.
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Table 6.8 – Parameters of the manufactured expressions used in the test.

φ0 φx φy φxy aφx aφy aφxy
ρ (kg/m3) 1 0.15 -0.1 0.08 0.75 1 1.25
u (m/s) 70 7 -8 5.5 1.5 0.5 0.6
v (m/s) 90 -5 10 -11 1.5 1 0.9
p (kPa) 1.0 0.2 0.175 -0.25 1 1.25 0.75
ν̃ (µPa.s) 10.00 2.00 1.75 −2.50 1 1.25 0.75

Figure 6.9 – Results for 128 triangular elements and p=3

It was observed that the positivity limiter is highly active during the start-up
of the case p = 0, which is initialized with constant fields. It is no longer necessary for
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the higher orders, probably due to a combination of the manufactured solution regularity
and the initialization enhancement.

6.4.4 Validation

Using the L2-norm given in equation 6.8 the error evaluation was performed
and summarized in Figures 6.10 and 6.11. The conditions of the turbulent terms validation
problem are similar to that seen in the diffusive validation. Therefore, it is expected that
the error norm decreases accordingly to the exponential convergence. Tables 6.9 and 6.10
shows the angular coefficients for each p order interval in the error plots.

Table 6.9 – Angular coefficients of the L2 error curves shown in Figure 6.10 for each p
interval.

ρ ρu ρv ρE ρν̃

p interval
0 − 1 -2.578 -2.228 -2.213 -2.314 -1.996
1 − 2 -4.236 -3.792 -3.785 -4.164 -4.163
2 − 3 -5.776 -5.738 -5.428 -5.737 -5.706

Figure 6.10 – L2 error curve for the quadrilateral mesh.

The error of the numerical approximation is reduced as the number of degree
of freedom is increased and the rates of the error decreases is continuously growing up such
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Table 6.10 – Angular coefficients of the L2 error curves shown in Figure 6.11 for each p
interval.

ρ ρu ρv ρE ρν̃

p interval
0 − 1 -2.864 -2.614 -2.512 -2.807 -2.286
1 − 2 -4.277 -4.464 -4.138 -4.456 -4.802
2 − 3 5.848 -6.206 -6.117 -5.928 -6.101

Figure 6.11 – L2 error curve for the triangular mesh.

as expected. However, given that the size of tests array is relatively small (just four values
of p), it is not possible to state if the quality of the convergence is so good as observed in
the literature for the higher orders. But it is possible to verify that the implementation is
able of solving the problem and ensuring the exponential convergence for relatively high
interpolation orders.
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7 CONCLUSION

This work was focused on implementing the RANS approach Spalart-Allmaras
by extending the compressible flow engine implemented in the framework Manticore, a
numerical engine for DG-FEM applications, after which a sequence of validation tests
was performed. The tests validated each term of the Navier-Stokes and the RANS PDE
systems.

The convective validation using the simplified problem of inviscid vortex de-
monstrated that the DG numerical approximation implemented in Manticore was able
to solve the Euler’s equations and obtaining a consistent error reduction. The additional
and more challenging problem of the smooth bump confirmed the previous ascertainments
when verifying that the inviscid solver achieves the expected solution with a controlled
entropy creation, reduced as the refinement (in this case a pure interpolation order refi-
nement) is increased. In addition, the ability of the numerical engine in dealing with high
order mesh curvatures also was confirmed.

The diffusive and turbulent terms validation employed smooth and regular
manufactured problems for circumventing the computational requirements of the realistic
cases. Due to the software infrastructure limitations still presented in the Manticore’s
engine, the accomplishment of the tests set was extremely difficult, thereby inducing
the seek for a less demanding way of demonstrating the convergence of the numerical
methods implemented. The error curves for both diffusive and turbulent cases showed that
the L2 error decreases with the interpolation order refinement following an exponential
convergence. Such sequence of tests demonstrated that the implemented solvers are able
to achieve convergence for certain classes of problems derived from the Navier-Stokes
equations, confirming the correctness of the software infrastructure.

We intend to continue with the development based on the Manticore’s in-
frastructure in order to extend the set of test cases supported by the numerical engine.
Nonetheless, it is expected that some basic improvements will be necessary before we are
able to do it. First of all, the MPI paralellism must be concluded in order to simulate
cases with large meshes, since the multithreading paralellism native of the Python libra-
ries is not sufficient for dealing with the considered cases. We also have realized that the
implicit time-integration is taking a long time to evaluate the residue derivatives, due
to the technique currently implemented evaluates the residue for each field variable seri-
ally and calculates the derivatives via finite differences. It can be enhanced by employing
multiprocess evaluation or automatic differentiation (which could be executed in GPU).
Also it is considered the construction of a full-implicit time-integration scheme, unlike the
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approach followed up to the moment, in order to construct a global system that could be
more easily solved with a multithreaded CPU or even in a GPU machine.
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Appendix A – SOFTWARE EXCERPTS

A.1 Elemental Entity Class

1 class ExpansionEntity ( CoGeometry ) :
2 " " " This c l a s s d e f i n e s a s i n g l e e l ementa l expansion ( a . k . a . f i n i t e element ) .
3
4 " " "
5
6 __slots__ = [
7 ’ _geotype ’ , ’ _type ’ , ’ _subtype ’ , ’_ID ’ , ’ _seqID ’ , ’ _role ’ , ’ _key ’ ,
8 ’ _fc_n1d ’ , ’ _vol ’ , ’ var ’ , ’ c t e ’ , ’ f i e l d ’ , ’ c t e _ f i e l d ’ , ’ vertex_var ’ ,
9 ’ v e r t e x _ f i e l d ’ , ’ vertex_map ’ , ’ op ’ , ’_gID ’ , ’DR’ , ’ _dof ’ , ’ _eqID ’

10 ]
11
12 def __init__ ( s e l f , geotype , volmap , facemap ) :
13 " " " Constructor o f ExpansionEntity o b j e c t s .
14
15 Args :
16 geotype (geom . StandardGeometry ) : type o f geometr ic i n t e r p o l a t i o n .
17
18 volmap ( CollapsedToGlobalMaps ) : s tandard reg ion to g l o b a l mapping .
19
20 facemap ( CollapsedToGlobalFaceMaps ) : s tandard reg ion to
21 g l o b a l mapping r e s t r i c t e d to f a c e s .
22
23 A t t r i b u t e s :
24 _geotype (geom . StandardGeometry ) : type o f geometr ic i n t e r p o l a t i o n .
25
26 _type ( dg types . StdRegionType ) : modal DG standard reg ion
27
28 _subtype ( dg types . RegionAdapter ) :
29
30 _ID (np . uint64 ) : Ent i ty id , from mesh generator
31
32 _seqID (np . uint64 ) : S e q u e n t i a l ID , f o r book keeping
33
34 _role ( dg types . Ent i tyRole ) : e n t i t y ’ s r o l e ( phys i ca l ,
35 ghost , comm_ghost )
36
37 _key ( ExpansionKey ) : expansion key a s s o c i a t e d to t h i s element .
38
39 _fc_n1d ( array ) : number o f i n t e g r a t i o n p o i n t s requ i red f o r face
40 communication between two elements with d i f f e r e n t expansions
41 max( _key . n1d , ng . n1d ) at each face .
42
43 _dof ( array ) : g l o b a l id ’ s o f the degrees o f freedom of t h i s element .
44 DOF’ s are s e q u e n t i a l a t each element : i t i s only necessary to
45 s t o r e the f i r s t and l a s t +1.
46
47 var ( l i s t ( Fie ldVarLis t ) ) : model/ problem names o f f i e l d s
48 i n t e r p o l a t e d by the DG polynomial expansion . These f i e l d s can
49 be : s t a t e v a r i a b l e s , r e s i d u a l v a r i a b l e s , a u x i l i a r y v a r i a b l e s .
50
51 c t e ( Fie ldVarLis t ) : model/ problem names o f f i e l d s t h a t are constant
52 by element .
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53
54 f i e l d ( l i s t ( Loca lF ie ld ) ) : model/ problem v a l u e s o f f i e l d s
55 i n t e r p o l a t e d by the DG polynomial expansion . These
56 f i e l d s can be : s t a t e v a r i a b l e s , r e s i d u a l v a r i a b l e s ,
57 a u x i l i a r y v a r i a b l e s .
58
59 c t e _ f i e l d (np . array ) : model/ problem v a l u e s o f f i e l d s t h a t are
60 constant by element .
61
62 vertex_var ( Fie ldVarLis t ) : model/ problem names o f f i e l d s t h a t are
63 i n t e r p o l e d by v e r t e x nodal shape f u n c t i o n s .
64
65 v e r t e x _ f i e l d ( Loca lF ie ld ) : model/ problem v a l u e s o f
66 f i e l d s t h a t are i n t e r p o l e d by v e r t e x nodal shape
67 f u n c t i o n s .
68
69 vertex_map ( d i c t ) : map from g l o b a l v e r t i c e s IDs to l o c a l i n d i c e s
70 (V−>l o c a l v e r t e x index ) .
71
72 DR (np . array ) : r e s i d u a l d e r i v a t i v e .
73
74 " " "
75
76 a s s e r t geotype in std_geometry_as_list ( )
77
78 s e l f . _geotype = geotype
79 s e l f . _type = RegionInfo . mesh_to_dg (geom( geotype ) )
80
81 s e l f . _subtype = RegionAdapter .WADG
82 s e l f . _ID = np . u int64 (0 )
83 s e l f . _seqID = np . u int64 (0 )
84 s e l f . _role = EntityRole .GHOST
85 s e l f . _gID = 0
86 s e l f . _key = None
87 s e l f . _fc_n1d = array ( ’ I ’ , [ ] )
88 s e l f . _vol = 0 .
89 s e l f . _dof = array ( ’ I ’ , [ 0 , 0 ] )
90 s e l f . _eqID = np . u int64 (0 )
91
92 s e l f . var = [ None for i in range ( F ie ldRole . s i z e ( ) ) ]
93 s e l f . c t e = None
94 s e l f . f i e l d = [ None for i in range ( F ie ldRole . s i z e ( ) ) ]
95 s e l f . c t e _ f i e l d = None
96 s e l f . vertex_var = None
97 s e l f . v e r t e x _ f i e l d = None
98 s e l f . vertex_map = None
99 s e l f .DR = np . z e r o s (0 )

100
101 #
102 # The StdBackward operator i s i d e n t i c a l to the PhysBackward
103 # one . No need f o r an ex t ra func t i on c a l l i n g overhead .
104 #
105 # s e l f . op [ 0 ] = factory_stdbackward1d (DG_Quadrangle )
106 # s e l f . op [ 1 ] = factory_stdbackward1d ( DG_Triangle )
107 s e l f . op = [ None , None ]
108
109 #
110 # Parents i n i t i a l i z a t i o n
111 #
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112 ExpansionNeighbourhood . __init__ ( s e l f , s e l f . _type )
113 CoGeometry . __init__ ( s e l f , volmap , facemap )
114
115 def i n i t _ v a r i a b l e s ( s e l f , stv , r sv =[ ] , axv = [ ] ) :
116 " " " I n i t i a l i z e the f i e l d s i n t e r p o l a t e d by the DG expansion
117 wi th in the element .
118
119 Args :
120 s t v ( l i s t ( F i e l d V a r i a b l e ) ) : S ta t e v a r i a b l e s
121
122 rsv ( l i s t ( F i e l d V a r i a b l e ) ) : Res idua l v a r i a b l e s
123
124 axv ( l i s t ( F i e l d V a r i a b l e ) ) : A u x i l i a r v a r i a b l e s
125
126 " " "
127
128 r o l e = s e l f . _role
129 key = s e l f . _key
130
131 i f ( r o l e == EntityRole .PHYSICAL) :
132
133 S = ExpansionSize . get ( s e l f . _type , key . order )
134 N = key . n2d
135
136 a s s e r t S > 0
137 a s s e r t N > 0
138
139 s tv_s i z e = len ( s tv )
140 s e l f . var [ F ie ldRole . State ] = Fie ldVarL i s t . get_instance (∗ s tv )
141 s e l f . f i e l d [ F ie ldRole . State ] = Loca lF i e ld ( stv_s ize , N, S)
142
143 r sv_s i z e = len ( r sv )
144 i f len ( r sv ) > 0 :
145 s e l f . var [ F ie ldRole . Res idua l ] = Fie ldVarL i s t . get_instance (∗ r sv )
146 s e l f . f i e l d [ F ie ldRole . Res idua l ] = Loca lF i e ld ( rsv_s ize , 0 , S )
147
148 axv_size = len ( axv )
149 i f len ( axv ) > 0 :
150 s e l f . var [ F ie ldRole . A u x i l i a r 1 ] = Fie ldVarL i s t . get_instance (∗ axv )
151 s e l f . f i e l d [ F ie ldRole . A u x i l i a r 1 ] = Loca lF i e ld ( axv_size , 0 , S )
152 s e l f . var [ F ie ldRole . A u x i l i a r 2 ] = Fie ldVarL i s t . get_instance (∗ axv )
153 s e l f . f i e l d [ F ie ldRole . A u x i l i a r 2 ] = Loca lF i e ld ( axv_size , 0 , S )
154
155 sz = rsv_s i z e ∗ S
156 s e l f .DR. r e s i z e ( ( sz , sz ) , r e f c h e c k=False )
157
158 e l i f ( r o l e == EntityRole .COMM_GHOST) :
159 S = ExpansionSize . get ( s e l f . _type , key . order )
160 N = key . n2d
161
162 a s s e r t S > 0
163 a s s e r t N > 0
164
165 s tv_s i z e = len ( s tv )
166 s e l f . var [ F ie ldRole . State ] = Fie ldVarL i s t . get_instance (∗ s tv )
167 s e l f . f i e l d [ F ie ldRole . State ] = Loca lF i e ld ( stv_s ize , N, S)
168
169 e l i f ( r o l e == EntityRole .GHOST) :
170 # We need the expansion from the neighbour ( p h y s i c a l elment )
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171
172 kn = s e l f . get_neighbour (0 ) . key
173 N = kn . n1d + 1 # <−−− Note : the c o r r e c t s i z e i s n1d+1! K&S , p . 558
174
175 s tv_s i z e = len ( s tv )
176 s e l f . var [ F ie ldRole . State ] = Fie ldVarL i s t . get_instance (∗ s tv )
177 s e l f . f i e l d [ F ie ldRole . State ] = Loca lF i e ld ( stv_s ize , N)
178
179 else :
180 raise Asse r t i onErro r ( " Malformed Expansion e n t i t y ! " )
181
182 def i n i t _ c t e s ( s e l f , ctv ) :
183 " " " I n i t i a l i z e the constant f i e l d s wi th in the element .
184
185 Args :
186
187 c t v ( l i s t ( F i e l d V a r i a b l e ) ) : cons tant f i e l d s .
188
189 " " "
190 i f len ( ctv ) > 0 :
191 s e l f . c t e = Fie ldVarL i s t . get_instance (∗ ctv )
192 s e l f . c t e _ f i e l d = np . z e r o s ( len ( ctv ) )
193
194 def i n i t _ v e r t e x _ v a r i a b l e s ( s e l f , vtv ) :
195 " " " I n i t i a l i z e f i e l d s t h a t are i n t e r p o l e d by v e r t e x nodal
196 shape f u n c t i o n s .
197
198 Args :
199
200 v t v ( l i s t ( F i e l d V a r i a b l e ) ) : v e r t e x f i e l d s .
201
202 " " "
203 i f len ( vtv ) > 0 :
204 s e l f . vertex_var = Fie ldVarL i s t . get_instance (∗ vtv )
205 s e l f . v e r t e x _ f i e l d = Loca lF i e ld (
206 len ( vtv ) , s e l f . _key . n2d , number_of_edges ( s e l f . _geotype ) )
207
208 def init_vertex_map ( s e l f , v e r t i c e s _ l i s t ) :
209 " " " I n i t i a l i z e the map from g l o b a l v e r t i c e s IDs to l o c a l
210 i n d i c e s .
211
212 Args :
213 v e r t i c e s _ l i s t ( i t e r a b l e (np . uint64 ) )
214
215 " " "
216
217 a s s e r t len ( v e r t i c e s _ l i s t ) == number_of_edges ( s e l f . _geotype )
218 loca l_ idx = 0
219 for ver tex in v e r t i c e s _ l i s t :
220 s e l f . vertex_map [ ver tex ] = loca l_ idx
221 loca l_ idx += 1
222
223 @property
224 def type ( s e l f ) :
225 return s e l f . _type
226
227 @property
228 def subtype ( s e l f ) :
229 return s e l f . _subtype



90

230
231 @subtype . s e t t e r
232 def subtype ( s e l f , va lue ) :
233 a s s e r t va lue in RegionAdapter
234 s e l f . _subtype = value
235
236 @property
237 def geom_type ( s e l f ) :
238 return s e l f . _geotype
239
240 @geom_type . s e t t e r
241 def geom_type ( s e l f , va lue ) :
242 a s s e r t va lue in std_geometry_as_list ( )
243 s e l f . _geotype = value
244 s e l f . _type = base_to_std_region [ geom( value ) ]
245
246 @property
247 def ID( s e l f ) :
248 return s e l f . _ID
249
250 @ID . s e t t e r
251 def ID( s e l f , va lue ) :
252 s e l f . _ID = np . u int64 ( va lue )
253
254 @property
255 def seqID ( s e l f ) :
256 return s e l f . _seqID
257
258 @seqID . s e t t e r
259 def seqID ( s e l f , va lue ) :
260 s e l f . _seqID = np . u int64 ( va lue )
261
262 @property
263 def gID ( s e l f ) :
264 return s e l f . _gID
265
266 @gID . s e t t e r
267 def gID ( s e l f , va lue ) :
268 s e l f . _gID = int ( va lue )
269
270 @property
271 def r o l e ( s e l f ) :
272 return s e l f . _role
273
274 @role . s e t t e r
275 def r o l e ( s e l f , va lue ) :
276 a s s e r t va lue in EntityRole
277 s e l f . _role = value
278
279 @property
280 def key ( s e l f ) :
281 return s e l f . _key
282
283 @key . s e t t e r
284 def key ( s e l f , k ) :
285 a s s e r t type ( k ) i s ExpansionKey
286 s e l f . _key = k
287 s e l f . op [ 0 ] = class_quad_stdbackward1d ( k )
288 s e l f . op [ 1 ] = class_tr ia_stdbackward1d ( k )
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289
290 @property
291 def n1d ( s e l f ) :
292 return s e l f . _key . n1d
293
294 @property
295 def volume ( s e l f ) :
296 return s e l f . _vol
297
298 @volume . s e t t e r
299 def volume ( s e l f , va lue ) :
300 a s s e r t va lue > 0 .
301 s e l f . _vol = value
302
303 @property
304 def dof ( s e l f ) :
305 return s e l f . _dof
306
307 @property
308 def eqID ( s e l f ) :
309 return s e l f . _eqID
310
311 def init_face_comm_sizes ( s e l f ) :
312 " " " Number o f i n t e g r a t i o n p o i n t s on each face .
313
314 Notes :
315
316 ∗ According to K&S p .558 , the number o f i n t e g r a t i o n p o i n t s
317 on each face must be n1d+1 f o r o b t a i n i n g the c o r r e c t mesh
318 convergence .
319 " " "
320 n = s e l f . n1d
321
322 i f ( ( s e l f . r o l e == EntityRole .PHYSICAL)
323 or ( s e l f . r o l e == EntityRole .COMM_GHOST) ) :
324 for ng in s e l f . ne igh :
325 s e l f . _fc_n1d . append (max(n + 1 , ng . n1d + 1) )
326
327 def face_comm_size ( s e l f , f f ) :
328 return s e l f . _fc_n1d [ f f ]
329
330 @property
331 def face_comm_sizes ( s e l f ) :
332 return s e l f . _fc_n1d
333
334 def s e t _ v e r t i c e s ( s e l f , V) :
335 CoGeometry . s e t _ v e r t i c e s ( s e l f , V)
336
337 n f a c e s = number_of_edges ( s e l f . _geotype )
338
339 i f n f a c e s == 3 :
340 s e l f . s e t _ f a c e _ v e r t i c e s (0 , V[ 0 ] , V[ 1 ] )
341 s e l f . s e t _ f a c e _ v e r t i c e s (2 , V[ 1 ] , V[ 2 ] )
342 s e l f . s e t _ f a c e _ v e r t i c e s (1 , V[ 2 ] , V[ 0 ] )
343 e l i f n f a c e s == 4 :
344 s e l f . s e t _ f a c e _ v e r t i c e s (0 , V[ 0 ] , V[ 1 ] )
345 s e l f . s e t _ f a c e _ v e r t i c e s (3 , V[ 1 ] , V[ 2 ] )
346 s e l f . s e t _ f a c e _ v e r t i c e s (1 , V[ 2 ] , V[ 3 ] )
347 s e l f . s e t _ f a c e _ v e r t i c e s (2 , V[ 3 ] , V[ 0 ] )
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348 else :
349 raise Asse r t i onErro r ( " I n c o r r e c t number o f f a c e s ! " )
350
351 def eva l_jacobian ( s e l f ) :
352 CoGeometry . eva l_jacob ian ( s e l f , s e l f . _geotype , s e l f . _key , s e l f . _fc_n1d )
353
354 def eval_mass ( s e l f ) :
355 CoGeometry . eval_mass ( s e l f , s e l f . _type , s e l f . _key )
356
357 def eval_face_char_length ( s e l f ) :
358 pass
359
360 def normals_tangents ( s e l f , face_id , n , t ) :
361 # The c o r r e c t number o f i n t e g r a t i o n p o i n t s on f a c e s i s n1d+1,
362 # see K&S p . 5 5 8 .
363 k = Inte rpo la t i onKey . get_instance ( s e l f . _geotype , s e l f . _key . n1d + 1 ,
364 face_id )
365 s e l f . _fmap . normals_tangents (k , s e l f .C, n , t )
366
367 def g e t _ f i e l d ( s e l f , r o l e , f i e ld_type , v ) :
368 " " " Get f i e l d . " " "
369 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )
370
371 def s t a t e ( s e l f , f i e ld_type , v ) :
372 r o l e = Fie ldRole . State
373 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )
374
375 def r e s i d u a l ( s e l f , f i e ld_type , v ) :
376 r o l e = Fie ldRole . Res idua l
377 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )
378
379 def a u x i l i a r 1 ( s e l f , f i e ld_type , v ) :
380 r o l e = Fie ldRole . A u x i l i a r 1
381 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )
382
383 def a u x i l i a r 2 ( s e l f , f i e ld_type , v ) :
384 r o l e = Fie ldRole . A u x i l i a r 2
385 return s e l f . f i e l d [ r o l e ] . get ( f i e ld_type , s e l f . var [ r o l e ] ( v ) )
386
387 def copy_f i e ld ( s e l f , e ) :
388
389 i f ( ( s e l f . _role == EntityRole .PHYSICAL)
390 or ( s e l f . _role == EntityRole .COMM_GHOST) ) :
391
392 for r o l e in Fie ldRole :
393 s e l f . f i e l d [ r o l e ] . copy ( FieldType . ph , e . f i e l d [ r o l e ] )
394 s e l f . f i e l d [ r o l e ] . copy ( FieldType . tr , e . f i e l d [ r o l e ] )
395
396 def g e t _ f a c e _ f i e l d ( s e l f , f i e l d _ r o l e , v , face_id , face_values ) :
397
398 i f ( ( s e l f . _role == EntityRole .PHYSICAL)
399 or ( s e l f . _role == EntityRole .COMM_GHOST) ) :
400 # Returns v a l u e s at i . p . s on the face :
401 s e l f . op [ s e l f . _type ] . at_ips ( face_id ,
402 s e l f . g e t _ f i e l d ( f i e l d _ r o l e , FieldType . tr ,
403 v ) , face_va lues )
404
405 e l i f ( s e l f . _role == EntityRole .GHOST) :
406 # Values are a l ready s t o r e d at i . p . s on the face but , in
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407 # t h i s case , i t on ly makes sense f i e l d _ r o l e==Fie ldRo le . S ta t e
408 # and f i e l d _ t y p e==FieldType . ph ) .
409
410 a s s e r t f i e l d _ r o l e == Fie ldRole . State
411
412 np . copyto ( face_values , s e l f . g e t _ f i e l d ( f i e l d _ r o l e , FieldType . ph , v ) )
413
414 else :
415 raise Asse r t i onErro r ( " Malformed Expansion e n t i t y ! " )
416
417 def get_face_f ie ld_as_pass ive ( s e l f , f i e l d _ r o l e , v , actV , actF , actNIP ,
418 pasF , face_va lues ) :
419
420 a s s e r t ( ( s e l f . _role == EntityRole .PHYSICAL)
421 or ( s e l f . _role == EntityRole .COMM_GHOST) )
422
423 face_values = s e l f . op [ s e l f . _type ] . at_ips_as_passive (
424 actV , actF , actNIP , pasF ,
425 s e l f . g e t _ f i e l d ( f i e l d _ r o l e , FieldType . tr , v ) , face_va lues )
426
427 def get_cte ( s e l f , v ) :
428 return s e l f . c t e _ f i e l d [ s e l f . c t e ( v ) ]
429
430 def set_cte ( s e l f , v , va lue ) :
431 s e l f . c t e _ f i e l d [ s e l f . c t e ( v ) ] = value
432
433 def get_ver tex_f i e ld ( s e l f , f i e ld_type , v ) :
434 return s e l f . v e r t e x _ f i e l d . get ( f i e ld_type , s e l f . vertex_var ( v ) )
435
436 def get_vertex_value ( s e l f , v , node_global_id ) :
437 a s s e r t node_global_id in s e l f . vertex_map
438 return s e l f . v e r t e x _ f i e l d . get (
439 FieldType . tr , s e l f . vertex_var ( v ) ) [ s e l f . vertex_map [ node_global_id ] ]
440
441 def set_vertex_value ( s e l f , v , node_global_id , va lue ) :
442 a s s e r t node_global_id in s e l f . vertex_map
443 s e l f . v e r t e x _ f i e l d . get (
444 FieldType . tr ,
445 s e l f . vertex_var ( v ) ) [ s e l f . vertex_map [ node_global_id ] ] = value
446
447 def __repr__( s e l f ) :
448
449 msg = ’<{} ( ID : {} , seqID : {} , geo : {} , subtype : {} , r o l e : {}) ’ . format (
450 s e l f . __class__ , s e l f . ID , s e l f . seqID ,
451 geometry_name ( s e l f . geom_type ) , s e l f . subtype , s e l f . r o l e )
452 msg += ’ \n{} ’ . format ( s e l f . key . key )
453 msg += ’ \ nVer t i c e s : {} ’ . format ( s e l f . g e t _ v e r t i c e s ( ) )
454 msg += ’ \nNodal c o o r d i n a t e s : \ n{} ’ . format ( s e l f . g e t_c oe f f ( ) )
455 msg += ’ \ nNeighborhood ( [ ’
456
457 neigh = s e l f . get_neighbourhood ( )
458 for ng in neigh :
459 i f ng i s not None :
460 msg += ’ {} ’ . format ( ng . ID)
461
462 msg += ’ ] ) ’
463
464 msg += ’ \n>’
465
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466 return msg

A.2 Weak form of the convective residual

1 class weak_dg_convective_residual (
2 EntityOperator ,
3 model_description_mixin ,
4 equation_domain_signature ,
5 expansion_numbers ) :
6
7 def __init__ ( s e l f , model_desc ) :
8 model_description_mixin . __init__ ( s e l f , model_desc )
9 equation_domain_signature . __init__ ( s e l f )

10 expansion_numbers . __init__ ( s e l f )
11 EntityOperator . __init__ ( s e l f )
12
13 s e l f . innerpg = [ None , None ] # InnerProductGradient [ quad , t r i a ]
14 s e l f . innerp_t = [ None , None ] # InnerProduct1d [ quad , t r i a ]
15 s e l f . Fx = np . z e r o s (0 )
16 s e l f . Fy = np . z e r o s (0 )
17 s e l f . inner_temp = [ np . z e r o s (0 ) , np . z e r o s (0 ) ]
18
19 s e l f . temp = np . z e r o s (0 )
20 s e l f . aux = np . z e r o s (0 )
21
22 i f exec_dir==ExecDirec t ive .NS_VALIDATION:
23 s e l f . i nne rpva l = [ None , None ] # InnerProduct2d [ quad , t r i a ]
24 s e l f . e v a lS r c = [ None , None ]
25
26 s e l f . eq_dir = model_desc . get_equat ions ( ) [ 0 ] . data . name
27
28 #RANS t u r b u l e n c e
29 #I n s t a n t i o n o f the t u r b u l e n c e model
30 s e l f . turb_model = turb_model_t ( model_desc )
31
32 i f s e l f . eq_dir==’ turbu l ent ’ :
33 s e l f . i nne rpva l = [ None , None ] # InnerProduct2d [ quad , t r i a ]
34 s e l f . e v a lS r c = [ None , None ]
35
36 def setup ( s e l f , eqname , domain ) :
37 equation_domain_signature . setup ( s e l f , eqname , domain )
38 matname = s e l f . desc . get_equation ( eqname ) . mat
39 s e l f . f l u i d = s e l f . desc . get_mater ia l (matname)
40
41 i f exec_dir==ExecDirec t ive .NS_VALIDATION:
42 g = s e l f . f l u i d . thermo . gamma
43 cp = s e l f . f l u i d . thermo . Cp
44 cv = s e l f . f l u i d . thermo . Cv
45 mu = s e l f . f l u i d . t r a n s p o r t .mu
46 Pr = s e l f . f l u i d . t r a n s p o r t . Pr
47 k = mu∗cp/Pr
48
49 # Get a n a l y t i c a l e xpre s s ion
50 s e l f . f v a l = ns_va l idat ion ( g , mu, k , cv )
51
52 def conta iner_operator ( s e l f , group , key , c o n t a i n e r ) :
53 k = ExpansionKeyFactory . make( key . order , key . nip )
54
55 r e g i o n s = [ StdRegionType . DG_Quadrangle , StdRegionType . DG_Triangle ]
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56 for r in r e g i o n s :
57 expansion_numbers . eval ( s e l f , r , k ) # s e t nS and nQ=k . n2d
58 s e l f . inner_temp [ r ] . r e s i z e ( ( s e l f . nS , ) , r e f c h e c k=False )
59
60 s e l f . innerpg [ r e g i o n s [ 0 ] ] = class_quad_physinnerproductgrad2d ( k )
61 s e l f . innerpg [ r e g i o n s [ 1 ] ] = c lass_tr ia_phys innerproductgrad2d ( k )
62
63 s e l f . innerp_t [ r e g i o n s [ 0 ] ] = class_quad_physinnerproduct1d
64 s e l f . innerp_t [ r e g i o n s [ 1 ] ] = c lass_tr ia_phys innerproduct1d
65
66 s e l f . Fx . r e s i z e ( ( s e l f .nQ, ) , r e f c h e c k=False )
67 s e l f . Fy . r e s i z e ( ( s e l f .nQ, ) , r e f c h e c k=False )
68
69 s e l f . temp . r e s i z e ( ( key . nip +1 ,) , r e f c h e c k=False )
70 s e l f . aux . r e s i z e ( ( key . nip +1 ,) , r e f c h e c k=False )
71
72 i f exec_dir==ExecDirec t ive .NS_VALIDATION or s e l f . eq_dir==’ turbu l ent ’ :
73
74 s e l f . i nne rpva l [ r e g i o n s [ 0 ] ] = class_quad_physinnerproduct2d ( k )
75 s e l f . i nne rpva l [ r e g i o n s [ 1 ] ] = c lass_tr ia_phys innerproduct2d ( k )
76
77 s e l f . e v a lS r c [ r e g i o n s [ 0 ] ] = class_quad_physevaluator2d ( k )
78 s e l f . e v a lS r c [ r e g i o n s [ 1 ] ] = c las s_tr ia_physeva luator2d ( k )
79
80
81 def __call__ ( s e l f , e ) :
82 " " " Eva luates the c o n v e c t i v e r e s i d u a l o f a s i n g l e element .
83
84 The usua l __call__ () i s prov ided to be used as a s tanda lone
85 r e s i d u a l e v a l u a t o r ( i t w i l l m u l t i p l y the r e s i d u a l s by the
86 i n v e r s e o f the mass matrix ) . I f you need to use i t as a par t o f
87 a b i g g e r r e s i d u a l e v a l u a t i o n ( Navier−Stokes , f o r ins tance ) , you
88 shou ld r e s o r t to e v a l ( ) .
89 " " "
90
91 # Check se tup was done
92 a s s e r t s e l f . domain
93
94 # Set nS and nQ f o r t h i s element
95 expansion_numbers . eval ( s e l f , e . type , e . key )
96
97 s e l f . eval ( e )
98
99 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )

100
101 # M^{−1} product
102 IM = e . get_inv_mass ( )
103 t r = FieldType . t r
104
105 InverseMassOperator [ e . subtype ] . s o l v e (
106 IM, Residual_p . rho , e . r e s i d u a l ( tr , F i e l d V a r i a b l e .RHO) )
107 InverseMassOperator [ e . subtype ] . s o l v e (
108 IM, Residual_p . rhou , e . r e s i d u a l ( tr , F i e l d V a r i a b l e .RHOU) )
109 InverseMassOperator [ e . subtype ] . s o l v e (
110 IM, Residual_p . rhov , e . r e s i d u a l ( tr , F i e l d V a r i a b l e .RHOV) )
111 InverseMassOperator [ e . subtype ] . s o l v e (
112 IM, Residual_p . rhoe , e . r e s i d u a l ( tr , F i e l d V a r i a b l e .RHOE) )
113
114 for name , var in s e l f . turb_model . f i e l d v a r i a b l e s :
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115 var_res = getattr ( Residual_p , name)
116 InverseMassOperator [ e . subtype ] . s o l v e (
117 IM, var_res , e . r e s i d u a l ( tr , var ) )
118
119 def eval ( s e l f , e ) :
120 " " " Eva luates the r e s i d u a l wi thout the i n v e r s e mass matrix .
121
122 Note :
123
124 ∗ This r e s i d u a l e v a l u a t i o n ’ k e r n e l ’ i s u s e f u l f o r
125 combining with more complex r e s i d u a l s ( e . g . a r t i f i c i a l
126 d i s s i p a t i o n , v i s c o u s f low , e t c . )
127 " " "
128 # F i l l i n g the p r i m i t i v e v a r i a b l e s workspace
129 Primitive_v = PrimitiveWsp_v . get_instance ( s e l f .nQ)
130 Primitive_v . f i l l ( e , s e l f . f l u i d )
131
132 # Zeroing r e s i d u a l s
133 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )
134 Residual_p . ze ro ( )
135
136 # Volumetric opera t ions
137 s e l f . volumeContribution ( e )
138
139 # Facia l opera t ions
140 s e l f . f a c eCont r ibut i on ( e )

A.3 Turbulent Residual

1 def factory_weak_dg_turbulent_res ( conv_flux_t , visc_f lux_t , turb_model_t ) :
2
3 weak_dg_viscous_res = factory_weak_dg_viscous_res ( conv_flux_t ,
4 visc_flux_t , turb_model_t )
5
6 i f turb_model_t == Spal lardAlmaras :
7
8 TurbModel_v = RANS_SA_Wsp_v
9 TurbModel_f = RANS_SA_Wsp_f

10 weak_dg_viscous_res = factory_weak_dg_viscous_res ( conv_flux_t ,
11 visc_flux_t , turb_model_t )
12
13 class weak_dg_turbulent_res ( weak_dg_viscous_res ) :
14
15 def __init__ ( s e l f , model_desc ) :
16
17 weak_dg_viscous_res . __init__ ( s e l f , model_desc )
18 s e l f . Re = model_desc . g e t _ r e f e r e nc e ( ) . Re # Reynolds
19 s e l f . r a n s _ s e t t i n g s = model_desc . get_rans_sett ings ( )
20 s e l f . f e a t u r e = s e l f . r a n s _ s e t t i n g s . f e a t u r e
21 s e l f . cv1 = s e l f . r a n s _ s e t t i n g s . cv1
22 s e l f . Pr_e = s e l f . r a n s _ s e t t i n g s . Pr_e
23 s e l f . sigma = s e l f . r a n s _ s e t t i n g s . sigma
24 s e l f .D = s e l f . r a n s _ s e t t i n g s .D
25
26 def setup ( s e l f , eqname , domain ) :
27
28 weak_dg_viscous_res . setup ( s e l f , eqname , domain )
29 matname = s e l f . desc . get_equation ( eqname ) . mat
30 s e l f . f l u i d = s e l f . desc . get_mater ia l (matname)
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31 s e l f . cp = s e l f . f l u i d . thermo . Cp
32 s e l f . gamma = s e l f . f l u i d . thermo . gamma
33
34 #I t c o n s t r u c t s the source terms e v a l u a t i o n f o r SA model
35 accord ing to the
36 #c o n s i d e r a t i o n o f t r a n s i t i o n s t a t e or not
37 turb_source = factory_turbulent_source ( s e l f . f e a t u r e )
38 s e l f . turb_sourceContr ibut ion = turb_source ( s e l f . desc , s e l f . f l u i d )
39 s e l f . turb_model . cp = s e l f . cp
40
41 def eval ( s e l f , e ) :
42 " " " Eva luates the r e s i d u a l wi thout the i n v e r s e mass matrix .
43
44 " " "
45 super ( ) . eval ( e )
46
47 # Volumetric terms opera t ions
48 s e l f . turb_volumeContribution ( e )
49
50 # Facia l terms opera t ions has been ev a lu a t e d t o g h e t e r with the
51 # laminar v i s c o u s f l u x because the regarded methods are de f ined
52 # on TurbulenceModels . py
53
54 #Volumetric opera t ions f o r the t u r b u l e n c e models
55 def turb_volumeContribution ( s e l f , e ) :
56
57 Tau_v = TauWsp_v . get_instance ( s e l f .nQ)
58 p_wsp = PrimitiveWsp_v . get_instance ( s e l f .nQ)
59 Residual_p = ResidualWsp_p . get_instance ( s e l f . nS )
60 TurbModelWsp_v = TurbModel_v . get_instance ( s e l f . nS , s e l f .nQ)
61 RANS_SAPrimWsp_v = RANS_SAPrimitiveWsp_v . get_instance ( s e l f .nQ)
62
63 mu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .MU)
64 dudx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DUDX)
65 dudy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DUDY)
66 dvdx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DVDX)
67 dvdy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DVDY)
68
69 #Viscous Newtonian tensor e v a l a u t i o n
70 Tau11 ( mu, dudx , dvdy , Tau_v . t11 )
71 Tau12 ( mu, dudy , dvdx , Tau_v . t12 )
72 Tau22 ( mu, dudx , dvdy , Tau_v . t22 )
73
74 J = e . get_jacobian ( )
75 IM = e . get_inv_jacobian_matrix ( )
76 inner_temp = s e l f . inner_temp [ e . type ]
77 innerpg = s e l f . innerpg [ e . type ]
78 inne rpva l = s e l f . i nne rpva l [ e . type ]
79 Reynolds = s e l f . Re
80
81 #
82 # FIRST EQUATION: Zero .
83 #
84
85 ### V i s c o s i t y r a t i o : mu_e/mu
86 mu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .MU)
87 rhonu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHONU)
88
89 #Cho = rhonu/mu
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90 np . d i v i d e ( rhonu , mu, out=TurbModelWsp_v . Cho)
91 #Cho^3
92 np . power (TurbModelWsp_v . Cho , 3 , out=TurbModelWsp_v . flux_aux1 )
93 #Cho^3+cv1 ^3
94 np . add (TurbModelWsp_v . flux_aux1 , s e l f . cv1 ∗∗3 , out=TurbModelWsp_v .

flux_aux2 )
95 #fv1 = Cho^3/(Cho^3+cv1 ^3)
96 np . d i v i d e (TurbModelWsp_v . flux_aux1 , TurbModelWsp_v . flux_aux2 ,
97 out=TurbModelWsp_v . fv1 )
98
99 #mu_e = rho∗nu∗ f v1

100 np . mult ip ly ( rhonu , TurbModelWsp_v . fv1 , out=TurbModelWsp_v .mu_e)
101
102 #
103 # SECOND EQUATION:
104 #
105 np . mult ip ly (TurbModelWsp_v .mu_e, Tau_v . t11 , out=TurbModelWsp_v .

flux_aux1 )
106 np . mul t ip ly (TurbModelWsp_v .mu_e, Tau_v . t12 , out=TurbModelWsp_v .

flux_aux2 )
107
108 innerpg ( J , IM, TurbModelWsp_v . flux_aux1 , TurbModelWsp_v . flux_aux2 ,

inner_temp )
109 inner_temp /= Reynolds
110 Residual_p . rhou += inner_temp
111
112 #
113 # THIRD EQUATION:
114 #
115 np . mult ip ly (TurbModelWsp_v .mu_e, Tau_v . t22 , out=TurbModelWsp_v .

flux_aux3 )
116
117 innerpg ( J , IM, TurbModelWsp_v . flux_aux2 , TurbModelWsp_v . flux_aux3 ,

inner_temp )
118 inner_temp /= Reynolds
119 Residual_p . rhov += inner_temp
120
121 ###Turbulent thermal c o n d u t i v i t y , k_e
122 np . mult ip ly ( ( s e l f . gamma/ s e l f . Pr_e ) , TurbModelWsp_v .mu_e, out=

TurbModelWsp_v . k_e)
123
124 #
125 # FOURTH EQUATION:
126 #
127 np . mult ip ly (p_wsp . u , TurbModelWsp_v . flux_aux1 , out=TurbModelWsp_v .

flux_tmp1 )
128 np . mult ip ly (p_wsp . v , TurbModelWsp_v . flux_aux2 , out=TurbModelWsp_v .

flux_tmp2 )
129 np . mult ip ly (p_wsp . u , TurbModelWsp_v . flux_aux2 , out=TurbModelWsp_v .

flux_tmp3 )
130 np . mult ip ly (p_wsp . v , TurbModelWsp_v . flux_aux3 , out=TurbModelWsp_v .

flux_tmp4 )
131
132 np . add (TurbModelWsp_v . flux_tmp1 , TurbModelWsp_v . flux_tmp2 , out=s e l f .

Fx)
133 np . add (TurbModelWsp_v . flux_tmp2 , TurbModelWsp_v . flux_tmp3 , out=s e l f .

Fy)
134
135 dedx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DEIDX)
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136 dedy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DEIDY)
137
138 s e l f . Fx += np . mult ip ly (TurbModelWsp_v . k_e , dedx )
139 s e l f . Fy += np . mult ip ly (TurbModelWsp_v . k_e , dedy )
140
141 innerpg ( J , IM, s e l f . Fx , s e l f . Fy , inner_temp )
142 inner_temp ∗= −1./ Reynolds
143 Residual_p . rhoe += inner_temp
144
145 #
146 # FIFTH EQUATION:
147 #
148 mu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .MU)
149 dnudx = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDX)
150 dnudy = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .DNUIDY)
151
152 TurbulentFlux_5_X (mu, rhonu , ( 1 . / s e l f . sigma ) ∗dnudx , TurbModelWsp_v .

flux_aux1 , s e l f . Fx )
153
154 TurbulentFlux_5_Y (mu, rhonu , ( 1 . / s e l f . sigma ) ∗dnudy , TurbModelWsp_v .

flux_aux1 , s e l f . Fy )
155 innerpg ( J , IM, s e l f . Fx , s e l f . Fy , inner_temp )
156
157 inner_temp /= Reynolds
158 Residual_p . rhonu += inner_temp
159
160 #
161 #SOURCE TERMS FOR THE TURBULENCE VARIABLES
162 #
163 s e l f . turb_sourceContr ibut ion ( e , TurbModelWsp_v , RANS_SAPrimWsp_v,

PrimitiveWsp_v=p_wsp)
164 inne rpva l (TurbModelWsp_v . rhonu_res , J , inner_temp )
165
166 Residual_p . rhonu += inner_temp
167
168 D = s e l f .D. get ( e . ID)
169
170 #In case o f the RANS v a l i d a t i o n
171 i f exec_dir==ExecDirec t ive .RANS_VALIDATION:
172
173 C = e . ge t_coe f f ( )
174 geo = e . geom_type
175 vmap = e . vmap
176 f = s e l f . r a n s _ s e t t i n g s . f
177 f .D = D
178
179 inner_temp = s e l f . inner_temp [ e . type ]
180 e va l S r c = s e l f . e v a l S r c [ e . type ]
181 inne rpva l = s e l f . i nne rpva l [ e . type ]
182
183 s r c = e v a l S r c ( f . src_rho , C, geo , vmap)
184 inne rpva l ( src , J , inner_temp )
185 Residual_p . rho += inner_temp
186
187 s r c = e v a l S r c ( f . src_rhou , C, geo , vmap)
188 inne rpva l ( src , J , inner_temp )
189 Residual_p . rhou += inner_temp
190
191 s r c = e v a l S r c ( f . src_rhov , C, geo , vmap)
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192 inne rpva l ( src , J , inner_temp )
193 Residual_p . rhov += inner_temp
194
195 s r c = e v a l S r c ( f . src_rhoe , C, geo , vmap)
196 inne rpva l ( src , J , inner_temp )
197 Residual_p . rhoe += inner_temp
198
199 s r c = e v a l S r c ( f . src_rhonu , C, geo , vmap)
200 inne rpva l ( src , J , inner_temp )
201 Residual_p . rhonu += inner_temp
202
203
204 else :
205 raise RuntimeError ( " Model not implemented ! " )
206
207 return weak_dg_turbulent_res

A.4 Positivity Limiter

1 #Hard l i m i t i n g based on Landmann (2008) .
2 #This approach i s s p e c i f i c f o r the Spa lar t−Allmaras t u r b u l e n c e mode l l ing .
3
4 #P o s i t i v i t y l i m i t i n g f o r q u a d r i l a t e r a l s
5 class hard_limit_quad :
6
7 def __init__ ( s e l f ) :
8 pass
9

10 def __call__ ( s e l f , rhonu_coef f ) :
11
12 #Truncate the high order modes
13 #Apply the l i n e a r i z a t i o n
14 # s = −u0/min(−u1+u2 , −u1−u2 , u1−u2 , u1+u2 )
15 u0 = rhonu_coef f [ 0 ]
16 u1 = rhonu_coef f [ 1 ]
17 u2 = rhonu_coef f [ 2 ]
18
19 rhonu_coef f [ 1 : ] . f i l l ( 0 )
20
21 aux1 = np . array ([−u1+u2 , −u1−u2 , u1−u2 , u1+u2 ] )
22 aux2 = aux1 .min( )
23
24 s = np . minimum(1 ,−u0/aux2 )
25
26 rhonu_coef f [ 1 ] = s ∗u1
27 rhonu_coef f [ 2 ] = s ∗u2
28
29 #P o s i t i v i t y l i m i t i n g f o r t r i a n g l e s
30 class hard_l imit_tr iang :
31
32 def __init__ ( s e l f ) :
33 pass
34
35 def __call__ ( s e l f , rhonu_ceoef f ) :
36
37 u0 = rhonu_coef f [ 0 ]
38 u1 = rhonu_coef f [ 1 ]
39 u2 = rhonu_coef f [ 2 ]
40
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41 #u2>=u0 && u2<=−u0/2
42 u2 = np . minimum( u0 , u2 )
43 u2 = np . maximum(−u0 /2 , u2 )
44
45 #u1<=u2−u0 && u1>=u0−u2
46 u1 = np . maximum( u0−u2 )
47 u1 = np . minimum( u2−u0 )
48
49
50 class hard_l imit ing :
51
52 def __init__ ( s e l f , model_desc , turb_model_t ) :
53
54 s e l f . desc = model_desc
55 s e l f . f l u i d = None
56 s e l f . i n t e g = [ None , None ]
57 s e l f . bw = [ None , None ]
58 s e l f . op = [ [ None , None ] , [ None , None ] ]
59 #Minimum a c c e p t a b l e va lue f o r the eddy v i s c o s i t y from the SA model
60 s e l f . eps = 1e−14
61 s e l f . turb_model_t = turb_model_t
62 #Choose the l i m i t e r according to the element type
63 s e l f . l i m i t e r s _ s w i t c h e r = {0 : hard_limit_quad ( ) , 1 : hard_l imit_tr iang ( ) }
64
65 def conta iner_operator ( s e l f , group , key , c o n t a i n e r ) :
66
67 k = ExpansionKeyFactory . make( key . order , key . nip )
68
69 s e l f . i n t e g [ 0 ] = class_quad_physintegrator2d ( k )
70 s e l f . i n t e g [ 1 ] = c l a s s _t r i a _p h y s i n t e g ra t o r 2d ( k )
71
72 s e l f . bw [ 0 ] = class_quad_physbackward2d ( k )
73 s e l f . bw [ 1 ] = class_tria_physbackward2d ( k )
74
75 ctx = EntityOperator . context s
76
77 s e l f . op [ ctx [ 0 ] [ 0 ] ] [ ctx [ 0 ] [ 1 ] ] = class_quad_wadg_physforward ( k )
78 s e l f . op [ ctx [ 1 ] [ 0 ] ] [ ctx [ 1 ] [ 1 ] ] = class_quad_rwadg_physforward ( k )
79 s e l f . op [ ctx [ 2 ] [ 0 ] ] [ ctx [ 2 ] [ 1 ] ] = class_tria_wadg_physforward ( k )
80 s e l f . op [ ctx [ 3 ] [ 0 ] ] [ ctx [ 3 ] [ 1 ] ] = class_tria_rwadg_physforward ( k )
81
82
83 def setup ( s e l f , eqname , domain ) :
84
85 equation_domain_signature . setup ( s e l f , eqname , domain )
86
87 matname = s e l f . desc . get_equation ( eqname ) . mat
88
89 s e l f . f l u i d = s e l f . desc . get_mater ia l (matname)
90
91 def __call__ ( s e l f , e ) :
92
93 ###Volumetric v a l u e s l i m i t i n g
94 #Recovering the p h y s i c a l v a l u e s
95 rhonu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHONU)
96 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)
97
98 rhonu_min = np . amin ( rhonu )
99
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100 #Gett ing the c o r r e c t l i m i t e r c a s e according to the element type
101 hard_limit = s e l f . l i m i t e r s _ s w i t c h e r . get ( e . type )
102
103 i f rhonu_min < s e l f . eps :
104
105 #Reconstruct ing the inner expansion
106 rho = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHO)
107 rhonu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHONU)
108 rhonu_coef f = e . s t a t e ( FieldType . tr , F i e l d V a r i a b l e .RHONU)
109 l o g g e r . debug ( ’RHONU:{} ’ . format ( rhonu ) )
110 l o g g e r . debug ( ’ L imit ing the turbu lence v a r i a b l e s on the element {} ’ .

format ( e . ID) )
111
112 #Limit ing when the element mean va lue i s lower than the accepted minimum
113 i f rhonu_coef f [ 0 ] < s e l f . eps :
114
115 #When the mean va lue on the element i s negat ive , a l l the

c o e f f i c i e n t s shou ld be
116 #n u l l e d .
117 rhonu_coef f . f i l l ( s e l f . eps )
118
119 #Updating the current s t a t e
120 np . copyto ( e . s t a t e ( FieldType . tr , F i e l d V a r i a b l e .RHONU) , rhonu_coef f )
121
122 #The new v a l u e s are conver ted to the p h y s i c a l space
123 s e l f . bw [ e . type ] ( rhonu_coeff , e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .

RHONU) )
124
125 l o g g e r . debug ( ’RHONU:{} ’ . format ( e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .

RHONU) ) )
126
127 i f rhonu_coef f [ 0 ] > s e l f . eps and rhonu_coef f . shape [ 0 ] > 1 :
128
129 l o g g e r . debug ( ’ Truncating the h igher order modes on the element {} ’ .

format ( e . ID) )
130 hard_limit ( rhonu_coef f )
131
132 #Updating the current s t a t e
133 np . copyto ( e . s t a t e ( FieldType . tr , F i e l d V a r i a b l e .RHONU) , rhonu_coef f )
134 #The new v a l u e s are conver ted to the p h y s i c a l space
135 s e l f . bw [ e . type ] ( rhonu_coeff , e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .

RHONU) )
136
137 l o g g e r . debug ( ’RHONU:{} ’ . format ( e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .

RHONU) ) )
138
139 rhonu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .RHONU)
140 nu = e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .NU)
141 np . d i v i d e ( rhonu , rho , out=nu )
142 np . copyto ( e . s t a t e ( FieldType . ph , F i e l d V a r i a b l e .NU) , nu )
143
144 s e l f . op [ e . type ] [ e . subtype ] (
145 e . get_jacobian ( ) , e . get_inv_mass ( ) , rhonu ,
146 e . s t a t e ( FieldType . tr , F i e l d V a r i a b l e .RHONU) )
147
148 ###Face v a l u e s l i m i t i n g
149 # Access workspace s t o r a g e f o r face r e c o n s t r u c t i o n
150 FaceReconstruct_f = FaceReconstructWsp_f . get_instance (
151 ∗( e . face_comm_sizes ) , turb_model=s e l f . turb_model_t )
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152
153 num_faces = len ( e . ne igh )
154
155 #I t searches the i n d i c e s o f the p o i n t s in which the p o s i t i v i t y i s v i o l e d

.
156 for f f in range ( num_faces ) :
157
158 FaceReconstruct_f . r e c o n s t r u c t _ i n t e r n a l ( f f , e , s e l f . f l u i d )
159 cases_fac ia l_rhonu = np . where ( FaceReconstruct_f . rhonuI [ f f ] < s e l f .

eps )
160
161 i f cases_fac ia l_rhonu :
162
163 l o g g e r . debug ( ’ L imit ing the turbu lence v a r i a b l e s on the element

{} , f a c e {} ’ . format ( e . ID , f f ) )
164 l o g g e r . debug ( ’RHONU: {} ’ . format ( cases_fac ia l_rhonu ) )
165
166
167 class Limite r Invoker :
168
169 def __init__ ( s e l f , model_desc , turb_model_t , l im i te r_type ) :
170
171 s e l f . l i m i t e r = ( globals ( ) [ l im i te r_type ] ) ( model_desc , turb_model_t )
172 s e l f . covered_cases = [ EqType .RANS_SA, EqType .RANS_SST]
173 s e l f . _desc = model_desc
174
175 def apply ( s e l f , cm) :
176
177 # Access l i s t o f PHYSICAL subdomains
178 subds = SubDomainRoleIterator (cm) . f i n d ( EntityRole .PHYSICAL)
179
180 for s in subds :
181 eqs = s e l f . _desc . get_data ( s . name) . equat ions
182
183 for eq in eqs :
184
185 eqtype = s e l f . _desc . get_data ( eq ) . type
186
187 i f eqtype in s e l f . covered_cases :
188 s e l f . l i m i t e r . setup ( eq , s . name)
189 foreach_entity_in_subdomain ( s , s e l f . l i m i t e r )
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