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Abstract
Quantum heat engines are devices comprised of one or more quantum systems operating cyclically be-

tween two heat reservoirs to produce work. Although the laws of quantum mechanics rule these engines, this

does not imply that these machines function in a quantum fashion, or exhibit a quantum advantage. Indeed,

quantum heat engines have shown a remarkable similarity with classical models, thus raising the question of

what is “quantum” in quantum thermodynamics. With the help of the P-representability concept, an expression

called classicality function is introduced - allowing us to quantify the degree of non-classicality of a bosonic sys-

tem. As an illustration, we consider a quantum heat engine consisting of a single bosonic mode as a working

substance coupled to a cold thermal and hot squeezed thermal bath. For two specific protocols, i.e., a quantum

Otto and a generalized cycle, we show that the non-classicality is a resource that can be used to perform ther-

modynamical tasks more efficiently. Furthermore, we present a theoretical framework to study how quantum

features, such as entanglement or coherence, affect the classical formulations of thermodynamic axioms.



Resumo
Máquinas térmicas que operam no regime quântico são dispositivos compostos por um ou mais sistemas

quânticos que operam ciclicamente entre dois reservatórios cujo objetivo é produzir trabalho. Embora as leis da

mecânica quântica governem esses dispositivos, isso não implica que essas máquinas funcionem de maneira

quântica ou que exibam alguma vantagem. De fato, máquinas quânticas mostraram uma notável semelhança

com os modelos clássicos, levantando assim à questão de o que é quântico em termodinâmica quântica. Com

a ajuda do conceito de P-representabilidade, apresentamos uma simples expressão, denominada função de

classicalidade, que permite quantificar o grau de não-classicalidade de um sistema bosônico. Como ilustração,

consideramos uma máquina quântica que consiste em um único modo bosônico, como substância de trabalho,

acoplada a um reservatório térmico frio e um reservatório térmico comprimido quente. Para dois protocolos

específicos, ou seja, um ciclo de Otto quântico e um ciclo generalizado, mostramos que a não-classicalidade

é um recurso para executar tarefas termodinâmicas mais eficientes. Além disso, o presente estudo apresenta

um arcabouço teórico para estudar como recursos quânticos, como emaranhamento ou coerência, afetam as

formulações clássicas dos axiomas da termodinâmica.
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CHAPTER 1

Quantum thermodynamics

1.1 Why quantum thermodynamics?

The science of thermodynamics has been profoundly triumphant, impacting strongly the natural sciences

and allowing the development of technologies that have changed our lives, from coolers to spaceships. Until

recently, it was applied to large systems composed by a vast number of particles described by the laws of clas-

sical physics. However, with modern technologies miniaturizing down to the nanoscale and into the quantum

regime, the question of the applicability of thermodynamics to this new realm has become an exciting chal-

lenge.

As a result, the field of quantum thermodynamics is an emerging topic in physics aiming to understand how

quantum features, such as entanglement and quantum coherence, affect classical formulations of the thermo-

dynamics axioms. Important goals of the field are, among others, a better understanding of thermalisation

in quantum systems, the characterisation of non-equilibrium fluctuations in the quantum regime, the role of

quantum heat engines, and the design and realisation of new experiments exploring quantum thermodynam-

ics using, for example, nuclear spins (Micadei et al., 2019), trapped ions (Abah et al., 2012), optomechanical

setups (Klaers et al., 2017), and others.

While quantum mechanics was conceived from a consistency argument on the nature of thermal emitted

light, the black-body radiation, thermodynamics stretches back to the nineteenth century with the effort to

understand steam engines during the industrial revolution. For many decades, the two theories developed

separately until Scovil and Schulz-DuBois (1959) showed the equivalence of the Carnot engine with the three-

level maser. Thirty years later, studies on the balance of entropy in open quantum systems opened the way to
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explore heat engines in the quantum realm. In conclusion, Alicki (1979) showed that the Carnot statement of

the second law is universally valid also for quantum heat engines.

On the other hand, connections between information theory and thermodynamics started to appear tighter:

one of the significant pioneer contributions is the famous maximal entropy principle introduced by Jaynes

(1957a,b). In these seminal works, Jaynes discusses the justification of applying the methods of statistical me-

chanics from microscopic mechanical laws using tools from information theory. Also, the Gedanken exper-

iment of Maxwell’s demon, led to the famous statement by Landauer (1961) that information is physical. In

other words, if we want to encode information in a given physical system, we must pay an energetic price,

setting limitations on the processing of information by the laws of thermodynamics.

During the last twenty years, new approaches have revealed general laws applicable to non-equilibrium sys-

tems, pushing the range of validity of thermodynamic statements beyond the realm of equilibrium, and deeply

into the non-equilibrium region (Seifert, 2012). While equilibrium thermodynamics deals with average quanti-

ties and is applied when the system is composed of a macroscopic number of particles, the so-called stochastic

thermodynamics picks up where the macroscopic description starts to lose accuracy. The pillars of the stochas-

tic thermodynamics are given by Jarzynski (1997) and Crooks (1999) relations. The fluctuation theorems link

the free energy difference between states with the work done in transforming between them. These relations

also hold unmodified in closed quantum systems (Mukamel, 2003; Esposito et al., 2009; Campisi et al., 2011),

with slight adjustments when the system is open (Venkatesh et al., 2015). However, in the quantum realm,

work is not an observable and has to be inferred by performing projective measurements (Parrondo, 2007).

Questions such as non-linear quantum fluctuations and the potential application of fluctuation relations to

quantum computing still remain open.

In general, the study of quantum thermodynamics is still in its childhood and, the broad character of the

field implies that the quantum thermodynamics community should bring together people with diverse back-

grounds and common interests, along with their differences about fundamental physical concepts.

1.2 The scope of this dissertation

In this dissertation, we pose the following question:

How non-classical features of light affect thermodynamic quantities?

The non-classical feature studied here is the squeezing, which corresponds to coherence in the energy

eigenbasis. To answer the posed question, an expression called classicality function is put forward. This func-

tion allows us to discriminate which states of radiation are classical or non-classical based on its signal. Then,

it is examined a quantum heat engine whose working substance is light, in particular, a single bosonic mode
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prepared in a thermal state, coupled to a cold thermal and a hot squeezed thermal reservoirs. For two different

cycles, it is shown that a non-classical effect of light can be used to enhance the thermodynamic efficiency of

the quantum heat engine. Before digging into the world of quantum heat engines properly, some groundwork

is needed. For this reason, the dissertation is divided as follows:

We start with a brief review of the fundamental concepts of thermodynamics. After a cursory look, we start

chapter 2 by presenting the foundations of quantum mechanics, with the added goal of clarifying further nota-

tion and adopted conventions. Some slightly more specific notions concerning the quantum relative entropy

and coherence are also included. In both chapters, a more detailed description and technical details are left to

the different textbooks about these subjects Callen (1985); Breuer et al. (2002).

The basic theory and formalism are set out in chapter 4. We start with the quantization of a single-mode field

and generalize it to the multiple mode case. Then, the main ideas behind the thermal, coherent, and squeezed

states are presented and discussed. The connection with the phase space formalism is made by defining the

characteristic function. These tools are linked to the Gaussian parametrization, which encloses this chapter.

Next, in chapter 5, the theory of open quantum systems is described and discussed. Specifically, we studied

the dynamics of a single bosonic mode under the influence of a thermal and squeezed thermal bath. A mas-

ter equation describing this interaction is derived and making use of the characteristic function method, it is

solved. Subsequently, the problem of two-mode systems interacting with each other is discussed, and it is ob-

served that for certain initial states of the bosonic modes, a swapping of state configuration occurs inside the

recurrence time.

Finally, in chapter 6, all the tools developed in the past chapters are applied to a specific problem. We con-

sider a quantum heat engine consisting of a single bosonic mode as the working substance undergoing a quan-

tum Otto and a generalized cycle. Both cycles allow us to investigate the role of the non-classicality in quantum

thermodynamics. Our theoretical findings show that the coherence is a resource for quantum heat engines. In

particular, we conclude that non-classical states outperform classical states for some thermodynamical tasks.

It is important to stress that the symbol n̄ with different labels will be extensively used throughout the dis-

sertation, and each of them has a different meaning, although they followed the same idea. Therefore, the three

most important are summarized in the following table:

The mean number of photons n̄

The mean number of “thermal photons” n̄th

The mean number of squezed thermal photons n̄sth

In the first row of the above table, the mean number of photons comprehends the general case, where this

quantity is evaluated on the state other than the squeezed or thermal states. In chapter 4, the concept of P-
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representability will be stated from this parameter with no label, meaning that expression depends on the basis

that we are working on.
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CHAPTER 2

Fundamentals of thermodynamics

Thermodynamics is a phenomenological theory that plays a prominent role in our daily lives. Its range

of applicability goes from black-holes down to a rubber band. Over three centuries, the theory survived the

advent of major scientific revolutions like the advent of general relativity and quantum mechanics, turning

itself into one of the pillars of Physics. Its importance is, for instance, categorically stated by Einstein (Einstein

and Schilpp, 1979):

“The only physical theory of universal content, which I am convinced, that within the framework of

applicability of its basic concepts will never be overthrown.”

The origin of its success resides in the simplicity of its laws, and its universality comes from the fact that

it deals with systems composed of a large number of particles without being concerned with the microscopic

details on how these particles behave or interact with each other (Callen, 1985). Unlike the standard model of

particle physics, which seeks to describe the building blocks of our physical world, the laws of thermodynamics

only state what can and cannot be done with these blocks. The downside of this macroscopic description is that

it necessarily deals with average quantities. While being a valid approach when the system at hand is composed

of a macroscopic number of particles, it starts losing accuracy as the system size decreases, and fluctuations

around these average quantities, due to thermal motion, become relevant (Millen and Xuereb, 2016).

Despite being a theory of around two hundred years old, thermodynamics has received significant updates

in the 21st century. For instance, Stochastic thermodynamics picks up from where the macroscopic description

starts to fail and gives a deeper insight into the fluctuations of thermodynamic quantities (Seifert, 2012). It also

goes beyond the equilibrium situations typically encountered in thermodynamics and describes the behaviour
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of systems that are not in thermal equilibrium. When dealing with even smaller systems, quantum effects come

into play - fluctuations are no longer just thermal in their origin but also quantum. In this regime, many ques-

tions arise as we move from the macroscopic classical world to the microscopic quantum realm; it is natural to

ask whether the laws of thermodynamics retain their place.

This chapter does not intend to include a detailed analysis of the foundations of thermodynamics and its

refinements. We felt an introduction to the general theory was required in order to make the presentation

self-sufficient and clear the following chapters from possible ambiguities. In this chapter is present an intro-

duction to the theoretical framework of thermodynamics. The chapter starts with basic concepts, such as state

variables, quasi-static process, reversible process, followed by a detailed description of the laws of thermody-

namics. Then, heat engines shall be introduced, and two primary examples are discussed: the Carnot and Otto

cycle. Finally, for future reference, the Helmholtz free energy is defined without carrying about its interpretation

or intricate details in its derivation.

2.1 Preliminary concepts

A thermodynamic system can be a rubber band, a magnetized metal, or, as we often see in the textbooks,

an ideal gas. The only restriction is that the system is defined as a macroscopic, i.e., composed by a large

number of particles. For simplicity, a thermodynamic system is a part of the universe in which we are interested.

Each thermodynamic system is separated from its environment by a physical or imaginary boundary. This

boundary can allow different exchange processes of work, heat, or matter. We may classify it as completely

closed if neither matter nor energy is exchanged; closed if it exchanges energy but not matter, and open when

it exchanges both (Lemons, 2009).

A configuration of the system at any given time represents a state. A particularly fundamental one is the

thermal equilibrium. In thermodynamic equilibrium, the state of the system can be described by a set of

macroscopic quantities known as the state variables. The relation between the state variables is specified by

the equation of state that describes the properties of the system. For example, in an ideal gas, these parame-

ters can be the volume V , the pressure P , and the temperature T . The equation of state determines how these

parameters are related to each other.

A change in one or more of the state variables is called a thermodynamic process. They are produced by the

interaction of the system with its surroundings, and by an action of some external agent through the variation

of some control parameter λ(t ). When the variation of the control parameter is infinitely slow, such that the

system can be regarded as a succession of equilibrium states, we say that the process is quasi-static, while if

it takes a negligible amount of time to occur we say it is instantaneous. Furthermore, if no external action

occurs, this implies that the process is spontaneous. Only quasi-static processes are fully describable by means
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of classical thermodynamics (Deffner and Campbell, 2019). A fundamental classification of thermodynamic

processes is the following: we call a reversible process the one in which the system and its surroundings can

be reversed to their original states after some process, i.e. the so-called protocol Λ = {λ(t ) | ti ni ≤ t ≤ t f i n}, is

reversed in time (Paule, 2018). Conversely, irreversible processes occur when the state of the system departs

from equilibrium during the time evolution, generating a permanent change in the environment even if the

system turns back to its original state by reversing the protocol Λ. However, reversible processes correspond

to idealized hypothetical processes and are implemented only when the system and the surroundings are in

thermal equilibrium (Callen, 1985). It is also worth stressing that, although all reversible processes are quasi-

static, the converse is not always true.

Furthermore, depending on the type of contact of the system with its environment and the nature of the

later, we may classify thermodynamic processes as:

• Isothermal processes: a process in which the temperature of the system remains constant during its

interaction with the environment. Common examples of isothermal processes are melting, evaporation

or other phase changes when occurring at constant pressure.

• Isochoric process: although the name may refer to a process in which the volume of the closed system

remains constant, we define it as a process where no work is performed by the external agent (or by the

system). This is the case of the heating or cooling of a liquid inside a closed container with non-zero

thermal conduction.

• Adiabatic process: in such processes, the system cannot exchange heat nor matter with the environment,

except for the work performed by the external agent. Adiabatic processes sometimes occur when a phys-

ical process takes place so rapidly that there is not enough time for heat exchange with the environment.

Figure 2.1: (a) p-V diagram of a reversible (green), and an irreversible process (red). (b) Schematic diagram of

the first law of thermodynamics.
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2.2 The laws of thermodynamics

The framework of thermodynamics is built upon four laws, which axiomatically paraphrase everyday experi-

ence and observation of nature.

Zeroth law of thermodynamics. The zeroth law of thermodynamics defines a state of equilibrium of a system

relative to its environment. In its most common formulation, it can be expressed as

If two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

with each other.

The zeroth law allows us to define a temperature. Any two systems in thermal equilibrium have the same tem-

perature. Otherwise, they have different temperatures.

First law of thermodynamics. This law is a version of the law of conservation of energy, distinguishing two

kinds of energy exchanges, heat, and thermodynamic work. This leads to the following decomposition:

The energy exchanged by a system can be split into two contributions called work, W , and heat Q, as

dU = δW +δQ , (2.1)

where U is the internal energy, W represents a controllable (and hence useful) energy, the work, which is as-

sociated to the action of an external agent on the system via a control parameter λ, and Q denotes the energy

introduced into the system in an uncontrolled way. Both quantities, W and Q, are path-dependent, and we use

the symbol δ to denote that both are inexact differentials. A schematic representation of the first law is depicted

in fig.(2.1).

The second law of thermodynamics. The origins of the second law of thermodynamics go back to the pio-

neering analysis of Sadi Carnot on the power and efficiency of heat engines in 1824, motivated by the spread of

the steam engine during the industrial revolution. Carnot identified the flow of heat as a fundamental process

required for the generation of work (Carnot, 2005). He introduced the condition of maximum work extraction

of an idealized heat engine operating cyclically between a difference of temperatures. This condition corre-

sponds to the case in which all the operations performed by the machine are reversible. However, it should be

pointed out that Carnot’s analysis was based on the old theory of heat, which considered heat as an indestruc-

tible quantity, not fulfilling the first law. Its work, while passing mostly unnoticed during decades, was essential

to the later introduction of the concept of entropy and the formalization of the second law of thermodynamics

by Rudolf Clausius and Lord Kelvin, whose original formulation of the second law states that (Fermi, 1956):
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A transformation whose only final result is to transform into work heat extracted from a source that

is at the same temperature throughout is impossible. (Postulate of Lord Kelvin.)

In other words, according to the second law, the division of energy interchanged between systems and their

surroundings into heat and work is made asymmetrically: while work can be entirely transformed into heat in

a cyclic process, the opposite is not valid. The second law can also be expressed as follows (Fermi, 1956):

A transformation whose only final result is to transfer heat from a body at a given temperature to a

body at a higher temperature is impossible (Postulate of Clausius).

Consequently, according to the Clausius statement, if we bring two systems at different temperatures into ther-

mal contact, heat flows spontaneously by conduction from one of these bodies to the other. The system from

which heat flows is at a higher temperature than the other receiving the heat. Although both postulates seem

to be different from each other, it is possible to demonstrate their equivalence. To do that, we need to prove

that if the Clausius postulate were not valid, the Kelvin postulate would not be valid, and vice-versa. Finally, the

Carnot statement declares that (Carnot, 2005)

No engine operating between two heat reservoirs can be more efficient than a Carnot engine operating

between those same reservoirs.

As we have seen before, there are many ways to operate a thermodynamic process from some equilibrium state

A to some other equilibrium state B. Each of these different paths will provide different values for the work

and the heat exchange by the system during the process. Among all those paths, there always exists at least one

idealized path, corresponding to a reversible process. Indeed, there exist, in general, infinitely many reversible

paths connecting the two states A and B. The existence of reversible paths lead us to define the thermodynamic

entropy, a concept as fundamental and universal as energy, entering into the theory as a state function. It was

first defined through its change in a reversible process by Clausius and Hirst (1867)

∆Sth ≡
∫ B

A

δQrev

T
or

∮
δQrev

T
= 0. (2.2)

where ∆Sth = SB
th − S A

th is the change in the entropy from point A to B , and Qrev is the heat absorbed by the

system. Notice that the thermodynamic entropy is a state function, this means that its variation only depends

on its value on the initial and final states of the process, but not on the specific path followed. However, for a

generic process that does not follow a reversible path, we have that dS ≥ δQ/T , or

∆Sth ≥
∫ B

A

δQ

T
or

∮
δQ

T
≤ 0. (2.3)

The above inequalities are usually referred to as the Clausius inequality for arbitrary and cyclic processes, re-

spectively.
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Third law of thermodynamics. Walther Nernst developed the third law between 1906 and 1912 by noticing

that the changes in thermodynamic entropy of all isothermal processes tend to zero when the temperature ap-

proaches zero (Lemons, 2009). Planck reformulated this principle in a stronger way by stating that the entropy

of any system in equilibrium tends to zero as its temperature approaches zero (Callen, 1985)

lim
T→0

S = 0. (2.4)

In quantum thermodynamics, the validity of eq.(2.4) has been questioned. In particular, the Nernst heat

theorem has mainly been studied in Ising models and lattice systems with generalized ferromagnetic many-

body interactions (Aizenman and Lieb, 2004; Leff, 1970).

2.3 Heat engines

The laws of thermodynamics were formulated in the furnaces of the XIX century with engineers and sci-

entists motivated by the spread of the steam engine during the industrial revolution. In general, engines are

machines that convert some form of energy (e.g., thermal or electrical energy) into work. The necessary ingre-

dients of an engine are: a system, which is called the working fluid - or substance, and two reservoirs at different

temperatures. The working fluid operates in a cycle: a set of thermodynamic processes that define the type of

engine - extracting heat Q A from a hot reservoir, using part of this heat as work W , and rejecting the non-useful

part as heat QR to the colder reservoir. Their efficiency, defined as the ratio of the extracted work to the invested

energy, is restricted to one at most by the energy-conservation law.

Figure 2.2: A heat engine sketched. The working substance follows a cycle where it absorbs an amount of heat

Q A from the hot reservoir at temperature Th , use some part of this energy to perform work, and rejects an

amount of heat to the cold reservoir at TC .
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2.3.1 The Carnot cycle

The Carnot cycle constitutes one of the most significant results in thermodynamics. It introduces the con-

dition of maximum work extraction of an idealized heat engine operating cyclically between two different tem-

peratures. This condition corresponds to the case in which all the operations performed by the machine are

reversible. Under such circumstances, its efficiency establishes a fundamental limitation on the performance

of ideal heat engines solely based on the temperature ratio of the reservoirs and independent of the specific

model of the engine.

Figure 2.3: T −S diagram of the Carnot cycle. During the strokes, AB and CD the entropy changes due to the

coupling with the hot and cold reservoir, while in BC and DA the entropy remains constant.

The Carnot cycle is accomplished in four steps:

• (AB) Isothermal expansion at Th

The working fluid initially at state A, and at a temperature Th , is put in contact with a hot reservoir at the

same temperature. The working fluid absorbs an amount of heat Q A from the hot reservoir and undergoes

a reversible isothermal expansion from A to B.

• (BC) Isentropic expansion

At stateB, the working fluid is thermally insulated and then performs an adiabatic expansion toC. During

this expansion its temperature decreases to Tc .

• (CD) Isothermal compression at Tc

In this step, the working fluid is brought into contact with a cold reservoir at temperature Tc and com-

pressed to state D, while giving up an amount of heat QR to the reservoir Tc .
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• (DA) Isentropic compression

Finally, the system is compressed adiabatically back to the initial state A.

The total amount of heat absorbed by the working fluid during the cycle is Q A −QR . Let Wc be the amount of

work done by the system during the transformation. Using the 1st law of thermodynamics,

Wc =Q A −QR . (2.5)

The efficiency is defined by the ratio of Wc and Q A , as

ηC = Wc

Q A
= 1− QR

Q A
. (2.6)

Since both isothermal processes are reversible, we may write that

Q A = Th(SB−SA) while QR = Tc (SB−SA) , (2.7)

and therefore

η= 1− Tc

Th
. (2.8)

This result means that the efficiency of the Carnot cycle does not depend on the type of system used as a working

fluid, but only on the temperatures of the hot and cold reservoirs, and the fact that all processes are reversible.

2.3.2 The Otto cycle

Another important cycle was proposed by the French engineer de Rochas (1862). Although Beau de Rochas

proposed it first, the cycle carries the name of the German engineer, Nikolaus A. Otto, who first built it. To make

it simpler, we shall address the cycle considering an ideal gas as a working substance. The cycle consists of four

thermodynamic strokes:

Figure 2.4: An Otto cycle heat engine sketched.
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• (BC) Isentropic compression

The working fluid is thermally isolated and compressed from state A to B. Since it is an adiabatic com-

pression, no heat is exchanged during this step.

• (CD) Hot isochoric

The working fluid at state B is put in contact with the hot reservoir and heated at constant volume C. No

work is performed since the process takes place at constant volume.

• (DA) Isentropic expansion

The working fluid is again thermally insulated, and expanded adiabatically from state C to D.

• (AB) Cold isochoric

The final stroke consists in bringing the working fluid to its initial stateA, isochorically cooling the system

from state D to the state A.

Assuming that the working fluid obeys the ideal gas equation of state, the efficiency can be written in terms of

the corresponding volumes as

ηO = 1−
(

V2

V1

)γ−1

, (2.9)

where γ is the ratio of the heat capacities at constant pressure and volume, respectively. Notice that the effi-

ciency of an Otto cycle does depend on the properties of the working fluid, as can be seen in eq.(2.9), through

the heat capacity. It is worth mentioning that the Otto cycle is not reversible.

2.4 The Helmholtz free energy

The first law of thermodynamics states that

dU = δW +δQ = T dS −pdV , (2.10)

ignoring electrical and or other kinds of thermodynamical work. Since T dS = d(T S)− SdT , eq.(2.10) can be

recast as

dU = d(T S)−SdT −pdV ⇒ d(U −T S) =−SdT −pdV . (2.11)

The thermodynamic function U −T S is called the Helmholtz free energy F

F ≡U −T S . (2.12)

The Helmholtz free energy is the Legendre transformation of the internal energy U (de Oliveira, 2005), in which

temperature replaces entropy as the independent variable. The Helmholtz free energy is a convenient function
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when the temperature and volume are easily controlled or measured. For instance, when a fluid slowly evolves

in thermal equilibrium with a constant temperature. For such a process, the variation in the Helmholtz free

Energy is

∆F =−
∫ V f

Vi

pdV . (2.13)

Hence, the work performed on (by), an isothermal working fluid increases, or decreases, its Helmholtz free

energy. In other words, the Helmholtz free energy is a thermodynamic potential that measures the useful work

obtainable from a closed thermodynamic system.
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CHAPTER 3

Fundamentals of quantum mechanics

Quantum mechanics is the most profound picture of nature we have. The development of quantum me-

chanics in the early years of the twentieth century, involving names like Planck, Einstein, Bohr, Heisenberg,

Schrödinger, and Dirac, left us by 1927 with a sophisticated understanding that is unquestionably one of the

most significant intellectual accomplishments in human history.

By the end of the nineteenth century, scientists had managed to unify particles and fields into a single entity,

the wave function. The incentive to do so came from two directions: first, physicists discovered that things they

thought were waves, like the electric and magnetic fields, had particle-like properties (Einstein, 1905; Compton,

1923). Then, they realized that things they thought were particles, like electrons, manifested field-like proper-

ties (Davisson and Germer, 1928). The reconciliation of these puzzles lies in the fact that the world is funda-

mentally field-like, it is a quantum wave function, but when we look at it by performing a careful measurement,

it seems particle-like.

In this dissertation, the “path of the wave-function” will not be followed. Instead, a formalism based on

the density operator that was introduced by von Neuman (1927) is going to be adopted. A density operator en-

compasses all the information about a physical system, while wave-functions are restricted to particular cases.

Therefore, in this chapter, we present a cursory look at quantum mechanics. The chapter starts by introducing

the formalism of the density matrix and deriving the Liouville-von Neumann Equation. Then, the interaction

picture is presented to review some tools used in chapter 5. The chapter finishes with a very succinctly discus-

sion about quantum entropies and how to quantify coherence. It is worth to emphasize that one of the central

concepts discussed in this dissertation is the idea of coherence. Any state that is not diagonal carries a certain

amount of coherence (with respect to the chosen basis). That refers to the principle of superposition: one of
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the main building blocks of quantum physics.

3.1 The density matrix formalism

Quantum mechanics is all about states and operators. States represent the instantaneous configuration

of a system, while operators are functions that map a state into another state. The quantum mechanics has

presented us that all information about a given system is encompassed in an object called wave function |ψ〉
(Cohen-Tannoudji et al., 1977). However, this is not always true. The Hungarian-American mathematician and

physicist von Neuman (1927) showed that the wave function is not the most general way of defining a quantum

state.

To motivate the discussion, consider a quantum machine that produces states |ψ1〉. Nevertheless, this ma-

chine is not perfect, and sometimes it can produce states |ψ2〉 with probability 1−p, while producing states |ψ1〉
with probability p. How do we describe such a state? Our best guess is that the produced state will be a mixture

of states |ψ1〉 and |ψ2〉, with probabilities p and 1− p, respectively. Notice how some classical uncertainty is

introduced in the description. Of course, there may be as many p’s as we want. We could also say that this

machine now produce also states |ψ3〉 and |ψ4〉 with probabilities p3 and p4. The general idea is all we must

assume is that they behave like classical probabilities,

pi ∈ [0,1] ,
∑

i
pi = 1. (3.1)

Let us consider now an observable Â, and compute its expectation value. We must do that by taking an

average over this ensemble of states,

〈Â〉 =∑
i

pi 〈ψi |Â|ψi 〉 . (3.2)

We weight the possible expectation values by the relative probabilities pi that each one occurs. Notice that,

〈ψi |Â|ψi 〉 = tr(Â |ψi 〉〈ψi |) , (3.3)

and therefore, eq.(3.2) can be recast as

〈Â〉 =∑
i

pi tr(Â |ψi 〉〈ψi |) = tr

{
Â

∑
i

pi |ψi 〉〈ψi |
}

. (3.4)

This motivates to the following definition:
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Density matrix. The most general representation of a quantum system is written in terms of an operator

%̂ such that

%̂=∑
i

pi |ψi 〉〈ψi | . (3.5)

This operator is called the density operator or the density matrix.

Then, eq.(3.2) can be written as

〈A〉 = tr(%̂A) . (3.6)

The density operator satisfies some properties that can be extracted from its definition (3.5) and condition

(3.1):

i. Hermiticity %̂ is Hermitian

%̂= %̂† . (3.7)

ii. Positivity %̂ is positive semi-definite

%̂≥ 0 i.e 〈ψ|%̂|ψ〉 ≥ 0, for all |ψ〉 ∈H. (3.8)

where H is the Hilbert space.

Proof: From eq.(3.5),

〈φ|%̂|φ〉 =∑
i

pi 〈φ|ψi 〉〈ψi |φ〉 =
∑

i
pi | 〈φ|ψi 〉 |2 ≥ 0. (3.9)

This means that the average of the density matrix over any quantum state is always non-negative. Consequently,

all its eigenvalues are also non-negative.

iii. Trace The density matrix has trace one

tr(%̂) = 1. (3.10)

Proof: From the definition of the trace and (3.5)

tr(%̂) =∑
j
〈 j |%̂| j 〉 =∑

j ,i
pi 〈 j |ψi 〉〈ψi | j 〉 =

∑
i

pi 〈ψi |ψi 〉 =
∑

i
pi = 1. (3.11)

This is the normalization condition for the density matrix.
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iv. Purity. The density operator %̂ is said to be a pure state if

%̂= |ψ〉〈ψ| , (3.12)

which implies

%̂= %̂2 , (3.13)

Conversely, states which cannot be written in the form given by eq.(3.12) are called mixed states,

%̂ 6= %̂2 . (3.14)

The purity of the system is defined by the trace of %̂2,

tr(%̂2) = tr

{∑
i , j

pi p j |ψi 〉〈ψi |ψ j 〉〈ψ j |
}
=∑

i
p2

i ≤ 0. (3.15)

For a pure ensemble, this is trivial since %̂2 = %̂, and the purity is equal to one. However, for a mixed ensemble,

the purity will be smaller than one and, consequently, the trace of %̂2 can be used as a measure of the purity of

the system.

3.1.1 The Liouville-von Neumann equation

According to quantum mechanics, the state vector |ψ(t )〉 evolves in time obeying the Schrödinger equation

(Cohen-Tannoudji et al., 1977),

iħ d

d t
|ψ(t )〉 = Ĥ (t ) |ψ(t )〉 , (3.16)

where Ĥ (t ) is the Hamiltonian of the system. The solution of the Schrödinger equation may be represented in

terms of the unitary time-evolution operator Û (t , t0) which transforms the state |ψ(t0)〉 at some initial time t0,

to the state |ψ(t )〉, at time t,

|ψ(t )〉 = Û (t , t0) |ψ(t0)〉 . (3.17)

A Schrödinger equation (3.16) for the time-evolution operator is obtained by substituting (3.17) into (3.16),

iħ ∂

∂t
Û (t , t0) = Ĥ (t )Û (t , t0) , (3.18)

subject to the initial condition

Û (t0, t0) = 1 , (3.19)

For a closed isolated physical system, the energy is a constant of motion, and eq.(3.18) yields the well-known

expression

Û (t , t0) = e−iĤ (t−t0)/ħ . (3.20)
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In many other situations, one often encounters cases where Ĥ is time-dependent. If, in such case, the

dynamics of the system can still be formulated in terms of a possibly time-dependent Hamiltonian generator

Ĥ (t ), the system is considered to be closed. For a time-dependent Hamiltonian, the evolution operator can be

written as a Dyson series as

Û (t , t0) =T exp

{
−

∫ t

t0

d t ′ Ĥ (t ′)
}

, (3.21)

where T denotes the chronological time-ordering operator. For instance,

T [Ĥ (t1)Ĥ (t2)] =


Ĥ (t1)Ĥ (t2) if t2 < t1

Ĥ (t2)Ĥ (t1) if t2 > t1 .
(3.22)

In order to determine the time evolution of the density operator in closed quantum systems, let %̂(t0) be the

initial state of the system given by

%̂(t0) =∑
i

pi |ψi (t0)〉〈ψt (t0)| , (3.23)

where |ψ(t0)〉 are normalized state vectors which evolving in time according to the Schrödinger equation (3.16).

Thus, for a given time t , the state of the system will be

%̂(t ) =∑
i

pi |ψ(t )〉〈ψ(t )| , (3.24)

or in terms of the evolution operator,

%̂(t ) =∑
i

pi |ψ(t )〉〈ψ(t )| =∑
i

piÛ (t , t0) |ψ(t0)〉〈ψ(t0)|Û †(t , t0)

= Û (t , t0)

{∑
i
|ψi (t0)〉〈ψi (t0)|

}
Û †(t , t0)

= Û (t , t0)%̂(t0)Û †(t , t0) ,

(3.25)

i.e., the time evolution is described by a unitary transformation Û . Differentiating this equation with respect to

time, the equation of motion for the density operator is obtained,

iħd %̂

d t
= Ĥ (t )Û (t , t0)%̂(t0)Û †(t , t0)−Û (t , t0)%̂(t0)Û †(t , t0)Ĥ (t )

= Ĥ (t )%̂(t )− %̂(t )Ĥ (t ) .

(3.26)

This is known as the Liouville-von Neumman’s equation, and may be written more concisely as

iħd %̂

d t
= [Ĥ (t ), %̂(t )] =L %̂(t ) . (3.27)

where L is the Liouvillian super-operator, an operator acting on operators to yield another operator.

The formal solution of (3.27) can be written as

%̂(t ) =T exp

{∫ t

t0

d t ′ L (t ′)
}
%̂(t0) . (3.28)
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For a time-independent Hamiltonian, the Liouvillian super-operator is also time-independent, and we have

%̂(t ) = eL (t−t0)%̂(t0) . (3.29)

An interesting consequence of eq.(3.27) is that the purity (3.15) remains constant during unitary evolutions.

To see that, we only need to use the cyclic property of the trace:

tr(%̂(t )2) = tr(Û %̂0Û †Û %̂0Û †) = tr(%̂0%̂0Û †Û ) = tr(%̂2
0) . (3.30)

3.2 The interaction picture

The pictures of quantum mechanics are equivalent routes to formulate the dynamics of a quantum system

mathematically. The three most important ones are the Schrödinger, Heisenberg, and Dirac (interaction) pic-

tures. These differ simply by a basis change in respect to a time-dependency. Its use depends solely on the type

of problem to be solved.

In the Schrödinger picture, quantum systems are described by state vectors that evolve in time, while the

operators stay fixed (Messiah, 2014),

d

d t
|ψS(t )〉 =− i

ħĤS |ψS(t )〉 , (3.31)

where the label S in each expression of eq.(3.31) is used to refer to the Schrödinger picture. Conversely, in

the Heisenberg picture, it is the operators that change in time while the state vectors are time-independent

(Messiah, 2014),

Ô = Ô(t ) . (3.32)

The differences between the Schrödinger and Heisenberg pictures of quantum mechanics revolve around

how to deal with systems that evolve in time: the time-dependent nature of the system must be carried by some

combination of the state vectors and the operators. What is essential about these two pictures is that they are

equivalents in its description (Messiah, 2014).

For our purpose, none of these two pictures will be so useful as the interaction picture, or the Dirac’s picture.

The interaction picture is halfway between the Schrödinger and the Heisenberg pictures, as both the quantum

states and the operators carry a time dependency. The interaction picture is useful when the type of problem

in consideration include time-dependent interaction terms explicitly in the Hamiltonian - or are not precisely

soluble.

The idea of the interaction picture is to split a given Hamiltonian Ĥ (t ), into the sum of two parts

Ĥ (t ) = Ĥ0 + V̂ (t ) , (3.33)
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where Ĥ0 is the Hamiltonian whose solution is known, and V̂ is the Hamiltonian describing the interaction

term, and may be considered as a perturbation. Of course, the splitting in eq.(3.33) depends on the particu-

lar physical situation under study. The expectation value of a Schrödinger’s operator Ô may be written using

eq.(3.2)

〈Ô(t )〉 = tr(%̂(t )Ô(t )) , (3.34)

that can be rewritten, after inserting some identities and using the cyclic property of the trace, as

〈Ô(t )〉 = tr(e iĤ0t/ħÔ(t )e−iĤ0t/ħe iĤ0t/ħ%̂(t )e−iĤ0t/ħ) = tr(ÔI (t )%̂I (t )) , (3.35)

where ÔI and %̂I are the interaction picture operators defined by

ÔI (t ) ≡ Û †
0 (t )Ô(t )Û0(t ) (3.36)

%̂I (t ) ≡ Û †
0 (t )%̂(t0)Û0(t ) , (3.37)

and Û0 = e−iĤ0t/ħ.

In order to obtain the time evolution of %̂I (t ), all we need is take the time derivative of eq.(3.37):

iħ d

d t
%̂I (t ) = iħ

(
dÛ †

0

d t

)
%̂(t )Û0 + iħÛ †

0

(
∂%̂(t )

∂t

)
Û0(t )+ iħÛ †

0 %̂(t )

(
dÛ0

d t

)
=−Û †

0 Ĥ0Û0Û †
0 %̂Û †

0 + iħÛ †
0

(
∂%̂(t )

∂t

)
Û0(t )+Û †

0 %̂Û0Û †
0 H0Û0

= [%̂I (t ),Ĥ0,I ]+ iħÛ †
0

(
∂%̂(t )

∂t

)
Û0(t ) ,

(3.38)

and using the von-Neumann equation (3.27) to rewrite the second term of eq.(3.38)

iħÛ †
0

(
∂%̂(t )

∂t

)
Û0(t ) = Û †

0 [Ĥ (t ), %̂(t )]Û0 = iÛ †
0 [Ĥ0 + V̂ (t ), %̂]Û0

= [H0,I , %̂I (t )]+ [VI (t ), %̂I (t )] ,

(3.39)

the corresponding von-Neumann equation in the interaction picture is obtained:

d

d t
%̂I (t ) =− i

ħ [V̂I (t ), %̂I (t )] . (3.40)

Furthermore, we can write this equation in integral form as

%̂I (t ) = %̂I (t0)− i

ħ
∫ t

t0

d t ′ [V̂I (t ′), %̂I (t ′)] . (3.41)

This equation will be the starting point for the construction of a model describing the interaction between

a system and a reservoir (chapter 5).
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3.3 Quantum entropies

Given a system described by the density matrix %̂, it could be asked how much it is known about %̂. In

other words, how much information is stored in a quantum state? The von-Neumann entropy gives a possible

answer to this question. In its most straightforward interpretation, entropy is a measure of the disorder (or

mixedness) of a density matrix, quite like the purity (3.15). However, with the entropy, this disorder acquires a

more informational sense (Breuer et al., 2002).

The von-Neumann entropy. Given a density matrix %̂, the von-Neumann entropy is defined as

S(%̂) =−tr (%̂ log %̂) =−∑
k

pk log pk , (3.42)

where in the second equality, is used the spectral decomposition of the density matrix. The logarithm in

eq.(3.42) can be either base two or base e depending on the context where it is applied.

The von Neumann entropy is a sum of functions of the negative quantity pk log pk , defined only in its diag-

onal form, with 0 ≤ pk ≤ 1. The plot of this function is shown in fig.(3.1). It tends to zero for p → 0 and p → 1, as

expected, for pure states, and has a maximum at p = 1/e for a maximally mixed state.

Figure 3.1: The function −p log p, corresponding to each term in the von-Neumann entropy. The dimension of

the Hilbert space in this example is logD.

Since −p log p is always non-negative, the same must be valid for S(ρ):

S(%̂) ≥ 0. (3.43)

As we can see in fig.(3.1), the entropy is bounded from below by 0. In the case where we are dealing with

a finite Hilbert space whose dimension is D, this implies that S(%̂) will be bounded from above (Breuer et al.,
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2002)

S(ρ) ≤ logD for %̂= 1

D
. (3.44)

Equality occurs when the mixture is maximal. Therefore, the von-Neumann entropy varies between 0 for pure

states and log(D) for maximally disordered states. Hence, it serves as a measure of how mixed a state is.

Another essential property of the entropy (3.42) is that it is invariant under unitary transformations:

S(U %̂Û †) = S(%̂) . (3.45)

Throughout this dissertation, it is considered the von Neumann entropy as the entropy that appears in the

second law in eq.(2.2) since the correspondence between the von Neumann entropy and the thermodynamical

entropy is achieved when the system is in equilibrium (Spohn, 1978; Alicki, 1979). Hence, adiabatic processes,

in analogy with classical thermodynamics, is defined as the process in which eq.(3.45) is satisfied.

3.4 The quantum relative entropy

Another important quantity is the quantum relative entropy or Kullback-Leibler divergence (Kullback, 1959).

Given two density matrices %̂ and σ, it is defined as

S(%̂||σ) = tr(%̂ log %̂− %̂ logσ) . (3.46)

A particular relevant property of the relative entropy is that it satisfies the Klein inequality:

S(%̂||σ) ≥ 0 , S(%̂||σ) = 0 iff %̂=σ . (3.47)

This result gives the idea that the relative entropy can be used as a measure of the distance between two density

matrices. However, this is not entirely precise since the relative entropy does not satisfy the triangle inequality,

d(x, z) ≤ d(x, y)+d(y, z) . (3.48)

To be a true measure of distance, it must follow the triangle inequality. Nevertheless, it can still be used as

a measure of distance due to its simplicity, or at least, as an information quantifier. For instance, let π̂ be the

maximally mixed state given by (3.44). This is the state with maximal uncertainty and minimum information.

Consequently, the amount of information in a state %̂ can be defined as the distance between %̂ and π,

I (%̂) = S(%̂||π) , (3.49)

so, the information contained in the system is given by

I (%̂) = tr(%̂ log %̂)− tr(%̂ log(1/D)) =−S(%̂)+ logD . (3.50)
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We observe that, for higher values of entropy, less is the information about the system. In the case of a maximally

mixed system, S(%̂) = logD, the relative entropy or information is minimum (zero). However, for a pure state,

the entropy vanishes and the information is maximum and equal to logD.

Now, suppose that instead of wondering how much do we know about a given system, we want to quantify

some property P of a given quantum state. Let S be the set of all states which do not have that property. Then,

the distance between %̂ and the closest state without that property can be used to estimate that property

P (%̂) = min
σ∈S

S(%̂||σ) . (3.51)

3.4.1 The relative entropy of coherence

As a first application of the quantum relative entropy, let us consider that the property of interest is the

degree of coherence a state has relative to some basis.

Figure 3.2: Schematic representation of the relative entropy of coherence.

Coherence is a basis dependent concept. Given a particular basis, a state is called incoherent if it is diagonal

on that basis. Any state that is not diagonal carries a certain amount of coherence associated with the chosen

basis. Thus, let I be the set of incoherent states with respect to the basis |i 〉. This will be the set of all states

which are diagonal in this basis,

δ=∑
i
δi |i 〉〈i | ∈I . (3.52)

Given a state %̂, the amount of coherence present in it is given by

C (%̂) = min
δ∈I

S(%̂||δ) . (3.53)

This is called the relative entropy of coherence. In this case, the minimization can be done in closed form. Given

a general state

%̂=∑
i , j

pi , j |i 〉〈 j | , (3.54)

and defining

%̂diag =
∑

i
|i 〉〈i | , (3.55)
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as its diagonal form in the |i 〉 basis, it may be verified that for any δ ∈I , tr(%̂ logδ) = tr(%̂diag logδ), so

S(%̂||δ) = S(%̂diag)−S(%̂)+S(%̂diag||δ) ≥ S(%̂diag)−S(%̂) . (3.56)

Note that the minimum value of S(%̂||δ) occurs precisely for δ= %̂diag, so that the relative entropy of coherence

can be written as

C (%̂) = min
δ∈I

S(%̂||δ) = S(%̂diag)−S(%̂) . (3.57)

A notable example of a state that has coherence in the energy eigenbasis is the set of squeezed states (A. Ser-

afini, 2019).



39

CHAPTER 4

The quantum nature of light

The goal of this chapter is providing a thorough discussion about the single-mode bosonic field and its

particularities. Our aim is to learn the main properties of the working substance that we shall adopt. Also, it will

provide the required knowledge for the comprehension of chapter 6. We start by presenting the quantization

of the electromagnetic field and discussing some of its consequences - for instance, the concept of thermal

states. Given the central role played by the single-mode, we move to introduce the coherent states. This is

the framework for quantum characteristic functions and quasi-probability distributions, which goes back to

the seminal work by Wigner (1932). Also, the fundamental aspects of the squeezed states are examined. With

the purpose of characterizing the states of light into classical or non-classical, the concept of P-representability

is presented, and the formalism of characteristic function is also introduced. We finish the chapter with the

Gaussian state parametrization (Englert and Wódkiewicz, 2003).

4.1 Quantization of a single-mode field

Let us consider the simple case of a radiation field confined to a one-dimensional cavity along the z-axis

with perfectly conducting walls at z = 0 and z = L, as shown in fig.(4.1). The electric field must vanish at the

boundaries and will take the form of a standing wave. Additionally, it is assumed that there are no other sources

of radiation and that the electric field is polarized along the x-axis, E(r, t ) = ex Ex (z, t ), where ex is a unit polar-
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ization vector. In this case, Maxwell’s equations (in SI units) are:

∇×E = ∂B

∂t
,

∇×B =µ0ε0
∂E

∂t
,

∇.B = 0,

∇.E = 0.

(4.1)

A single-mode field satisfying Maxwell’s equations and the boundary conditions is given by (Jackson, 1975):

Ex (z, t ) =
(

2ω2

V ε0

)1/2

q(t )sin(kz) , (4.2)

where ω is the frequency of the mode, and k is the wave number related to the frequency according to k =ω/c.

The boundary conditions at z = L determine the allowed frequencies,ωm = c(mπ/L), m = 1,2, .... The term V in

eq.(4.2) is the effective volume of the cavity and q(t ) will act as a canonical position. The magnetic field in the

cavity is, from eqs.(4.1-4.2), B(r, t ) = ey By (z, t ), with

Figure 4.1: Cavity with conducting walls located at z = 0 and z = L. The electromagnetic field is polarized along

the x-direction.

By (z, t ) =
(µ0ε0

k

)(
2ω2

V ε0

)
q̇(t )cos(kz) . (4.3)

Here, q̇(t ) plays the role of a canonical momentum for a “particle" of unit mass, i.e, p(t ) = q̇(t ). The classical

field energy, or Hamiltonian H , of the single-mode is given by

H = 1

2

∫
dV

[
ε0E2(r, t )+ 1

µ0
B2(r, t )

]
= 1

2

∫
dV

[
ε0E 2

x (z, t )+ 1

µ0
B 2

y (y, t )

]
.

(4.4)

From eqs.(4.2) and (4.3) the Hamiltonian can be rewritten as

H = 1

2
(p2 +ω2q2) , (4.5)
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from which, we see that the Hamiltonian of a single-mode field is formally equivalent to that of a harmonic

oscillator of unit mass (Cohen-Tannoudji et al., 1977), where the electric and magnetic fields play the role of

canonical operators.

Next, it is used the correspondence rule (Cohen-Tannoudji et al., 1977) to replace p and q by their operator

equivalents q̂ and p̂, satisfying the canonical commutation relation

[q̂ , p̂] = iħ . (4.6)

The electric and magnetic fields of the single-mode become the operators

Êx (z, t ) =
(

2ω2

V ε0

)1/2

q̂(t )sin(kz)

B̂y (z, t ) =
(µ0ε0

k

)(
2ω2

V ε0

)
p̂(t )cos(kz) ,

(4.7)

and the Hamiltonian becomes

Ĥ = 1

2
(p̂2 +ω2q̂2) . (4.8)

It is convenient to introduce the non-Hermitian annihilation and creation operators â and â†,

â = 1p
2ħω

(ωq̂ + i p̂)

â† = 1p
2ħω

(ωq̂ − i p̂) ,
(4.9)

satisfying the following algebra

[â, â†] = 1. (4.10)

Or alternatively, the operators q̂ and p̂ can be expressed in terms of the annihilation and creation operators:

q̂ =
√

ħ
2mω

(â + â†) , p̂ =−i

√
ħmω

2
(â − â†) . (4.11)

In terms of these operators, the electric and magnetic field operators then become, respectively

Êx (z, t ) = E0(â + â†)sin(kz)

B̂y (z, t ) = iB0(â† − â)cos(kz) ,
(4.12)

where E0 = (2ω2/V ε0)1/2 and B0 = (µ0/k)(ε0ħω3/V )1/2 represent the electric and magnetic field amplitudes.

As a result, the Hamiltonian operator takes the form

Ĥ =ħω
(

â†â + 1

2

)
. (4.13)

The operator â†â has a special meaning and is called the number operator, denoted by n̂. Let |n〉 designate an

eigenstate of the number operator with eigenvalue n,

n̂ |n〉 = n |n〉 , (4.14)
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thus, the “eigenproblem" for the Hamiltonian (4.13) is given by

Ĥ |n〉 = ħω
(

â†â + 1

2

)
|n〉 =

(
n + 1

2

)
|n〉 = En |n〉 , (4.15)

with En =ħω(n +1/2) and n ∈N, where N is the set of natural numbers.

The action of â and â† on the number eigenstate is, using the commutation relation (4.10) and eq.(4.14),

a |n〉 =p
n |n −1〉

â† |n〉 =p
n +1 |n +1〉 .

(4.16)

Using these identities, it can be shown that the number eigenstate |n〉 is generated from the ground state |0〉, by

the repeated action of the creation operator â†:

|n〉 = (â†)n

n!
|0〉 . (4.17)

Also, it can be easily shown that {|n〉} forms an orthonormal basis

〈n|m〉 = δn,m , (4.18)

and a complete set,
∞∑

n=0
|n〉〈n| = 1. (4.19)

4.1.1 Multiple modes

The result for the single-mode field confined in a cavity can be generalized to multi-mode radiation fields.

It is not our purpose to show that since throughout this dissertation, our focus is the single-mode. However, to

generalize the idea to composite systems, it is defined a set of annihilation operators âi , where i = 1,2, ...,n. It

is conventional to use the word mode to label each i . These operators are defined to satisfy

[âi , â†
j ] = δi , j , [âi , â j ] = 0. (4.20)

Therefore, operators of different modes commute and the Hilbert space of a multi-mode is expanded by the

states

|N 〉 = |n1,n2, ...,nN 〉 , ni = 0,1,2, ... (4.21)

These are called the Fock states, which are the eigenstates of the number operators â†
i âi ,

â†
i âi |N 〉 = ni |N 〉 . (4.22)

According to eq.(4.14) each mode can have an arbitrary number n of particles.
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4.2 Thermal states

So far, we presented with the quantization of the electromagnetic field and its physical properties. Now

we restrict our discussion even more, and we shall see an important concept that is the thermal state. Some

mathematical aspects related to the Fock states will be investigated, and significant results will be derived.

Later on, in chapter 6, we shall address this state more carefully.

Consider a cavity filled with a single-mode bosonic field, at thermal equilibrium with its walls. The density

operator for the thermal field is, in the canonical ensemble, given by

%̂th = e−βĤ

tr[e−βĤ ]
, β= 1

kB T
, (4.23)

where kB is the Boltzmann constant and Ĥ is the system’s Hamiltonian (4.13). Notice that,

tr[e−βĤ ] =
∞∑

n=0
〈n|e−βĤ |n〉 =

∞∑
n=0

e−βEn ≡ Z , (4.24)

is the partition function. We can go further and re-write the above expression as

Z =
∞∑

n=0
e−βħω(n+1/2) = e−βħω/2

∞∑
n=0

e−βħωn = e−βħω/2

1−e−βħω
, (4.25)

since e−βħω < 1. Substituting this partition function into eq.(4.23), the density operator for the single-mode

thermal state becomes

%̂th =∑
n

(1−e−βħω)e−βħωn |n〉〈n| . (4.26)

Correspondingly, the mean number of photons of the thermal field is given by

n̄th = tr[n̂ %̂th] = 1

eβħω−1
, (4.27)

Using the last result (4.27), eq.(4.26) can be rewritten in terms of n̄th as

%̂th =∑
n

n̄n
th

(1+ n̄th)n+1 |n〉〈n| (4.28)

This leads to the remarkable result that will be used extensively in chapter 6:

Single-bosonic mode energy. The mean energy of a single-bosonic mode at equilibrium with a reservoir

at temperature T is

E = tr(%̂thĤ ) = ħω
2

coth

( ħω
2kB T

)
. (4.29)

Notice that when T → 0, the mean number of photons also goes to zero, thus

lim
T→0

E = E0 = ħω
2

, (4.30)
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so the equilibrium state tends to the ground state, as expected. Conversely, for high values of temperature,

β→ 0, and using the approximation coth x ≈ 1/x, the energy tends to,

E ≈ kB T . (4.31)

Thus, for higher values of temperature, the energy becomes linearly proportional to T . Whenever a system has

an infinite number of states, the high-temperature result usually match its classical analog. It is possible to

relate the mean energy to the partition function Z in eq.(4.25) as

E =− ∂

∂β
log Z = T 2 ∂

∂T 2 log Z . (4.32)

This formula is very useful, especially in more complex problems, since finding Z can be a difficult task, and

finding E would require the computation of an even more difficult sum. With this expression, this problem is

avoided, and E is obtained from a simple differentiation. It also shows that Z is more than a mere normalization

constant.

There is an elegant way of interpreting eq.(4.23), which says that at finite temperature, the thermal state will

be the one which minimizes the free energy (Parrondo, 2015),

F = E −T S , (4.33)

where E is given by (4.29), and S is the von Neumann entropy (3.42). To see this, let us write the von-Neumann

entropy for the state (4.23)

S =−tr(%̂ ln %̂) = tr

[
%̂β

(
Ĥ + 1

β
log Z

)]
=β(E −F ) . (4.34)

where

F =− 1

β
log Z or Z = e−βF , (4.35)

This clarifies the physical meaning of Z - as being directly related to the free energy. Consequently, using (4.25),

the free energy is simply

F = ħω
2

+kB T log(1−e−βħω) . (4.36)

4.3 Quantum fluctuations of a single-mode

The uncertainty principle asserts that for a pair of canonical conjugate variables, such as position and mo-

mentum (or energy and time), it is impossible to know precisely their values at the same time. While in the

classical world, uncertainties arise from our ignorance, in the quantum realm, this is not true. There exist fun-

damental constraints on our understanding of a given system. In order to explore the role of fluctuations, let us

consider two non-commuting observables, Â and B̂ , such that

[Â, B̂ ] = iĈ , (4.37)
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so it does not exist a common basis of eigenstates for Â and B̂ . Consequently, the two observables cannot be

determined precisely. Defining the variation or fluctuation of an operator Â and B̂ , as

δÂ ≡ Â−〈Â〉 , δB̂ ≡ B̂ −〈B̂〉 , (4.38)

note that,

[δÂ,δB̂ ] = [Â, B̂ ] = iĈ , (4.39)

and

(δÂ)2 = Â2 −2Â 〈Â〉−〈A〉2 ⇒ 〈δÂ2〉 = 〈Â2〉−〈Â〉2 ≡ (∆A)2 ,

(δB̂)2 = B̂ 2 −2B̂ 〈B̂〉−〈B〉2 ⇒ 〈δB̂ 2〉 = 〈B̂ 2〉−〈B̂〉2 ≡ (∆B)2 .
(4.40)

are the fluctuations of the operators.

On the other hand, the Cauchy–Schwartz inequality states that given two state vectors |a〉 and |b〉, it is

satisfied that

〈a|a〉〈b|b〉 ≥ |〈a|b〉 |2 . (4.41)

Let |a〉 = δÂ |u〉 and |b〉 = δB̂ |u〉, the above inequality becomes

(∆A)2(∆B)2 ≥ |〈u|δÂδB̂ |u〉 |2 . (4.42)

The right side of eq.(4.42) can be simply written as

δÂδB̂ = 1

2
(δÂδB̂ +δB̂δÂ)+ 1

2
(δÂδB̂ −δB̂δÂ) ≡ F̂ + i

2
Ĉ (4.43)

where F̂ ≡ 1
2 (δÂδB̂ +δB̂δÂ) is a Hermitian operator.

Therefore, the “incompatibility” of two non-commuting observables can be expressed in terms of the fol-

lowing expression

(∆A)2(∆B)2 ≥ 1

4
| 〈[Â, B̂ ]〉 |2 +〈F 〉2 , (4.44)

which is known as the The Heisenberg–Robertson–Schrödinger uncertainty relation.

Therefore, the variance can be used as a measure of the uncertainty in some observable, let say Â, we have

that

(∆A)2 = 〈Â2〉−〈Â〉2
, (4.45)

or by the standard deviation, that is the square root of eq.(4.45), which is referred to as the uncertainty of the

observable Â. If we apply this equation to compute the fluctuations in the quantized electromagnetic field

eq.(4.12) using the Fock state, we observe that it is not zero, even for the case where n̄th = 0 - the so-called

vacuum fluctuation. For instance, the fluctuations in the electric field (4.7) are given by (Gerry et al., 2005):

∆Ex =p
2E0 sin(kz)

(
n + 1

2

) 1
2

. (4.46)
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With the single-mode prepared in the vacuum state |0〉, the fluctuation of the field strength is

∆Ex = E0 sin(kz) . (4.47)

The vacuum fluctuation has its origin in the uncertainty principle because the number operator n̂ does not

commute with the electric field:

[n̂, Êx ] = E0 sin(kz)(â† − â) . (4.48)

Thus, n̂ and Êx are complementary quantities, i.e., operators that cannot be measured simultaneously, for

which their respective uncertainties obey the inequality (4.44)

∆n∆Ex ≥ 1

2
E0|sin(kz)||(〈â† − â〉 | . (4.49)

The concept of vacuum fluctuation is fundamental to explain many situations that are not covered by the

classical electromagnetic theory. For instance, spontaneous emission is a direct result of vacuum fluctuations.

An atom - in free space, initially prepared in the excited state, would remain in the excited state and, therefore

- never would radiate. However, the vacuum fluctuations give the essential contribution to that spontaneous

emission getting started.

When we quantized the electromagnetic field, a pair of variables that played the role of the canonical oper-

ators q̂ and p̂ were identified. Then, the electric and magnetic fields of the single-mode became a combination

of these operators where was lately written in terms of the non-Hermitian annihilation and creation operators.

It is customary writing the electric and magnetic fields (4.12) in terms of the so-called quadratures X̂1 and X̂2,

that are essentially the dimensionless position and momentum operators, given by

X̂1 = 1

2
(â + â†)

X̂2 = 1

2i
(â − â†) .

(4.50)

and satisfying the commutation relation

[X̂1, X̂2] = i

2
. (4.51)

We could rewrite the electric and magnetic fields (4.12) in terms of these operators. However, our aim to intro-

duce the quadrature operators is to discuss the role of the fluctuations as a motivation to present the squeezed

states in section 4.5. Since 〈n|X̂i |n〉 = 0, for i = 1,2 the quadrature fluctuations in the thermal state are simply

(∆X1)2 = tr(%̂thX̂ 2
1 ) = 1

4
(2n̄th +1) , (4.52)

and similarly

(∆X2)2 = tr(%̂thX̂ 2
2 ) = 1

4
(2nth +1) . (4.53)
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Consequently, the uncertainty in both quadratures is the same, and it increases with the temperature through

n̄th (4.27). Furthermore, the vacuum state, n̄th = 0, minimizes the uncertainty product

(∆X1)2 = (∆X2)2 = 1

4
. (4.54)

It is important to stress that the uncertainty principle does not say that “everything is uncertain". Either quadra-

ture (position or momentum) could be determined in an appropriate quantum state, however they cannot be

precisely specified at the same time.

4.4 Coherent states

In the last years, the developments and utilization of coherent states have made tremendous progress and

achieved a wide range of applications, e.g., in the semi-classical description of quantum systems, in condensed

matter physics, in quantum computations, and so on (Glauber, 1963; Kapor et al., 1991; Walls and Milburn,

2008). Its history dates back to 1926, when Lorentz complained, reasonably, that Schrödinger’s wave functions

did not reveal a classical motion. As a result, Schrödinger proposed the idea of coherent states in connection

with the quantum states of classical motion for a harmonic oscillator. However, for 35 years, activities in this

field remained almost inert. It was not until thirty-five years after Schrödinger’s seminal paper that Glauber

(1963) and Sudarshan (1963a) provided a complete theoretical framework for coherent states.

The coherent states, denoted by |α〉, are known as the most classical states among all pure states (Glauber,

1963). This is because its properties follow very closely to classical states. For example, the expectation value

of the electric field has the form of the classical expression (Gerry et al., 2005). Also, the time evolution of a

coherent state is concentrated along the classical trajectories. A coherent state is defined as the eigenstate |α〉
of the annihilation operator â, with complex eigenvalue α,

â |α〉 =α |α〉 . (4.55)

as introduced by Klauder (1960). From this definition, a coherent state |α〉 can be expanded in terms in terms

of the number state |n〉
|α〉 =

∞∑
n=0

Cn |n〉 . (4.56)

Acting with â on each term of the expansion (4.56),

â |α〉 =
∞∑

n=1
Cn

p
n |n −1〉 =α

∞∑
n=0

|n〉 . (4.57)

Multiplying on the left by 〈m| and using the orthogonality of the Fock states (4.18), the recursive formula is

obtained

Cn = αp
n

Cn−1 = α2

p
n(n −1)

Cn−2 = ... = αn

p
n!

C0 , (4.58)



4.4. COHERENT STATES 48

and then

|α〉 =C0

∞∑
n=0

αn

p
n!

|n〉 . (4.59)

Using the normalization condition, 〈α|α〉 = 1, one has:

Coherent states. A normalized coherent state can be expanded in terms of the Fock states |n〉 = 0,1,2, ...,,

as

|α〉 = e−
1
2 |α|2

∞∑
n=0

αn

p
n!

|n〉 . (4.60)

From the result (4.60), the following propositions can be derived:

i. Orthogonality The coherent states are not orthogonal; the inner product between two different coherent states

|α〉 and |β〉, respectively, is given by

| 〈α|β〉 |2 = e |α−β|
2

, (4.61)

Proof: From eq.(4.60)

〈α|β〉 = e−
1
2 |α|2 e−

1
2 |β|2

∞∑
n,m=0

α∗nβn

p
n!m!

〈n|m〉

= e−
1
2 |α|2 e−

1
2 |β|2

∞∑
n=0

(α∗β)

n!

= e−
1
2 |α|2 e−

1
2 |β|2 eα

∗β .

(4.62)

Then

| 〈α|β〉 |2 = e−|α|
2
e−|β|

2
eα

∗β

= e−|α−β|
2

.
(4.63)

Hence, the overlap between two coherent states decays exponentially with their distance. For larger α and β,

they become approximately orthogonal.

ii. Completeness The coherent states form a complete set

1

π

∫
d 2α |α〉〈α| = 1, (4.64)
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Proof: From eq.(4.60)

1

π

∫
d 2α |α〉〈α| = 1

π

∫
d 2αe−|α|

2 ∑
n,m=0

α∗nαm

p
n!m!

|n〉〈m| , (4.65)

in polar coordinates,

1

π

∫
d 2α |α〉〈α| = 1

π

∞∑
n,m=0

|n〉〈m|p
n!m!

∫ ∞

0
dr e−r 2

r n+m+1
∫ 2π

0
dφe−i (n−m)φ , (4.66)

where α= r e iφ. The integration over φ gives zero unless n is equal to m. Thus,

1

π

∫
d 2α |α〉〈α| = 2

∞∑
n,m=0

|n〉〈n|
n!

∫ ∞

0
dr e−r 2

r 2n+1 . (4.67)

After integrating by parts n times,

1

π

∫
d 2α |α〉〈α| = 2

∞∑
n,m=0

|n〉〈n|
n!

1

2
n! =

∞∑
n=0

|n〉〈n| = 1. (4.68)

Since the coherent states are not orthogonal, and yet they obey a closure relation, it is said that they form an

overcomplete basis. That is, a set which is still complete even if some element is removed from it.

iii. Displacement operator The coherent states can be generated from the vacuum state by the action of a

unitary operator called the displacement operator D̂(α)

|α〉 = D̂(α) |0〉 , (4.69)

where D̂(α) = exp(αâ† −α∗â).

Proof: Using (4.17), one may re-write (4.60) as

|α〉 = e−
1
2 |α|2

∞∑
n=0

αn

p
n!

(â†)n

p
n!

|0〉 = e−
1
2 |α|2

∞∑
n=0

(αâ†)n

n!
|0〉

= e−
1
2 |α|2 eαâ† |0〉 ≡ ˆ̃D(α) |0〉 .

(4.70)

As we can see, a coherent state is generated by the application of the operator ˆ̃D(α) on the vacuum state. How-

ever, ˆ̃D(α) is not unitary. But notice that if,

˜̂D(α) → e−
1
2 |α|2 eαâ†

eβâ , (4.71)

this implies that

e−
1
2 |α|2 eαâ†

eβâ |0〉 = e−
1
2 |α|2 eαâ† |0〉 . (4.72)

Also, imposing that D(α)D†(α) = D†(α)D(α) = 1, it is obtained that β=−α∗. Therefore,

|α〉 = D̂(α) |0〉 , (4.73)
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where

D̂(α) ≡ eαâ†−α∗ â , (4.74)

is the displacement operator.

To understand why D̂(α) is called a displacement operator, notice that it satisfies

D̂†(α) = D̂−1(α) = D̂(α) , (4.75)

which means that if we displace by a given α and then displace back by −α, we return to where we started.

Next, computing the action of this operator on the annihilation â and creation â† operators, with the help of

the Baker–Campbell–Hausdorff formula (see Appendix A.3), this reads

D̂†(α)âD̂(α) = â +α

D̂†(α)â†D̂(α) = â† +α∗ ,
(4.76)

This is why we call D̂ the displacement operator, since it displaces â by the value α. Also, the displacement

operator obeys the semi-group relation:

D̂(α+β) = D̂α+βe−i Im{αβ∗} . (4.77)

To finish our discussion about coherent states is worth mentioning that, coherent states are minimum un-

certainty states. That is the way Schrödinger derived them. Thus,

∆q∆p = 1

2
ħ , (4.78)

this result can be checked using eq.(4.11) and (4.45). In terms of the quadratures (4.50),

(∆X1)2 = (∆X2)2 = 1

4
. (4.79)

the coherent states have the same uncertainty of the vacuum state, meaning that the vacuum state is also a

coherent state.

4.4.1 Phase-space picture

It is well known that the concept of phase space in quantum mechanics is not simple since the canonical

variables q̂ and p̂ do not commute. Consequently, it is not possible to localize a point in phase space as it is usu-

ally done in classical mechanics. However, it is possible to establish a direct connection between operators on

Hilbert space L2(Rn) and functions of 2n variables, which stems from the fact that the displacement operators

D̂(α) form a completely orthogonal set on the space of operators on L2(Rn) concerning the Hilbert-Schmidt

scalar product1. Nevertheless, we have shown that the coherent states minimize the uncertainty relation for

1A Hilbert–Schmidt operator is a bounded operator A on a Hilbert space H with a finite Hilbert–Schmidt norm.
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both quadratures, and that the uncertainty of the two quadratures is the same. Observing the definition (4.50),

one may argue that the complex α-plane plays the role of phase space where, up to scale factors, the real and

imaginary parts of α are position and momentum variables, respectively. A coherent state |α〉, with α= |α|e iθ,

may be represented pictorially as shown in fig.(4.2). The shaded circle represents the “area of uncertainty” in

the coherent state, the fluctuation being equal in all directions of phase space and the center of the circle is

located at a distance |α| = n̄
1
2 from the origin, at an angle θ. For the vacuum, |α| = 0, the phase-space represen-

tation is given in Fig (4.2), where it is evident that uncertainty in the phase is as larger as possible. A Fock state

|n〉 can also be represented in phase space as a circle of radius n, as depicted in fig.(4.3).

Figure 4.2: Phase-space representation for (a) the vacuum state and (b) a coherent state of amplitude |α|.

Figure 4.3: Phase-space representation for a Fock state (c) n = 1 and (d) n = 3. The uncertainty in the photon

number is zero while the phase is completly random.
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4.5 Squeezed states

As it was seen in the last section, the fluctuations in the quadratures decrease with the temperature (see

eq. (4.53)) and reach their minimum value for the vacuum state, (4.54), having the same uncertainty as to

the coherent state (4.79). In other words, even for the vacuum state, the operators that describe the state of

light have an intrinsic uncertainty. This inherent noise is due to the quantum nature of light. By recognizing

that these quantum fluctuations always occur in two complementary observables, physicists have been able to

make an interesting trade-off. Reduced fluctuations in one variable can be realized at the expense of increased

fluctuations in the other, as determined by the Heisenberg principle.

Early theoretical work in the 60s and 70s led, in the mid-80s, to the conclusion that quantum fluctuations

can be reduced below the vacuum-state (shot noise) limit in many forms of nonlinear optical interactions

(Slusher et al., 1985; Shelby et al., 1986; Wu et al., 1986). The squeezed states are these kinds of states where

the quadrature operators have uncertainties below the vacuum state noise. This means that, when we turn

on the squeezed light, we see less noise than no light at all! (Scully and Zubairy, 1997b). This seems appar-

ently a paradoxical feature - at least within the classical framework. However, it is another manifestation of the

non-classical behaviour of light.

4.5.1 Squeezed states and the uncertainty relation

Let us consider a quantum system described by two Hermitian operators, Â and B̂ , satisfying the commu-

tation relation

[Â, B̂ ] = iĈ . (4.80)

Then, according to the Heisenberg uncertainty relation, the product of its uncertainties satisfies

∆A∆B ≥ 1

2
| 〈Ĉ〉 | , (4.81)

where the root-mean square deviation ∆A is defined as in eq.(4.45).

Squeezed state. A state of the system is said to be squeezed if the uncertainty in one of the observables

(say Â) satisfies the relation

(∆A)2 < 1

2
| 〈Ĉ〉 | . (4.82)

Therefore, when the quantum fluctuations in one observable reduce below the shot noise, that is, under

the limit ( 1
2 |Ĉ |), it is said that the observable is squeezed. This can be attained only at the expense of an en-

hancement of fluctuations in the conjugate observable, such that the uncertainty relation is not violated. If, in
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addition to the condition (4.82), the variances satisfy the minimum uncertainty relation,

∆A∆B = 1

2
| 〈Ĉ〉 | , (4.83)

then the state is called an ideal squeezed state.

As an illustration, if we consider the quadrature operators X̂1 and X̂2, a squeezed state of the radiation field

is obtained when

(∆Xi )2 < 1

4
(i = 1 or 2) . (4.84)

4.5.2 The squeezing operator

Squeezed states of radiation are produced in nonlinear processes where a “classical” electromagnetic field

drives a nonlinear medium. In the nonlinear medium, pairs of correlated photons of the same frequency can

be generated (Scully and Zubairy, 1997b). In the interaction picture, the corresponding effective Hamiltonian

for such nonlinear optical process, called parametric down-conversion, may be written as

Ĥ I = [ε(â†2)+ε∗(â)2] , (4.85)

where the quantity ε includes the amplitude of the driving field as well as the second-order susceptibility for

the down-conversion. The operator Û (t ) = exp(−iĤ t/ħ) describing the time evolution of the single-mode

radiation field under consideration is

Û (t ) ≡ Ŝ(ξ) = exp

(
1

2
ξ∗â2 − 1

2
ξâ†2

)
, (4.86)

where ξ = r e iθ is an arbitrary complex number. This quantity, ξ = −iεt/ħ, determines the strength of the

squeezing and depends on the interaction time (essentially the length of the nonlinear medium), the suscepti-

bility and the amplitude of the driving field (Scully and Zubairy, 1997b). It is immediately to check that

Ŝ†(ξ) = Ŝ−1(ξ) = S(ξ) . (4.87)

Using the Baker–Campbell–Hausdorff formula the unitary transformation of the annihilation and creation op-

erators is written,

Ŝ(ξ)âŜ†(ξ) = â coshr − â†e iθ sinhr

Ŝ(ξ)â†Ŝ†(ξ) = â† coshr − âe−iθ sinhr .
(4.88)

Therefore, the unitary transformation of the number operator by the squeezing operator is

Ŝ(ξ)â†âŜ†(ξ) = Ŝ(ξ)â†Ŝ†(ξ)Ŝ(ξ)âŜ†(ξ) = (â† coshr − âe−iθ sinhr )(â coshr − â†e iθ sinhr )

= â†â cosh2r + sinh2 r − 1

2
sinh2r (â†2e iθ+ â2e−iθ) .

(4.89)
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If θ = 0,

Ŝ(ξ)â†âŜ†(ξ) = â†â cosh2r + sinh2 r − 1

2
sinh2r (â†2 + â2) . (4.90)

An important result is the the unitary transformation of the annihilation and creation operators squared:

Ŝ(ξ)â2Ŝ†(ξ) = â2 cosh2 r +e2iθ sinh2 r â†2 −e iθ
(

â†â + 1

2

)
sinh2r , (4.91)

Ŝ(ξ)â†2Ŝ†(ξ) = â†2 cosh2 r +e−2iθ sinh2 r â2 −e−iθ
(

â†â + 1

2

)
sinh2r . (4.92)

The mean value of eqs.(4.91-4.92), for θ = 0, defines what is called by the coherence parameter,

m(r, n̄th) = tr(%̂sthâ2) = tr(%̂sthâ†2) =
(
n̄th +

1

2

)
sinh2r , (4.93)

A squeezed thermal state does not admit a diagonal representation on the Fock basis and, therefore, en-

compass coherence. As we shall see in chapter 6, the amount of coherence present in a squeezed thermal state

with respect to energy eigenbasis, is proportional to the coherence parameter.

A vacuum squeezed state |ξ〉 is generated acting the squeezing operator Ŝ(ξ) on the vacuum

|ξ〉 = Ŝ(ξ) |0〉 , (4.94)

In the case of the vacuum squeezed state, the uncertainties in its quadratures (fig. (4.4)) are given by (θ=0)

(∆X1)2 = 1

4
e−2r , (∆X2) = 1

4
e2r , (4.95)

assuming squeezing in the X̂1 quadrature. This result is interesting for two reasons: the first is because the fluc-

tuation in the quadrature X̂1 is below the vacuum fluctuation for any r > 0. This implies the second compelling

reason: sometimes, in experimental situations, we want to know only one of the canonically conjugated vari-

ables. This means that we can increase our knowledge in the desired observable, with a squeezing operation,

by discarding the information about the conjugated one.

The density operator of a squeezed number state is

%̂s = Ŝ(r ) |n〉〈n| Ŝ†(r ) , (4.96)

and the corresponding density operator for the squeezed thermal state is the Bose-Einstein weighted sum of

the squeezed number state,

%̂sth = Ŝ(ξ)
e−βĤ

Z
Ŝ†(ξ) , (4.97)

The mean number of photons for the thermal squeezed state is

n̄sth = tr[%̂sthn̂] = n̄th cosh2r + sinh2 r , (4.98)

which implies in the expedient result:
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Figure 4.4: Phase-space representation for a squeezed vacuum state with the squeezing in the (a) X1 and (b) X2

quadratures.

Squeezed single-bosonic mode energy. The mean energy of a squeezed single-bosonic mode at equi-

librium with a reservoir at temperature T and with squeezing parameter r is

E = tr(%̂sthĤ ) = ħω
2

coth

( ħω
2kB T

)
cosh2r . (4.99)

For this state, the quadrature uncertainties (see fig.(4.4)) reads

(∆X1)2 = 1

4
(2n̄th +1)e−2r ,

(∆X2)2 = 1

4
(2n̄th +1)e2r .

(4.100)

In the case that θ 6= 0, it is defined the rotated quadrature operators (see fig.(4.5))Ŷ1

Ŷ2

=
 cos θ2 sin θ

2

−sin θ
2 cos θ2

 X̂1

X̂2 .

 (4.101)

We can check that eq.(4.101) also satisfies

(∆Y1)2 = 1

4
e−2r , (∆Y2)2 = 1

4
e2r , (4.102)

A more general class of squeezed state is obtained by applying the squeezing operator, followed by the action

of the displacement operator, on the vacuum state (see fig.4.6), as follows

|α,ξ〉 = D̂(α)Ŝ(ξ) |0〉 , (4.103)



4.5. SQUEEZED STATES 56

Figure 4.5: Phase-space representation of a rotated squeezed vacuum state. The squeezing is along the θ/2

direction.

this application defines the squeezed coherent state. In this state, the expectation value of the annihilation

operator is

〈â〉 =α , (4.104)

independent of the squeezing parameter r , and the expectation values for the operators â2 and â†â are given

by

〈â2〉 =α2 −e iθ sinhr coshr ,

〈â†â〉 = |α|2 + sinh2 r .
(4.105)

As expected, it follows that the fluctuations in each quadrature have the same value as the non-displaced case

(4.95).

To finish this section, the squeezed states can be expanded in terms of the Fock states {|n〉}. Consider an

electromagnetic mode prepared in the vacuum state, involving under the action of the Hamiltonian (4.85), into

the state

|ξ〉 = S(ξ) |0〉 . (4.106)

Starting with

â |0〉 = 0, (4.107)

using the fact that the squeezing operator is unitary, and acting on the last equation with Ŝ(ξ) by the right, it is
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Figure 4.6: Phase-space representation of a displaced (a) squeezed vacuum state with the squeezing in the X1

quadrature and (b) a rotated squeezed vacuum state.

obtained

SâS†S |0〉 = (âν− â†µ) |ξ〉 = 0, (4.108)

where we defined ν≡ coshr and µ≡ sinhr . The state |ξ〉 is an eigenstate of the operator (âν− â†µ) with eigen-

value equal to zero. Expanding |ξ〉 in terms of the Fock states, eq.(4.108) can be recast as,

(âν− â†µ) |ξ〉 = (âν− â†µ)
∞∑

n=0
Cn |n〉

=
∞∑

n=0

(
νCn

p
n |n −1〉+µCn

p
n +1 |n +1〉

)
= 0.

(4.109)

Projecting on |m〉 and using the orthogonality of the Fock states,

ν
∞∑

n=0
Cn

p
nδm,n−1 =µ

∞∑
n=0

Cn
p

n +1δm,n+1 , (4.110)

or

Cm+1 =−ν
µ

( m

m +1

)1/2
Cm−1 . (4.111)

It can be seen that there are two distinct solutions, one involving only even photon states and a second involving

only odd photon states. The first solution is interesting since it contains the vacuum. Notice that the ratio



4.5. SQUEEZED STATES 58

µ/ν= e iθ tanhr , thus, the solution of the recurrence relation is

C2 =−e iθ tanhr

(
1

2

)1/2

C0 ,

C4 = e iθ tanhr

(
3

4

)1/2

C2 = (e iθ tanhr )2
(

1

2
× 3

4

)1/2

C0 ,

C6 =−e iθ tanhr

(
5

6

)1/2

C4 = (e iθ tanhr )3
(

1

2
× 3

4
× 5

6

)1/2

C0 ,

...

C2m = (−1)m(e iθ tanhr )m
[

(2m −1)!!

(2m)!!

]1/2

C0 .

(4.112)

where C0 is determined by the normalization condition,〈ξ|ξ〉 = 1:

〈ξ|ξ〉 = |C0|2
∞∑

n,m=0
(tanhr )n+m

[
(2m −1)!!

(2m)!!
× (2n −1)!!

(2n)!!

]1/2

〈n|m〉

= |C0|2
∞∑

n=0
(tanhr )2n

[
(2n −1)!!

(2n)!!

]
= |C0|2(1− tanh2 r )−1/2

= |C0|2 coshr ,

(4.113)

thus

C0 = 1p
coshr

. (4.114)

In the last step, the mathematical identity was used

1+
∞∑

m=1
xm

(
(2m −1)!!

(2m)!!

)
= (1−x)−1/2 . (4.115)

Using the following identities

(2m)!! = 2mm! ,

(2m −1)!! = 1

2mm!

(2m)!

m!
,

(4.116)

the expansion coefficients for the squeezed vacuum state are given by

C2m = (−1)m

p
(2m)!

2mm!

(e iθ tanhr )m

p
coshr

. (4.117)

Therefore, the squeezed vacuum state becomes

|ξ〉 = 1p
coshr

∞∑
m=0

(−1)m

p
(2m)!

2mm!
(e iθ tanhr )m |2m〉 . (4.118)

So the probability of detecting 2m photons in the field is oscillatory

P2m = |〈2m|ξ〉 |2 = 1

coshr

(2m)!

22m(m!)2 (tanhr )2m , (4.119)

while for detecting 2m +1, an odd number of photons, is zero.

This section started with the idea that squeezed states are a manifestation of the non-classical behaviour of

light. Then, it was showed that squeezing is a quantum effect rooted in Heisenberg’s uncertainty principle. But,

what is a non-classical effect, and how could we distinguish it from a classical one? In the next section, we will

answer this question based on the concept of P-representability.
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4.6 The Glauber-Sudarshan P representation

According to section 4.4, the coherent states not only form a complete set of states but an overcomplete

one. Even though they are not orthogonal, they may be used as a basis set. The following representation in

terms of coherent states, was introduced independently by Glauber (1963) and Sudarshan (1963b) back in the

’70s. As we shall see, the P-representation establishes a correspondence between the quantum and the classical

theories.

P-representation. A density operator %̂ can be expanded as a diagonal sum over the coherent states

%̂=
∫

d 2αP (α,α∗) |α〉〈α| , (4.120)

where d 2α= d(Re{α})d(Im{α}), and P (α,α∗) is a quasi-probability distribution called the P-function.

Let us investigate why this representation is appealing, and see why P (α,α∗) plays a role somewhat analo-

gous to a classical probability distribution. First, note that∫
d 2αP (α,α∗) =

∫
d 2α 〈α|α〉P (α,α∗) = tr

(∫
d 2α |α〉〈α|P (α,α∗)

)
= tr(%̂) = 1. (4.121)

Thus, P (α,α∗) is normalized like a classical probability distribution. Note also that for the expectation values

of the creation â† and annihilation â operators, we have that

〈â†q âp〉 = tr(%̂â†q âp ) = tr

(∫
d 2α |α〉〈α|P (α,α∗)â†q âp

)
=

∫
d 2αP (α,α∗)〈α|â†q âp |α〉 =

∫
d 2αP (α,α∗)α∗pαq ,

(4.122)

these averages are calculated in the same manner as in classical statistics. However, the identification of P (α,α∗)

as a probability distribution must be made with reservation. Unlike a classical probability, P (α,α∗) can assume

negative values and can be more singular than the delta function2. Thus, P (α,α∗) is not a genuine probability

distribution, and for this reason, it is often referred to as a quasi-distribution function.

P representability. States that can written as in (4.120) with a proper P-function, P (α,α∗) ≥ 0 and that

are “not more singular" than a delta function, including coherent states, are said to be classical states (or

P-representable). Unlike, a non-classical state is the one where P (α,α∗) is negative or highly singular.

According to the definition of P-representability expressed above, a remarkable statement can be derived:

2The structure theorem for distributions states that locally, every distribution can be written as the derivative of a certain order of a

continuous function. The more derivatives are needed to take more singular such a distribution will be.
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i. Non-classicality Squeezed states are non-classical states

Proof: Expressing the expectation values of each quadrature in terms of the P-function. First, note that

〈X̂ 2
1 〉 = tr(%̂X̂ 2

1 ) = 1

4
tr

(∫
d 2αP (α) |α〉〈α| (â†2 + â2 +2â†â +1)

)
= 1

4

(
1+

∫
d 2αP (α)(α∗+α)2

)
,

(4.123)

and that,

〈X̂1〉2 = 1

4
(〈â†〉+〈a〉)2 = 1

4

∫
d 2αP (α)[α〈â〉+α∗ 〈â†〉+α〈â〉+α∗ 〈â〉] (4.124)

= 1

4

∫
d 2αP (α)[(α+α∗)(〈â〉+〈â†〉)] . (4.125)

where 〈â〉 = ∫
d 2αP (α)α and 〈â†〉 = ∫

d 2αP (α)α∗.

Thus,

(∆X1)2 = 1

4

{
1+

∫
d 2αP (α)[(α+α∗)− (〈â†〉+〈â〉)]2

}
. (4.126)

Equivalently,

(∆X2)2 = 1

4

{
1+

∫
d 2αP (α)[(α−α∗)/i − (〈â†〉−〈â〉)/i ]2

}
. (4.127)

Since the term inside the square bracket is always positive, it is evident that the condition (∆Xi )2 < 1/4

requires that P (α) must be non-positive, at least in some regions of the phase space.

Still remains, however, the question of how to calculate P (α,α∗) explicitly. For this purpose, it is followed

a general procedure introduced by Mehta (1967). Starting with eq.(4.120) and assuming that |β〉 and |−β〉 are

coherent states, with β and −β being the eigenvalues of â,

〈−β|%̂|β〉 =
∫

d 2αP (α,α∗)〈−β|α〉〈α|β〉 , (4.128)

using eq.(4.62),

〈−β|%̂|β〉 = e−|β|
2
∫

d 2α [P (α,α∗)e−|α|
2
]eβα

∗−β∗α . (4.129)

Now letα= xα+i yα andβ= xβ+i yβ, then d 2α= d xαd yα, andβα∗−β∗α= 2i (yβxα−xβyα). Thus, eq.(4.129)

becomes

〈−β|%̂|β〉 = e−|β|
2
Ï

d xαd yα[P (xα, yα)e−(x2
α+y2

α)]e2i (yβxα−xβyα) . (4.130)

The Fourier transform in the complex plane is written:

g (β) =
∫

d 2α f (α)eβα
∗−β∗α

f (α) = 1

π2

∫
d 2β g (β)eβ

∗α−αβ∗
.

(4.131)
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With the identifications

g (β) = e |β|
2 〈−β|%̂|β〉

f (α) = P (α)e−|β|
2

,
(4.132)

it is obtained,

P (α) = e |α|
2

π2

∫
d 2βe |β|

2 〈−β|%̂|β〉eβα
∗−β∗α . (4.133)

P-function for the coherent and thermal states

As a first example, let us calculate the P-function P (α,α∗) for the coherent state %̂α0 = |α0〉〈α0|:

〈−β|%̂|β〉 = 〈−β|α0〉〈α0|β〉 = e−|α0|2−|β|2−α0β
∗+βα∗

. (4.134)

It then follows from eq.(4.133)

P (α,α∗) = 1

π2 e |α|−|α0|
∫

d 2βe−β(α∗−α∗
0 )+β∗(α−α0) = δ(2)(α−α0) , (4.135)

the P-representation of a coherent state is a two-dimensional delta function. Another way to see this result

without following the last method is to decompose the coherent state, as in the eq.(4.120), and notice that

P (α,α∗) must to be the delta function due to the filtering property (appendix A.2).

Now for a thermal state eq.(4.26), we have that,

〈−β|%̂|β〉 =∑
n

n̄n
th

(1+ n̄th)(n+1)
〈−β|n〉〈n|β〉 = e−|β|

2

1+ n̄th

∞∑
n=0

(−|β|2)n

n!

(
n̄th

1+ n̄th

)n

= e−|β|
2

1+ n̄th
exp

 −|β|2(
1+ 1

n̄th

)
 ,

(4.136)

thus

P (α,α∗) = e−|β|
2

π2(1+ n̄th)

∫
d 2βe

−|β|2/(1+ 1
n̄th

)
e−βα

∗+αβ∗
(4.137)

= 1

πn̄th
e−|α|

2/n̄th . (4.138)

Notice that the P-function of the thermal distribution is given by a Gaussian distribution.

If a coherent state is a classical state, the number state |n〉 has to be the opposite. Thus, for a pure number

state, %̂n = |n〉〈n|,
〈−β|n〉〈n|β〉 = e |β|

2 (−β∗β)n

n!
. (4.139)

Thus

P (α) = e |α|
2

n!

1

π2

∫
d 2β (β∗β)neβ

∗α−βα∗
. (4.140)
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The integral does not exist in terms of ordinary functions. Formally, it can be written

P (α) = ∂2n

∂αn∂α∗n

1

π2

∫
d 2βeβ

∗α−βα∗
(4.141)

= e |α|
2

n!

∂2n

∂αn∂α∗n δ
(2)(α) . (4.142)

The derivative of the delta function, called a tempered distribution, is more singular than a delta function, and

has meaning only under the integral sign, i.e., for some function F (α,α∗)∫
d 2αF (α,α∗)

∂2n

∂αn∂α∗n δ
(2)(α) =

[
∂2nF (α,α∗)

∂αn∂α∗n

]
α=0,α∗=0

. (4.143)

From these examples, it can be easily seen that it is not a simple task to evaluate the P-function. However,

if we are interested in discriminating whether a given state is classical or non-classical, we must do it. Luckily,

there are methods where we could quickly check it without caring about the details of the P-function. In the

following section, we shall establish the grounds to learn how we could infer, which states we are dealing with

without evaluating its probability distribution function.

4.7 Characteristic functions

In probability theory and statistics, the characteristic function of a random variable completely defines its

probability distribution. If a random variable admits a probability density function, then the characteristic

function is the Fourier transform of the probability density function (Gerry et al., 2005). It provides an alterna-

tive description of analytical results without having to deal directly with the probability density. The description

of states through their characteristic function turns out to be instrumental to several achievements. Motivated

by this, we now proceed to introduce the quantum mechanical version of the characteristic function.

We shall start the discussion by introducing the three characteristic functions, and showing some mathe-

matical properties of it without discussing the physical meaning behind which of them. After we established

the precise meaning, we will motivate the definition of these function from a physical problem, and then focus

on the normally-ordered characteristic function. Let us first define the characteristic function associated with

a density operator %̂:

Characteristic function. For a system %̂, it can be introduced a real parameter s ∈ [−1,1], so the corre-

sponding s-parametrized characteristic function χs(z, z∗) is

χs(z, z∗) ≡ tr[%̂D̂(z)]e
s
2 |z|2 . (4.144)

where D̂(z) is the displacement operator (4.74).
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Recalling that D̂(z) = ezâ†
ez∗ âe−

1
2 |z|2 = e−z∗ âezâ†

e
1
2 |z|2 , and inserting it in the definition of the s-parametrized

characteristic function, the three characteristic functions can be obtained

χ−1(z, z∗) ≡χA(z, z∗) = tr(%̂e−z∗ âezâ†
) (anti-normally ordered) . (4.145)

χ0(z, z∗) ≡χW (z, z∗) = tr(%̂ezâ†−z∗ â) (Wigner) . (4.146)

χ1(z, z∗) ≡χN (z, z∗) = tr(%̂ezâ†
e−z∗ â) (normally ordered). (4.147)

Also, notice that

χW (z, z∗) =χN (z, z∗)e−
1
2 |z|2 =χA(z, z∗)e

1
2 |z|2 . (4.148)

Let us consider for the moment, the normal-ordered function (s = 1)

χN (z, z∗) ≡ tr(%̂ezâ†
e−z∗ â) . (4.149)

This equation represents a two-dimensional Fourier transform of the P function. Writing %̂ in terms of the

P-representation (4.120) it is obtained

χN (z, z∗) =
∫

d 2αP (α)〈α|ezâ†
e−z∗ â |α〉 =

∫
d 2αP (α,α∗)ezα∗−z∗α ,

=
∫ −∞

−∞
d x

∫ −∞

−∞
d y P (x + i y, x − i y)e2i (νx−µy) ,

(4.150)

with the inverse relation

P (α,α∗) ≡ 1

π2

∫
d 2z χN (z, z∗)ez∗α−zα∗

≡ 1

π2

∫ ∞

−∞
dµ

∫ ∞

−∞
dνχN (µ+ iν,µ− iν)e−2i (νx−µy) .

(4.151)

Also, the definition of the characteristic function allows determining the expectation values of all normal-

ordered operators via

〈â†p âq〉 ≡ tr(%̂â†p âq ) = ∂p+q

∂(z)p∂(−z∗)q χN (z, z∗)|z=z∗=0 . (4.152)

Similarly, for the anti-normally ordered characteristic function, it can be written

χA(z, z∗) = tr(%̂e−z∗ âezâ†
) = 1

π

∫
d 2α 〈α|ezâ†

%̂e−z∗ â |α〉 (4.153)

=
∫

d 2αQ(α)ezα∗−z∗α , (4.154)

which is the two-dimensional Fourier transform of the so-called Glauber Q-Function,

Q = 1

π
〈α|%̂|α〉 . (4.155)

The inverse Fourier transform of the anti-normal characteristic function yields,

Q(α) = 1

π2

∫
d 2z χA(z, z∗)ez∗α−zâ†

. (4.156)
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The Q-function is, therefore, always positive and does not diverge. Because of these properties, it found am-

ple application in the study of quantum dynamical systems (Sudarshan, 1963a; Mehta and Sudarshan, 1965).

For example, the value of the Q-function at a point α represents the probability that the heterodyne measure-

ment of the system yields the outcome α3.

From the definition of the anti-normally ordered characteristic function, it can be obtained

〈âp â†q〉 ≡ tr(%̂âp â†q ) = ∂p+q

∂(z)p∂(−z∗)q χA(z, z∗)|z=z∗=0 . (4.157)

Finally, it turns out that the Wigner function may be obtained as the Fourier transform of the Wigner char-

acteristic function

W (α) = 1

π2

∫
d 2z ez∗α−zα∗

χW (z, z∗) (4.158)

= 1

π2

∫
d 2z ez∗α−zα∗

χN (z, z∗)e−|z|/2 . (4.159)

As for the symmetrically ordered, the Wigner function, it was historically the first quasi-probability to be intro-

duced, by Wigner (1932). The idea behind the Wigner function is that its integral over a certain phase space

quadrature gives the probability of measuring its respective conjugate quadrature.

In general, there are many ways to represent continuous variables in phase space (Gerry et al., 2005). The

three most important are the Glauber Surdashan P-function (4.156), and the Wigner function (4.158). Each has

its advantages and disadvantages.

4.8 Quantum continuous variables

During this chapter, we have presented the main properties of the states of light and its features. Specifically,

we studied in details a bosonic mode, a direct consequence of the quantization of the electromagnetic field.

States of light are very often described/modelled by a quantum continuous variable system, a quantum system

whose degrees of freedom are associated with operators with a continuous spectrum. They naturally obey a

commutation relation and require the adoption of an infinite-dimensional Hilbert space, even when a finite

number of degrees of freedom is considered.

In our case, x̂ and p̂ are the quantum counterpart of the magnetic and electric fields along one polariza-

tion direction. Besides that, it was seen that such a system can be modelled as a collection of non-interacting

quantum harmonic oscillators with different frequencies. Now, we shall address the Gaussian parametrization.

A Gaussian state is a ground or thermal state of a second-order Hamiltonian, which is quadratic in the creation

and annihilation operators. Those states are completely determined by their first moments and covariance ma-

trix (Serafini, 2017). The reason for this parametrization is twofold: dealing with a continuous variable system

3heterodyne measurements give complex outcomes.
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in the phase-space could be easier than in the Hilbert space. Also, the criterion of P-representability (4.120) can

be easily obtained by the elements of a quantity called the covariance matrix that can be easily calculated.

4.8.1 Parametrization of a Gaussian state

Consider a quantum system with a finite set of degrees of freedom represented by pairs of self-adjoint

canonical operators q̂ j and p̂ j (for j = 1, . . . ,n, and setting ħ= 14), with canonical commutation relation

[q̂ j , p̂ j ] = iδ j ,k . (4.160)

It is convenient to introduce a real and anti-symmetric form Ω, given by the direct sum of identical 2×2 block

matrices:

Ω=
n⊕

j=1
Ω1 with Ω1 =

 0 1

−1 0

 . (4.161)

Eq.(4.161) is known as the symplectic form and satisfies that Ω =ΩT and −Ω2 = 1. In sympletic form, the

canonical commutation relation is given by

Canonical commutation relation. By defining the vector of canonical operators r̂ = (q̂1, p̂1, · · · , q̂n , p̂n)T,

where T indicates the transposition operation, eq. (4.160) can be recast as the following expression

[r̂, r̂T] = iΩ , (4.162)

where the commutator (4.162) should be taken as an outer product (see appendix A.1).

It is also convenient to define a multi-modal vector composed of all the different bosonic mode operators,

â = (â1, â†
1, · · · , ân , â†

n)T, such that

â j =
q̂ j + i p̂ jp

2
and â†

j =
q̂ j − i p̂ jp

2
, (4.163)

where r̂ is related to â by a unitary transformation Ūn , defined as

Ū =
n⊕

j=1
ūn with ū = 1p

2

1 i

1 −i

 , (4.164)

so,

r̂ = Ū â , â = Ū †r̂ . (4.165)

In terms of Ū , the canonical commutation relation for â and â† is

[â, â†] = [Ū r̂, r̂†Ū †] = Ū [r̂, r̂†]Ū † = iŪΩŪ † =Σ=
n⊕

j=1
σz , (4.166)

4We set ħ= 1 only in this section.
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where σz is the z Pauli matrix. To summarize, in terms of the vectors â and r̂ the algebra becomes

[âi , â†
j ] =∑

i , j
Σi , j , [r̂i , r̂Tj ] = iΩi , j . (4.167)

Evaluating the expectation value of the vector r̂ for a Gaussian state, it is obtained the first moments, or

displacement vector,

r̄ = tr[%̂r̂] . (4.168)

The first moment, r̄, can be determined by performing measurements of positions and momenta on systems

which are described by the bosonic operators. With the connection between density matrices on L2(Rn) and

functions of 2n variables, the covariance matrix θ, and the vector of first moments r̂ are directly accessible in

practice as the first and second statistical moments of measurements of the canonical operators. The covari-

ance matrix contains all the information about the system. Our analysis can be summarised by the following

characterization of a Gaussian state %̂:

Parametrisation of a generic Gaussian state. A Gaussian state %̂ is completely determined by its vector

of first moments r̂ and the covariance matrix θ, defined as

r̂ = tr[%̂r̂] and θ = tr[%̂{(r̂− r̄), (r̂− r̄)T}] . (4.169)

or by V, where V is the covariance matrix written in terms of the bosonic operators θ = Ū VŪ †.

The components of the covariance matrix are given by

θi , j = 1

2
〈{r̂i , r̂ j }〉− r̄i r̄ j = 1

2
〈{δr̂i ,δr̂†

j }〉 , (4.170)

V = 1

2
〈{ai ,a j }〉− āi ā j = 1

2
〈{δâi ,δâ†

j }〉 , (4.171)

where δX̂i = X̂i −〈X̂i 〉. For the single-mode case, n = 1, they are written

V =
〈δâ†δâ〉+ 1

2 〈δâδâ〉
〈δâ†δâ†〉 〈δâ†δâ〉+ 1

2

 , θ =
 〈δq̂2〉 1

2 〈{δq̂δp̂}〉
1
2 〈{δq̂δp̂}〉 〈δp̂2〉 .

 (4.172)

where the curly brackets denote the anti-commutator of the operators.

As an example, the vacuum state |0〉 is a Gaussian state with zero displacement and covariance matrix

Vva =
1 0

0 1

 . (4.173)

Similarly, the thermal state %̂th is also a Gaussian state with zero first moments and covariance matrix

Vth =
n̄th + 1

2 0

0 n̄th + 1
2

 . (4.174)
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Because θ and V are linked by a unitary transformation (4.165), it can be chosen either the V or θ represen-

tation. In the present case, V is chosen, due to practical convenience. Therefore, the covariance matrix V of %̂ is

given by (4.175),

V =
〈δâ†δâ〉+ 1

2 〈δâδâ〉
〈δâ†δâ†〉 〈δâ†δâ〉+ 1

2

=
n̄ + 1

2 m

m∗ n̄ + 1
2

 , (4.175)

where n̄ = (〈â†a〉−〈â†〉〈a〉), and m = (〈a2〉−〈a〉2). The non-diagonal terms in V correspond to the non-diagonal

terms in the energy eigenbasis (Fock basis) that is coherence, and m is the coherence parameter (4.93).

Finally, it can be established a direct connection between the characteristic function and the covariance

matrix:

Characteristic function of a Gaussian state. The characteristic function χW of a Gaussian state in terms

of its covariance matrix V is given by:

χW (z) = e−
1
2 z†Vz (4.176)

where z = (z z∗)T, and z is the complex eigenvalue of the annihilation operator ẑ, whose its eigenstate is

the coherent state |z〉.

4.8.2 Generalized uncertainty relations

The Gaussian state parametrization requires that the covariance matrix satisfy some properties to describe

a physical state (Englert and Wódkiewicz, 2003). In order to derive these properties, consider the following

operator

Â =∑
i
δâiαi , (4.177)

where αi are arbitrary complex numbers. Since A A† is positive semi-definite, it then follows that,

〈Â Â†〉 =∑
i , j
αiα

∗
j 〈δâiδâ†

j 〉 ≥ 0. (4.178)

The anti-commutator
{

âi , â†
j

}
can be written, in terms of the fluctuation operators, as{

âi , â†
j

}
= 2δaiδâ†

j −Σi , j . (4.179)

Using the algebra (4.167), which also holds for the fluctuation operators δâi , it is obtained

〈Â A†〉 =∑
i , j
αiα

∗
j

[
Vi , j + 1

2
Σi , j

]
≥ 0. (4.180)

Hence, the covariance matrix must satisfy what is called the bona fide relation

V+ 1

2
Σ≥ 0 , θ+ i

2
Ω≥ 0, (4.181)
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where the second result of eq.(4.181) can also be obtained using the algebra of r̂.

The equation (4.181) is a generalization of the Heisenberg’s uncertainty relation. To see that, consider the

case of a single-mode, then

θ+ i

2
Ω=

 〈δq̂2〉 1
2 〈{δq̂δp̂}〉+ i

2

1
2 〈{δq̂δp̂}〉− i

2 〈δp̂2〉

 . (4.182)

For this matrix to be positive semi-definite, both of its eigenvalues must be non-negative. Alternatively, the

determinant must be non-negative. Evaluating the determinant, the uncertainty relation is obtained

〈δq̂2〉〈δp̂2〉 ≥ 1

4
+ 1

4
〈{δq̂ ,δp̂}〉 , (4.183)

the eq.(4.183) is usually called the Roberson-Schrödinger uncertainty relation.

4.8.3 P-representable positive Gaussian operators

A positive Gaussian operator is said to be P-representable if it can be written as a mixture of coherent states

with a proper probability distribution function. Otherwise, the state is not P-representable, and therefore, non-

classical (MC Oliveira, 2004). The discrimination of whether a given state is classical or not is not an easy task.

However, a criteria can be derived for identifying if a given state is non-classical according to its covariance

matrix. For this purpose, let us rewrite the P-function in terms of the parametrization that we have been dis-

cussing,

P (z) =
∫

dz′ e−z†Σz′χ(z′) , (4.184)

where Σ is the z-Pauli matrix, and χN (z) is the normally-ordered characteristic function (4.149) that can be

rewritten as

χN (z) = e
1
4 z†zχW (z) = e

1
4 z†z e−

1
2 z†Vz = e

1
2 z†

(
1
2 1−V

)
z . (4.185)

Substituting eq.(4.185) into (4.184), and using the fact that −z†Σz′ =−z†′Σz (Englert and Wódkiewicz, 2003), the

P-function can be written as

P (z) =
∫

dz′ ez† ′(V− 1
2

)
z′ = 1√

det
(
V− 1

2

)e
1
2 (Σz)Tσx

(
V− 1

2

)−1
(Σz) , (4.186)

where σx is the x-Pauli matrix. It can be verified that, (Σz)T = zΣ and zΣT =−z†Σ, thus

P (z) = 1√
det

(
V− 1

2

)e−
1
2 z†Σ

(
V− 1

2

)
Σz ≡

p
detPe−

1
2 z†Pz , (4.187)

where

P =Σ
(

V− 1

2

)−1

Σ , (4.188)

From this result, we may conclude the following statement:
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P-representability of a Gaussian state A single-mode Gaussian state described by a covariance matrix V is said

to be P-representable if

n̄ > |m| , (4.189)

Proof: To have a P-representable state, P must be non-negative, which means that (V− 1/2) ≥ 0. This

condition requires eigenvalues greater or equal to zero, or alternatively, a non-negative determinant.

Thus,

det

(
V− I

2

)
=

∣∣∣∣∣∣ n̄ m

m∗ n̄

∣∣∣∣∣∣= n̄2 −|m|2 ≥ 0. (4.190)

Therefore,

n̄ ≥ m . (4.191)

It is important to emphasize that n̄ is not necessarily the mean number of thermal photons n̄th, but the

mean number of photons correspondent to the distribution in which the system is described.

Example: single-mode squeezing

To give a non-trivial example, consider a single-mode bosonic system prepared in the squeezed thermal

state

%̂= Ŝ(r )
e−βħωâ† â

Z
Ŝ†(r ) (4.192)

where Z = (1− e−βħω), and Ŝ(r ) is the squeezing operator (4.86) for θ = 0. In this state, the first moments are

zero, and the covariance matrix is given by

Vth =
(n̄th +1/2)cosh(2r ) (n̄th +1/2)sinh(2r )

(n̄th +1/2)sinh(2r ) (n̄th +1/2)cosh(2r )

 , (4.193)

where n̄th is the Bose-Einstein distribution (4.27).

From the condition (4.189), it is seen that not all states are classical. Increasing the squeezing parameter, a

transition from classical to non-classical can be observed at some critical value of r . This value rc is reached

when n̄ = m:

rc = 1

2
log(2n̄th +1) . (4.194)

In this regime, if we recall the results (4.100) and (4.84), we see that this transition occurs when one quadrature

goes below the uncertainty bound, and therefore it is no longer P-representable. This result will be extremely

significant in chapter 6.
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Figure 4.7: Sketch of the parameters n̄sth and m as a function of the squeezing parameter. At t = t0, the system

is prepared in a thermal state and is P-representable (blue region). By applying a squeezing operation and

increasing the squeezing parameter, the system goes from a classical to a non-classical state at some specific

squeezing parameter. The squeezing parameter, such that this transition occurs, when n̄sth = m, is defined

as the critical squeezing parameter rc . After rc , the state cannot be represented as being merely a mixture of

coherent states anymore since its probability distribution function is not legitimate.

In the next section, we will tackle the problem of a single-mode coupled to a reservoir. Our objective is to

obtain an equation for the system under the action of environmental interaction. Many tools learned in this

section will be used, both for the master equation derivation and its solution.
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CHAPTER 5

Open quantum systems

No quantum system can exist in isolation — it unavoidable interacts with its environment. Over sufficiently

long times, rather than undergoing the coherent evolution predicted by Schrödinger’s equation, a quantum

system will exhibit a noisy, dissipative dynamics. The theory of open quantum systems is concerned precisely

with formulating simple and accurate equations that predict the dynamics of open systems. This has become an

essential tool, used routinely in many fields of quantum research (e.g., quantum information, quantum optics,

or condensed matter physics).

Back in the late 1970s, the theory of open quantum systems was first inspected as a means to study the

charming relationships between thermodynamics and quantum mechanics (Kossakowski, 1972; Spohn, 1978;

Alicki, 1979). An open quantum system kept away from equilibrium by thermal contact with environments at

different temperatures, is a minimal universal template for a heat engine or a refrigerator, and the analysis of

such models gave rise to the quickly growing field of quantum thermodynamics (Scovil and Schulz-DuBois,

1959; Geusic et al., 1959). Perhaps, the most exciting recent developments in the field are the first proof-of-

principle experiments realizing nanoscale quantum heat engines and refrigerators (Peterson et al., 2019; Klat-

zow et al., 2019; Roßnagel et al., 2016).

In this chapter, the essential elements of the theory of open quantum systems used in the next chapter of

this dissertation are presented. The derivation given here follows the treatments by Louisell (1973) and Haake

(1973). With some differences in the way approximations are introduced. Also, no attempt is made to follow the

authors’ notation.

Consider a closed system described by a Hilbert spaceH=Hs⊗HB, where Hs and HB are the Hamiltonians
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for the open system and the environment1, respectively. The density matrix of the open system is obtained

tracing out the bath from the density matrix of the global system. This is what is called a reduced density

matrix, %̂s(t ) = trB [%̂(t )]. The formal solution for %̂s(t ) given some initial condition %̂(0) is

%̂s(t ) = trB [e−iĤ t %̂(0)e iĤ t ] , (5.1)

where Ĥ is the global Hamiltonian on H.

5.1 The Lindblad equation

In this dissertation, the master equation method is used to model the dynamics of the open quantum sys-

tems. This is an equation of motion that describes the time evolution of the open system %̂s under the influence

of the environment. For this evolution to be physically meaningful, it is required that it be completely positive

and trace-preserving (CPTP) (Rivas and Huelga, 2011). It also considered, for simplicity, that the dynamics are

Markovian, that is, the time derivative of %̂ at time t depends only on %̂(t ). The most general Markovian master

equation fulfilling these conditions is the Lindblad equation:

Lindblad’s Theorem. The generator of any quantum operation satisfying the CPTP condition must have

the form (Breuer et al., 2002):

d

d t
%̂=L (%̂) =−i [Ĥ , %̂]+∑

k
γk

[
Lk %̂L†

k −
1

2
{L†

k Lk , %̂}

]
(5.2)

where Ĥ is a Hamiltonian describing coherent processes, Lk are the Lindblad operators describing the

incoherent “jumps” and γk ≥ 0 are the rates of these jumps.

The Lindblad equation may either be postulated on phenomenological grounds or derived from first prin-

ciples. In the latter case, the derivation requires the assumption of at least two well-separated dynamical time

scales, one fast and one slow Carmichael (1999).

5.2 The master equation

In this section, a master equation describing the interaction of a harmonic oscillator with frequency ω0

and a bath of harmonic oscillators with frequencies ω j is derived. In order to simplify the analysis, several

mathematical details are ignored.

1The terms “environment”, “reservoir” and “bath” are used interchangeably.
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Let us consider an open quantum system described by the Hamiltonian Ĥ s , Ĥ s ∈ Ĥs , coupled to a reservoir

described by the Hamiltonian ĤB , ĤB ∈ ĤB . Such that, the Hamiltonian of the composite system in Ĥs ⊗ ĤB is

Ĥ = Ĥ s +ĤB + V̂ , (5.3)

where V̂ is the interaction Hamiltonian. The equation of motion in the interaction picture is given by eq.(3.40)

d

d t
ρ̂I(t ) =− i

ħ [V̂I(t ), ρ̂I(t )] , (5.4)

where ρ̂I is the density operator of the composite system. If the interaction is turned on at t = 0 and no corre-

lations exist between the system and reservoir initially, the density operator of the composite system is given

by

ρ̂I(0) = %̂I(0)⊗ %̂IB , (5.5)

where %̂I (0) and %̂IB are the initial density operator of the system and reservoir in the interaction picture, respec-

tively. Integrating eq.(5.4), substituting the result ρ̂I(t ) back into the commutator of the right-side, and tracing

out the environment, it is obtained:

˙̂%I(t ) =− 1

ħ2

∫ t

0
d t ′ trB {[V̂I(t ), [V̂I(t ′), ρ̂I(t ′)]]} , (5.6)

where, without loss of generality, we have eliminated the term (−i /ħ)trB {[V̂I(t ), ρ̂I(0)]} assuming that

trB {V̂I(t )%̂IB} = 0, (5.7)

meaning that the reservoir operators have zero mean in the state %̂IB (Carmichael, 1999).

At later times correlations arise due to the coupling between the system and the reservoir. However, it is

considered that the system is very weakly coupled to the reservoir, such that ρ̂I(t ) should only give terms of

order V̂I from an uncorrelated state.

ρ̂I(t ) = %̂I(t )⊗ %̂IB +O(V̂I) . (5.8)

Now we can make our first approximation, a Born approximation: neglecting terms of second-order and higher

in V̂I, eq (5.6) can be written as

˙̂%I(t ) =− 1

ħ2

∫ t

0
d t ′ trB {[V̂I(t ), [V̂I(t ′), %̂I(t ′)⊗ %̂IB]]} . (5.9)

A complete, and carefully, discussion of this approximation can be found in the work of Haake (1973). This

approximation implies in a weakly coupling. Hence, it is possible to write the state of the composite system as

a tensorial product. Furthermore, it is assumed that the correlation time τc (and thus the relaxation time τR ) of

the environment is sufficiently small, such that %̂IB(t ) ≈ %̂IB(0), if τR >> τC .

Notice that the equation (5.9) is still complicated. In particular, the future evolution of %̂(t ) depends on its

past through the integration over %̂(t ′). Then, it is expected that the time scales involved here are shorter than
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the gross time scales over which the system evolves, so that %̂(t ′) ≈ %̂(t ). This is the second major approximation

and is called the Markov approximation and the master equation (5.9) can be rewritten as

˙̂%I(t ) =− 1

ħ2

∫ t

0
d t ′ trB {[V̂I(t ), [V̂I(t ′), %̂I(t )⊗ %̂IB]]} . (5.10)

5.2.1 Thermal bath

So far, no property about the reservoir or the system has been taken into account. It is now adopted an ex-

plicit model consisting of a single-bosonic mode, i.e., a harmonic oscillator with frequencyω0, and the bosonic

operators â and â†, coupled to a reservoir modeled by a collection of harmonic oscillators with frequencies ω j

and bosonic operators b̂ j and b̂†
j . The single-mode couples to the reservoir via a coupling constant k j in the

rotating wave approximation2. It is assumed that the reservoir is in thermal equilibrium at temperature T , and

each harmonic oscillator of the bath is prepared in a thermal state (4.23):

%̂
( j )
R =∑

j
(1−e−ħω j /kB T )e−ħω j b̂†b̂ . (5.11)

Therefore, the Hamiltonian of the composite system may be written as

Ĥ s ≡ħω0â†a

ĤB ≡∑
j
ħω j b̂†

j b̂ j

V̂ ≡∑
j
ħ(k∗

j âb̂†
j +k j â†b̂ j ) =ħ(âΓ̂† + â†Γ̂) .

(5.12)

where Ĥs ∈Hs , ĤB ∈HB , k j is the coupling constant, Γ̂=∑
j k j b̂ j , and V̂ is the interaction Hamiltonian.

Let us first write the operators on eq.(5.12) in the interaction picture,

âI(t ) = e iω0 â† â âe−iω0 â† â = âe−iω0t

â†
I (t ) = e iω0 â† â â†e−iω0 â† â = â†e iω0t

Γ̂I(t ) =
(
e i

∑
n ωn b̂†

n b̂n

)∑
j

k j b̂ j

(
e−i

∑
n ωn b̂†

n b̂n

)
=∑

j
k j b̂ j e−iω j t

Γ̂†
I (t ) =

(
e i

∑
n ωn b̂†

n b̂n

)∑
j

k∗
j b̂†

j

(
e−i

∑
n ωn b̂†

n b̂n

)
=∑

j
k∗

j b̂ j e iω j t ,

(5.13)

so, it follows that the interaction Hamiltonian in the interaction picture is given by

V̂I(t ) =ħ(â†
I (t )ΓI(t )e iω0t + âI(t )Γ†

I (t )e−iω0t ) . (5.14)

2The rotating wave is an approximation where the terms in a given Hamiltonian, which oscillate rapidly, are ignored. In this case, the

interaction Hamiltonian takes the linear form.
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From now on, the label I characterizing the interaction picture is dropped out so that the notation does not

get confusing. Substituting eqs.(5.13) and (5.14) into eq.(5.10),

˙̂%=−
∫ t

0
d t ′ {[ââ%̂(t ′)− â%̂(t ′)â]e−iω0(t+t ′)〈Γ̂†(t )Γ̂†(t ′)〉B +h.c

+ [â†â†%̂(t ′)− â†%̂(t ′)â†]e iω0(t+t ′)〈Γ̂(t )Γ̂(t ′)〉B +h.c

+ [ââ†%̂(t ′)− â†%̂(t ′)â]e−iω0(t−t ′)〈Γ̂†(t )Γ̂(t ′)〉B +h.c

+ [â†â%̂(t ′)− â%̂(t ′)â†]e iω0(t−t ′)〈Γ̂(t )Γ̂†(t ′)〉B +h.c,

(5.15)

where h.c means the Hermitian conjugate, and the notation 〈.〉 is called the reservoir correlation function and

is given explicitly by

〈Γ̂(t )†Γ̂(t ′)†〉B =∑
j ,k

k∗
j k∗

k e iω j t e iωk t ′〈b̂†
j b̂†

k〉 = 0,

〈Γ̂(t )Γ̂(t ′)〉B =∑
j ,k

k j kk e−iω j t e−iωk t 〈b̂ j b̂k〉 = 0,

〈Γ̂(t )†Γ̂(t ′)〉B =∑
j ,k

k∗
j kk e iω j t e−iωk t ′〈b̂†

j b̂k〉 =
∑

j
|k j |2e iω j (t−t ′)n̄th(ω j ,T ) ,

〈Γ̂(t )Γ̂(t ′)†〉B =∑
j ,k

k j k∗
k e−iω j t e iωk t ′〈b̂ j b̂†

k〉 =
∑

j
|k j |2e−iω j (t−t ′)[n̄th(ω j ,T )+1] ,

(5.16)

with

n̄th(ω j ,T ) = trB [%̂B b̂†
j b̂ j ] = e−ħω j /kB T

1−e−ħω j /kB T
. (5.17)

The non-vanishing terms in eqs.(5.16) involve a summation over the reservoir oscillators. This summation

can be changed to an integration by introducing the density of states g (ω), such that g (ω)dω gives the number

of oscillators with frequencies in the interval ω+dω. Also, making the change of variable

τ= t − t ′ , (5.18)

the equation (5.15) can be restated as

˙̂%=−
∫ t

0
dτ{[ââ†%̂(t −τ)− â†%̂(t −τ)â]e−iω0τ〈Γ†(t )Γ(t −τ)〉B +h.c

+ [â†â%̂(t −τ)− â%̂(t −τ)â†]e iω0τ〈Γ(t )Γ†(t −τ)〉B +h.c,

(5.19)

where now the nonzero correlation functions takes the form

〈Γ̂(t )†Γ̂(t ′)〉B =
∫ ∞

0
dω e iωτg (ω)|k(ω)|2 n̄th(ω j ,T ) ,

〈Γ̂(t )Γ̂(t ′)†〉B =
∫ ∞

0
dω e−iωτg (ω)|k(ω)|2 [n̄th(ω,T +1]) .

(5.20)

It is convenient to evaluate the time integral in eq.(5.19) first, without performing the frequency integrals,

to obtain an explicit form for the reservoir correlation functions. This is possible because the τ integration is
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dominated by times that are much shorter than the time scale for the evolution of %̂ (Carmichael, 1999). With

%̂(t −τ) replaced by %̂(t ) (Markov Approximation), and writing %̂(t ) = %̂ just to make it easier, (5.18) becomes

˙̂%=−
∫ t

0
dτ{[ââ†%̂− â†%̂â]e−iω0τ〈Γ̂†(t )Γ̂(t −τ)+ [â†â%̂− â%̂â†]e iω0τ〈Γ̂(t )Γ̂†(t −τ)〉B +h.c〉B}

=−
∫ t

0
dτ{[ââ†%̂− â†%̂â]e−iω0τ}

∫ ∞

0
dω e iωτg (ω)|k(ω)|2 n̄th(ω j ,T )

−
∫ t

0
dτ{[â†â%̂− â%̂â†]e iω0τ}

∫ ∞

0
dω e−iωτg (ω)|k(ω)|2 [n̄th(ω,T )+1])+h.c,

(5.21)

and then,

˙̂%=
∫ t

0
dτ

∫ ∞

0
dωe i (ω−ω0)τg (ω)|k(ω)|2 n̄th(ω,T )[â†%̂â − ââ†%̂]

+
∫ t

0
dτ

∫ ∞

0
dωe−i (ω−ω0)τg (ω)|k(ω)|2 n̄th(ω,T )[â%̂â† − â†â%̂]

+
∫ t

0
dτ

∫ ∞

0
dωe−i (ω−ω0)τg (ω)|k(ω)|2 [â%̂â† − â†â%̂]+h.c.

(5.22)

Note that the second term of this equation can be combined with the Hermitian conjugate of the first term

and vice-versa, obtaining

˙̂%=
∫ t

0
dτ

∫ ∞

0
dωe−i (ω−ω0)τg (ω)|k(ω)|2 n̄th(ω,T )[â†%̂â + â%̂â† − â†â%̂− %̂ââ†]

+
∫ t

0
dτ

∫ ∞

0
dωe−i (ω−ω0)τg (ω)|k(ω)|2 [â%̂â† − â†â%̂]+h.c,

(5.23)

or,

˙̂%=α(â%̂â† − â†â%̂)+β(â%̂â† + â†â%̂− â†â%̂− %̂ââ†)+h.c, (5.24)

with the definitions

α=
∫ t

0
dτ

∫ ∞

0
dωe−i (ω−ω0)τg (ω)|k(ω)|2 ,

Λ=
∫ t

0
dτ

∫ ∞

0
dωe−i (ω−ω0)τg (ω)|k(ω)|2 n̄th(ω,T ) .

(5.25)

Since τ dominates by much shorter times ≈ τR , the τ integration can be extended to infinity and the quantities

α and β can be evaluated (appendix A.5) using the Sokhotski–Plemelj formula:

lim
t→∞

∫ t

0
dτe−(ω−ω0)τ =πδ(ω−ω0)+ i

P

ω−ω0
, (5.26)

where P indicates the Cauchy principal value. Hence,

α=πg (ω0)|k(ω0)|2 + i∆ ,

Λ=πg (ω0)|k(ω0)|2 n̄th(ω0)+ i∆′ ,
(5.27)

with

∆= P
∫ ∞

0
dω

g (ω)|k(ω)|2
ω−ω0

∆′ = P
∫ ∞

0
dω

g (ω)|k(ω)|2 n̄th(ω,T )

ω−ω0
.

(5.28)
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Finally, the master equation for the harmonic oscillator coupled to a thermal bath is obtained - from (5.25)

and (5.27-5.30), as

˙̂%= γ

2
(â%̂â† − â†â%̂− %̂â†â)− i∆[â†â, %̂]+γn̄th(â%̂â† + â†%̂â − â†â%̂+ â†â%̂− %̂ââ†) , (5.29)

where

γ≡ 2πg (ω0)|k(ω0)|2 ,

n̄th ≡ n̄th(ω0,T ) .
(5.30)

The density operator of the system %̂ is still in the interaction picture. To transform it back to the Schrödinger

picture, it is only needed the following transformation

˙̂%=− i

ħ [H s , %̂s]+U ˙̂%U † , (5.31)

with H s =ħω0â†â. Thus, the master equation in the Schrödinger picture is written

˙̂%=−iω′
0[â†a, %̂]+ γ

2
(n̄th +1)(2â%̂â† − â†â%̂− %̂â†â)+ γ

2
n̄th(2â†%̂â − ââ†%̂− %̂ââ†) , (5.32)

where

ω′
0 ≡ω0 +∆ . (5.33)

5.2.2 Squeezed thermal bath

In the last section, we derived an equation that describes the time evolution of an open system when it is

coupled with a bosonic bath prepared in a thermal state (4.23). In this section, the derivation of the master

equation is extended to the case where the open system is interacting with a non-thermal bath. In other words,

the single mode is coupled to a collection of harmonic oscillators, each of them prepared in a squeezed thermal

state, that is, its states are given by

%̂
( j )
B = Ŝ(ξ)

e−βĤ
( j )
B

Z j
Ŝ†(ξ) (5.34)

where Ŝ is the squeezing operator (4.86). For this case, it follows that the correlation function (5.16) now satis-

fies,

〈b̂†
j (ω)b̂†

j (ω′)〉 = 2πm(ω)δ(2ω′−ω−ω0) ,

〈b̂†
j (ω)b̂ j (ω′)〉 = 2πn̄sth(ω,T )δ(ω−ω0) ,

〈b̂ j (ω)b̂†
j (ω0)〉 = 2π[n̄sth(ω,T )+1]δ(ω−ω0) ,

(5.35)

where n̄sth(r,T ) = (n̄th +1/2)cosh2r is the mean photon number of the ith squeezed reservoir, and m(r,T ) =
(n̄th +1/2)sinh2r is coherence parameter.
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The same procedure as in the case of a thermal bath can be followed. In this case, the master equation in

the interaction picture is given by (Scully and Zubairy, 1997b)

˙̂%= γ

2
(n̄sth +1)(2â%̂â† − â†â%̂− %̂â†â)+ γ

2
n̄sth(2â†%̂â − ââ†%̂− %̂ââ†)

+ γ

2
m(2â†%̂â† − â†â†%̂− %̂â†â†)+ γ

2
m∗(2â%̂â − ââ%̂− %̂ââ)

. (5.36)

The difference between eq.(5.36) and eq.(5.29) are the two additional terms corresponding to the non-diagonal

terms on the density operator when it is represented in a Fock basis. To recovery eq.(5.29), we only need to

make r = 0.

5.3 Solution of the master equation

In the last section, we discussed the master equation for the single-mode coupled to a squeezed thermal

bath,

˙̂%= γ

2
(n̄sth +1)(2â%̂â† − â†â%̂− %̂â†â)+ γ

2
n̄sth(2â†%̂â − ââ†%̂− %̂ââ†)

+ γ

2
m(2â†%̂â† − â†â†%̂− %̂â†â†)+ γ

2
m∗(2â%̂â − ââ%̂− %̂ââ)

. (5.37)

The time evolution of the density matrix can be obtained by solving this equation. For this, it is convenient to

use the characteristic function formalism, so rewriting eq.(5.37) in terms of the characteristic function (4.144),

the equation of motion is now
∂χW

∂t
= e−

1
2 |z|2 tr( ˙̂%eza†

e−z∗a) . (5.38)

where it was used the correspondence (see. eq(4.185)) between the Wigner and the normally-ordered charac-

teristic functions. Substituting eq.(5.37) into eq.(5.38),

∂χW

∂t
= e−

1
2 |z|2 tr

{[γ
2

(n̄sth +1)(2â%̂â† − â†â%̂− %̂â†â)+ γ

2
n̄sth(2â†%̂â − ââ†%̂− %̂ââ†)

= γ

2
m(2â†%̂â† − â†â†%̂− %̂â†â†)+ γ

2
m∗(2â%̂â − ââ%̂− %̂ââ)

]
ezâ†

e−z∗ â
}

.
(5.39)

Re-expressing each of the twelve terms on the right-hand side of equation (5.39) in terms ofχN and its derivative

with respect to z and z∗. Some of then can be achieved directly. For instance,

tr(â%̂â†ezâ†
e−z∗ â) = tr(%̂â†ezâ†

e−z∗ â â) =− ∂2

∂z∗∂z
χN , (5.40)

where we have simply used the cyclic property of the trace. For the remaining terms, we use the cyclic property

of the trace and a little more algebraic manipulation to rearrange the terms inside the trace. Generally, the

rearrangement may require us to pass â† through the exponential e i z∗ â . For this purpose, it is used the relation:

e−z∗ â â†ez∗ â = â† − z∗

ezâ†
âe−zâ† = â − z .

(5.41)
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A more detailed discussion about this passage can be found on Appendix (A.5). The equation of motion for

χN becomes

∂χW

∂t
=

{
−γ

2

[
(1+2n̄sth)|z|2 +m∗z2 +mz∗2 + z∗ ∂

∂z∗ + z
∂

∂z

]}
e−

1
2 |z|2χN . (5.42)

Defining the quantities

A ≡−γ
2

[(1+2n̄sth)|z|2 +m∗z2 +mz∗2]

B ≡−γ
2

(
z∗ ∂

∂z∗ + z
∂

∂z

)
.

(5.43)

The choice in defining A and B as in eq.(5.45) is because it satisfies the following commutation relation

[A,B ] = γA , (5.44)

this result will be useful for the next steps. Then, the equation of motion for the characteristic function can be

written as:
∂χW

∂t
= (A+B)χW (z, t ) , (5.45)

whose the formal solution is

χW (t ) = e(A+B)tχW (0) . (5.46)

Using the The Zassenhaus formula and other identities (on Appendix A.3), the solution (5.46) can be recast

as

χW (z, t ) = exp

[
A

γ
(1−e−γt )

]
e tB χW (z,0) , (5.47)

where χ(z,0) is the initial normally-ordered characteristic function of the single bosonic mode.

Considering the following relation:

exp(εx∂x + yε∂y ) f (x, y) = f (x exp(ε), y exp(ε)) , (5.48)

we may use it by recalling that B =−γ
2

(
z∗ ∂

∂z∗ + z ∂
∂z

)
. Thus,

e tBχW (z,0) =χW (e−
γ

2 t z,0) , (5.49)

defining z(t ) ≡ e−
γ

2 t z, therefore, the characteristic function can be written as

χW (z, t ) = exp

[
A

γ
(1−e−γt )

]
χW (z(t ),0) . (5.50)

The initial characteristic function of a Gaussian state is given by (4.176):

χW (z,0) = e−
1
2 z†Vz . (5.51)
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Introducing the following matrices

N =
2n̄sth +1 0

0 2n̄sth +1

 , M =
 0 m

m∗ 0

 , (5.52)

and substituting eq.(5.51) into eq.(5.50), the characteristic function of the single bosonic mode weakly dissipat-

ing into a squeezed thermal reservoir is

χ(z, t ) = exp

[
A

γ
(1−e−γt )

]
χ(z(t ),0)

= exp

{
−1

2
[(1+2n̄sth)|z|2 +m∗z2

i +mz∗2](1−e−γt )

}
χ(z(t ),0)

= exp

{
−1

2
z†

(
N

2
+M

)
z+ e−γt

2
z†

(
N

2
+M

)
z
}

exp

[
−1

2
e−γt z†Vz

]
= e−

1
2 z† C z ,

where

C ≡ e−γt (V−σ)+σ and σ = N

2
+M . (5.53)

Explicitly,

σ =
n̄sth + 1

2 m

m∗ n̄sth + 1
2 .

 (5.54)

Therefore, from eqs.(5.53) and (5.54), we observe that when t goes to infinity, the open system is described by

a squeezed thermal state. However, setting r = 0, i.e., when the open system is interacting with a thermal bath,

the system evolves to the thermal state. In order to confirm that, let us determine the P-function for the case

where r = 0. Using eq.(4.186),

P (z) =
∫

dz′ e−z†Σz′e−
1
2 z†

(
V− 1

2 1
)
z

= 1√
det

(
V− 1

21
)e−

1
2 z†Σ

(
V− 1

2 1
)−1
Σz

= 1

πn̄th
exp

−1

2

(
z∗ z

)1 0

0 −1

 1
n̄th

0

0 1
n̄th

1 0

0 −1

 z

z∗


= 1

πn̄th
e
− |z|2

n̄th ,

(5.55)

which is the same result derived in (4.137).

We can go further and verify that L (e−βωâ† â) = 0, meaning that the steady-state is a thermal state with the

same temperature as that imposed by the bath.

5.3.1 Some properties of the squeezed thermal bath

Until now, non-thermal reservoirs such as the squeezed thermal bath, has been essentially conceptualized

as stationary non-equilibrium reservoirs, constructed, i.e., from reservoir engineering techniques. We have
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seen so far that a squeezed thermal bath is modeled as a collection of harmonic oscillator where each of them

is in a thermal state at some inverse temperature β to which the squeezing operator has been applied (5.34) :

%̂
( j )
R = Ŝ(ξ)

e−βĤ
( j )
R

Z j
Ŝ†(ξ) , (5.56)

Although a squeezed thermal bath has been called as nonequilibrium reservoirs, Manzano (2018) inter-

preted it, as a generalized Gibbs ensemble. In order to see that, let us write (5.34) in a more convenient way.

Using (4.90), the density operator of the reservoir can be written as,

%̂
( j )
R = 1

Zs
exp

{
−βħω j

(
b̂†

j b̂ j cosh2r − 1

2
sinh2r (b̂†

j
2 + b̂2

j )+ sinh2 r + 1

2

)}
= 1

Zs
exp

{
−βcosh2r

[
ħω j

(
b̂†

j b̂ j + 1

2

)
− ħω j

2
(b̂ j

2 + b̂†
j

2) tanh2r

]}
= 1

Zs
exp{−βs(H ( j )

R −µm̂( j )
R } .

(5.57)

where the following quantities were defined:

βs ≡βcosh2r Generalized inverse temperature (5.58)

µ≡ tanh2r Chemical-like potential of squeezing, (5.59)

together with the operator

m̂( j )
R ≡−ħω j

2
(b̂2

j + b̂†
j

2) . (5.60)

The operator (5.60) is called as the second-order moment asymmetry, or just the asymmetry for the j th

reservoir mode, and it receives this name because if we rewrite it in terms of the dimensionless position and

momentum quadratures (4.50), the operator takes the form

m̂( j )
R = ħω j

2
(X̂ 2

1 − X̂ 2
2 ) . (5.61)

For the cases that we are dealing here, a single bosonic mode, i.e, a Gaussian state with first moments equal to

zero, it corresponds to the difference between the uncertainties in the mode quadratures X̂1 and X̂2,

〈m̂( j )
R 〉 = ħω j

2
(∆X 2

2 −∆X 2
1 ) , (5.62)

and is a measure of squeezing. For instance, in the case of a thermal state (4.52) and (4.53), the uncertainties

are symmetric, and therefore the asymmetry is zero. However, for squeezed states, the asymmetry depends on

the squeezing parameter and increases with it.

Moreover, this reservoir behaves in a very similar way to a particle reservoir3 at thermal equilibrium, but

replacing the number of particles by the asymmetry, and consequently the traditional chemical potential by

the chemical-like potential of squeezing (Manzano, 2018).

3Grand canonical ensemble
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5.4 Dynamics of a two-mode system and swapping time

Along the last section we discussed the behaviour of a single bosonic mode interacting with a bath that

is modeled as a collection of harmonic oscillators. We have seen that at the asymptotic limit, when t → ∞,

the steady-state of the open system tends to become the state in which the reservoir was prepared. Now let us

consider the problem where instead of coupling the single-mode with an infinite number of modes, we coupled

to another single mode bosonic field, using the same interaction Hamiltonian (5.14). Then, we will analyze the

dynamical evolution of a two-mode harmonic system and conclude that for certain values of time, namely the

swapping time, the two-modes exchange their identities. The aim of this section is to shortly discuss the result

obtained by Oliveira et al. (1999) in order to use it as a future reference in chapter 6.

The Hamiltonian of the composite system can be written as

Ĥ =ħωa â†â +ħωc b̂†b̂ +ħ(e i (φ−νt )âb̂† +e i (φ−νt )â†b̂) , (5.63)

where

V̂ =ħ(e i (φ−νt )âb̂† +e i (φ−νt )â†b̂) , (5.64)

so the equations of motion for the bosonic operators in the interaction picture, âI(t ) = â(t )e iωa t and b̂I(t ) =
b̂(t )e iωb t , reads

d âI

d t
= 1

iħ [âI, V̂I] =−iλe i (Ωt+φ)b̂I (5.65)

db̂I

d t
= 1

iħ [b̂I, V̂I] =−iλe−i (Ωt+φ)âI , (5.66)

Deriving eq.(5.65) with respect to time and substituting it in eq.(5.66), one obtains a second order differential

equation
d 2âI

d t 2 − iΩ
d âI

d t
+λ2aI = 0. (5.67)

The same can be done for b̂I. The general solution of eq.(5.67) is given by

âI(t ) = ĉ1eµ+t + ĉ2eµ− t , (5.68)

with

µ± =± i

2

(√
Ω2 +4λ2 ±Ω

)
, (5.69)

the amplitude operators ĉ1 and ĉ2 are determined by the initial conditions, â(0) and b̂(0):

ĉ1 =− [µ−â(0)+ iλb̂(0)e−iφ]

µ+−µ−

ĉ2 = [µ−â(0)+ iλb̂(0)e−iφ]

µ+−µ−
.

(5.70)
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After some manipulation, the solution of eq.(5.67) are

âI(t ) = u1(t )âI(0)+ v1(t )b̂I(0) ,

b̂I(t ) = u2(t )b̂I(0)+ v2(t )âI(0) ,
(5.71)

where

u1(t ) = µ+eµ−t −µ−eµ+t

µ+−µ−
,

u2(t ) = µ+eµ+t −µ−eµ−t

µ+−µ−
e−iΩt ,

v1(t ) = iλ
(eµ−t −eµ+t )

µ+−µ−
e−iφ ,

v2(t ) = iλ
(eµ−t −eµ+t )

µ+−µ−
e−i (Ωt−φ) ,

(5.72)

or more explicitly,

u1(t ) = e iΩt/2

p
Ω2 +4λ2

[√
Ω2 +4λ2 cos

(p
Ω2 +4λ2

2
t

)
− i sin

(p
Ω2 +4λ2

2
t

)]
,

u2(t ) = e−iΩt/2

p
Ω2 +4λ2

[√
Ω2 +4λ2 cos

(p
Ω2 +4λ2

2
t

)
+ i sin

(p
Ω2 +4λ2

2
t

)]
,

(5.73)

v1(t ) =−2iλe iΩt/2e−iφ

p
Ω2 +4λ2

sin

(p
Ω2 +4λ2

2
t

)
,

v2(t ) =−2iλe−iΩt/2e−iφ

p
Ω2 +4λ2

sin

(p
Ω2 +4λ2

2
t

)
.

(5.74)

Observing eq.(5.74), we see that for certain values of time the coefficients go to zero, and the operators âI(t )

and b̂I(t ) assume their initial values, up to a unitary phase factors. Another characteristic time of the two-mode

system is the swapping time τsw when an exchange (up to a phase factor) of the two-modes operators takes

place, namely

âI(t +τsw) = b̂I(t ) , (5.75)

b̂I(t +τsw) = âI(t ) , (5.76)

such that,

u1(t +τR ) = v2(t ) , (5.77)

v1(t +τR ) = u2(t ) . (5.78)

Therefore, for eq.(5.77) we have that,

e iΩ(2t+τR )/2
{

cos

(
λ′t
2

)[
λ′ cos

(
λ′t
2

)
− iΩsin

(
λ′τR

2

)]
− sin

(
λ′t
2

)[
cos

(
λ′t
2

)
+ iΩsin

(
λ′τR

2

)]}
=−2iλ′e iφ sin

(
λ′t
2

)
,

(5.79)
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where λ′ =
p
Ω2 +4λ2. eq.(5.79) is satisfied only ifΩ= 0, implying that λ′ =λ. Thus, eq.(5.79) becomes

cosλt cosλτR − sinλt sinλτR =−i e iφ sinλt . (5.80)

If we choose τR such that

τn
R = (n +1/2)π

λ
, n = 1,2,3, ... (5.81)

thus

e iφ = i (−1)n = (i )2n+1 = e iπ(2n+1)/2 , (5.82)

if and only if

φn =
(
n + 1

2

)
π=λτR +π . (5.83)

The same result is valid for (5.78), resulting in the identity exchange of the operators â and b̂. Therefore, we

have seen that when we consider the problem of coupling by a linear interaction Hamiltonian, the dynamics

followed by the joint system is one where the two-modes exchange their identities, i.e, the mode A assumes the

initial value of mode B and vice-versa. The identity exchange occurs periodically, with a period given by τR .
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CHAPTER 6

Thermodynamics and classicality

Over the last decades, it has been investigated whether quantum features could be controlled and whether

quantum devices could operate with efficiencies larger than the Carnot’s efficiency – therefore requiring a re-

formulation of Carnot’s statement of the second law of thermodynamics. In this scenario, quantum engines op-

erating between a thermal and a squeezed-thermal bath have been shown to overcome this bound (Roßnagel

et al., 2014; Abah and Lutz, 2014; Niedenzu et al., 2017). Nevertheless, the use of squeezed thermal baths in

quantum thermodynamics has been mostly unexplored. In this dissertation, we study a quantum heat engine

based on a single bosonic mode as a working substance. The bosonic mode operates between a cold thermal

bath and a hot squeezed thermal bath, and performs two different cycles. We address the problem using the

concept of P-representability, which asserts that a given state is said to be classical (or P-representable) if it is

written as a mixture of coherent states with a proper probability distribution function (Gerry et al., 2005; Lee,

1991). Conversely, a non-classical state does not have a legitimate probability distribution function over an

ensemble of coherent states. Additionally, squeezed states encompass states with non-zero coherence in the

energy eigenbasis, presenting an ideal platform to understand how generic quantum features affect classical

formulations of the thermodynamics axioms.

We start by looking at the most straightforward Gaussian resource theory of all, namely squeezing or non-

classicality. The free states of this theory, also called classical states, are merely convex mixtures of coherent

states (Lami et al., 2018). Within this framework, a function called classicality is defined. This function is con-

structed based on the definition of P-representability and only depends on the temperature and the squeezing

parameter. Since its negativity indicates a non-classical behavior, for higher values of temperature, the system

is more classical, and a considerable amount of squeezing is needed to achieve a non-classical character. This is
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also related to the uncertainty in position or momentum quadratures of the bosonic mode. A non-classical state

is attained when this uncertainty falls below shot noise (Scully and Zubairy, 1997a). Afterwards, we develop a

microscopic model that provides us with a master equation.

We then move to consider the implementation of a traditional Otto and a generalized cycle. The bosonic

mode performs a thermodynamic four-stroke cycle. The first and the third strokes are the thermalization (iso-

choric) processes where the work parameter, which is the squeezing, is fixed, and the system is allowed to relax

in contact with the heat baths. The second and fourth strokes, on the other hand, are the unitary (isentropic)

work strokes, where the mode is squeezed and unsqueezed. In both cases, we start with a classical state. By ap-

plying a squeezing operation to the mode, a transition to a non-classical state occurs. The second cycle follows

the same idea as the first. However, during the system’s thermalization with the hot squeezed thermal bath,

instead of keeping fixed the squeezing parameter, the classicality function describing the system is maintained

constant, unlike in the traditional Otto cycle, where classicality increases in this step. A general scheme of the

two protocols are sketched below (see fig.(6.1))

Figure 6.1: Schematic diagram of the four-step protocol in which the bosonic mode is coupled with two different

reservoirs. The unitary S represents the adiabatic squeezing modulation and S† the unitary unsqueezing.

6.1 System plus reservoir approach

We address the problem assuming a weak coupling regime between the single-mode and the heat baths.

The dynamics can be modelled adopting a time-independent Lindblad master equation of the form, ˙̂%=L (%̂).

The working fluid is a harmonic oscillator with natural frequency ω0, and creation and annihilation operators,

a† and â, respectively; the reservoir is modeled as a collection of harmonic oscillators with frequencies ω j ,

and corresponding creation and annihilation operators b†
j and b j . The oscillator couples to the j th reservoir

oscillator via a coupling constant k j in the rotating-wave approximation.
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The Hamiltonian of the composite system is written as

Ĥ s ≡ħω0â†a ,

ĤB ≡∑
j
ħω j b̂†

j b̂ j ,

V̂ ≡∑
j
ħ(k∗

j âb̂†
j +k j â†b̂ j ) =ħ(âΓ̂† + â†Γ̂) .

(6.1)

6.1.1 Thermal bath

First, it is assumed that the reservoir is prepared in a thermal state, such that it is parameterized only by its

temperature T . In this case, the density operator is given by

%̂(i )
R = e−βĤ (i )

R

Zi
(6.2)

where Zi is the partition function, Ĥ (i )
R is the Hamiltonian of each reservoir oscillator, and β is the inverse

temperature. Under the Markov-Born approximation, the master equation for the single-modes field can be

written as

˙̂%= γ

2
(n̄th +1)(2â%̂â† − â†â%̂− %̂â†â)+ γ

2
n̄th(2â†%̂â − ââ†%̂− %̂ââ†) , (6.3)

where γ is the damping rate of the i th mode, and

n̄th(ωi ,T ) = tr(%̂R b̂†
i b̂i ) = e−ħωi /kBT

1−e−ħωi /kBT
, (6.4)

is the mean number of thermal photons.

6.1.2 Squeezed thermal bath

Next, it is also considered the situation where the bosonic mode is coupled to a collection of harmonic

oscillators, each of them prepared in a squeezed thermal state, that is,

%̂(i )
R = Ŝ(ξ)

e−βĤ (i )
R

Zi
Ŝ†(ξ) , (6.5)

where Ŝ is the squeezing operator (4.86).

The correlation function of the squeezed thermal reservoir is given by

〈b̂†
i (ω)b̂†

i (ω′)〉 = 2πm(ω)δ(2ω′−ω−ω0) ,

〈b̂†
i (ω)b̂(ω′)〉 = 2πn̄sth(ω,T )δ(ω−ω0) ,

〈b̂(ω)b̂†
i (ω0)〉 = 2π[n̄sth(ω,T )+1]δ(ω−ω0) ,

(6.6)

where n̄sth(ω,T ) is the mean photon number of the ith squeezed reservoir, and m(ω) is the coherence parameter

related to the phase correlations of the ith squeezed reservoir. They are related to the squeezing parameter, ri ,
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by n̄sth(ω,T ) = (n̄th + 1/2)cosh2ri and m(ω) = (n̄th + 1/2)sinh2ri . In this case, the evolution of the density

operator in the interaction picture is described by the master equation

˙̂%= γ

2
(n̄sth +1)(2â%̂â† − â†â%̂− %̂â†â)+ γ

2
n̄sth(2â†%̂â − ââ†%̂− %̂ââ†)

+ γ

2
m(2â†%̂â† − â†â†%̂− %̂â†â†)+ γ

2
m∗(2â%̂â − ââ%̂− %̂ââ) .

(6.7)

In chapter 5 we obtained the solution of the master equation (6.7) by applying the formalism developed in

chapter 4. Summarizing:

Diffusive master equation. The dynamics of a single-mode system subject to a linearly coupled Marko-

vian environment of n modes (6.7) has the following steady-state state solution:

%̂= eβs(ĤR−µm̂R )

Zsq
, if the bath is squeezed, (6.8)

where Zsq = tr[eβs(ĤR−µm̂R )]. For the case of a thermal bath, i.e m = 0, we have

%̂= eβĤR

Zth
, Zth = tr(e−β0Ĥ ) . (6.9)

In eq.(6.8) we defined the a generalized inverse temperature βs, and a chemical-like potential of squeezing:

βs ≡βcosh2r , µ≡ tanh2r . (6.10)

where β is the inverse temperature. Also, the coherence operator was defined as

m̂R ≡−ħω
2

(b̂†2 + b̂2) . (6.11)

6.2 Classicality and coherence

Our primary motivation for introducing the classicality function is to define a measure of how non-classical

quantum states are. With this in hand, we may ask how the degree of non-classicality influences thermody-

namic quantities, such as heat, work, and efficiency.

It is well known in the quantum optics community that the origin of non-classical effects relies on the P-

function be non-positive or highly singular (Scully and Zubairy, 1997b; Gerry et al., 2005). However, we have

shown in chapter 4 that evaluating this function is not an easy task, and sometimes we end up with high order

derivatives of the delta function. Nevertheless, for a Gaussian state, we have a precise condition to determine

whether a given state is P-representable or not. The P-representability condition (4.189) is stated in terms of

the parameters n̄ and m - covariance matrix elements of the system (see eq.(4.175)). When n̄ > m, the system
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can be written as a mixture of coherent states with a proper probability distribution function. Otherwise, the

system is said to be non-classical.

Following this definition, but in a slightly different way, for squeezed states, the classicality function, C , is

defined as the difference between n̄sth and m,

C ≡ n̄sth −m =
(
n̄sth +

1

2

)
−

(
m + 1

2

)
= 1

2
coth

( ħω
2kBT

)
e−2r − 1

2
,

(6.12)

From eq.(6.12), we observe that the classicality only depends on the temperature and the squeezing parameter.

Its negativity indicates the non-classical behavior, which means that for higher values of temperature, more

classical is the system, and a more considerable value of r is needed to achieve the non-classical character (see

fig.6.2). Therefore, by defining the classicality function, it is possible to distinguish whether a given state is

Figure 6.2: Classicality function (6.12) as a function of the squeezing parameter for three different tempera-

ture. There is a competition between T and r . For higher values of temperature, a more significant amount of

squeezing is required to change the state of the system from classical to non-classical.

classical or non-classical by its signal.

6.2.1 Coherence in squeezed states

In section (4.8), we termed the non-diagonal elements m of the covariance matrix by coherence parameter.

Besides, we discussed in chapter 3, that the relative entropy of coherence could be used to quantify the amount

of coherence in a given basis. Therefore, let us estimate how much coherence squeezed states have in the energy

eigenbasis

C (%̂) = S(%̂diag)−S(%̂) . (6.13)
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Then, considering that %̂ is described by a squeezed thermal state (6.9) and determining the von-Neumann

entropy,

S(%̂) =−tr(%̂ ln %̂) = tr
[
%̂βs(Ĥ −µm̂)−β log Zsq)

]
≈βs(E −m) ,

(6.14)

where E = tr(%̂H ) and m = tr(%̂m̂). Note that operator m̂ in eq.(6.8) is the term responsible for adding the

non-diagonal elements in the energy eigenbasis. Consequently, we have that

S(%̂diag) ≈βsE , (6.15)

and therefore,

C (%̂) =βsm +O ≈βsm , (6.16)

where the term O comes from the contribution of the partition function.

The result (6.16) indicates squeezed states encompass states with nonzero coherence in the energy eigen-

basis, and the amount of coherence is proportional to the parameter m, that is defined by the eq.(4.193). Also,

the amount of coherence (6.16) is proportional to the squeezing parameter but inversely proportional to the

temperature.

6.3 Quasi-static condition, work and heat

Before we tackle the proposed problem in this dissertation, let us establish a necessary concept first. Con-

sider a quantum system with Hamiltonian Ĥ (λ), where λ is an external control parameter. Then the dynamics

of the system are governed by a Liouville type equation, %̂ = L (%̂), where the super-operator L reflects both

the unitary dynamics generated by Ĥ and the non-unitary contribution induced by the interaction with the

environment. Also, we further assume that the equation for the steady-state, L (%̂) = 0, has a unique solution

and that both cycles are formulated for quasi-static processes. Hence, for the system plus reservoir approach,

we will take the state when t →∞.

Upon moving from the macroscopic description to the microscopic quantum realm, a clear picture of what

is work and heat becomes blurred, and it is not easy to distinguish what is the contribution of each quantity to

the internal energy. However, in analogy with classical thermodynamics, we will define work as a controllable

(coherent) energy exchange related to a parameter of the system, and heat as an (incoherent) flux of energy that

cannot be controlled (or be useful for some process). Essentially, the definition says that work is related to a

change on the system’s Hamiltonian (Alicki, 1979) ,

δW = tr[(δH)%̂] , (6.17)
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while heat is an incoherent energy change determined by exclusion, that is

δQ = dU −δW . (6.18)

We are interested in a single bosonic mode prepared in a squeezed thermal state. Its mean energy is given by

(4.99),

E(r, n̄th) =ħω
(
n̄th +

1

2

)
cosh2r , (6.19)

differentiating this equation results in

dE =
(
∂E

∂r

)
n̄th

dr +
(
∂E

∂n̄th

)
r

dn̄th

=
[

2ħω
(
n̄th +

1

2

)
sinh2r

]
dr + (ħωcosh2r )dn̄th ,

(6.20)

where we identified the first term as work and the second as heat:

δW =−2ħω
(
n̄th +

1

2

)
sinh2r dr ,

δQ =ħωcosh2r dn̄th .

(6.21)

The minus signal in the work expression is adopted because, during the preparation of the squeezed state,

external energy is needed to perform it. We must pay an energetic price to create a squeezing state. While

the work performed to unsqueeze the mode is positive. In other words, the work performed on the system is

negative, and the work performed by the system is positive.

6.4 Quantum Otto cycle

As a first application of the theoretical framework derived in the past chapters, it is studied a cycle inspired

in the classical Otto cycle (Section.(2.3.2)). To understand the role of non-classicality in quantum thermody-

namics, we first analyze a simple protocol that consists of giving an amount of non-classicality (coherence) to a

single-mode and use it to operate a thermodynamical cycle. In each stroke, quantities as work and heat will be

computed, and then the thermodynamic efficiency is determined.

The quantum Otto cycle consists of four consecutive strokes, namely, two isochoric processes and two isen-

tropic processes, as shown in fig.(6.4). During the isentropic stroke, the squeezing parameter of the harmonic

oscillator is modulated between 0 and r by an external agent. Heating and cooling result from the coupling to

two heat baths at temperatures T1 =ħω/kB and T2 = 2ħω/kB . We denote the state of the working fluid perform-

ing the cycle at the fourth points as %̂A, %̂B, %̂C, and %̂D, respectively. Also, the thermal distribution is indicated

by n̄Ti where i = 1,2.

The cycle starts with the single bosonic mode at point A, in equilibrium with the cold thermal reservoir at

T1 =ħω/kB ,

%̂A = exp(−β1Ĥ1)

ZA
with ZA = Tr{e−β1Ĥ1 } , (6.22)
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Figure 6.3: Schematic representation of the thermodynamic cycle obtained by varying the squeezing parameter

r and the temperature of the working fluid. Each one of the strokes are obtained by keeping one of the variables

constant while quasi-statically varying the other one.

Figure 6.4: Diagram of the thermodynamic cycle. In each stroke, one of the variables is kept constant while the

other one is changing.

where the initial Hamiltonian is given by Ĥ1 = ħω(â†
1â1 +1/2), ZA is the partition function, and β1 = 1/kB T1.

The mean energy at point A is simply

〈Ĥ 〉A =ħω
(
n̄T1 +

1

2

)
, (6.23)

During the first stroke, the working fluid is decoupled from the reservoirs, and a unitary squeezing operation is

applied to the system. The density operator at point B is %̂B = Ŝ1%̂AŜ†
1. The work done on the single-mode in

the isentropic compression is negative, yielding

WAB = 〈ĤA〉−〈ĤB〉 = ħω
(
n̄T1 +

1

2

)
−ħω

(
n̄T1 +

1

2

)
cosh2r

=−2ħω
(
n̄T1 +

1

2

)
sinh2 r ,

(6.24)

In the second stroke, the bosonic mode is put into contact with the squeezed thermal bath, at T2 = 2ħω/kB ,

while the squeezing parameter stays constant, resulting in an “isochoric” process where the mode relaxes to
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the steady-state %̂C. The heat entering the system from the squeezed thermal bath in the relaxation is

QA = 〈ĤC〉−〈ĤB〉 = ħω
(
n̄T2 +

1

2

)
cosh2r −ħω

(
n̄T1 +

1

2

)
cosh2r

=ħω(n̄T2 − n̄T1 )cosh2r .

(6.25)

During the third stroke, the working fluid is again detached from the reservoirs, and a unitary unsqueezing

operation is applied to the mode, S†, bringing its squeezing parameter back to 0. Therefore, the system is taken

to the state at point D, and then %̂D = exp(−β2Ĥ2)/ZD with ZD = Tr{e−β2Ĥ }. Consequently, the work extracted

is given by

WCD = 2ħω
(
n̄T2 +

1

2

)
sinh2 r , (6.26)

The cycle is closed by bringing the bosonic mode into contact with the cold thermal bath at temperature T1 and

hence relaxing back to %̂A. During the last isochoric process, the heat transferred from the cold reservoir to the

system is

QR = 〈Ĥ 〉A−〈Ĥ 〉D =ħω(n̄T1 − n̄T2 ) . (6.27)

The work over the cycle is given by the contributions of the two isentropic strokes, as

Wcycle = 2ħω(
n̄T2 − n̄T1

)
sinh2 r . (6.28)

Also, the efficiency of the engine, defined as the ratio of the work over the cycle to the energy absorbed from the

hot reservoir, can be obtained from the previous results, eqs.(6.25) and (6.28),

ηo = 1− 1

cosh2r
. (6.29)

In fig. (6.5), we notice the efficiency increases with the squeezing parameter. For higher values of squeezing,

the efficiency will approach the unity, but never surpasses it. It is interesting to mention that, as in the classical

case, the thermodynamic efficiency does not depend explicitly on the temperature of the reservoirs. The reason

is in the way that the protocol was designed: the cycle consists of modulating the squeezing parameter, while

the system is operating between two different temperatures. During the interaction systems plus reservoir, the

squeezing parameter stays constant. When the systems interact with the hot squeezed bath, the squeezing pa-

rameter is fixed at r . Thus the absorbed heat is a function of r . However, when the system is interacting with the

cold thermal bath, the squeezing parameter is fixed at zero - the system must return to its initial state. Because

the engine is operated between two temperatures, these quantities are cancelled, resulting in a thermodynamic

efficiency that solely depend on the squeezing parameter.

The behaviour of the classicality function over the cycle is plotted in fig.(6.6). Observe that, in the first

stroke (A-B), a non-classicality is added to the single-mode by the action of the squeezing operator. In other

words, we took a classical state, without any coherence, and end up with a non-classical state which contains



6.4. QUANTUM OTTO CYCLE 94

Figure 6.5: The efficiency ηo of the heat engine as a function of the squeezing parameter r . The efficiency does

not depend on temperatures, but only of the squeezing parameter. The difference in the color indicates the

degree of non-classicality.

Figure 6.6: Classicality function (6.12) over the cycle as a function of the squeezing parameter for T1 = ħω/kB

and T2 = 2ħω/kB .

coherence in the energy eigenbasis. In the next stroke (B-C), the squeezing parameter stays constant, while

the temperature of the bosonic mode increases, which means an increase of the classicality function. We may

interpret this result as if the bath has consumed part of the coherence added in the first stroke. The last strokes

(C-D) and (D-A) correspond to the unsqueezing and the lowering of the temperature of the bosonic mode. That

is, the classicality function increases until its maximum, and goes to its initial value. From fig. (6.5), we see that

non-classicality is a resource since the efficiency increases with the degree of squeezing. However, only a part



6.5. GENERALIZED CYCLE 95

of the non-classicality is used over the cycle. The interaction between the single-mode and the reservoir causes

an increase in the system’s classicality, meaning that the bath consume part of the coherence that is added to

the system.

6.5 Generalized cycle

In order to explore non-classicality in our favour, we present a cycle where the classicality function stays

constants when the single-mode interacts with the squeezed thermal bath. The idea is to preserve the non-

classicality added and use it for the work extraction.

As a second application, we consider the same setup: a quantum heat engine operating between a cold

thermal bath at temperature T1 = ħω/kB , and a hot squeezed thermal reservoir at T2 = ħω/kB with squeezing

parameter rR . The main difference between the two protocols is that we want to preserve the non-classical

character of the system during its interaction with the hot reservoir, this implies that the squeezed thermal

bath must be prepared with a different squeezing parameter than the system after the first step. Because, the

system will absorb heat from bath and its temperature will increase, meaning an increase in its classicality.

Consequently, to compensate for this increase, the system must have its squeezing parameter modulated from

rt to rR , where rt is the squeezing parameter related to the first stroke. The condition that must be fulfilled is:

Figure 6.7: A sketch of the thermodynamic cycle obtained by varying the squeezing parameter r and the tem-

perature of the working fluid while keeping constant its classicality.

C (rt , n̄T1 ) =C (rR , n̄T2 ) , (6.30)

where rt is the squeezing parameter provided by the unitary transformation in the first stroke, and rR is the

squeezing parameter of the hot squeezed bath.

The cycle starts with the working fluid at point A, and the procedure taken in the first stroke is the same as

in the Otto cycle - the single-mode has its squeezing parameter modulated from 0 to rt . In the second stroke,

the bosonic mode is put into contact with the squeezed thermal bath. In order to keep the classicality constant,

the stationary state of the system is slowly varied, such that the condition (6.30) is satisfied. According to the
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Figure 6.8: Classicality function (6.12) over the cycle as a function of the squeezing parameter for T1 = ħω/kB

and T2 = 2ħω/kB . The squeezing parameter of the transformation is such that rt > rc2 .

definition given in Sec.(6.3 - eqs.(6.21)), during the second stroke, work and heat can be obtained as,

WBC = 2ħω
∫ rR

rt

(
n̄T + 1

2

)
sinh2r dr , QBC =ħω

∫ rR

rt

cosh2r dn̄T , (6.31)

Therefore, to satisfy the condition (6.30), work is performed on the system during its interaction with the

squeezed thermal bath; at the same time, heat is exchanged, so

WBC = ħω
4

(
n̄T2 +

1

2

)
[e2rR +4(rT − rR )e−2rR ]− ħω

4

(
n̄T1 +

1

2

)
e2rT ,

QBC =−ħω
(
n̄T2 +

1

2

)
e−2rR (rT − rR )+ ħω

4

(
n̄T2 +

1

2

)
e2rR − ħω

4

(
n̄T1 +

1

2

)
e2rT .

(6.32)

The relation between rT and rR , can be obtained by using the condition (6.30),

rR = rT + 1

2
ln

(
n̄T2 + 1

2

n̄T1 + 1
2

)
. (6.33)

In the third stroke, the system is again detached from the reservoirs, and an unsqueezing operation, Ŝ†, is

applied to the mode, changing its squeezing parameter adiabatically back to 0. The cycle is closed by putting

the bosonic mode in contact with the cold thermal reservoir and relaxing back to %̂A.

Once the work and the heat are determined in each stroke, we may calculate the efficiency of the cycle.

Different from the first protocol, the efficiency now depends on the temperature and does not have a straight-

forward expression, as in eq.(6.29)

ηG = 1− 4(1+e)e2rT + 1
2

2e4rT +1 +2e4rT + 1
2 +2e4rT + 3

2 +e2 log

(
(
p

e+1)2

1+e

)
+ log

(
(
p

e+1)2

1+e

)
−2e log(1+e)+4e log

(p
e +1

) . (6.34)
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Figure 6.9 shows the engine’s efficiency as a function of the squeezing parameter for both protocols. The effi-

ciency of the generalized cycle is always higher than the Otto cycle, because now the classicality is kept constant

along the third stroke. Consequently, work is performed on the system to fulfill the established condition (6.30),

which means a higher extraction of work on the third stroke, in comparison with the Otto cycle. It is important

to stress that in the first treated cycle, the bath partially consumed the non-classicality introduced in the first

stroke. Here, we prevent the dissipation of non-classicality by imposing restrictions to keep it.

Figure 6.9: Efficiency of the heat engine as a function of the squeezing parameter of the transformation rT for

protocol I: the Otto cycle (blue line), and protocol II: the generalized cycle (green line), with bath temperatures

equal to T1 =ħω/kB and T2 = 2ħω/kB.

As we notice in section 6.2, the non-classical character of the system depends on its temperature and

squeezing parameter. For higher values of temperature, higher is the required value of the critical squeezing

parameter, to take the system from a classical state to a non-classical one. Consequently, for a single-mode

operating between two different temperatures, it is related two different critical squeezing parameters, denoted

by rc1 and rc2 . This suggests that both protocols can be investigated in three different situations. That is, when

the state of the single-mode is:

i classical for both temperatures

ii non-classical for T1, but classical for T2

iii non-classical for both temperatures.
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These cycles present different regimes of operation depending on the squeezing r and temperature T , as is

summarized in the phase diagram of fig.(6.10).

Figure 6.10: The thermodynamic efficiency of the generalized (in white) and Carnot cycle as a function of the

squeezing parameter. Also illustrated, a phase diagram with the three regimes of the cycle (i, ii, and iii). The

color scale corresponds to the degree of non-classicality.

Region i corresponds to the case where the state of the system is characterized as classical. Although there

exists squeezing, the condition (4.84) is not satisfied due to the temperature of the system, that compensates

for the bosonic mode quadratures to be higher than the shot noise. This operation can be seen as modulation

of the single-mode frequency from ω1 to ω2, where ω2 >ω1.

Region ii corresponds to the case where the state of the system is characterized as non-classical for T1,

but classical for T2. That is, the bath consumed the non-classicality added to the system during the first step.

Consequently, the classicality function of the single-mode undergoes two transitions over the cycle: classical to

non-classical (first stroke) and non-classical to classical (second stroke) due to the temperature increasing.

Finally, in the region iii, the most efficient of all three, where the state of the system is non-classical for

both temperatures, and it is possible to verify that the non-classicality is a resource for quantum heat engines.

Just for comparison, the classical Carnot efficiency is also plotted. It is observed that the Carnot’s efficiency

is surpassed in region i i , where the working fluid starts the cycle with the non-classical character. We may

understand that the coherence added is used to perform the cycle more efficiently, and helped to beat Carnot’s

limit. However, this comparison is not totally appropriate since the problem in consideration is formulated
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in a different context from which the Carnot’s cycle was proposed. For comparison with the first protocol, it

is also plotted the relative efficiency, defined by the ratio of the efficiency difference by the efficiency of the

first protocol (the “Otto cycle”). As we can see in fig.(6.11), with the increase in the squeezing parameter, the

efficiencies get closer to each other. This is because the absorbed heat increases with the squeezing parameter,

while the rejected heat does not. Therefore, for higher values of squeezing (rT >> rc2 ), the difference between

the two protocols becomes tight. In other words, the degree of non-classicality is so high that the type of cycle

does not affect the performance of the quantum heat engine.

Figure 6.11: The relative efficiency: ηR = ηG−ηo

ηG
, where ηG is the efficiency of the generalized cycle; The reservoirs

temperature are: T1 =ħω/kB and T2 = 2ħω/kB.

6.6 Work extraction

For both cycles, the two initial strokes are essential, where the working fluid is prepared in a squeezed ther-

mal state by varying its squeezing parameter, and when it is put into contact with the squeezed thermal reser-

voir. In the first stroke, there is a price to pay to create a squeezed state. The energy involved in this process

is counted as work since we are interacting externally with the system in a controlled way. Conversely, in the

second stroke, the system interacts with the resonant modes of the reservoir through an interaction Hamilto-

nian V̂ . In terms of energy exchange, this interaction is uncontrollable. Although in some cases, the interaction

Hamiltonian V̂ may also depend on a controllable parameter λ, this is not our case.

It is in the third stroke, that part of the invested energy is converted into work, so it can be seen as the

process where the work extraction occurs. This step can alternatively be done by coupling the bosonic mode to
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an auxiliary system, an ancilla, via a linear interaction Hamiltonian V̂ . The only condition is that the auxiliary

system is prepared in a thermal state with a temperature T2. In chapter 5, we showed that when two modes

interact via a linear interaction Hamiltonian, their identities (states) are exchanged for some multiple values of

a time, τR , called swapping time. In the course of the swapping time, the work produced by the engine can be

delivered to the auxiliary system. This interaction mimics the application of a unitary unsqueezing operation

on the bosonic mode. Therefore, if the interaction between the two modes is cut in the first swapping time,

the system will end up in a thermal state %̂D = exp(−β2Ĥ2)/ZD. The motivation to implement this model is

because we could avoid another interaction with the system during the third step. The only disadvantage is that

this analysis characterizes a single-shot thermodynamic operation. For each round, a new ancilla is required.

However, the implementation where the system interacts sequentially with a series of independent ancillae,

all identically prepared in a thermal state %̂D is a way to solve this issue and is called as a collisional model

(Rodrigues et al., 2019).

Figure 6.12: Schematic diagram of the four-stroke cycle operating between reservoirs at different temperatures.

The ancilla (in grey) extracts work from the cycle, and represents the unsqueezing operation on the single mode.

6.7 Free energy and chemical-like potential of squeezing

To finish this chapter, we shall establish the concept of nonequilibrium free energy that was introduced by

Esposito and den Broeck (2011) to investigate how coherence is linked to thermodynamical work. In chapter

3, it was discussed that the von-Neumann entropy coincides with the thermodynamic entropy when a ther-

mal state describes the system. In this case, the thermodynamic relation between the Helmholtz free energy,
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internal energy and entropy is recovered:

F = E −T S . (6.35)

One can go further and define a nonequilibrium free energy (F ) for the system, with state %̂, in contact with a

thermal bath at temperature T and described by the Hamiltonian Ĥ

F (%̂,Ĥ ) ≡ 〈Ĥ 〉%̂−T S(%̂) . (6.36)

It can be shown that the von-Neumann entropy and the associated nonequilibrium free energy are similar

to their equilibrium counterparts in nonequilibrium isothermal processes. Here, isothermal means that the

system is in contact with a thermal reservoir at temperature T , although the system itself may not have a well-

defined temperature. Additionally, Esposito et al. (2009) showed that the nonequilibrium free energy charac-

terizes the optimal amount of work extractable from a system with Hamiltonian Ĥ , in a state %̂, with the help

of a thermal reservoir at temperature T . Besides that, this quantity is limited by the Helmholtz free energy F ,

such that F (%̂,Ĥ ) ≥ F (%̂)

Let us use this idea to analyze the relationship between the coherence and the extracted work. For a

squeezed thermal state, the density operator is given by

%̂sth = eβs(ĤR−µm̂R )

Zsq
. (6.37)

Considering an infinitesimal change in the state of the system, %̂′ = %̂+εδ%̂, where for simplicity δ%̂ is a traceless

operator accounting for this change, and ε<< 1 ∈ R+, it follows that up to first order in ε, the entropy variation

is given by (see Appendix A.6)

∆S = S(%̂′)−S(%̂) =β(∆E −ħωµ∆m) , (6.38)

where S(%̂) is the von-Neumann entropy, ∆E = εtr(H δ%̂) and∆m = εtr(mδ%̂) are the corresponding changes in

the internal energy and coherence parameter. Therefore, using eqs.(6.36-6.37), the infinitesimal change in the

nonequilibrium free energy is

∆F =∆E −kB T∆S =ħωµ∆m . (6.39)

Remarkably, eq.(6.39) leads to the interpretation that the maximum work that can be extracted from the nonequi-

librium state %̂sth is directly proportional do the coherence parameter m. Now, looking closely to the definitions

made in section 6.3, it was derived that,

dE =
(
∂E

∂r

)
n̄th

dr +
(
∂E

∂n̄th

)
r

dn̄th

=
[

2ħω
(
n̄th +

1

2

)
sinh2r

]
dr + (ħωcosh2r )dn̄th .

(6.40)

The coherence parameter can be written as

m =
(
n̄th +

1

2

)
sinh2r . (6.41)
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Differentiating eq.(6.41),

dm =
[

2

(
n̄th +

1

2

)
cosh2r

]
dr + (sinh2r )dn̄th , (6.42)

solving for dr and inserting the result in eq.(6.40), it is obtained

dE =ħωµdm + ħω
cosh2r

dn̄th (6.43)

= δW +δQ , (6.44)

Therefore, for an isothermal process, dn̄th = 0, it is obtained that the work is directly related to the amount of

coherence, which is directly connected to the difference between the nonequilibrium free energy

∆F =W =ħωµ∆m . (6.45)

The link between work and coherence is made by defining the nonequilibrium free-energy, although it is

not necessary to define this quantity since the nonequilibrium free energy F reaches its minimum precisely for

the equilibrium state %̂eq , we felt the necessity to show that this result is also valid for the general case.
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CHAPTER 7

Conclusions and outlook

7.1 Conclusions

At the heart of quantum mechanics lies a peculiar phenomenon called the principle of superposition. Ideas

such as Schrödinger’s cat, entanglement, and quantum teleportation all stem from the same concept, which

also is responsible for all the “weirdness” of this theory. In chapter 3, it was seen that the most general way of

defining a quantum state is by an operator called the density matrix, whose off-diagonal elements, coherence,

corresponds to superposition concerning to a given basis. A proper understanding of the interplay between

coherence and thermodynamics constituted one of the main aims of this dissertations. My contributions to the

work presented in each chapter of this dissertation can be distinguished as follows:

Chapter 2 and 3 mainly reviews introductory material in a manner suitable for use later in the dissertation

and reproduces the work by (Streltsov et al., 2017).

Chapter 4 essentially summarises the main ideas about quantum optics for later use. Some calculations in

section 4.8 , includes part of my own work, regarding the interpretation of classical and non-classical state ac-

cording to the sketch (4.7).

Chapter 5 is based on work published by Haake (1973) and by Louisell (1973), which I have adapted to focus on

my personal contributions. All calculations presented in section 5.3 represent part of my own work, although

closely related ideas may be found throughout the literature in one form or another.
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Chapter 6 consisted in the main findings of the present research, regarding coherence and work extraction

of quantum thermodynamical systems.

This dissertation covers, in detail and generality, the study of the dynamics of a single bosonic mode, as

an open system interacting with certain specific kinds of reservoirs. A theoretical framework to treat the prob-

lem and its main properties is discussed. The formalism, developed in the first chapters, is applied to an open

question in quantum thermodynamics, which has been unfolding over the last years (Lostaglio et al., 2015b;

Uzdin, 2016; Abah et al., 2012), that is how coherence is related to quantum thermodynamics. There are many

ways to tackle this problem, which makes the field extremely broad. However, here, a quantum optics perspec-

tive/approach is used since the thermodynamic working substance of interest is a single-mode of a bosonic

field in contact with thermal reservoirs, and under the action of an external agent, which is able to introduce

squeezing in the quadratures of the field. The main question addressed is:

How non-classical features, such as coherence and entanglement, affect thermodynamic quantities?

Motivated by the fact that squeezed states do not admit a diagonal representation in the Fock basis and,

therefore, encompass an intrinsic coherence, plus the fact that squeezed thermal baths have been mostly un-

explored in the field of quantum thermodynamics, the setup showed in chapter 6 is proposed.

The concept of classicality presented in chapter 6 is used to propose more efficient thermodynamic cycles.

Emphasis is put on the physical aspect of its definition, based on how to distinguish classical from non-classical

states, and this information is applied to design a thermodynamic protocol. Therefore, a general framework to

explore the thermodynamics of squeezed states is developed.

Our main result shows that the efficiency of a quantum heat engine is enhanced by increasing the squeezing

parameter. Identifying that squeezing is directly related to coherence, it is concluded that coherence can be a

resource for quantum heat engines, meaning that it can be used to perform thermodynamical tasks more effi-

ciently. In particular, two different cycles are studied showing that the efficiency of a quantum engine may be

enhanced by keeping the classicality constant, suggesting that more work can be extracted in the non-classical

regime. It is worth to mention that the thermodynamic cost of preparing squeezed states is explicitly consid-

ered. Therefore, both studied cases provide valuable information to further elucidate the main mechanisms

behind squeezed states in quantum thermodynamics. Finally, a direct connection between the work extracted

and the coherence parameter is made noting that the work extracted is proportional to the coherence added

to the system. The results presented in this dissertation details our original contribution to this new field of

quantum thermodynamics.

An exciting subject for future work regards the possibility of using two bosonic systems as a working sub-



7.1. CONCLUSIONS 105

stance. This may have many applications under the problem considered in this dissertation; for example, the

role of the entanglement between the two modes and the work extraction could be examined since the non-

classicality presented in this scenario will not be only coherence. Also, recently Lostaglio et al. (2015a) showed

that in a multipartite setting, i.e., a collection of harmonic oscillators or a multi-mode bosonic system, only

what is called by relational coherence contributes to thermodynamic work. In other words, there are specific

off-diagonal blocks on the density matrix representation, with respect to some basis, that that does not help to

the work extraction. We finished chapter 6 designating the details of the work extraction mechanism by cou-

pling the bosonic mode with an ancilla. This idea can be adequately refined by introducing a collisional model

describing the interaction of a system with a series of independent ancillae prepared in states state.
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APPENDIX A

Appendix

In this appendix, it is briefly discussed some properties of the delta function, Gaussian integrals, some par-

ticularities of the used notation, some details from chapter 5, and the variation of the von-Neumann entropy

during infinitesimal changes in the state of the system discussed in chapter 6.

A.1 Compact outer product notation

Let â be a vector of Hermitian operators, where the general case is the one with ââT 6= (ââT)T. That is, the

operators in the vector might not commute with each other. It is hence useful to define the symmetrized and

anti-symmetrized forms of such products, as

{â, âT} = ââT+ (ââT)T

[â, âT] = ââT− (ââT)T .
(A.1)

In components, one has

{â, âT} j ,k = â j âk − âk â j

[â, âT] j ,k = â j âk + âk â j

(A.2)
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To make the idea clearer, consider a = (Ai ,Bi )T. Then

[â, âT] =
Ai

Bi

(
A j B j

)
−

Ai

Bi

(
A j B j

)T

=
Ai A j − A j Ai Ai B j −Bi A j

Bi A j − Ai B j Bi B j −B j Bi

 .

A.1.1 The direct sum

The direct sum
⊕

of any pair of matrices A of size m×n and B of size p×q is a matrix of size (m+p)×(n+q)

defined as

A
⊕

B =
A 0

0 B

=



a11 · · · a1n 0 · · · 0
...

. . .
...

...
. . .

...

am1 · · · amn 0 · · · 0

0 · · · 0 b11 · · · b1q

...
. . .

...
...

. . .
...

0 · · · 0 bp1 · · · bpq


. (A.3)

For instance

1 2 3

4 5 6

⊕7 8

9 10

=



1 2 3 0 0

4 5 6 0 0

0 0 0 7 8

0 0 0 9 10

 .

Therefore,

n⊕
i=1

Ai = diag(A1,A2,A3 · · ·An) =



A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · An

 . (A.4)

A.2 Delta function

The Dirac delta function δ(x) admits the following representations

δ(x) = 1

2π

∫ ∞

−∞
d p e i px , (A.5)

δ(x) = lim
t→∞

1

π

sin(t x)

x
. (A.6)
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which satisfies the fundamental property:∫ ∞

−∞
d x f (x)δ(x −a) = f (a) . (A.7)

The delta function can be converted into the following relation for complex variables:

1

4π2

∫ ∞

−∞

∫ ∞

−∞
d x ′d p ′ e i px ′

e−i p ′x = 1

π2

∫
C

dβ2 eαβ
∗−α∗β , (A.8)

where it was applied the changes of variable
p

2α= (x+i p) and
p

2β= (x ′+i p ′). Also, δ2(α) = δ(Re(α))δ(Im(α)).

A.3 Important relations

Very often, the canonical commutation relations are expressed by exponentiating the canonical operators.

So the Baker-Campbell-Hausdorf formula for the product of the exponentials of two operators Â and B̂ is

e Âe B̂ = e Â+B̂+1/2![Â,B̂ ]+... . (A.9)

A related expansion that is useful is the called the Zassenhaus formula:

e t (Â+B̂) = e t Â e t B̂ e−
t2

2 [Â,B̂ ] e
t3

6 (2[B̂ ,[Â,B̂ ]]+[Â,[Â,B̂ ]]) e
−t4

24 ([[[Â,B̂ ],Â],Â]+3[[[Â,B̂ ],Â],B̂ ]+3[[[Â,B̂ ],B̂ ],B̂ ]) · · · (A.10)

A.4 Gaussian integrals

Gaussian integrals with many variables occurred in Chapter 4. Given a symmetric, real, positive definite

2n ×2n matrix B , and a 2n-dimensional vector b, one has the equality:∫
R2n

dre−rArTb = πn

p
DetA

e
1
4 bTA−1b , (A.11)

where the shorthand notation dr corresponds the product of differentials of the 2n integration variables that

compose the vector r: dr = dr1...dr2n .
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A.5 Chapter 5 procedures

A.5.1 Expressing each term of the master equation as a function of the characteristic function

Using (5.41) and the cyclic property of the trace, the remaining terms in (5.39) are:

tr(â†â%̂ezâ†
e−z∗ â) = tr(%̂ezâ†

e−z∗ â â†â)

= tr[%̂ezâ†
(e−z∗ â â†ez∗ â)e−z∗ â â]

= tr[%̂(â† − z∗)ezâ†
e−z∗ â â]

=
(
∂

∂z
− z∗

)
tr(%̂ezâ†

e−z∗a â)

=−
(
∂

∂z
− z∗

)
∂

∂z∗χN ,

tr(%̂â†âezâ†
e−z∗ â) = tr[%̂â†ezâ†

(e−zâ†
âezâ†

)e−z∗ â]

= tr[%̂â†ezâ†
e−z∗ â(â + z)]

=
(
− ∂

∂z∗ + z

)
tr[%̂â†ezâ†

e−z∗ â â]

=
(
− ∂

∂z∗ + z

)
∂

∂z
χN ,

tr(%̂ââ†ezâ†
e−z∗ â) = tr[%̂(â†â +1)ezâ†

e−z∗ â]

=
[(
− ∂

∂z∗ + z

)
∂

∂z
+1

]
χN ,

tr(ââ†%̂ezâ†
e−z∗ â) = tr[(â†a +1)%̂ezâ†

e−z∗ â]

=
[
−

(
∂

∂z
− z∗

)
∂

∂z∗ +1

]
χN ,

tr(â†%̂âezâ†
e−z∗ â) =

(
1−|z|2 + z∗ ∂

∂z∗ + z
∂

∂z
− ∂2

∂z∗∂z

)
χN ,

tr(ââ%̂ezâ†
e−z∗ â) = tr(%̂ezâ†

e−z∗ â ââ)

= ∂2

∂z∗2χN ,

tr(%̂ââezâ†
e−z∗ â) = tr(%̂âezâ†

e−zâ†
âezâ†

e−z∗ â)

= tr[%̂âezâ†
(â + z)e−z∗ â]

=
(
− ∂

∂z∗ + z

)
tr(%̂âezâ†

e−z∗ â)

=
(
− ∂

∂z∗ + z

)(
− ∂

∂z∗ + z

)
χN ,
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tr(â%̂âezâ†
e−z∗ â) = tr(%̂âezâ†

e−z∗ â â)

=− ∂

∂z∗ tr[%̂âezâ†
e−z∗ â]

=− ∂

∂z∗

(
− ∂

∂z∗ + z

)
χN ,

For the last term of eq.(5.39) the procedure is similar. Collecting all the terms the equation of motion for the

characteristic function can be written as,

∂χW

∂t
= e−

1
2 |z|2

{γ
2

(n̄sth +1)

[
−z∗ ∂

∂z∗ − z
∂

∂z

]
+ γ

2
n̄sth

[
−2|z|2 + z∗ ∂

∂z∗ + z
∂

∂z

]
− γ

2
M∗z2 +−γ

2
M z∗2

}
χN

=
{γ

2
(n̄sth +1)

[
−z∗

(
∂

∂z∗ + z

2

)
− z

(
∂

∂z
+ z∗

2

)]
+ γ

2
n̄sth

[
−2|z|2 + z∗

(
∂

∂z∗ + z

2

)
+ z

(
∂

∂z
+ z∗

2

)]
− γ

2
M∗z2 − γ

2
M z∗2

}
e−

1
2 |z|2χN .

Therefore

∂χW

∂t
=

{
−γ

2

[
z∗ ∂

∂z∗ + z
∂

∂z
+M∗z2 +M z∗2 +|z|2

]
−2γn̄sth|z|2

}
χ

=
{
−γ

2

[
(1+2n̄sth)|z|2 +M∗z2 +M z∗2 + z∗ ∂

∂z∗ + z
∂

∂z

]}
χ .

A.5.2 Frequency integration

Let us look to the equation (5.25). We have to evaluate a double integral with respect to τ and ω. The

integration concerning to the variable τ can be immediately solved. Note that,∫ t

0
dτe−i (ω−ω0)τ = sin(ω−ω0)t

ω−ω0
− i

1−cos(ω−ω0)t

ω−ω0
.

The limit as t tends to infinity in eq.(5.26) is defined anticipating the role of the right-side inside an integration

over ω. Then, it left us to solve the following integral:

lim
t→∞

∫ ∞

−∞
dω f (ω)

sin(ω−ω0)t

ω−ω0
− i lim

t→∞

∫ ∞

−∞
dω f (ω)

[
1−cos(ω−ω0)t

ω−ω0

]
. (A.12)

The first integration is straightforward and can be solved directly by using the delta function representation A.6:

lim
t→∞

∫ ∞

−∞
dω f (ω)

sin(ω−ω0)t

ω−ω0
=

∫ ∞

−∞
dωπδ(ω−ω0) f (ω) =π f (ω0) ,

while the second integration is not trivial as the first one. Because of that, let I be the integral

I ≡ lim
t→∞

∫ ∞

−∞
dω f (ω)

[
1−cos(ω−ω0)t

ω−ω0

]
=

∫ ∞

−∞
dω

f (ω)

ω−ω0
− lim

t→∞

∫ ∞

−∞
dω f (ω)

[
cos(ω−ω0)t

ω−ω0

]
. (A.13)
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Defining

A =
∫ ∞

−∞
dω

f (ω)

ω−ω0
and B = lim

t→∞

∫ ∞

−∞
dω f (ω)

[
cos(ω−ω0)t

ω−ω0

]
. (A.14)

It is assumed that f (ω) is a well-behaved function. The integrands in eq.(A.14) have singularities at ω0. To

evaluate this integral, we shall use the residue theorem, and the integration will be performed in the complex

plane. The integral is evaluated via the loop contour C =C1 ∪C2 shown in the figure (A.1): Note that,

Figure A.1: Complex plane sketched. The function has a simple pole on the real axis atω0. Instead of deforming

the contour to avoid the singularity, one can displace the singularity introducing z0, such that z0 =ω0 − iη.

∮
C

d z
f (z)

z − z0
=

∫
C1

d z
f (z)

z − z0
+

∫
C2

f (z)

z − z0
= 2πi Res( f (z)) . (A.15)

Furthermore, observe that the first term in eq.(A.15) goes to zero when R →∞. While,

lim
η→0+

∮
C

d z
f (z)

z − z0
= lim
η→0+

∫ ∞

−∞
dω

f (ω)

ω− z0
=

∫ ∞

−∞
dω

f (ω)

ω−ω0
, (A.16)

and

lim
η→0+

∮
C

f (z)
cos(ω−ω0)t

z − z0
=

∫ ∞

−∞
dω f (ω)

cos(ω−ω0)t

ω−ω0
. (A.17)

The integration, ∫ ∞

−∞
dω

f (ω)

ω− z0
, (A.18)

can be evaluated using the property

1

x ± iδ
=P

(
1

x

)
∓ iπδ(x) where δ→ 0+ . (A.19)

Thus, ∫ ∞

−∞
dω

f (ω)

ω− z0
=

∫ ∞

−∞
dω

f (ω)

ω−ω0 − iη
=P

(∫ ∞

−∞
dω

f (ω)

ω−ω0

)
+ iπ

∫ ∞

−∞
dω f (ω)δ(ω−ω0) . (A.20)

Taking the limit,

A = lim
η→0+

∫ ∞

−∞
dω

f (ω)

ω− z0
=P

(∫ ∞

−∞
dω

f (ω)

ω−ω0

)
+ iπ f (ω0) . (A.21)
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Figure A.2: The closed contours C used in the evaluation of the integral eq.(A.22).

The integral B is solved explicitly in the complex plane∫
C

d z f (z)
cos(z − z0)t

z − z0
=

∫
C

d z
f (z)

z − z0

e i (z−z0)t +e−i (z−z0)t

2

= e−i z0t

2

∮
C

d z
e i zt

z − z0
+ f (z)e i z0t

2

∮
C

d z
f (z)e−i zt

z − z0

= e−i z0t

2
2πi lim

z→z0
(z − z0)

f (z)e i zt

z − z0
= iπ f (z0)

(A.22)

Therefore,

I = lim
t→∞

∫ ∞

−∞
dω f (ω)

[
1−cos(ω−ω0)t

ω−ω0

]
=P

(∫ ∞

−∞
dω

f (ω)

ω−ω0

)
(A.23)

A.6 Infinitesimal changes in the state of the system and its entropy.

In the following we discuss the proof of eq.(6.38). The proof of this equation follows from the work by

Manzano et al. (2018). Consider a change in the state of the system

%̂′ = %̂+ε∆%̂ , (A.24)

where %̂′ is the state of the system after some interaction, %̂ is the original state, and δ%̂ is a traceless operator

accounting for the change. In order to proceed, it is necessary to evaluate the eigenvalues and eigenvectors of

the state %̂′. This can be done by using perturbation theory when ε<< 1. Up to second order in ε, we have that

λ′
n ≈λn +ελ(1)

n +ε2λ(2)
n ,

|λ′〉 ≈ |λn〉+ε |λ(1)
n 〉+ε2 |λ(2)

n 〉 .
(A.25)

where {λn , |λn〉} are the eigenvalues and eigenvectors of %̂. In particular, the first order terms read

λ(1)
n = 〈λn |∆%̂|λn〉 , (A.26)

|λ(1)
n 〉 = ∑

m 6=n

〈λm |∆%̂|λm〉
λn −λm

. (A.27)
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Then, the change in the von-Neumann entropy (3.42) can be written as

∆S = S(%̂′)−S(%̂) =−∑
n
λ′

n logλ′
n +∑

j
λ j logλ j , (A.28)

and using eqs.(A.25) we obtain up to second order in ε:

∆S ≈−ε∑
n
λ(1)

n logλn −ε2

λ(2)
n logλm +∑

j

1

2

λ(1)2
j

λ j

 . (A.29)

Dropping out the second order terms, and using eq.(A.27), it is obtained

∆S ≈−εn
∑
n
λ(1) logλn =−ε∑

n
〈λn |∆%̂|λn〉 logλn (A.30)

=−εtr(∆%̂ log %̂) . (A.31)
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