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Abstract

The mechanical vibration spectrum is a frequency-domain characteristic used for

monitoring various systems and is traditionally calculated by the Fast Fourier Trans-

form (FFT) of a time series. Another possible alternative, with several operational

advantages, is the use of twin-microaccelerometers to obtain the spectrum directly

in the frequency domain. This strategy has its greatest limitation in the differences

found in the accelerometers physical parameters – due to their manufacturing pro-

cess –, such that the spectrum distortion level may be considerably higher than

that found in the spectrum raised by the FFT. To overcome these differences, in

this work the tuning of the spectrum analyzer microdevice is proposed by adjust-

ing the accelerometers actuation voltages amplitudes. To perform the tuning, the

Differential Evolution (DE) is used and the tuning problem is approached in two

different optimization perspectives: a mono-objective and a multi-objective. For

both optimization problems, the objective functions and constraints are based on

the Fourier series components of the spectrum analyzer system closed-loop gain – a

composition that depends on the excitation voltages. To solve the multi-objective

optimization problem, the DE algorithm is properly adapted. The advantages and

disadvantages of both tuning strategies are discussed in detail, as well as the results

obtained for the Pareto-set approximation. The results – specially the distortion-

sensitivity compromise – are demonstrated and discussed. The validity of the

proposed tuning strategy is evidenced, since it is able to determine the voltages

amplitudes to be applied to the micro spectrum analyzer to attend the distortion

level and sensitivity requirements.

Key words: Microelectromechanical systems; Optimization; Differential evolution.



Resumo

O espectro de vibração mecânica é uma característica do domínio da frequência

utilizada para o monitoramento de sistemas diversos e é, tradicionalmente, calcu-

lado pela Transformada Rápida de Fourier (FFT) – do termo em inglês Fast Fourier
Transform – de uma série temporal. Uma alternativa viável, com diversas vantagens

operacionais, é o uso de microacelerômetros gêmeos para a obtenção do espectro

diretamente no domínio da frequência. Essa estratégia possui sua maior limitação

nas diferenças encontradas nos parâmetros físicos de acelerômetros – devidas a

seu processo de fabricação –, de tal forma que o nível de distorção do espectro

pode ser consideravelmente superior àquele encontrado no espectro levantado pela

FFT. Para contornar essas diferenças, neste trabalho a afinação do microdispositivo

analisador de espectro é proposta através do ajuste das amplitudes das tensões

de atuação dos acelerômetros. Para realizar a afinação, a Evolução Diferencial

(DE, do termo em inglês Differential Evolution) é usada e o problema da afinação é

abordado sob duas diferentes perspectivas de otimização: uma mono-objetivo e

uma multi-objetivo. Para ambos os problemas de otimização, as funções objetivo e

restrições são baseadas nas componentes da série de Fourier do ganho de malha

fechada do sistema analisador de espectro – composição essa que depende das

tensões de excitação. Para a solução do problema de otimização multi-objetivo, o

algoritmo DE é devidamente adaptado. As vantagens e desvantagens de ambas as

estratégias de afinação são discutidas em detalhe, bem como os resultados obtidos

para a aproximação do conjunto de Pareto. Esses resultados – especialmente o com-

promisso distorção-sensibilidade – são demonstrados e discutidos. A validade da

estratégia de afinação proposta é evidenciada, uma vez que é capaz de determinar

as amplitudes das tensões a serem aplicadas ao micro analisador de espectro para

atender os requisitos de nível de distorção e sensibilidade.

Palavras-chave: Sistemas microeletromecânicos; Otimização; Evolução diferencial.
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Chapter 1

Introduction

Vibration has been a subject of interest since 4000 B.C. when various civilizations –

such as Chinese, Hindu, Japanese, and Egyptian – started to appreciate music, although their

knowledge has not reached a science level. It was Pythagoras (582-507 B.C.), in the ancient

Greek civilization, who first investigated musical sounds on a scientific basis. The concept of

pitch was developed during Pythagoras’ time, but the relation between pitch and frequency was

not understood until the 16th century, the time of Galileo Galilei [1].

Another vibration that has intrigued society for centuries was the one generated by

earthquakes. In A.D. 132, a Chinese astronomer developed an instrument with the shape of a

wine jar to measure earthquakes. The world’s first seismograph was capable of indicating the

earthquake occurrence direction by means of pendulums and levers located inside the jar [1].

Nowadays, the effects of earthquakes are important for civil engineering, and the diagnosis of

structural safety conditions is performed by analyzing the variation of the building’s natural

frequency [2, 3].

Vibration can be understood as any motion that repeats itself periodically. The vibra-

tion theory involves the study of oscillatory motions and the forces associated with them [1].

Currently, vibration sensing and monitoring are important in a myriad of applications in sci-

ence and technology – such as aeronautical, mechanical, civil, and electrical systems – and

are particularly profitable in economically critical or life-threatening systems [4]. In electric

machines, the presence of moderate vibrations is very common; however, when the amplitudes

rise, these vibrations may become harmful, result in premature fatigue failure due to large

dynamic stresses, and damage the machine’s mechanical components due to inertial forces [5].

Furthermore, as far as human health is concerned, depending on the existing interaction, the

vibrations may cause physical or auditory discomfort [1, 6].

Currently, the most used solution for sensing the mechanical vibration spectrum is an

accelerometer – to acquire the data of a time series – and a processor – to compute the Fast Fourier

Transform (FFT). The algorithm to compute the FFT can be implemented on a computer [7], on a

Digital Signal Processor (DSP) [8, 9], or even on an embedded circuit using Field Programmable

Gate Array (FPGA) [10, 11]. These solutions have some drawbacks in using the FFT algorithm:
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since the spectrum calculation does not occur in real time, it is possible that some information

will be lost [12]. Besides, the algorithm adds some unexpected spectral components that are not

present in the monitored physical vibration. However, the main disadvantage of the FFT solution

is exactly the need for a digital processor, which consumes power and has a size that prevents

its use in several applications, such as in the medical area [13, 14], where microinstrumentation

is applied.

Microinstruments are of great value for many other applications besides medicine, not

only due to their small size and low manufacturing costs, but also due to the advantages related

to their operation – such as minimizing energy consumption and increasing sensitivity. The fast

development of silicon manufacturing technologies since the 1960s and the knowledge of its

excellent mechanical properties – coupled with electrical and thermal versatility – led to the

expansion of its use in new technologies, such as Microelectromechanical Systems (MEMS) [15].

MEMS can be used for spectral analysis by amplifying the vibration signal in a small band

around the resonance frequency, eliminating other spectral components [16]. With this selective

approach, the signal-to-noise ratio is improved in the resonance frequency of the microsensor,

simplifying the signal conditioning circuit – eliminating the FFT algorithm –, as can be seen in

several studies since the late 1990s [17, 18]. This strategy, however, is limited to applications

with vibration frequencies coincident with the resonance frequency of the sensor.

To overcome this constraint, resonance frequency tuning mechanisms may be employed,

selecting the resonance frequency of the micro-oscillator – and, consequently, the sensor sensitiv-

ity – through electrostatic force feedback. This consists in the application of a continuous voltage

in the device, allowing the electronic modulation of its spring constant [19]. The electrostatic

force feedback allows the extraction of several spectral lines simultaneously by using an array of

oscillators, each one tuned to a specific frequency [16, 20]. In spite of allowing greater flexibility,

this strategy is still limited to the monitoring of a reduced number of vibration frequencies –

corresponding to the number of micro-oscillators used.

Extending the electrostatic force feedback concept, a microaccelerometer can be made

selectively responsive to a narrow frequency component of mechanical vibration by applying an

alternating exciting signal to the device. As a result, the vibration components are sequentially

obtained by varying the frequency of the driving signal. In this way, an electronically controlled

spectral filtering can be performed, obtaining a real-time mechanical vibration spectrum analyzer,

dispensing the FFT, through nonlinear electromechanical positive feedback. This was first

proposed by Cretu, Bartek, and Wolffenbuttel [21], using twin-microaccelerometers with two

inverted clamped pendulum capacitive structures and common-mode actuation voltages to

perform electrostatic momentum feedback and obtain an output signal that represents the

correlation between the external acceleration, aext(t), and a cosine function, cos(ωdt). The

working principle is general and can be applied to any microaccelerometer topology, as long as

electrostatic driving is possible [19].

The combination of the capacitive transducer and the low-power reading circuitry has

the potential for lower power consumption compared to a digital system running an FFT
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algorithm and is well suited for low power and low cost applications. This advantage is

even more prominent in applications where, based on prior knowledge of the failures of the

mechanisms monitored, some specific spectral components are expected and can be monitored.

The critical part is the matching of the twin-microaccelerometers parameters – such as mass and

spring constant – since any difference between them leads to the appearance of spectral lines

that do not exist in the monitored vibration signal [19, 22].

1.1 Contributions

Although the differences between the accelerometers can be corrected by adjusting the

actuation voltages amplitudes, the critical part is the trade-off between the achievable sensitivity

and the distortion level, which determines the amplitude of the voltage used for electrostatic

actuation. In order to overcome the microaccelerometers differences and reduce the noise of the

mechanical vibration spectrum, considering the sensitivity-distortion compromise, a tuning of

the spectrum analyzer is proposed in the present work by means of the accelerometers excitation

voltages.

In this work, the accelerometer structure used by Cretu, Rocha, and Wolffenbuttel

[22] is chosen – although any other twin-accelerometers structure with separate electrodes for

driving and sensing can be used –, and the simulation is based on a macro-model that considers

the interaction between the electrical and the mechanical domains. All the simulations are

performed with software MATLAB®İn order to make the simulation close to actual systems

behavior, the rated values of the macro-model parameters correspond to the parameters of a

real physical device, as described by Cretu, Rocha, and Wolffenbuttel [22]. In order to mimic the

parameters differences inherent to the production process, the parameters are not set equal to

their rated values; instead, they are randomly chosen from a range around these values. These

assumptions about the accelerometers parameters allow the visualization of their influence in

the mechanical vibration spectrum obtained.

To compensate the microaccelerometers differences, a tuning mechanism must be em-

ployed to select the excitation amplitudes that provide a better result in the final spectrum

in terms of distortion and sensitivity. These features are proposed in the present work to be

quantified in terms of the Fourier Series composition of the system closed-loop gain. The Fourier

Series components are computed using MATLAB fit function applied to the system closed-loop

gain when the spectrum analyzer is subjected to a known acceleration input.

The first methodology suggested to the spectrum analyzer tuning consists of a mono-

objective optimization problem, since it is possible to maximize the sensitivity, while the distor-

tion is kept below a maximum level. Therefore, the distortion represents a constraint and the

cost function is based on the sensitivity. This methodology is suitable for applications where

there is previous information about the spectrum to be mapped, so it is possible to determine

the a priori required distortion level.

The other methodology applied relies on the fact that sensitivity and distortion are
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concurrent features; therefore, this tuning can be performed by means of a multi-objective

optimization problem. The tuning results, consequently, are an approximation to the Pareto-

optimal set, so that it is possible to choose between the solutions in order to prioritize one feature

over another.

To solve both the optimization problems, Differential Evolution (DE) is used. The

algorithm is adapted to solve the tuning problems, using a properly proposed stopping criterion,

and all the steps – initialization, reproduction process and competition – are performed by

means of author’s MATLAB codes. All necessary adaptations for the application of DE to

multi-objective problems are implemented.

Using the results of both the mono- and multi-objective optimization problems, it is

possible to determine the actuation voltages amplitudes that guarantee the requirements of

the distortion-sensitivity compromise. The validation of these results occurs in two different

perspectives: first comparing the optimization results with the mapped results, and then visually

analyzing the final spectrum when the voltages combination is used and an external acceleration

– different from that used during the tuning – is applied. The mentioned mapped results consist

of an exhaustive search of the distortion and the sensitivity surfaces as functions of the voltages

applied to the accelerometers. This exhaustive search provides the solutions for the tuning

optimization problems based on analytical expressions for the Fourier components of the system

closed-loop gain; these expressions depend on the accelerometers parameters and are also

demonstrated in this work. In real cases, the accelerometers parameters are unknown, but the

hypothesis assumed here is useful to understand the problem and to validate the proposed

tuning strategies. The tuning, however, does not depend on the mapping to work properly.

Then, it is possible to apply the micro spectrum analyzer system, with all its advantages

such as reduced size and without the need for the FFT algorithm, and now overcoming its

main disadvantage, more specifically the differences found in the twin-accelerometers due to

their production. The tuning performed has its characteristics, advantages, and disadvantages

explained.

1.2 Dissertation organization

This work is divided as follows: a brief introduction to optimization problems is pro-

vided in Chapter 2, along with the multi-objective concepts of Pareto-optimality. In the same

chapter, the use of meta-heuristics to solve optimization problems is reported and a Differential

Evolution (DE) algorithm is described in detail, in addition to the adaptations found in literature

to use DE to solve multi-objective problems. In Chapter 3, the application of the frequency

analysis to the mechanical vibration spectrum is presented, with its possible instrumentation

briefly described. In that chapter, a small history of microelectromechanical systems is presented,

justifying the advantages of their use in the real-time spectrum analyzer, whose operation and

particularities are thoroughly described later in this chapter. The methodologies for tuning the

MEMS vibration analyzer are detailed described in Chapter 4. In Chapter 5, the results obtained
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for the spectrum analyzer simulation and the tuning of the twin-microaccelerometers, validating

their implementation, are presented. Finally, in Chapter 6, the conclusions and the future works

are stated.
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Chapter 2

Optimization and Meta-heuristics

In this chapter, basic optimization concepts are presented, together with the definition

of multi-objective optimization. Next, the meta-heuristics – an alternative to solve optimization

problems – are briefly described, with one meta-heuristic explained in detail: the Differential

Evolution (DE) algorithm.

2.1 Optimization basic concepts

The concept of optimization underlies the analysis of many complex decision or allo-

cation problems. Using this concept, a problem that involves the selection of values for a set

of interrelated variables can be solved by focusing attention on a single objective, designed to

quantify performance and measure the quality of the decision. The objective is maximized or

minimized – depending on the problem formulation – subject to constraints that may limit the

selection of the decision variable values [23].

A variety of practical problems can be stated as mathematical optimization problems, or

some variation – as multi-criterion optimization problem –, so that mathematical optimization

becomes a valuable tool in many areas. Optimization problems can be divided into continuous

or discrete, constrained or unconstrained, mono- or multi-objective, static or dynamic [24].

The concept of optimization can be understood as the search for the best possible solution

among all available. Mathematically, a general optimization problem has the form:

(P)

∣∣∣∣∣∣∣∣∣∣
minimize f (x)
subject to hi (x) = 0, 1 ≤ i ≤ m

g j (x) ≤ 0, 1 ≤ j ≤ p
x ∈ S

, (2.1)

where x = (x1, . . . , xD) is the optimization variable vector, f (x) : RD → R is the objective or

cost function, hi (x) and g j (x) are the equality and inequality constraint functions, the set S is a

subset of the D-dimensional optimization decision space RD, and this set restriction is also a

constraint [23]. For simplicity, it is assumed that the objective function is to be minimized. If an

objective function f is to be maximized, it is equivalent to minimize the function (− fi) [25]. A
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vector x? is a solution of the problem P if the objective function evaluated in x? has the smallest

value among all feasible vectors, i.e., f (z) ≥ f (x?) for any z that satisfies all the constraints [26].

The form of the objective and constraint functions characterize families or classes of

optimization problems. An important class is linear programming. The optimization problem

(2.1) is called linear if the objective and all constraint functions are linear, i.e., if they satisfy

f (αx +βy) = α f (x) +β f (y) , (2.2)

hi (αx +βy) = αhi (x) +βhi (y) , 1 ≤ i ≤ m , (2.3)

g j (αx +βy) = αg j (x) +βg j (y) , 1 ≤ j ≤ p (2.4)

for all x, y ∈ RD and allα,β ∈ R [26].

Another important class of optimization problems is formed by convex optimization

problems, in which S is a convex set and the objective and constraint functions are convex. This

means that they satisfy the inequalities

f (αx +βy) ≤ α f (x) +β f (y) , (2.5)

hi (αx +βy) ≤ αhi (x) +βhi (y) , 1 ≤ i ≤ m , (2.6)

g j (αx +βy) ≤ αg j (x) +βg j (y) , 1 ≤ j ≤ p (2.7)

for all x, y ∈ RD and all α,β ∈ R with α + β = 1, α ≥ 0, β ≥ 0 [26]. Since convexity is

more general than linearity, any linear program is therefore a convex optimization, and convex

optimization is a generalization of linear programming.

The optimization problem (2.1) is an abstraction to the problem of choosing the best

possible vector from a set of candidate choices. The decision vector represents the choice

made, the constraints represent specifications that limit the possible choices, and the objective

function value presents the cost of choosing the decision vector. A decision choice that leads to

a minimum cost among all choices that meet the requirements is a solution to the optimization

problem [26].

To compute a solution of an optimization problem, a solution method – an algorithm

suitable to solve a class of optimization problems – can be used. Despite the effort to develop al-

gorithms to solve various classes of optimization problems, the effectiveness of these algorithms

varies considerably depending on the particular forms of the objective and constraint functions,

how many variables and constraints exist, and other factors. Solving optimization problems

can be a difficult task, presenting very long computation time, or the possibility of not finding

the global optimal solution. Effective algorithms have been developed to solve some problem

classes, such as least-square problems, linear program and convex problems [26].

When the objective or constraint functions are not linear, the optimization problem is

called nonlinear optimization. To solve these problems, there are no effective general methods –

problems with ten variables can be surprisingly challenging, and problems with few hundreds

of variables can be impossible to solve –, and each different approach involves some compro-

mises [26]. In local optimization, for example, the compromise is to quit the search for a variable
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vector that minimizes the objective function over all feasible points, seeking for a point that is

only locally optimal – i.e., a point that minimizes the objective function among feasible points

that are near it. In global optimization, the true global solution – which is guaranteed to have

a lower objective value than all other feasible points – is found, but the compromise is the

efficiency, since even small problems, with a few tens of variables, can take a very long time –

hours or days – to be solved, once fixed the computational resource available.

2.1.1 Multi-objective optimization

A multi-objective optimization problem has the form

(P)

∣∣∣∣∣∣∣∣∣∣
minimize { f1(x), f2(x), . . . , fL(x)}
subject to hi (x) = 0, 1 ≤ i ≤ m

g j (x) ≤ 0, 1 ≤ j ≤ p
x ∈ S

, (2.8)

where there are L ≥ 2 objective functions fi(x) : RD → R. The objective functions vector is

denoted as f(x) = ( f1(x), f2(x), . . . , fL(x)) – or z = (z1, z2, . . . , zL), where zl = fl(x) for all

l = 1, . . . , L – and belongs to the objective space RL, and the optimization variable vector

x = (x1, . . . , xD) belongs to the decision space RD [23, 25, 26]. The feasible objective space,

denoted by Z, corresponds to the image of the feasible optimization decision space S. As the

mono-objective case, it is assumed that all the objective functions are to be minimized, since it is

possible to maximize an objective function fl by minimizing the function (− fl) [25].

In mono-objective optimization problems, the focus is on the decision space, or design

space; in that space, the constraints and the objective function contours are plotted as functions of

the decision vector x. In multi-objective optimization problems, on the other hand, the objective

space is more evidenced, since the objective values are used in the definition of optimality. In the

objective space – also called cost space or criterion space –, the axes represent different objective

functions [25, 27].

If there is no conflict between the objective functions, a solution can be found in which

every objective function achieves its optimum; this is a trivial case that requires no special

methods. However, multi-objective problems generally present no single solution that is optimal

with respect to every objective function, which means that the objective functions are at least

partly conflicting [25].

Because of the conflict among the objectives and possible incommensurability – i.e.,

different units – of the objective functions, it is not possible to find a single solution that would be

optimal for all the objectives simultaneously. Multi-objective problems are in a sense ill-defined,

and there is no natural ordering in the objective space since it is only partially ordered – as is the

case when vectors are compared in real spaces. Nonetheless, a dominance relation is defined

when none of the components can be improved without deterioration to at least one of the other

components. This definition, called Pareto-optimality or efficiency, is the predominant solution
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concept in defining solutions for multi-objective optimization problems and is formally given

by Definition 2.1 [25, 27].

Definition 2.1: Global Pareto-optimality

A decision vector x? ∈ S is Pareto-optimal if there is no other variable vector x ∈ S such that
fl(x) ≤ fl(x?) for all l = 1, 2, . . . , L with f j(x) < f j(x?) for at least one index j, 1 ≤ j ≤ L.

A simple interpretation of this concept – in the case of minimizing all cost functions –

indicates that a given solution a is better than a given solution b if all cost functions evaluated in

a are less than or equal to the evaluation in b, with at least one of the cost functions being less in

a than in b [26]. This definition is named after the economist and sociologist Vilfredo Pareto,

who, in 1896, developed further the concept presented in 1881 by Francis Ysidro Edgeworth [25].

Similarly, an objective vector z? ∈ Z is non-dominated if there is no other objective vector

z ∈ Z such that zl ≤ z?l for all l = 1, 2, . . . , L with z j < z?j for at least one index j, 1 ≤ j ≤ L;

equivalently, z? is Pareto-optimal if the decision vector corresponding to it is Pareto-optimal [25].

The set of all Pareto-optimal vectors is called Pareto-optimal set [27].

The definitions of Pareto-optimality or efficiency, and dominance are similar; the only

distinction is that efficiency refers to vectors in the decision space and dominance refers to

vectors in the objective space. The hyper-surface within the objective functions space that is

defined by the set of all efficient solutions is called the Pareto-front. With this set of solutions, it

is possible to learn how much improving one objective worsens the others before choosing one

solution from the non-dominated set. The Pareto-front divides the objective function space in

two regions: one that contains non-optimal solutions – or dominated solutions –, and one that

contains unfeasible solutions – i.e., the invalid points beyond the Pareto-front. In some cases,

the Pareto-front may converge to a single point; this is the case when the objective functions are

not conflicting or when the constraints restrict the problem [28].

Unlike the mono-objective optimization, where the only goal is to find the optimum, in a

multi-objective optimization there are two goals: the convergence to the Pareto-optimal solutions;

and the maintenance of a set of maximally spread Pareto-optimal solutions. These goals are

independent of each other and an optimization algorithm should have specific properties

for achieving each goal. The presence of two different spaces – the decision space and the

objective functions space – allows flexibility in the design of search algorithms for multi-objective

problems [29].

A fundamental characteristic of multi-objective optimization methods is the nature of

the solutions provided by them. Some methods always provide Pareto-optimal solutions, but

may not obtain all the points of the Pareto-optimal set. This characteristic is useful when the

interest consists in obtaining just one solution point. Some other methods are able to provide

all the Pareto-optimal points, but may also yield non-Pareto-optimal points. This quality is

beneficial when the complete Pareto-set must be generated [27].
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2.1.1.1 Weighted sum of objective functions

The weighted-sum method is a classical procedure to transform a set of objectives

into a single objective by pre-multiplying each objective with a weight provided by the user.

Although the idea is simple, the question is how to choose the weights [29]. Based on how

the weights are assigned, the method can be classified as a priori, progressive, or a posteriori.
The first group assumes that the objective preferences can be ordered and that the weights do

not change during optimization. The second group is more flexible than the first, since the

selection made at the beginning of the optimization can be altered, correcting the weights based

on next level knowledge. Finally, in a posteriori methods, the preference is typically based on

Pareto-optimality [28].

2.1.1.2 ε-Constraint method

Another classical method to solve multi-objective problems consists in reformulating

the multi-objective optimization problem by keeping one of the objectives and constraining the

rest of the objectives within specified values chosen by the user, based on the problem itself.

This approach is the ε-constraint method [29]. The optimization problem of Equation 2.8 then

becomes:

(P)

∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize fµ(x)
subject to fn (x) ≤ εn, 1 ≤ n ≤ L, n 6= µ

hi (x) = 0, 1 ≤ i ≤ p
g j (x) ≤ 0, 1 ≤ j ≤ p
x ∈ S

, (2.9)

where the parameter εn represents an upper bound of the value of fn and it is not necessarily

close to zero. Since the constants εn are user-defined, changing their values results in different

single optimum solutions, and therefore different Pareto-optimal solutions can be found [30].

2.2 Meta-heuristics

In optimization problems, the central idea is to find the optimal solution within the

decision domain. For a differentiable scalar cost function, its gradient gives the fastest increasing

direction of the cost function. Thus, optimization problems seem to be easy, since theoretically it

is possible to start from any initial point and use the gradient to guide the search to the optimum,

where the gradient is null. However, this is only applicable for some types of problems. In

combinatorial, multi-objective constrained optimization and even in differentiable unconstrained

optimization, methods based on gradients might not work [31]. A valid alternative to gradient-

based optimization algorithms are the heuristic-based search techniques [30].

Heuristics and meta-heuristics are approximation methods that can find a good enough

solution in a reasonable time. The main difference between heuristics and meta-heuristics is

that the first one is problem-dependent – heuristics can be efficient to a specific problem but not

to other problems. A meta-heuristic, on the other hand, is a generic algorithm or a black-box
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optimizer that can be applied to almost all optimization problems [32]. This characteristic

of meta-heuristics associates with two search schemes: exploration and exploitation. These

concepts can be understood as global and local searches, respectively. The exploration – also

called diversification – refers to the ability of visiting many different regions of the search space.

Exploitation, which is also called intensification, allows to obtain high-quality solutions within

already detected promising regions [32, 33].

Meta-heuristics can be classified in different ways, considering the way of employing the

exploration and the exploitation, and the metaphor of the search procedures, where metaphor

refers to the simulation of some natural, human behavior, or mathematics phenomena [32].

There are meta-heuristics based on chemistry, music, mathematics, physics, social, and sport

principles. There are also non-metaphor based meta-heuristics, that do not use any inspiration to

determine their search strategy; such is the case of Tabu Search. However, many meta-heuristics

are inspired by biological evolution principles, such as evolutionary, swarm, and immune

systems.

To solve optimization problems, meta-heuristics can be based on a single solution or

population of solutions; in both cases, they do not use the gradient nor the Hessian matrix

of the objective function and present several meta-parameters to be adjusted according to the

problem [24]. Meta-heuristics are widely recognized as efficient tools for several optimization

problems that cannot be solved by deterministic methods in admissible time.

Among some of the most commonly used meta-heuristics [34] are Simulated Annealing,

Tabu Search, and Genetic Algorithms, the latter encompassing several algorithms – such as the

Differential Evolution, described in what follows.

2.2.1 Differential Evolution

The Differential Evolution (DE) is one of the most powerful tools for global optimiza-

tion [24]. It consists in a small and simple mathematical model of a big and naturally complex

process of evolution, realizing the evolution of a population of individuals in an intelligent

manner – using differences between individuals, performed in a simple and fast linear operation,

so-called differentiation, making DE unique [35]. Proposed by Storn and Price [36], it was

developed to be a reliable, versatile, and easy-to-use function optimizer. In DE, like in nearly

all other evolutionary algorithms, an initial population of candidate solutions is arbitrarily

chosen. For each generation of the evolutionary process, new individuals are created through

the reproductive process, which consists of mutation and crossover. Each member of the current

population competes with a new individual generated by the reproductive process, so only the

one that produces the most adequate solution to the problem in question is maintained in the

next population. DE presents some variations [28] that can be named by the code DE/x/y/z; x
indicates the base individual, being either random (rand) or the best within the population (best);
y indicates the number of difference vectors used to disturb the base vector; the crossing scheme

is indicated by z, and can be binomial (bin) or exponential (exp). The classical version of the DE

algorithm, and also the most commonly used one, is denoted by DE/rand/1/bin.
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In this section, the description of the DE is made based on the concepts, properties, and

characteristics described by Price, Storn, and Lampinen [28]; thus, the notation used by those

authors is also used here. The DE algorithm maintains a pair of vector populations, both of

which contain Np real vectors of dimension D. The population in the generation g is expressed

as:

Px,g =
(
xi,g
)

, i = 1, . . . , Np, g = 1, . . . , gmax (2.10)

and contains the Np feasible vectors – called target vectors, xi,g. The i-th target vector of

generation g is given by Equation 2.11.

xi,g =
(
x1,i,g, x2,i,g, . . . , xD,i,g

)
(2.11)

After the initialization, DE mutates randomly chosen vectors to produce an intermediary

population

Pv,g =
(
vi,g
)

, i = 1, . . . , Np, g = 1, . . . , gmax (2.12)

of Np mutant vectors vi,g, given by Equation 2.13.

vi,g =
(
v1,i,g, v2,i,g, . . . , vD,i,g

)
(2.13)

The relation between the target vectors and the mutant vectors is presented later in this

text.

Each vector of the current population is then recombined with a mutant vector, produc-

ing a trial population

Pu,g =
(
ui,g
)

, i = 1, . . . , Np, g = 1, . . . , gmax (2.14)

of Np trial vectors ui,g, given by Equation 2.15.

ui,g =
(
u1,i,g, u2,i,g, . . . , uD,i,g

)
(2.15)

The relation of trial and mutant vectors is described later in this text; these vectors can

occupy the same array, since the first one overwrites the last during recombination [28].

Before the population initialization, the limits for each variable xi of the variable vector

x must be specified, i.e., back to Equation 2.1, the upper and lower bounds of the set S must

be defined in two D-dimensional initialization vectors – bU and bL, respectively. After this

specification, a random number generator rand j(0, 1) – that returns a uniformly distributed

random number from within the range [0, 1) and generates a random value for each parameter

j – is used to assign each variable to a value within the correspondent range, according to

Equation 2.16.

x j,i,0 = rand j (0, 1)
(
b j,U − b j,L

)
+ b j,L (2.16)

All the variables are initialized with real values – even if they are discrete or integer –,

since DE internally treats all variables as floating-point, despite of their type, to add diversity to

their difference distributions.
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The step after the initialization is the recombination, which involves mutation and

crossover. The differential mutation is represented in Equation 2.17, where a randomly sampled

vector, xr0 ,g, is added to a difference vector, (xr1 ,g − xr2 ,g) – also randomly chosen –, generating

the mutant vector vi,g.

vi,g = xr0 ,g + F
(
xr1 ,g − xr2 ,g

)
, (2.17)

where the scale factor F, F ∈ (0, 1+), multiplies the difference vector and controls the population

evolution rate. The constant F is a control parameter, which manages the trade-off between

exploitation and exploration of the space [35]. Even though there is no upper limit to F, it is

rarely greater than 1.0. As mentioned, the vectors are randomly chosen, so the indexes r0, r1,

and r2 are randomly generated and must be distinct from one another and from the target vector

index i, i.e, they must be mutually exclusives: r0 6= r1 6= r2 6= i.

The DE reproductive process also involves a uniform crossover, building trial vectors by

copying parameter values from two different vectors.

u j,i,g =

 v j,i,g , if rand j (0, 1) ≤ CR or j = jrand

x j,i,g , otherwise ,
(2.18)

where the crossover probability, CR ∈ [0, 1], controls the fraction of parameters copied from

the mutant and the condition j = jrand ensures that the trial vector ui,g is not a duplicate of the

target vector xi,g.

The final step of DE is the selection. In the case of a minimization cost function, during

this process, the trial vector replaces the target vector in the next generation only if the first has

an equal or lower objective function than the later:

xi,g+1 =

 ui,g if f
(
ui,g
)
≤ f

(
xi,g
)

xi,g otherwise .
(2.19)

It is important to highlight that, at this stage, the quantization of the variables is applied:

the cost function is evaluated with the quantized parameters, although the real values are

maintained in the populations.

The process of mutation, recombination and selection is repeated until the optimum is

reached or a stopping criterion is satisfied.

Feoktistov [35] provides a clear graphical interpretation of Differential Evolution that

simplifies the understanding of such algorithm, emphasizing three key-elements to DE success.

The first key-element is the spontaneous self-adaptability to the function. This characteristic

lies in the way of creating the mutant vector, given in Equation 2.17. In this equation, the scaled

difference between two randomly chosen individuals defines the direction and length of the

search step. This difference is added to a third randomly chosen individual, that consists in

a base point of application, i.e., the current reference point. The basic idea of this equation –

and of Differential Evolution in general – is to adapt the step length intrinsically throughout

the evolutionary process. In the first generations, the step length is large, since individuals



31

are scattered all over the feasible decision space and far from each other. As the algorithm

progresses, the population converges and the step length becomes smaller. The randomness

of search directions and base points provides, in many cases, the convergence to the global

optimum.

The second key-element for DE success, according to Feoktistov [35], is the diversity con-

trol, which occurs in the creation of the trial vector, according to Equation 2.18. In this equation,

each parameter of the mutant vector is accepted by the trial individual with a probability CR,

and the random number jrand ensures that at least one element of the trial vector is coppied from

the mutant vector – and, therefore, is different from the target vector. Even though the mutant

vector could be used directly in the next step of the algorithm, the crossover used to create the

trial vector increases the exploration and exploitation capabilities, acting as a diversity control;

another side effect is the increase in the ability to handle some functions properties, resulting in

better convergence of the algorithm.

The final element that ensures DE success is the continuous improvement, related with

the selection of the best vector, as presented in Equation 2.19. The trial is compared with the

target vector; if the trial vector presents an equal or better fitness value, it replaces the target

vector in the next generation. Thus, the population fitness always improves or, at least, maintains

the same values. The selection described is called elitist selection and is used successfully in

many evolutionary algorithms [35].

In constrained optimizations problems, DE can deal with boundary constraints – that

define the upper and lower bounds of the set S – separately and in a easier way than the

inequality constraints. Since the current population already satisfies all the constraints, the

boundaries only need to be checked when a mutant parameter is selected for the trial vector [28].

Basically, there are two distinct techniques to deal with parameters that violate the bounds:

resetting and penalty methods.

Random reinitialization is an example of the resetting method, modifying the out-of-

bounds parameters so that the trial vector satisfies all constraints. The bounce-back method is

similar to the random reinitialization, but it takes into account the progress toward the optimum

by selecting a parameter value between the base parameter and the violated boundary. Another

option is the resampling, which randomly samples a new mutant vector, and therefore, a new

trial vector. On the other hand, penalty methods deal with the out-of-bounds parameters using

an objective function criterion. The brick-wall penalty is a simple example of penalty methods,

assigning a value high enough to the objective function of the vector that violates the bounds,

ensuring that it will not be selected. The techniques cited to deal with boundary constraints

are described, as well as their pseudo-code, in Price, Storn, and Lampinen [28], except the

resampling, which can be found in Arabas, Szczepankiewicz, and Wroniak [37].

In contrast, inequality constraints are commonly implemented as penalty functions that

increase the objective function – considering that the optimization problems constitute on a

minimization –, when constraints are violated. Then, penalty functions transform a constrained

problem into an unconstrained one with the definition of a new evaluation function by adding
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or subtracting a certain value from the objective function based on the amount of constraint

violation present in a certain solution [38, 39].

In classical optimization, there are two kinds of penalty functions: exterior and interior.

In the first method, it starts with an unfeasible solution and from there the algorithm moves

to a feasible region. In the case of interior methods, the penalty term is chosen such that its

value is small at feasible points away from the constraint boundaries, and tends to infinity

as the constraint boundaries are approached. Then, if the algorithm starts in a feasible point,

the subsequent points generated always lies within the feasible region since the constraint

boundaries act as barriers [39].

Using penalty functions presents the risk that one penalty may dominate unless the

weights are correctly adjusted. If the penalty weight is predefined by the user and does not

change during the evolving process, the penalty function is called static. An extreme example of

static penalty function is the death penalty. This is one of the easiest ways to handle constraints

and assigns an infinite cost function to every solution that violates a constraint. Therefore,

there is no need of further calculations to estimate the degree of unfeasibility of such solutions;

besides, the cost function does not need to be evaluated for unfeasible points. This approach is

taken recursively, generating a new point at each recursive call, until a feasible solution is found.

One of the drawbacks of the death penalty is the possibility of stagnation when all the initial

population is unfeasible; this approach works well when the feasible search space constitutes a

reasonably large portion of the whole search space [39].

Price, Storn, and Lampinen [28] described a direct method – called Lampinen’s criterion –

that separates the objective value and the constraint violation, assigning to each population

vector an array of objective values, containing the objective function value and also the constraint

functions values. This criterion selects the trial vector ui,g over the target vector xi,g in the

selection stage if:

• ui,g satisfies all constraints and has a lower or equal objective function value than xi,g, or;

• ui,g is feasible and xi,g is not, or;

• ui,g and xi,g are both unfeasible, but ui,g does not violate any constraint more than xi,g.

This criterion for direct constraint handling is based on Pareto-dominance.

Another important definition in the DE algorithm is the stopping criterion. Even though

sometimes it is clear when the optimization has finished, it is not always evident when to stop

the search to ensure a desirable solution. That is the case of multi-objective problems, where the

objectives are conflicting and it is not obvious when to stop to guarantee a better compromise.

A popular strategy to deal with the stopping criterion in evolutionary algorithms consists

in reaching a certain number of objective function evaluations or a certain number of generations.

The disadvantage of this strategy is the need to perform tests to determine the maximum number

of generations, since this information is not known a priori. This process can be avoided by using
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information about the state of the optimization in the stopping criterion. The stopping criterion

must ensure that the algorithm is executed long enough to converge to the optimum, without

wasting computational resources [40, 41]. Different mechanisms can be used to conclude about

the current state of the optimization. In principle, any phenomenon that shows a definite trend

from the beginning to the end of the optimization can be used. As an example, the movement of

the population individuals is large at the beginning and decreases as the algorithm converges.

Zielinski, Peters-Drolshagen, and Laur [40] classifies six different stopping criteria,

which are briefly described as follows:

1. Reference criterion: when the optimum is known, the algorithm terminates when a certain

percentage p of the population converged to the optimum.

2. Exhaustion-based criterion: due to limited computational resources, stopping criterion

can be set when a certain computation time, number of generations, or objective function

evaluations are reached.

3. Improvement-based criterion: if only small improvements are accomplished over some

time, the optimization should finish.

4. Movement-based criterion: similar to the improvement, the movement of individuals can

be used as stopping criterion.

5. Distribution-based criterion: usually all individuals converge to the optimum, so the

algorithm can stop when the individuals are close to each other.

6. Combined criterion: the combination of several stopping criteria can benefit from all the

different advantages of each one.

Within the improvement-based criterion, it is interesting to highlight the strategy called

NoAcc [41]. Since DE incorporates a greedy selection scheme, the acceptance of trial vectors

means that the population is improving. Based on this, monitoring if trial vectors are selected

over a specified number of generations can be a criterion to finish the optimization. This method

has the advantage that only one parameter must be set, and it is not recommended to choose

a too low value, since long periods without improvement may occur during the optimization

process.

One of the great advantages of DE is its small number of search control meta-parameters:

the population size N, the differentiation constant F, and the control parameter of the crossover

rate CR [24]. Although it is not possible to determine a priori these meta-parameters, the literature

[36, 42, 43] recommends some initial settings, such as N = 10D, F = 0.9, and CR = 0.9 – which

are typically effective, even though the control parameters fine-tuning usually results in a

considerably higher convergence rate. Several methodologies have been proposed for the

control meta-parameters tuning [44], for example, perform an exhaustive grid search, varying

the meta-parameters and analyzing the results in terms of mean time, best and worst solutions

found, convergence rate and standard deviation [45].
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2.2.1.1 Differential Evolution for multi-objective optimization

Several real-world optimization problems can be modeled using multiple conflicting

objectives. The classical approach to solve such problems were focused on scalarizing multiple

objectives into a single objective. Whereas, evolutionary algorithms are used to solve multi-

objective problems as they are [29]. Such problems have a set of optimal solutions – the

Pareto-optimal solutions described in Section 2.1 – instead of a single optimum solution; these

solutions should be considered equivalent in the absence of information about the relevance

of each objective [46]. Then, it is important to find not just one of these solutions, but as many

as possible. Since any solution constitutes a compromise relation between the cost functions, a

better choice can be made when several solutions are unveiled.

When using stochastic techniques, such as meta-heuristics, the goal is to obtain a Pareto-

front approximation. Having this set, it is possible to choose a solution that privileges one cost

function over another, depending on the need of the problem in question [47].

For most nonlinear multi-objective optimization problems, although it is practically

impossible to find all the Pareto-optimal points, it is realistic to find a subset of the Pareto-

set. Even a simple random search can locate Pareto-optimal points; however, evolutionary

algorithm are a natural option for solving multi-objective optimization problems, since they deal

with groups of candidate solutions. Evolutionary algorithms can find multiple non-dominated

solutions within a single run, and that is the main advantage of this approach.

In numerical algorithms, genetic algorithms and random-search methods for multi-

objective optimization, the idea of dominance in the objective space is used for a subset of

points; that is, the objective function value of a new addition to the set of potential solutions is

compared to the objective function value previously presented to determine if the new point is

dominated. If it is non-dominated, the new point is kept in the set of potential solution points;

this point, however, may not be Pareto-optimal [27], since the comparison occurs over a set that

does not match the feasible set of points in the decision space.

Several authors [30, 48, 49] have proposed the use of differential evolution for multi-

objective optimization problems.

According to Price, Storn, and Lampinen [28], by using Pareto-dominance as a se-

lection criterion, a population can be driven toward the Pareto-front. This incorporation of

the dominance-based selection into DE consists on comparing the trial and target vectors to

determine which one is dominant, as given by Equation 2.20.

xi,g+1 =

 ui,g if ∀n ∈ {1, 2, . . . , L} : fn
(
ui,g
)
≤ fn

(
xi,g
)

xi,g otherwise
(2.20)

According to Equation 2.20, the trial vector ui,g is selected if the trial vector dominates

the target vector xi,g or if the trial and the target vectors are non-dominated with regard to each

other. This is because of the criterion used to select ui,g is necessary, but not sufficient, to ensure

that ui,g dominates xi,g. In other words, the trial vector is not selected only in the cases where it
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is not possible for it to dominate the target vector in the objective function space.

In many cases, the trial vector ui,g can be rejected before all the L objective functions

have been evaluated, which makes DE faster. The flowchart indicated in Figure 2.1 describes

the Pareto-dominance selection criterion of Equation 2.20, considering the minimization of all

the objective functions.

𝑘 = 1

Evaluate 𝑘:th
objective function

Last objective 

function?

Select vector 𝒙𝑖,𝑔 Select vector 𝒖𝑖,𝑔

𝑘 = 𝑘 + 1

End of comparison

𝑓𝑘 𝒖𝑖,𝑔 ≤ 𝑓𝑘 𝒙𝑖,𝑔

Start 

comparing 𝒙𝑖,𝑔
and 𝒖𝑖,𝑔

YES

NO

NO

YES

Figure 2.1: Flow chart for the implementation of the Pareto-dominance selection rule of Equation 2.20.
Adapted from Price, Storn, and Lampinen [28, p. 251].

After a number of generations, some of the population vectors will be dominated, while

others will be non-dominated. As a final step all the dominated points in the last generation

should be removed; then, the remaining population approximates the Pareto-optimal set of

solutions for the multi-objective problem [28].

The Pareto-DE approach described by Price, Storn, and Lampinen [28] is relatively easy

to implement and should be effective on a wide range of problems. This approach, however,

does not have a tool to deal with the second goal on multi-objective optimization problems,

which is the attainment of a set of maximally spread Pareto-optimal solutions.
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It is possible to find several different implementations of DE to multi-objective optimiza-

tion problems. Mezura-Montes, Reyes-Sierra, and Coello [46] provide a good review on some

DE multi-objective adaptations found in literature, besides classifying them into three categories

according to the use of Pareto-optimality. The first category consists in non-Pareto-based ap-

proaches and considers combination of functions or problem transformation to deal with the

multi-objective problem. The Pareto-based approaches use the Pareto concepts to deal with the

multiple objectives by either using it as a criterion to select the best solution in the DE selection

mechanism, or as a ranking procedure. The third class of methods listed by Mezura-Montes,

Reyes-Sierra, and Coello [46] considers approaches where a set of schemes have been mixed

in the DE-based multi-objective algorithm. These approaches consider Pareto concepts and

population-based concepts in the same technique, or local and global search together.

One interesting adaptation of DE to multi-objective optimization found in literature

is the proposal of Robič and Filipič [49], named Differential Evolution for Multi-Objective

Optimization (DEMO). The algorithm modifies the selection criterion to decide when the trial

vector replaces the target vector considering the concept of dominance. If the trial vector

dominates the target vector, this last one is replaced; when the target vector dominates the trial

vector, this last one is discarded; otherwise – i.e., when there is no dominance between the trial

and target vectors –, the trial vector is simply added to the population. Therefore, the population

is extended and the newly created vectors take part immediately in the creation of the following

vectors, which emphasizes elitism within reproduction and helps achieving the first goal of

multi-objective optimization, the convergence to the true Pareto-front. The enlarged population

obtained due to the selection criterion is truncated to prepare it for the algorithm next step. This

truncation is derived from Non-dominated Sorting Genetic Algorithm II (NSGA-II) and consists

in sorting the individuals with non-dominated sorting and then evaluating the individuals of

the same front considering the crowding distance. This process stimulates the uniform spread

of solutions, which is a tool to achieve the multi-objective optimization second goal: finding

diverse non-dominated solutions.

The tuning of MEMS mechanical vibration spectrum analyzers, adjusting the sensitivity-

distortion relation, can be seen as an optimization problem. Therefore, the concepts and tech-

niques presented in this chapter are essential do understand the tuning problem – formulated

in Chapter 4 – and to solve it using DE algorithms – as presented in Chapter 5. Before the

tuning proposal, however, it is fundamental to understand the spectrum analyzer operation, as

described in the next chapter.
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Chapter 3

Vibration Mapping and Monitoring

Even though the interest of ancient civilizations in music, their knowledge in vibration

did not reach the level of a science. It was the philosopher and mathematician Pythagoras who

first investigated music sounds using a scientific basis, investigating experimentally the behavior

of a vibrating string. In the 16th century, Galileo Galilei (1564–1642) studied the behavior of a

simple pendulum, describing the dependence of the vibration frequency on the pendulum’s

length, along with the phenomenon of sympathetic vibrations, also called resonance. Galileo

also indicates the understanding of the relation between frequency, length, tension and density

of a vibrating stretched string. The possibility of such string to vibrate with several of its

harmonics at the same time was argued on physical grounds by Daniel Bernoulli (1700–1782)

in 1753. This characteristic – referred to as the principle of the coexistence of small oscillations,

which is currently called the principle of superposition –, is valuable to the vibration theory

development, allowing to express any arbitrary function using an infinite series of sines and

cosines [1]. However, since Bernoulli did not pursued a mathematical proof, his ideas were not

accepted. Leonard Euler (1707–1783) – who examined the motion of a vibrating string and noted

that if this string configuration at some point in time is a linear combination of normal modes,

so is the configuration at any subsequent time – discarded trigonometric series. In 1759, Joseph

Lagrange (1736–1813) strongly criticized the use of trigonometric series in the examination of

vibrating strings, arguing that trigonometric series were of very limited used [50].

Jean Baptiste Fourier (1768–1830) presented his ideas half a century after Bernoulli’s

proposition. In 1807, Fourier discovered that series of harmonically related sinusoids were useful

to represent the temperature distribution through a body, and claimed that any periodic signal

could be represented by such a series. Besides his imprecise mathematical arguments, many of

the basic ideas behind Fourier’s treatment had been discovered by others – since the concept

of using sums of harmonically related sines and cosines or periodic complex exponentials to

describe periodic phenomena goes back to Babylonians, who used it to predict astronomical

events. It was Peter Lejeune Dirichlet (1805–1859) in 1829 who provided precise conditions that

determine if a periodic signal can be represented by a Fourier series, i.e., as a weighted sum

of harmonically related sinusoids. Thereby, Fourier did not contribute mathematically to the

theory of the series that carries his name. However, he was able to see the potential for this series
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representation. Besides, Fourier used this type of representation for aperiodic signals using

weighted integrals of sinusoids that are not all harmonically related, going one step further than

his predecessors [50].

The Fourier series representation of periodic signals by means of combinations of har-

monic signals or sinusoids unfolds a perspective of periodic signals in the frequency domain in

terms of their frequency content, or spectrum. The term spectral analysis, or harmonic analysis,

is often used to refer to the analysis of a periodic signal by its Fourier series. The magnitude

and phase spectra are plots of the magnitude and phase of each harmonic, plotted as discrete

signals; one-sided spectra refer to plots which contain only positive frequencies, while two-sided

spectra contain plots in all frequencies, positive and negative [51]. The Fourier Transform – an

expansion of the Fourier series to aperiodic signals – provides a frequency-domain description

of a time-domain signal; in this case, the spectrum becomes a continuous curve.

Adnani, Duplicy, and Philips [12] made an evaluation and a historical review of spectrum

analyzers, classifying them as swept-based and FFT-based. A spectrum analyzer allows the

study of the spectral composition of electrical, acoustic, optical, and mechanical waveforms and

is an essential tool in many applications in science and technology, from medicine [13, 14], to

civil engineering [2, 3]. The first category of spectrum analyzers consists in superheterodyne

architecture and sweep across the frequency range of interest, displaying all the components

present. The second category, as the name suggests, calculates and displays the FFT for blocks

of the input signal data. FFT analyzers are limited by Analog-to-Digital Converter (ADC)

technology in terms of frequency and dynamic range but, unlike swept analyzers, they are

capable to capture not only the magnitude, but also the signal phase in the spectral domain.

The latest evolution in spectrum analyzers is the real-time processing, possible due to

the advances in digital signal processing. In spectral analysis, real-time operation means that

all signal samples are processed for some sort of measurement result or triggering operation.

Real-time spectrum analyzers are gap-free, which means that no information is lost during the

spectrum calculation [52].

The most popular approach for mechanical vibration spectral analysis is still the use of

the FFT. This strategy is based on acceleration sensors – called accelerometers – to acquire the

time-series data of the system under analysis. The hardware of the spectrum analyzer must also

have a signal conditioner, ADCs, and a processor to compute the FFT algorithm; this algorithm

is the responsible to translate the data acquired in the time domain to the frequency domain.

The processors used to perform the FFT are diverse, such as computers [7, 53], DSP [8, 9], and

FPGA [10, 11, 54]. The FFT algorithm was introduced in the 1960s and proved to be perfectly

suited for efficient digital implementation, reducing the time required to compute transforms

by orders of magnitude. With this tool, the ideas of Fourier series and transform – described in

Appendix A – became practical. An important issue, however, is the introduction of nonexistent

spectral components in the final computed spectral due to the FFT algorithm itself.
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3.1 Microinstrumentation

The development of microsystems began with the advances of microelectronics in the

1960s; although, it was from 1980s that the greatest advances in accelerometers, pressure sensors,

microactuators, and other electromechanical structures were conquered [55]. The current

maturity level of Microelectromechanical Systems (MEMS) has led to their use in daily tasks of

modern man. Present in accelerometers and pressure sensors in cars, micromirrors on plasma

televisions, microphones in mobiles, and inertial sensors in videogames, MEMS are defined as

the integration of mechanical elements, sensors, actuators, and electronics for signal processing

on a common silicon substrate through the micromanufacturing technology [56].

MEMS involve electronic and non-electronic elements and can perform functions that

include signals acquisition and processing, actuation and control; they may also serve as an

environment for chemical and biochemical reactions. Basically, MEMS are sensors and actuators.

In the first group, inertial sensors, such as accelerometers and gyroscopes can be mentioned.

Among the examples of MEMS actuators are micromirrors to deflect light on flat panel televisions

and force and displacement actuators used for microscopy [56].

Silicon is the most commonly used material for the base where the components are

constructed and electrically connected, although recently other materials – such as conductive

polymers – have been the subject of research [57]. In addition to its excellent thermal and

mechanical resistance coupled with low thermal expansion and high melting point, silicon is

the preferred material because of its well-established manufacturing processes due to previous

microelectronics research. The micromanufacturing technology – extensively researched and

optimized for each stage to achieve stability and reliability – allows the production of a large

number of devices at the same time, so that the production of MEMS is given at a very low

cost [55, 56].

In addition to the low cost, their low weight and reduced size are interesting and

convenient for several applications, allowing new possibilities of implementation, impracticable

with the conventional scale devices – as is the case of medicine. These applications are possible

also due to the low power consumption, allowing the development of self-powered MEMS that

drain the energy required for its operation from the environment [58], reducing its operational

costs. Other advantages of MEMS are their superior performance, intelligent features, and the

ability to perform complex tasks that would not be solved with other technologies [56].

The accelerometers are among the most used MEMS sensors. They are present in various

applications, from the automotive industry – in the actuation of airbags and active suspensions –,

to consumer electronics, as smartphones and video game consoles. MEMS accelerometers can

be designed and manufactured to be sensitive to acceleration components on one, two, or three

axes. Acceleration can be measured through the use of capacitive [59–61], piezoelectrics [62, 63],

piezoresistive [64], optical [65], tunneling [66–68], thermal [69, 70], or inductive [71] transducers.

However, capacitive accelerometers are the most popular because they have the advantages

of high sensitivity and low noise, associated with low power consumption, low cost, and low
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temperature dependence.

There are, however, some aspects that require caution in capacitive sensors application,

such as their non-linearity and the vulnerability to electromagnetic interference [72], requiring

attention during the devices modeling. The capacitive microaccelerometers present various

topologies, such as masses suspended by single or several supports [73], or even V-shaped

structures [74]. Each one of these topologies leads to specific characteristics of bandwidth,

linearity, sensitivity, and natural frequency.

Although MEMS accelerometers can be used together with FFT algorithms to obtain

the mechanical vibration spectrum, another possibility is to explore their resonance frequency.

Then, by amplifying the vibration signal around this frequency, the signal-to-noise ratio is

improved and, therefore, the spectral component in this frequency is obtained [17, 18]. This

strategy has its main disadvantage in the fixed frequency mapped, that corresponds to the

MEMS resonance frequency. Thus, it can be used only in specific applications that have known

frequencies correspondent to the microdevice resonance.

To make the use of microinstruments more flexible, some method to select its resonance

frequency can be employed. One of those methods is the electrostatic force feedback, which is

based on the application of a continuous voltage excitation, allowing electronic modulation of

the spring constant of the instrument [19]. The electrostatic force feedback allows the acquisition

of several spectral lines simultaneously by using an array of oscillators, each one tuned to a

specific frequency [16, 20].

The electrostatic force feedback concept can be further explored by applying an alter-

nating excitation signal to the device. As a result, the vibration components are sequentially

obtained by varying the driving signal frequency, as detailed in Subsection 3.1.1.

3.1.1 Real-time MEMS-based spectrum analyzer

The device operation proposed by Cretu, Bartek, and Wolffenbuttel [21] can be under-

stood on the basis of a conventional inverted pendulum, clamped at one end, inserted in a

vertical gravitational field −→g , according to Figure 3.1.

The seismic mass m is assumed to be concentrated at the top, while the clamped beam

has only elastic properties, disregarding its mass. Any external horizontal force Fx,ext applied to

the system causes a displacementϕ from the vertical equilibrium position, until the reaction

developed at the set point balances the external action. Without a gravitational field, this

external action is solely determined by the horizontal force; however, in the presence of a

gravitational field, the effect is magnified by the tangential component of the weight force, Fv,t,

and, thus, results in a greater equilibrium deflection. The tangential component of the weight

force, therefore, amplifies the rotational effect due to the external force, inducing a positive

feedback.
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Figure 3.1: Operating principle of the inverted pendulum inserted in a gravitational field. Adapted
from Cretu, Bartek, and Wolffenbuttel [21, p. 24].

Although the spectrum analyzer used in this project has a general operating principle,

which can be extended to any capacitive microaccelerometer with separate electrodes for driving

and sensing, the practical problems encountered in its use are not directly related with the

chosen topology, but with the comparative differences of the accelerometers. Thus, in this

work the topology originally used by Cretu, Rocha, and Wolffenbuttel [22], highly simplified

in Figure 3.2, is considered. It consists of a vertical beam that supports two sets of horizontal

arms that act as movable plates for the corresponding differential capacitors; there are separate

differential capacitors for sensing and actuation, two springs, and the structure is clamped at

both sides.

Anchor points

Sensing electrodes

𝑑0

Actuation electrodes

Actuation electrodes

𝑑0 + 𝑥 𝑡

𝑑0 − 𝑥 𝑡

Ԧ𝐹1 (𝑡)

Ԧ𝐹2 (𝑡)

(a)                                                                                                   (b)

Ƹ𝑖

𝑑0
𝑂1 𝑂1

Ԧ𝐹𝑒𝑥𝑡 (𝑡)

Ԧ𝐹𝑚𝑒𝑐ℎ (𝑡)

Ƹ𝑖

𝑉2 = 𝑣(𝑡)

𝑉1 = 𝑣(𝑡)

Figure 3.2: Schematic representation of the microaccelerometer with zero-displacement (a) and with
a x(t) displacement (b). Adapted from Cretu, Rocha, and Wolffenbuttel [22, p. 1407].
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In the zero-displacement condition, corresponding to the equilibrium state when no

external disturbances are applied – depicted in Figure 3.2(a) –, the distance between the movable

plates and the corresponding electrodes is d0.

When the system is forced to leave the equilibrium position by an external acceleration

~aext, two effects can be observed: the mechanical and the electrostatic. Considering Figure 3.2(b),

the origin of the reference system O1, the movable plate mass m, and disregarding the movable

plate thickness, the external force, ~Fext,

~Fext = m~aext

= maext î

= Fext î

(3.1)

pushes the structure to move from the initial vertical position ~xi,

~xi = 0î , (3.2)

to the final one ~x f ,

~x f = x(t)î , (3.3)

causing a vertical displacement~r,

~r =
(
x f − xi

)
î

= x(t)î ,
(3.4)

where î is the unit vector in the vertical direction.

The mechanical spring exerts a force, ~Fmech, on the same direction of~r, but on the opposite

orientation, forcing the system to restore the relaxed state, as stated by Hooke’s law [75]. The

spring force is given by Equation 3.5 and is related to the displacement, ~r, and the spring

constant, k, which depends on the spring stiffness.

~Fmech = −k~r

= −kx(t)î

= −Fmech î

(3.5)

On the other hand, the resultant electrostatic force acting upon the movable plate, ~Felec,

is given by Equation 3.6, and the forces ~F1 and ~F2 correspond, respectively, to the forces that the

inferior and the superior fixed electrodes perform upon the movable plate.

~Felec = ~F1 + ~F2 (3.6)

A suitable approach to obtain the electrostatic forces relies on the virtual work method –

that express the forces by the derivative of the energy stored in the system [76]. Considering

that the movable plate is able to move in the x-axis direction under the action of the electrostatic

force ~F – while the excitation voltage V, applied to the fixed electrode, remains constant –,
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any given elementary work dW of the electrostatic force induces a change dEc in the potential

energy stored in the capacitor – of capacitance C – and an energy loss dEs spent by the source to

maintain the voltage constant. Since V remains constant, dEc is only due to the capacity chance,

dC. The energy provided by the source compensates the work of the electrostatic force and the

change in the potential energy, as given by Equation 3.7.

dEs = dW + dEc , (3.7)

where

dEs = dCV2 (3.8)

and

dEc =
1
2

dCV2 . (3.9)

Then, substituting equations 3.8 and 3.9 in Equation 3.7:

dW =
1
2

dCV2 . (3.10)

Since dW = ~F · d~x, it is possible to write the general expression for the electrostatic force

as Equation 3.11.

~F =
1
2

V2 dC
dx

î (3.11)

For the parallel-plate capacitor, the expression of its capacitance [75] is given in Equa-

tion 3.12:

C =
εA
d

, (3.12)

where A is the plate area, d is the plate separation, and ε is the dielectric material permittivity

constant.

Considering, firstly, the system 1 formed by the movable plate and the actuation capacitor

inferior fixed electrode, the capacitance C1 – given by Equation 3.13 – corresponds to the case

when the system moves along the arrow of Figure 3.2(b), reducing the gap distance to d0 − x(t).

C1 =
εA

d0 − x(t)

=
εA

d0
(
1− x(t)

/
d0
)

=
C0(

1− x(t)
/

d0
) ,

(3.13)

where

C0 =
εA
d0

. (3.14)

So, applying the quotient differentiation rule [77]:

dC1

dx (t)
=
−C0

(
−1
/

d0
)(

1− x (t)
/

d0
)2

=
C0

d0

1(
1− x (t)

/
d0
)2 .

(3.15)
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Back to Equation 3.11, using Equation 3.15, the electrostatic force ~F1 that the inferior

fixed electrode performs on the movable plate is:

~F1 =
1
2

V2
1

C0

d0

1(
1− x (t)

/
d0
)2 î , (3.16)

where V1 is the potential difference between the electrodes.

The same procedure can be applied to the system 2, formed by the superior fixed

electrode and the movable plate, resulting in the force that the first exerts on the last one, as

Equation 3.17, when the gap distance changes from d0 to d0 + x(t), with a potential difference

V2 between the electrodes.
~F2 = −1

2
V2

2
C0

d0

1(
1 + x (t)

/
d0
)2 î (3.17)

In this way, the resulting electrostatic force of Equation 3.6 can be written as Equa-

tion 3.18:

~Felec (x(t)) =

[
1
2

V2
1

C0

d0

1(
1− x (t)

/
d0
)2 −

1
2

V2
2

C0

d0

1(
1 + x (t)

/
d0
)2

]
î . (3.18)

In the electrostatic force feedback that is used for counteracting the inertial force in

null measurement systems, two different voltages V1 and V2 are applied across the electrodes

of Figure 3.2 for actuation [21, 78]. However, if a common-mode voltage is applied, with

V1 = V2 = v(t), Equation 3.18 reduces to:

~Felec (x(t)) =
1
2

C0

d0
v2 (t)

[
1(

1− x (t)
/

d0
)2 −

1(
1 + x (t)

/
d0
)2

]
î

=
1
2

C0

d0
v2 (t)

[(
1 + x (t)

/
d0
)2 −

(
1− x (t)

/
d0
)2(

1− x (t)
/

d0
)2(1 + x (t)

/
d0
)2

]
î

= 2
C0

d2
0

v2 (t)
x (t)[

1−
(
x (t)

/
d0
)2
] î .

(3.19)

For small displacements relative to the gap size, i.e. x(t) � d0, Equation 3.19 can be

simplified, resulting in a linear dependence between the electrostatic force and the displacement,

as shown in Equation 3.20.

~Felec (t) ∼=
2C0v2 (t)

d2
0

x (t) î

= Felec î
(3.20)

Thereby, unlike the spring force, the resulting electrostatic force amplifies the effect of

the external force; thus, and a positive feedback phenomenon takes place.

Since a MEMS capacitive accelerometer is a second order mechanical system, it can be

described as a second order differential equation [79], as given in Equation 3.21, where Fext and

Felec are the magnitude of the external and the electrostatic forces, respectively.

m
d2x (t)

dt2 + b
dx(t)

dt
+ kx(t) = Fext + Felec , (3.21)
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where b is the damping coefficient. The accelerometer resonance frequency,ωn, when no voltage

is applied to system, is

ωn =

√
k
m

(3.22)

and the DC sensitivity is

S =
m
k

. (3.23)

When the system is operated in the base band, withω � ωn, the quasi-static regime

takes place, and the dynamic behavior can be neglected
(

dx(t)
dt ≈ 0

)
. As a result, the mechanical

force balances the others, and Equation 3.21 reduces to:

kx(t) = Fext + Felec . (3.24)

Using equations 3.1 and 3.20 to write the forces magnitude and replacing in Equa-

tion 3.24:

kx (t) = maext +
2C0v2 (t)

d2
0

x (t) . (3.25)

Assuming that the microaccelerometer voltage actuation v(t) is periodical, with ampli-

tude V0, and ∆k is the change in the spring constant caused by the feedback,

∆k =
2C0V2

0

d2
0

, (3.26)

it is possible to rearrange Equation 3.25 to obtain an equation for the MEMS accelerometer

output signal, x(t):

x (t) =
maext(t)

k− ∆k
(

v(t)
V0

)2

=
m
k

1

1−β
(

v(t)
V0

)2 aext(t) ,
(3.27)

where β is the modulation constant:

β =
∆k
k

. (3.28)

So, the closed-loop time-variable gain G(t) is given by:

G(t) =
x (t)

aext (t)

=
m
k

1

1−β
(

v(t)
V0

)2 .
(3.29)

Using Mason’s gain formula [80], it is possible to schematically represent the system

in a block diagram, as shown in Figure 3.3, in the case of the quasi-static operation – in which

the operating frequency is much lower than the mechanical resonance frequency, as previously

mentioned.



46

𝑚 +
1

𝑘

𝛥𝑘
𝑣 𝑡

𝑉0

2
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Figure 3.3: Block diagram of MEMS quasi-static model for common-mode actuation. Adapted
from Cretu, Rocha, and Wolffenbuttel [22, p. 1408].

Considering Equation 3.27 for the system output, in the case of a cosine actuation voltage,

v1 (t) = V1 cos (ωt), applied to an accelerometer 1 – which has mass m1, elastic constant k1, and

modulation constant β1 –, the accelerometer output x1(t) is:

x1 (t) =
m1

k1

1

1−β1

(
V1 cos(ωt)

V1

)2 aext (t)

=
m1

k1

1
1− β1

2 −
β1
2 cos(2ωt)

aext (t)

=
m1

k1

1
1− β1

2 −
β1
2 cos(ωdt)

aext (t) ,

(3.30)

and the closed-loop gain – according to Equation 3.29 – is given by Equation 3.31:

G1 (t) =
m1

k1

1
1− β1

2 −
β1
2 cos(2ωt)

=
m1

k1

1
1− β1

2 −
β1
2 cos(ωdt)

,
(3.31)

where the angular frequencyωd is twice the excitation frequencyω, i.e.,ωd = 2ω.

The dependence of G1(t) in Equation 3.31 on the voltage suggests the possibility of a

more advanced use of the structural coupling between the mechanical and electrostatic fields:

by applying a correlation method and taking advantage of the positive feedback induced by the

electrostatic forces, it is possible to calculate the spectral component of the input mechanical

acceleration signal [22], as described in Subsubsection 3.1.1.1.

Based on Equation 3.31, it is possible to analyze the positive feedback stability [81] as a

function of the system parameters. The system is unstable – with G1 (t)→ ∞ – if

1− β1

2
− β1

2
cos(ωdt) = 0 . (3.32)

Rearranging the terms, Equation 3.32 can be solved to β1 to ensure the stability:

β1 6=
2

1 + cos (ωdt)
. (3.33)
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Besides, since the feedback is positive, the gain G1(t) of Equation 3.31 must be positive,

G1 (t) =
m1

k1

1
1− β1

2 −
β1
2 cos(ωdt)

≥ 0 , (3.34)

where m1, k1 and β1 are all positive – since they relate to the accelerometer physical parameters.

Then it is possible to reduce the analysis of the positive feedback to

1− β1

2
− β1

2
cos(ωdt) ≥ 0⇒ β1 ≤

2
1 + cos (ωdt)

. (3.35)

Combining the conditions of stability – Equation 3.33 – and positive feedback – Equa-

tion 3.35 –, the modulation constant β1 must satisfy:

β1 <
2

1 + cos (ωdt)
. (3.36)

Considering the extreme values of cos(ωdt):

cos(ωdt) = 1⇒ β1 < 1 ; (3.37)

cos(ωdt) = 0⇒ β1 < 2 ; (3.38)

cos(ωdt) = −1⇒ β1 < ∞ , (3.39)

and, therefore,

β1 < 1 . (3.40)

Using Equations 3.26 and 3.28, Equation 3.40 results in the stability and positive feedback

conditions based on the actuation voltage amplitude:

2C0V2
0

kd2
0

< 1⇒ V0 < d0

√
k

2C0
. (3.41)

So, the critical value of the voltage amplitude is given by Equation 3.42.

Vcr = d0

√
k

2C0
(3.42)

3.1.1.1 Spectral extraction

To better understand how the spectral extraction scheme works on the MEMS analyzer,

it is crucial to understand the Fourier analysis, whose fundamental aspects are described in

Appendix A.

To obtain the desired spectral component A( jωd) from the mechanical acceleration input

signal at a desired frequencyωd, using Euler’s formula [50] to write

e− jωdt = cos (ωdt)− j sin (ωdt) , (3.43)
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the Fourier integral – Equation A.52 – results in Equation 3.44.

A ( jωd) =

∞∫
−∞ aext (t) e− jωdtdt

=

∞∫
−∞ aext (t) [cos (ωdt)− j sin (ωdt)] dt

=

∞∫
−∞ aext (t) cos (ωdt) dt− j

∞∫
−∞ aext (t) sin (ωdt) dt

= Ac (ωd)− jAs (ωd) ,

(3.44)

where Ac (ωd) and As (ωd) correspond, respectively, to the real and imaginary parts – also

called in this text as cosine and sine portions – of the spectral component A ( jωd) of the external

acceleration in the Cartesian form.

In this case, the expression for the spectral component real part

Ac (ωd) =

∞∫
−∞ aext (t) cos (ωdt) dt (3.45)

can be seen as a correlation method. The correlation function is defined as [50]:

φxy (t) =
∞∫
−∞ x (t + τ)y (τ) dτ , (3.46)

where τ is the time shift between the signals.

The correlation – or cross-correlation – function of two signals is a measure of the

similarity between them as a function of the time shift [82, 83]. Besides, the cross-correlation of

x(t) and y(t) in time domain corresponds to the product of both functions amplitude spectra

in frequency domain [84]. If the functions are similar – i.e, if one is the time-shifted version of

another –, the correlation produces a large positive number, while small correlation values are

obtained if the functions are not alike.

Consequently, the cosine portion of the spectral component A( jωd) corresponds to the

correlation between the external acceleration aext(t) and a cosine signal cos(ωdt) with zero time

lag. Similarly, the imaginary part of the spectral component, given by Equation 3.47 is the

cross-correlation of the external acceleration and a sine signal, sin(ωdt).

As (ωd) =

∞∫
−∞ aext (t) sin (ωdt) dt (3.47)

Then, it is possible to apply a correlation method to obtain both the real and imaginary

parts of the spectral component A( jωd).

The MEMS spectrum analyzer closed-loop gain, however, is not a pure sine or cosine

signal. In fact, Cretu, Rocha, and Wolffenbuttel [22] reported the presence of the DC and higher
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order coefficients in the Fourier series of the closed-loop gain – which is closely investigated in

Section 4.1 and Appendix D. This problem can be partially compensated by using a differential

structure, with a second accelerometer actuated in quadrature [19, 22]. Therefore, back to Equa-

tion 3.27 the accelerometer 2, with mass m2, elastic constant k2, and modulation constant β2, has

the actuation signal v2(t) = V2 sin(ωt) and an output signal x2(t) according to Equation 3.48.

x2 (t) =
m2

k2

1

1−β2

(
V2 sin(ωt)

V2

)2 aext (t)

=
m2

k2

1
1− β2

2 + β2
2 cos(2ωt)

aext (t)

=
m2

k2

1
1− β2

2 + β2
2 cos(ωdt)

aext (t) ,

(3.48)

and, again,ωd = 2ω.

Now, the closed-loop gain is

G2 (t) =
m2

k2

1
1− β2

2 + β2
2 cos(2ωt)

=
m2

k2

1
1− β2

2 + β2
2 cos(ωdt)

.
(3.49)

Thereby, the differential output

xdi f (t) = x1(t)− x2(t)

=

(
m1

k1

1
1− β1

2 −
β1
2 cos(ωdt)

− m2

k2

1
1− β2

2 + β2
2 cos(ωdt)

)
aext (t)

(3.50)

leads to a differential gain

Gdi f (t) =
xdi f (t)
aext (t)

= G1 (t)− G2 (t)

=

(
m1

k1

1
1− β1

2 −
β1
2 cos(ωdt)

− m2

k2

1
1− β2

2 + β2
2 cos(ωdt)

)
.

(3.51)

Ideally, all the accelerometers parameters are equal – i.e., m1 = m2 = m, k1 = k2 = k and

β1 = β2 = β – and the voltages amplitudes are the same – V1 = V2 = V –, so Equation 3.50 is

reduced to

xideal(t) =
mβ
k

1(
1−β+ β2

4 −
β2

4 cos2 (ωdt)
) cos (ωdt) aext(t) , (3.52)

then the ideal differential gain is given by:

Gideal(t) =
mβ
k

1(
1−β+ β2

4 −
β2

4 cos2 (ωdt)
) cos (ωdt) . (3.53)

Thus, the differential output xideal(t) in the ideal case of identical accelerometers contains

a signal proportional to aext (t) cos (ωdt), where aext is the acceleration input, andωd = 2ω and

ω is the angular frequency of the electrostatic driving force.
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Thereby, it is possible to obtain Ac(ωd) through the integration of the differential output

signal xideal (t) of Equation 3.52. It should be emphasized that, since this last equation is

proportional to cos(2ωt), the real part of the spectral component, Ac(ωd), will be obtained at a

frequencyωd corresponding to twice the frequencyω of the actuation signal.

Equation 3.53 presents two other important portions to be analyzed. First, the term

mβ
/

k modifies the amplitude of the system differential gain, suggesting that, with no previous

information about the system parameters, the spectrum obtained will present a scale that does

not match the real absolute values of the spectral components. Consequently, in applications

where the vibrations amplitudes are critical, this gain must be compensated. The other portion

that requires attention is related to the modulation constant β and cos2 (ωdt), observed in the

denominator of Equation 3.53.

As noted, the use of the two identical accelerometers in the differential configuration –

also called twin-accelerometers structure – eliminates the DC and odd coefficients of the gain

Fourier Series, making it closer of a cosine signal and, therefore, the spectral extraction scheme

approximates the ideal correlation method. Consequently, the influence of the term proportional

to cos2(2ωt) in the denominator of Equation 3.53 can be neglected in cases where β < 1, since it

little interferes in the spectrum obtained with the microaccelerometers

To obtain As(ωd), a similar quadrature actuation, with the same excitation angular

frequencyω, but with a phase difference of π/4, can be used – i.e., v1(t) = V1 cos
(
ωt− π/4

)
and v2(t) = V2 sin

(
ωt− π/4

)
. These actuation signals generate a differential output signal

similar to Equation 3.52, but proportional to aext (t) sin (2ωt), as shown in Equation 3.54.

xdi f (t) =
mβ
k

1(
1−β+ β2

4 −
β2

4 sin2 (ωdt)
) aext (t) sin (ωdt) (3.54)

Similarly to the procedure to obtain the cosine component, the integration of Equa-

tion 3.54 leads to a reasonable approximation of the sinusoidal portion of the spectral compo-

nent, As(ωd), with frequency corresponding to twice the system excitation frequency, that is,

ωd = 2ω.

Since the phase difference between the external acceleration aext(t) and the microac-

celerometers excitation voltages are unknown, the amplitude |A(ωd)| of the spectral component

in the frequencyωd can be calculated by using Equation 3.55:

|A(ωd)| =
√

A2
c (ωd) + A2

s (ωd) . (3.55)

The strategy described can be implemented using a time-multiplexing method, as shown

in the block diagram of in Figure 3.4 for the quadrature driven twin-accelerometers scheme. To

accomplish this, the actuation voltages on the left, in darker tones, are first used, obtaining the

real part A(ωd) after the integration of the differential output signal; then, the voltages on the

right, in lighter tones, are applied, obtaining the imaginary part of A(ωd) with the integration

of the output signal. In that way, by varying the frequency ω of the electric actuation, the

mechanical vibration spectrum is mapped.



51

accelerometer 1

accelerometer 2



+

-

𝑉0cos 𝜔𝑡

𝑉0sin 𝜔𝑡 𝑉0sin 𝜔𝑡 − ൗ𝜋 4

𝑉0cos 𝜔𝑡 − ൗ𝜋 4

𝑎𝑒𝑥𝑡 𝑡

𝑥𝑑𝑖𝑓 𝑡

න

−∞

∞

𝑥𝑑𝑖𝑓 𝑡 𝑑𝑡

න

−∞

∞

𝑥𝑑𝑖𝑓 𝑡 𝑑𝑡

𝐴𝑐 𝜔𝑑

𝑥1 𝑡

𝑥2 𝑡

𝐴𝑠 𝜔𝑑

Figure 3.4: Block diagram of the mechanical spectrum analyzer differential structure. Adapted
from Rocha, Cretu, and Wolffenbuttel [19, p. 1262].

The results obtained by Cretu, Rocha, and Wolffenbuttel [22] with the real-time spectrum

analyzer are very close to the FFT for the same acquisition time. Similar to the FFT approach, the

result of the real-time spectrum mapping depends on the integration time, and this characteristic

is discussed on Appendix D. The obtained MEMS spectrum analyzer presents potential for

low-power, low-cost applications, and this is its main advantage.

However, the authors highlight two critical factors [19, 22]. The first is the trade-off

between the achievable sensitivity and the distortion level, which is determined by the actuation

voltages amplitudes. The other issue is related to the matching of the accelerometers in the twin-

structure, since any mismatch between the accelerometers can result in spurious frequencies in

the spectrum obtained. Rocha, Cretu, and Wolffenbuttel [19] cite the possibility of correcting

these parameters mismatches by using different voltage amplitude for each accelerometer of the

twin-structure, settling their sensitivity; the authors, although, do not indicate how to choose

the actuation voltages.

In this context, a tuning methodology to overcome the parameters differences, consider-

ing the distortion-sensitivity compromise and based on the system closed-loop gain is proposed

in the next chapter.
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Chapter 4

Tuning: Proposal and Methodology

In this chapter, methods to tune MEMS spectrum analyzers sensitivity and distortion are

proposed. The tuning problem is stated as a multi-objective optimization problem, where sensi-

tivity and distortion are the cost functions and the optimization variables are the amplitudes of

the excitation voltages. Also, an alternative mono-objective approach to the tuning optimization

problem is described. This chapter also contains a detailed description of the methodology

used to solve the optimization problems. The algorithms used and all the assumptions and

modifications performed are described.

4.1 Tuning: sensitivity and distortion optimization

According to Equation 3.44, the correlation method for obtaining the spectral component

A(ωd) occurs efficiently when the external acceleration signal is multiplied by cosine and sine

signals of angular frequencyωd – to obtain Ac(ωd) and As(ωd), respectively. In the case of the

spectrum analyzer system used, however, the signals multiplying the external acceleration are

not pure cosines and sines even for the ideal case, as shown in Equations 3.52 and 3.54.

In non-ideal cases the scenario is worst than the ideal case: since the accelerometers phys-

ical parameters are not matched due to manufacturing differences, the system output, according

to Equation 3.50, presents the DC and higher coefficients of the Fourier Series. Consequently, the

spectrum obtained with real MEMS accelerometers shows frequencies non-existent in the actual

input signal. To eliminate the unwanted spectrum components, the mismatches between the

accelerometers parameters can be corrected by using a different voltage amplitude for settling

the sensitivity of the accelerometers, as suggested by Rocha, Cretu, and Wolffenbuttel [19].

The authors, however, do not indicate a method to perform this adjustment of the excitation

voltages, which results in changes in the microaccelerometers modulation constants β1 and

β2. The development of a method to perform this adjustment is the main contribution of this

dissertation.

In order to develop a methodology to tune the spectrum analyzers, it is necessary to

define a measure of the device sensitivity, as well as of its distortion, as a function of the

actuation voltages amplitude. This work’s proposal is to use the Fourier Series of the time-
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variable gain Gdi f (t), since the accelerometers modulation constants depend on the actuation

voltages amplitudes – β1 = f (V1) and β2 = f (V2).

Observing the system closed-loop gain of Equation 3.31, it is clear that the integration of

the output x(t) corresponds to an approximation of the correlation when a proper integration

period, T, is chosen. Besides, the presence of the quadratic actuation voltage, v(t), in the

feedback path of Figure 3.3 leads to a correlation with terms of double actuation frequency, i.e.,

ωd = 2ω. To better understand the effects of the closed-loop gain format on the computation

of the spectrum, the Fourier Series (FS) decomposition of the system closed-loop gain can be

performed [50].

Considering a single accelerometer configuration and the approximation n = 4, it is

possible to deduce the DC component and the cosine coefficients for the Fourier Series of

Equation 3.31, as Equations 4.1 to 4.5, with the sine coefficients, c1, . . . , c4, all equal to zero. The

deduction of these expressions is clearly described in Appendix D.

asingle,0 =
msingle

ksingle

(
1√

1−βsingle

)
(4.1)

bsingle,1 =
2msingle

ksingleβsingle

(
−2 +

2−βsingle√
1−βsingle

)
(4.2)

bsingle,2 =
2msingle

ksingleβsingle

(
4− 8

βsingle
+

8− 8βsingle +β
2
single

βsingle
√

1−βsingle

)
(4.3)

bsingle,3 =
2msingle

ksingleβsingle

(
−6 +

32
βsingle

− 32
β2

single
+

32− 48βsingle + 18β2
single −β3

single

β2
single

√
1−βsingle

)
(4.4)

bsingle,4 =
2msingle

ksingleβsingle

(
8− 80

βsingle
+ 192

β2
single
− 128

β3
single

+
128−256βsingle+160β2

single−32β3
single+β

4
single

β3
single

√
1−βsingle

)
(4.5)

where msingle, ksingle, and βsingle are the accelerometer parameters – and this single accelerometer

can be the accelerometer 1 or 2 of the twin-structure –, asingle,0 is the DC component, and in the

notation bsingle, j, j indicates the harmonic order.

Considering the differential scheme, the differential closed-loop gain has a Fourier Series

composition that can be expressed by Equations 4.6 to 4.10.

adi f ,0 =
m1

k1

(
1√

1−β1

)
− m2

k2

(
1√

1−β2

)
(4.6)

bdi f ,1 =
2m1

k1β1

(
−2 +

2−β1√
1−β1

)
+

2m2

k2β2

(
−2 +

2−β2√
1−β2

)
(4.7)

bdi f ,2 =
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4− 8
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8− 8β1 +β
2
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β1
√

1−β1
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4− 8
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8− 8β2 +β
2
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√
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) (4.9)
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where the index j in the notation bdi f , j represents the harmonic order, m1, k1, and β1 are the

parameters of the accelerometer 1 in the twin-structure, and m2, k2, and β2 are the parameters of

the accelerometer 2.

In the ideal case – i.e., when the accelerometers parameters match perfectly, with m1 =

m2 = m, k1 = k2 = k and β1 = β2 = β –, simplifying Equations 4.6 to 4.10, the ideal differential

Fourier Series is:

aideal,0 = 0 (4.11)

bideal,1 =
4m
kβ

(
−2 +

2−β√
1−β

)
(4.12)

bideal,2 = 0 (4.13)

bideal,3 =
4m
kβ

(
−6 +

32
β
− 32
β2 +

32− 48β+ 18β2 −β3

β2
√

1−β

)
(4.14)

bideal,4 = 0 . (4.15)

As a result, it is possible to describe the device sensitivity directly by means of the

fundamental component of the closed-loop gain Fourier series, as stated by Equation 4.16,

where the index i can refer to any of the three configurations – single, differential and ideal –

investigated.

s (V1, V2) = bi,1 (4.16)

In general, an accelerometer sensitivity is defined as the output voltage signal generated

per unit input acceleration, in g [85]. In the proposed measure, the sensitivity also corresponds

to the relation between the system output and the input acceleration, but, in this case, the output

corresponds to the displacement x(t) – and, therefore, the dimensional analysis reveals that the

sensitivity is measured in m/(m/s2) or, alternatively, in m/g.

The higher the sensitivity, the easier it is to detect external acceleration spectral com-

ponents of low amplitude. Thus, a high sensitivity is desirable and, therefore, the problem of

optimizing this cost function should be written in terms of its maximization:

(P1)

∣∣∣∣∣∣∣
maximize s (V1, V2)

subject to 0 < V1 < Vcr

0 < V2 < Vcr

, (4.17)

where the boundary constraints related to V1 and V2 are added in order to guarantee the positive

feedback stability.

Now, the distortion level measurement can be associated with the absolute values of

coefficients other than the fundamental, and the sum can be normalized with respect to the

absolute value of the fundamental component, as pointed out in Equation 4.18, and, again, the
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index i can refer to the single, differential or ideal configuration. The distortion level, therefore,

is non-dimensional.

d (V1, V2) =
|ai,0|+ |bi,2|+ |bi,3|+ |bi,4|

|bi,1|
(4.18)

Although the continuous component does not influence the emergence of spurious

spectral lines in the calculated spectrum, this component is considered in the distortion measure

as it can conceal small amplitude vibrations.

In order to approximate the system closed-loop gain to the ideal signal – which can be

a cosine or a sine, depending on the time interval considered –, it is necessary to reduce all

the Fourier Series components that are different from the fundamental. This implies that the

distortion level should be minimized:

(P2)

∣∣∣∣∣∣∣
minimize d (V1, V2)

subject to 0 < V1 < Vcr

0 < V2 < Vcr

. (4.19)

Thus, solving the optimization problem of Equation 4.19, the differences in the parame-

ters of the twin-accelerometers can be compensated, making the real system response closer to

the ideal answer.

4.1.1 Mono-objective tuning

An interpretation to the problem of optimizing both the distortion and the sensitivity

can be developed based on the fact that there is a quantification of the distortion level. So, based

on a maximum acceptable distortion level dmax, it can be inserted into an optimization problem

as an inequality constraint, maintaining the sensitivity maximization:

(P3)

∣∣∣∣∣∣∣∣∣∣
maximize s (V1, V2)

subject to d (V1, V2) < dmax

0 < V1 < Vcr

0 < V2 < Vcr

. (4.20)

This approach can be of great interest for problems where the vibration spectrum

characteristics are well known, so it is possible to determine, previously, if the application

requires lower or higher distortion. This is the case of harmonic vibration in electric machines,

which occur in certain known frequencies; therefore, it is important to obtain the mechanical

vibration spectrum with low distortion level.

4.1.2 Multi-objective tuning

Now, combining Equation 4.17 and Equation 4.19, a multi-objective optimization prob-

lem that maximizes the device sensitivity at the same time that minimizes its distortion level



56

can be stated as Equation 4.21.

(P4)

∣∣∣∣∣∣∣∣∣∣
maximize s (V1, V2)

minimize d (V1, V2)

subject to 0 < V1 < Vcr

0 < V2 < Vcr

(4.21)

Minimizing the distortion level makes the system closed-loop gain closer to the ideal

signal, which can be compared to the pitch in musical instruments [86]. On the other hand,

maximizing the sensitivity can be compared to another musical parameter: the loudness [86].

This tuning strategy can be used in situations where there is no prior knowledge on the

spectrum vibration characteristics. Therefore, it is important to obtain several Pareto-optimal

solutions, that can be tested in order to choose the best one to the application. This is the

case, for example, of a hydraulic leak, in which the spectrum, even before the leaking, presents

components all over it, and the leak frequency cannot be predicted.

Besides, looking back to Equation 4.20 in Subsection 4.1.1, it is possible to associate this

problem to the multi-objective problem of P4: Equation 4.20 consists on the ε-constraint method

for Equation 4.21, as described in Subsubsection 2.1.1.2.

4.2 Methodology

For the real-time spectrum analyzer simulation, the software MATLAB® was chosen to

implement the accelerometer model, according to the expressions obtained for the accelerometers

output – Equations 3.30 and 3.48 – and the multiplexing strategy shown in Figure 3.4. The

external acceleration was simulated using sines and cosines signals in specific frequencies and

with desired amplitudes; the sampling frequency of 10 kHz was chosen to ensure behavior close

to that of a real signal. The integration of the output was performed using the MATLAB function

trapz, which approximates the integral through the trapezoidal method using a discretization

defined by the user. The simulations use double variables, that constructs the double data type

according to IEEE Standard 754 for double precision, with precision of 10308 [87].

The physical parameters of the accelerometer described by Cretu, Rocha, and Wolffen-

buttel [22] were used as rated values, as summarized in Table 4.1.

Table 4.1: Micro-accelerometer rated parameters.

Parameter Value

Mass (m) 2.3 ng
Mechanical spring constant (k) 2.877 N/m

Zero-displacement actuation capacitance (C0) 157 fF
Zero-displacement gap (d0) 3 µm

Resonance frequency ( fr) 5.7 kHz
Quality factor (Q) 0.707
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To simulate non-ideal cases, the physical parameters m, k, C0, and d0 of both accelerome-

ters of the twin-structure were randomly chosen considering a range of 20% of the respective

rated value – which is a high tolerance for industrial purposes, but a realistic case for a prototype.

Then, the parameters of each accelerometer of the twin-structure corresponds to a given chosen

set within the 20% range.

4.2.1 Simulation model validation methodology

To validate the analyzer system simulation, three different scenarios were chosen: the

first is the single-accelerometer, where only one accelerometer, with all its parameters corre-

spondent to the respective rated values, is used; the second case corresponds to the differential

scheme with non-ideal accelerometers, i.e., when the parameters of the accelerometers differ

from each other; finally, the third scenario corresponds to the ideal differential structure, with

all the accelerometers parameters correspondent to their rated values. The parameters chosen

to simulate the non-ideal case are the rated parameters to the first accelerometer of the twin-

structure, while the second accelerometer has m2 = 1.2mrated, k2 = 0.97krated, C2 = 1.1Crated,

and d2 = 0.9drated.

The spectrum analyzer was used with spacing of 1 Hz between each point of the

spectrum, since the chosen integration period is 1 s for each one of the points. To ensure that the

operation is quasi-static, the actuation and acceleration frequencies are much less than 5.7 kHz –

the resonance frequency. Therefore, the acceleration frequency range chosen is from 0 to 500 Hz,

which corresponds to 0 to 250 Hz for the actuation frequency. An external validation acceleration

signal with amplitudes 30 m/s2 at 53 Hz, 45 m/s2 at 127 Hz, 9 m/s2 at 255 Hz and 21 m/s2

at 432 Hz, covering all the frequency range investigated was used to observe the parameters

influence on the final spectrum.

4.2.2 Mapping methodology

In real physical applications, the accelerometers real parameters are not known. How-

ever, if the accelerometer parameters were known, it would be possible to solve the optimization

problems of Equations 4.20 and 4.21 analytically by using the expressions for the Fourier se-

ries obtained in Subsubsection 3.1.1.1, summarized in Table 4.2 together with the respective

closed-loop gain.

Other possibility besides the analytical resolution of the optimization problems, using

the same expressions, is to explore all voltage combinations to evaluate their influence on

the accelerometers sensitivity and distortion, in an exhaustive search. When performing an

exhaustive search, each possible solution is evaluated and the best of all is chosen. For small

size problems, this is an acceptable strategy; however, for more complex and larger problems –

the case of most real systems – this type of search becomes impracticable [29].

Since in this work the spectrum analyzer twin-accelerometers are simulated, their param-

eters are known and it is possible to map the distortion and the sensitivity surfaces as functions
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of the voltages applied to the accelerometers. In real cases, those parameters are unknown, but

the hypothesis assumed here is useful to understand the problem and to validate the tuning

strategies. The proposed tuning, however, does not depend on the mapping to work properly.

Table 4.2: References to the expressions for the closed-loop gain and the composition of the Fourier
series for single-accelerometer, non-ideal twin-accelerometers, and ideal twin-accelerometers.

Device configuration Closed-loop gain
Fourier Series

a0 b1 b2 b3 b4

Single-accelerometer
G1(t) asingle,0 bsingle,1 bsingle,2 bsingle,3 bsingle,4
(3.31) (4.1) (4.2) (4.3) (4.4) (4.5)

Non-ideal Gdi f (t) adi f ,0 bdi f ,1 bdi f ,2 bdi f ,3 bdi f ,4
twin-accelerometers (3.51) (4.6) (4.7) (4.8) (4.9) (4.10)

Ideal Gideal(t) aideal,0 bideal,1 bideal,2 bideal,3 bideal,4
twin-accelerometers (3.53) (4.11) (4.12) (4.13) (4.14) (4.15)

The mapping was performed considering spacing of 0.1 V to both actuation voltages,

V1 and V2, and minimum amplitude of 0.5 V. The maximum amplitude to each one of the

voltages was calculated considering the positive feedback and its stability criterion, given in

Equation 3.42. Besides the single-accelerometer, the non-ideal differential structure – with the

same parameters described in Subsection 4.2.1 –, and the ideal differential scheme, the mapping

was performed to other ten different non-ideal twin-accelerometers. Each accelerometer of these

differential structures presents a given chosen set of parameters residing in the 20% margin

around the rated values.

4.2.3 Tuning methodology

In this work, the solutions to the optimization problems are found through a DE al-

gorithm, which was based on the concepts of Section 2.2 and adapted to solve the spectrum

analyzer problem.

The reason for choosing to use a meta-heuristic to solve the problem is the same reason

why the problem exists: due to the production process, accelerometers differ from each other, so

their parameters vary and are unknown. Therefore, it is not possible to apply a deterministic

strategy to solve the optimization problems. Besides, the optimization problems are highly non-

linear, since they are non-linear on the modulation constants, β1 and β2, which are themselves

non-linear on the excitation voltages amplitudes, V1 and V2, respectively – due to the quadratic

relation shown in equations 3.26 and 3.28. Thus, it is necessary to look for alternatives, such as

systems identification [88], or the use of meta-heuristics. This last option was chosen because of

the operational advantages it presents – as previously described in Section 2.2.

This strategy can be considered as an initial calibration of the spectrum analyzer system:

in a controlled environment, by subjecting the accelerometers to known test accelerations, it is

possible to define the drive voltages to solve the optimization problem. Besides, an adjustment

of the overall gain, w, of the system can be performed during this tuning, so the absolute value
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of the spectral components can be computed.

The implementation of the DE algorithm to solve the optimization problems of equa-

tions 4.20 and 4.21 have particularities and differences between each other; however, some

considerations are general and must be applied to all of them. This is the case of the memory.

This feature was chosen to prevent the spectrum from being mapped multiple times to the same

voltage amplitudes combination. This memory is a variable that contains each combination

of voltages tested – properly quantized – and their respective sensitivity and distortion level.

During the algorithm initialization, the memory is also initialized with the first generation

elements that are distinct from each other. Thus, at the cost function evaluation stage for the trial

vector, the spectrum is mapped only if the voltage combination has not been tested previously.

This strategy reduces the number of spectrum evaluations – especially when the algorithm

presents its population almost stable and, thus, close to the Pareto-set – and can be especially

advantageous depending on the strategy used to handle boundary constraints.

To apply the proposed tuning in any of the stated optimization problems, attention

should be given to the time interval chosen. Besides the fact that the strategy depicted in

Figure 3.4 involves a time-multiplexing method to obtain the real and imaginary parts of the

spectral component, the spectrum is obtained by varying the driving voltage frequency, ω,

so it is important that the time interval to be used for the Fourier series calculation considers

only one of these actuation frequencies and the computing of the real or the imaginary parts.

Therefore, the acquisition time required to approximate the system closed-loop gain Fourier

series corresponds to one integration period, since the tuning is performed considering just one

frequency and during just one part of the time-multiplexing strategy used on the device.

An external acceleration signal, with a component of 10 m/s2 at 440 Hz, was used. The

Fourier series of the closed-loop gain was computed in the interval in which the excitation

voltage has a frequency of 220 Hz and the cosine portion of the spectral component is considered.

However, unlike the validation simulation, only a small portion of the spectrum was raised,

in 440 Hz, and only for the attainment of the spectrum real part. The integration period

remained in 1 s; although the integration itself is not performed during the tuning, this period

also corresponds to the acquisition interval and, therefore, interferes in the quality of the

approximation of the gain Fourier series. This approximation was performed by means of

MATLAB fit function, with order 4 approximation. Since the DE algorithm is not deterministic,

it was chosen to perform five tests for each non-ideal twin-accelerometer structure.

The meta-parameters N, F, and CR of differential evolution algorithm were chosen

according to the literature indications, and so N = 20, F = 0.9, and CR = 0.9. The feasible solu-

tion space for both voltages has been reduced to [0.0, 9.0] – with the upper limit slightly smaller

than the stability limit of the feedback loop for the rated accelerometer parameters, according to

Equation 3.42 –, to the nearest decimal place. To deal with these boundary constraints, the four

strategies briefly described in Subsection 2.2.1 – namely random reinitialization, bounce-back,

resampling and brick-wall – were used in order of comparison.

The algorithm evolution and the stopping criteria consistency are evaluated using
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the same non-ideal twin-structure, which parameters are given in Subsection 4.2.1. Then,

the ten different non-ideal structures, that had their distortion and sensitivity mapped in

Subsection 4.2.2, are used to assess the tuning average behavior.

4.2.3.1 Mono-objective tuning methodology

This approach deals with the inequality constraint by means of the death penalty de-

scribed in Subsection 2.2.1.

The stopping criteria chosen combines the maximum number of generations – gmax =

200 – and the NoAcc, as described in Subsection 2.2.1. This last one monitors how many trial

vectors are selected in each generation and the algorithm stops if the number of trial vectors

selected is less than 10% of the population size in the last 10% of the maximum number of

generations. This corresponds to say that at least 90% of the population is retained in the last

generations, so it can be understood that the optimization converged. The final optimum answer

corresponds to the best solution in the last generation, i.e., the feasible solution with maximum

sensitivity.

4.2.3.2 Multi-objective tuning methodology: approach 1

In this first approach for the multi-objective optimization problem of Equation 4.21, the

strategy to adapt the DE to a multi-objective problem proposed by Price, Storn, and Lampinen

[28] and described in Subsubsection 2.2.1.1 was used to achieve an approximation of the Pareto-

set. The idea of evaluating the Pareto-dominance between the elements of the last generation is

also considered.

To this approach, the same stopping criteria of the mono-objective approach is used.

However, unlike the mono-objective case – in which the result of the optimization converge to a

single point –, here the population corresponds to a Pareto-set approximation.

4.2.3.3 Multi-objective tuning methodology: approach 2

The second approach used to the multi-objective problem resolution consists of an

adaptation of Robič and Filipič [49] proposal of immediately replacing the selected vector

in the current population. The other strategies in this proposal – as the truncation – are not

implemented. So, here it is proposed to select the trial vector ui,g if it dominates the target

vector xi,g or if there is no domination between them – which is the same selection criterion of

Approach 1. The main difference is that, if selected, ui,g takes the place of xi,g in the next and in

the current population. Like the multi-objective Approach 1, the stopping criteria described for

the mono-objective problem are used, and the Pareto-dominance between the population of the

last generation is evaluated.
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4.2.4 Tuning validation methodology

Besides the comparison with the analytical optimum results obtained with the distortion

and sensitivity mapping, to validate the results of the tuning performed in the spectral analyzer,

an external acceleration signal different from that used for calibration was applied to the

spectrum analyzer. The signal is the same used for the simulation validation – defined in

Subsection 4.2.1 – and was applied to all non-ideal twin-accelerometers. The amplitudes of

the excitation voltages were chosen for different relations between distortion and sensitivity

considering the tuning results.
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Chapter 5

MEMS-based Spectrum Analyzer
Simulation and Tuning

In this chapter, the main results obtained during the simulations performed are presented.

First, the simulation model is validated using an external acceleration signal; the spectra and

the closed-loop gains are analyzed for three different cases: a single-accelerometer, a non-ideal

twin-accelerometers, and an ideal twin-accelerometers spectrum analyzer. Next, assuming that

the accelerometers parameters are known, an exhaustive search for the Pareto-set is performed,

mapping the distortion and sensitivity as a function of the voltages not only for the three cases

investigated previously, but for other ten different twin-accelerometers with randomly chosen

parameters around the rated values.

In real cases, where the accelerometers parameters are not known, it is necessary to

determine the combination of voltages which satisfy a given distortion-sensitivity criterion.

The results of mono- and multi-objective approaches proposed in this dissertation are shown

in Section 5.3, using the mapping results to compare their efficiency. Finally, the tunings are

validated using an external acceleration signal and the voltages amplitudes that ensure different

distortion-sensitivity compromises.

5.1 Simulation model validation results

To validate the simulation model, excitation voltages V1 = V2 = 7.6 V were chosen,

since they result in a modulation factor β = 0.7 – according to equations 3.26 and 3.28 and the

parameters presented in Table 4.1 – and, thus, a low distortion level [19]. The acceleration signal

is depicted in Figure 5.1(a).

The simulation results of Figure 5.1 refer to the use of a single-accelerometer (b), a

non-ideal differential scheme (c), and the ideal twin-accelerometers (d). The accelerometers pa-

rameters in the single-accelerometer and in the ideal differential structure are the accelerometers

rated parameters, as given in Table 4.1.

In general, the results shown in Figure 5.1 validate the simulation of the MEMS spectrum
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analyzer since all three configurations are able to reproduce the spectral components, keeping

the frequencies and amplitude ratios adequate. The absolute values, however, are considerably

small, which relates to the presence of the accelerometers parameters in the expressions for the

fundamental Fourier component – equations 4.2, 4.7, and 4.12 – since these parameters are small

in microsystems.

0 50 100 150 200 250 300 350 400 450 500

2f (Hz)
 (b)

0

2

4

|A
si

ng
le

(2
f)

|

10-11

0 50 100 150 200 250 300 350 400 450 500

2f (Hz)
 (d)

0

2

4

6

|A
id

ea
l(2

f)
|

10-11

0 50 100 150 200 250 300 350 400 450 500

2f (Hz)
 (c)

0

2

4

6

|A
di

f(2
f)

|

10-10

0 50 100 150 200 250 300 350 400 450 500

2f (Hz)
 (a)

0

20

40

a
ex

t(m
/s

2 )

Figure 5.1: (a) Real external acceleration spectrum. Spectra obtained by the simulation of the
MEMS analyzer with excitation voltages V1 = V2 = 7.6 V: (b) single accelerometer, (c) a non-ideal
twin-structure, (d) ideal twin-accelerometers.

First, considering the single-accelerometer case (Figure 5.1(b)), the distortion observed

in the spectrum is considerably small, presenting only an undesired component in 144 Hz, with

an amplitude that represents only 3.99% of the spectrum largest component – that corresponds

to the component at 127 Hz.

Now, the non-ideal twin-accelerometers of Figure 5.1(c) present more undesired com-

ponents – at least four visible frequencies –, and the largest undesired amplitude in 144 Hz,

representing 24.98% of the 127 Hz component.
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Finally, the spectrum raised by the ideal twin-accelerometers – Figure 5.1(d) – shows the

same distortion of 3.99% in 144 Hz as the single-accelerometer case, with the main difference in

the amplitude scale.

In order to understand the cause of the spectrum distortions, the closed-loop gain of

the system in the three cases under investigation can be used, as shown in Figures 5.2(a.1),

(a.2), and (a.3), together with their respective coefficients of the Fourier series in (b.1), (b.2),

and (b.3) – calculated using the MATLAB function fit to obtain the fourth order series ap-

proximation. Its important to emphasize that all these results are normalized with respect

to the fundamental component. As discussed previously, any excitation frequency – within

the proposed discretization of the spectrum frequencies – can be chosen for this analysis, and

here the excitation frequency of 220 Hz was selected, resulting in a Fourier series fundamental

frequency of 440 Hz. It is important to notice that, although only a small time interval is shown

in Figures 5.2(a), the coefficients of the Fourier series were calculated using the time series of the

entire acquisition period.
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Figure 5.2: Closed-loop gain analysis for (1) single-accelerometer, (2) a non-ideal twin-structure, (3)
ideal twin-accelerometers. (a) MEMS spectrum analyzer closed-loop gain for cosine component
(solid line) and ideal cosine (dotted line). (b) Fourier series coefficients of closed-loop gain.

From Figure 5.2(a.1), it is clear that in the proposed time interval, referring to the cosine

portion of the spectrum, the use of a single-accelerometer results in a closed-loop gain with a
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shape similar to a cosine, despite the continuous component – which is the largest component of

the Fourier series. The second and the third order coefficients – depicted in Figure 5.2(b.1) – are

responsible by the shape deformations found in the closed-loop gain regarding the reference

cosine.

Notwithstanding, in the non-ideal twin-accelerometers case, with differences between

the accelerometers, the differential gain depicted by the continuous line in Figure 5.2(a.2)

is considerably distorted in relation to the reference cosine. This fact is evidenced by the

composition of the Fourier series, that presents the continuous component, besides non-zero

coefficients of first to fourth order, as can be observed in the results of Figure 5.2(b.2). The

Fourier series composition justifies the appearance of spurious harmonics in the spectrum

of Figure 5.1(c).

On the other hand, the identical accelerometers result in a differential gain very close

to the ideal cosine – as evidenced in Figure 5.2(a.3) –, confirmed by the Fourier series – which

presents only the third order coefficient, with small amplitude, besides the fundamental compo-

nent, as can be seen in Figure 5.2(b.3).

From the Fourier series composition, the results for the sensitivity (Equation 4.16) and

the distortion level (Equation 4.18) for each case are obtained, as shown in Table 5.1.

Table 5.1: Distortion and sensitivity results for single-accelerometer, non-ideal twin-accelerometers,
and ideal twin-accelerometers MEMS spectrum analyzers.

Configuration Distortion Sensitivity (m/(m/s2))

Single-accelerometer 2.1117 8.54e-13
Non-ideal twin-accelerometers 2.0987 1.16e-11

Ideal twin-accelerometers 0.0859 1.71e-12

Even though the result shown in Table 5.1, the distortion does not visually influence the

spectrum obtained with the single-accelerometer (Figure 5.1(b)), since the DC component is the

responsible for the distortion value, as depicted in Figure 5.2(b.1).

For the non-ideal twin-accelerometers, despite the distortion slightly smaller than the

single-accelerometer case, the spectrum is noticeably distinct from the actual input composition,

as shown in Figure 5.1(c). This distortion associates with the Fourier series composition, that

presents larger higher order coefficients (Figure 5.2(b.2)). However, the sensitivity measurement

indicates a value higher than the single-accelerometer case.

In the ideal case, the distortion level reaches 4.07% of the single-accelerometer distortion

and 4.09% of the non-ideal distortion. These results confirm the fact that the ideal differential

configuration presents a lower distortion level when compared to the single-accelerometer

topology and the non-ideal case of distinct accelerometers.
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5.2 Mapping results

If the accelerometers parameters are assumed to be known, it is possible to map the

distortion and the sensitivity surfaces as functions of the voltages applied to the accelerometers.

In real cases, those parameters are unknown, but the hypothesis assumed in this section is useful

to understand the problem and to validate the tuning strategies proposed in this dissertation.

The results for the distortion level (a) and the sensitivity (b) are shown in Figure 5.3 for

the single-accelerometer structure (1), the non-ideal (2), and the ideal (3) differential structures,

respectively, as a function of the excitation voltages amplitudes, V1 and V2. The Pareto-set is

highlighted in purple in the decision space, which has the mapped points depicted in cyan (c);

dominated (cyan), and non-dominated (purple) solutions – where this last one corresponds to

the Pareto-front – are shown in the objective space (d). The accelerometers parameters used in

the non-ideal twin-accelerometers are the same of Section 5.1.

From figures 5.3(a) and (b), it is possible to observe the conflicting characteristic of the

objective functions, at least in part of the solution space. Although it is difficult to visualize

this conflict between the distortion (Figure 5.3(a)) and the sensitivity (Figure 5.3(b)) to the

differential cases (2 and 3), the resulting Pareto-front of Figure 5.3(d) for each case makes the

compromise relation much more obvious. It is interesting to note the variation of the Pareto-set

and the Pareto-front in Figures 5.3(c) and (d) for each differential case. Since the optimization

problem depends on the accelerometer parameters, their values strongly influence the resulting

dominance. It is interesting to note that the influence of the parameters is more pronounced in

the distortion, which visually varies from the ideal to the non-ideal case, as can be seen from the

Figures 5.3(a.2) and (a.3). The sensitivity, however, maintains a similar form in figures 5.3(b.2)

(b.3), and it is clear that higher excitation amplitudes implies higher sensitivity.

A similar characteristic, with different formats for the distortion level as a function

of the actuation voltages, can be noticed for ten different non-ideal twin-accelerometers, as

depicted in Figure E.1(a) of Appendix E. In the same figure, the sensitivity (b) shows resembling

appearance to the results of Figure 5.3(b). The Pareto-set (c) and the Pareto-front (d) vary in

all the ten twin-accelerometers – since they present different parameters. Another interesting

observation is the maximum voltages amplitudes for each differential structure: since the critical

amplitude that ensures the feedback stability depends on the accelerometers parameters, the

allowed voltages vary to each twin-accelerometers considered.

It is important to emphasize that the mapping results are presented here to demonstrate

the optimization surface complexity, besides to validate the tuning results presented later in

this text. In real physical cases, however, it is not possible to perform this mapping, since the

accelerometers parameters vary among the rated values due to the manufacturing process and,

therefore, are not known.
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Figure 5.3: Mapping results for (1) single-accelerometer, (2) a non-ideal twin-structure, (3) ideal
twin-accelerometers. (a) Mapped distortion. (b) Mapped sensitivity. (c) Mapped actuation voltages
amplitudes V1 and V2 (cyan) and Pareto-set (purple) in the decision space. (d) Mapped dominated
(cyan) and non-dominated (purple) solutions in the objective space for the MEMS spectrum analyzer.

5.3 Tuning results

The results of the spectrum analyzer tuning are provided, considering the methodology

described in Subsection 4.2.3. First, the mono-objective methodology is investigated and the

DE algorithm convergence is validated using the previously explored non-ideal twin-structure.

The tuning is then applied to different non-ideal twin-accelerometers, which are also used to

analyze the algorithm average behavior. Next, the two multi-objective approaches are evaluated

considering the same steps of the mono-objective case.



68

5.3.1 Mono-objective tuning results

To apply the mono-objective tuning of Equation 4.20, it is first necessary to validate the

algorithm convergence. So, the non-ideal twin-accelerometers – mapped in Section 5.2 – are used

to evaluate the tuning evolution. This comparison is possible since, according to Equation 2.8,

the mono-objective optimization problem of Equation 4.20 can be seen as the ε-constrained

version of Equation 4.21. In Figure 5.4, the results for the bounce-back strategy and maximum

distortion level of 0.8 are shown.
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Figure 5.4: Mono-objective tuning evolution for a non-ideal twin-structure – maximum distortion
level 0.8, bounce-back boundary strategy. (a) DE population (magenta), DE optimization variables
boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the decision
space; in red, the distortion constraint. (b) The same as (a), over sensitivity level curves. (c) DE cost
function (magenta) and mapped Pareto-front (purple) in the objective space. (1) First generation. (2)
Intermediate generation. (3) Last generation.

In that figure, the generations (magenta points) in the decision space are plotted over

the distortion (a) and sensitivity (b) level curves obtained during the mapping of Section 5.2,

with the feasible region for the algorithm limited by the black dotted lines; in purple, the results

obtained by the mapping for the Pareto-set are highlighted. In the objective space, the evolution

results are presented in magenta, together with the results of the mapping for the Pareto-front in

purple. In the first column, the red level curve delimits the maximum distortion level considered

in the constraint. The results refer to the first (1), the intermediate (2), and the last (3) generation.

In the first generation, the population spreads all over the decision space within the

boundaries and, therefore, some population individuals present distortion level higher then

the 0.8 constraint, as shown in Figure 5.4(a.1). The evolution over the decision space clearly

shows that the populations search for the feasible region where the distortion level is smaller
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than 0.8, as shown in Figures 5.4(a.2) and (a.3). On the other hand, observing the evolution over

the sensitivity curves – Figures 5.4(b.1) to (b.3) –, it is clear that the algorithm tends to the higher

level curves, solving the maximization problem. Since this is a mono-objective problem, the

main idea is to stop the iterations when all the population converge to the same position on the

decision space, which, in fact, occurs in this case – validating the proposed stopping criteria as

well. Now, another interesting confirmation is that, indeed, this mono-objective approach is able

to approximate a Pareto-optimal solution, as can be seen in Figure 5.4(c.3).

Analogous results are presented in Figure 5.5, but with maximum distortion level of 0.2.

The main difference between these results and those for distortion level 0.8 is that the constraint

region is smaller – which can be a problem to the algorithm convergence.
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Figure 5.5: Mono-objective tuning evolution for a non-ideal twin-structure – maximum distortion
level 0.2, bounce-back boundary strategy. (a) DE population (magenta), DE optimization variables
boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the decision
space; in red, the distortion constraint. (b) The same as (a), over sensitivity level curves. (c) DE cost
function (magenta) and mapped Pareto-front (purple) in the objective space. (1) First generation. (2)
Intermediate generation. (3) Last generation.

The results for the other strategies are shown in Appendix E. In figures E.2 and E.3, the

evolution results for maximum distortion of 0.8 and 0.2, respectively, are shown for the brick-

wall boundary strategy. For random reinitialization, the mono-objective evolution considering

the same distortion constraints of 0.8 an 0.2 has its results presented in figures E.4 and E.5.

Finally, in figures E.6 and E.7, are shown the results for maximum distortion levels of 0.8 and

0.2, respectively, for resampling boundary strategy.

It is important to evidence that this tuning results in only one point in the Pareto-optimal

space – making analogy, again, with the multi-objective problem. Hence, this tuning is adequate
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when the characteristics of spectrum monitored are well know and it is possible to determine

one single distortion level that meets this mechanical vibration spectrum requirements. When

these requirements change, a new tuning must be performed.

Again due to the non-deterministic behavior, to analyze the convergence results, it

is necessary to use the average values and their respective standard deviations, as shown in

Tables 5.2 and 5.3 for the convergence time, the number of generations and the number of

spectrum evaluations to the four different boundary handling strategies. In Table 5.2 the results

considering constraint of 0.8 distortion level are presented, while in Table 5.3 are shown the

results for maximum distortion level of 0.2.

Table 5.2: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for a non-ideal twin-structure with different
boundary strategies – maximum distortion level 0.8.

Strategy Time (s) Generations Spectrum Eval.

Bounce-back 35.63 ± 7.99 51.20 ± 17.12 411.40 ± 75.08
Brick-wall 31.54 ± 11.83 62.20 ± 23.85 353.20 ± 84.59

Random reinit. 40.27 ± 11.80 61.80 ± 24.22 513.20 ± 115.49
Resampling 35.02 ± 5.48 58.60 ± 21.10 415.40 ± 31.63

Table 5.3: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for a non-ideal twin-structure with different
boundary strategies – maximum distortion level 0.2.

Strategy Time (s) Generations Spectrum Eval.

Bounce-back 39.27 ± 11.88 50.20 ± 27.77 520.00 ± 168.29
Brick-wall 27.97 ± 14.53 44.80 ± 27.93 344.60 ± 138.47

Random reinit. 51.17 ± 15.38 64.40 ± 25.39 637.00 ± 195.14
Resampling 39.54 ± 10.89 59.80 ± 22.60 513.60 ± 96.54

It is interesting to note that the convergence time is similar to bounce-back and resam-

pling strategies, but the random reinitialization presents a larger convergence time and the

brick-wall strategy, a smaller one. Besides, the average number of generations is smaller than

the maximum allowed in the stopping criterion, indicating that the algorithm in fact converges –

since the other stopping criterion, associated with the population stability, is the responsible to

stop the iterations.

Looking to the number of spectral evaluations, since it is less than the product of the

generations number and the individuals in the population, the approach of using the memory is

adequate to reduce the total number of times that the device is tested. Since the tuning proposed

is based on the MEMS analyzer system closed-loop gain, each time a new voltage combination

must be evaluated it is necessary to test the system – which consists of applying the voltages

signals with the test amplitudes, measuring the system output and computing the Fourier series

of the closed-loop gain. Therefore, each test takes a time equivalent to the integration period to

be performed, and the number of spectral evaluations is a critical factor to be analyzed.
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As a result, the convergence time does not correspond to a realistic measure of the total

time to perform the optimization. Since the spectrum must be mapped for each combination of

the excitation amplitudes not tested before, and since each of this tests take the integration period

– settled to 1 s –, the tuning in fact takes approximately the number of spectrum evaluations, in

seconds, to converge.

Once the algorithm convergence is validated, it is applied to diverse non-ideal twin-

accelerometers, choosing different limits for the maximum distortion. The final results obtained

for the Pareto-set and the Pareto-front for maximum distortion levels of 0.8 – similar to those of

figures 5.4(a.3), (b.3), and (c.3) – and 0.2 – similar to those of figures 5.5(a.3), (b.3) and (c.3) – are

presented in Appendix E for ten different non-ideal twin-accelerometers. For the bounce-back

boundary strategy, the mentioned results are shown in figures E.8 and E.9, respectively; for the

brick-wall strategy, in figures E.10 and E.11; the results for random reinitialization boundary

handling technique are presented in E.12 and E.13; and for resampling, in E.14 and E.15.

In these figures, there are some interesting results to highlight. The first one is the

difference between the boundary limits for the optimization variables – in dotted black lines –

and the mapping space, that considers the maximum voltages to ensure the positive feedback

stability. Since the maximum voltage amplitude depends on the accelerometer parameters, this

value is different for each accelerometer of the twin-structure. Consequently, it is possible to

observe that, among the ten twin-structures, the maximum voltages can be larger or smaller than

the boundary limits for each voltage V1 and V2 independently. This characteristic influences the

resulting voltage combination obtained by the tuning. In some cases, the tuned voltages can

appear outside the mapped decision space – as in figures E.10(a.8) and (b.8) for the twin-structure

number 8, for example –, resulting in a unfeasible solution – as depicted in Figure E.10(c.8), with

the result beyond the Pareto-front.

Another interesting characteristic is that the accelerometer parameters also strongly

influence the format of the distortion level curves – as previously shown in the mapping results

of Figure E.1. As a result, specially for smaller distortion levels, the constrained region can

represent a small portion of the decision space – as the case of the twin-accelerometer 2 –, making

difficult to the tuning algorithm to converge. The non-convergence is clear, for example, in

Figure E.15(a.2), (b.2), and (c.2) for the resampling strategy using the twin-strutuctre 2 and the

maximum distortion level of 0.2.

The mono-objective tuning does not consider the dominance between the objective func-

tion, but only the maximum sensitivity that resides inside the distortion constraint. Therefore,

in some cases, the tuned voltages can be outside the Pareto-set – as in Figure E.8(a.3) and (b.3) –,

resulting in a dominated solution – as evidenced in Figure E.8(c.3).

Considering maximum distortion of 0.8 and 0.2 for ten twin-accelerometers, the mean

and standard deviation of time, number of generations, and number of spectrum evaluations are

shown in tables 5.4 and 5.5, respectively, when bounce-back is applied to handle the boundary

constraints. The analogous results for the brick-wall, random reinitialization and resampling

for maximum distortion level of 0.8 are presented in tables E.1, E.3, and E.5, respectively, in
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Appendix E. In this appendix, tables E.2, E.4, and E.6 present the results considering the same

boundary strategies, but a constraint of 0.2 for the distortion level.

Table 5.4: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– maximum distortion level 0.8, bounce-back boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 20.63 ± 4.98 34.60 ± 7.64 252.20 ± 79.87
(2) 21.28 ± 4.94 38.80 ± 10.33 283.00 ± 88.27
(3) 25.12 ± 3.32 44.00 ± 13.38 349.20 ± 54.37
(4) 24.17 ± 1.24 44.00 ± 13.17 326.80 ± 42.39
(5) 45.09 ± 12.16 71.60 ± 29.02 620.40 ± 145.96
(6) 21.51 ± 2.80 40.40 ± 11.04 284.20 ± 64.71
(7) 20.34 ± 3.09 35.80 ± 8.53 274.20 ± 73.61
(8) 41.78 ± 11.09 71.40 ± 29.90 568.60 ± 118.81
(9) 30.39 ± 5.46 53.40 ± 18.80 412.80 ± 63.42
(10) 27.14 ± 3.05 46.40 ± 14.48 364.60 ± 50.73

mean 27.75 ± 5.21 48.04 ± 15.63 373.60 ± 78.21

Table 5.5: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– maximum distortion level 0.2, bounce-back boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 30.05 ± 6.26 43.60 ± 13.39 367.60 ± 58.75
(2) 33.40 ± 16.12 27.40 ± 14.31 511.40 ± 246.90
(3) 36.38 ± 8.84 53.20 ± 19.18 505.80 ± 106.27
(4) 34.36 ± 7.26 57.60 ± 21.72 470.60 ± 89.30
(5) 46.47 ± 13.57 67.00 ± 27.46 641.00 ± 192.46
(6) 42.80 ± 10.26 61.80 ± 22.84 588.60 ± 116.21
(7) 37.33 ± 8.17 56.40 ± 20.17 525.60 ± 81.35
(8) 41.35 ± 12.10 59.80 ± 23.35 588.00 ± 156.33
(9) 38.99 ± 9.27 58.60 ± 21.31 559.00 ± 109.78
(10) 38.17 ± 8.10 59.80 ± 21.89 529.00 ± 113.62

mean 37.93 ± 9.99 54.52 ± 20.56 528.66 ± 127.10

Now, the average behavior of the boundary strategies can be compared using the last

line of Table 5.4, as well as the other strategies for the maximum distortion level of 0.8. This

last line corresponds to the mean value for all the accelerometers of the mean between the tests

performed, given in Table 5.6. Analogous results are presented for maximum distortion 0.2 in

Table 5.7.

These results present the dependence on the boundary handling strategy. Since each one

of them uses a different way to handle the points beyond the boundaries, each one influences

differently the convergence time and, specially, the number of spectrum evaluations – depending

on the strategy, it is more or less probable that diverse points in the feasible decision space are

evaluated.
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Table 5.6: Average behavior of mono-objective tuning mean and standard deviation simulation
results of convergence time, number of generations, and spectrum evaluations for (1) to (10) non-ideal
twin-accelerometers with different boundary strategies – maximum distortion level 0.8.

Strategy Table Time (s) Generations Spectrum Eval.

Bounce-back 5.4 27.75 ± 5.21 48.04 ± 15.63 373.60 ± 78.21
Brick-wall E.1 28.05 ± 9.19 61.52 ± 23.83 369.32 ± 106.35

Random reinit. E.3 37.90 ± 8.56 58.92 ± 21.81 532.14 ± 95.84
Resampling E.5 29.66 ± 5.87 54.20 ± 20.17 408.86 ± 77.42

Table 5.7: Average behavior of mono-objective tuning mean and standard deviation simulation
results of convergence time, number of generations, and spectrum evaluations for (1) to (10) non-ideal
twin-accelerometers with different boundary strategies – maximum distortion level 0.2.

Strategy Table Time (s) Generations Spectrum Eval.

Bounce-back 5.5 37.93 ± 9.99 54.52 ± 20.56 528.66 ± 127.10
Brick-wall E.2 28.72 ± 9.94 56.58 ± 22.09 381.36 ± 119.33

Random reinit. E.4 38.53 ± 9.44 54.90 ± 21.21 543.56 ± 108.56
Resampling E.6 32.50 ± 6.50 52.00 ± 18.13 454.40 ± 67.69

From both Tables 5.6 and 5.7, the random reinitialization strategy presents a higher

convergence time and higher number of spectrum evaluations than the other strategies. The

higher number of evaluations is due to the probability of generating new vectors that have not

been mapped before, which also increases the convergence time. On the other hand, the brick-

wall strategy results in lower convergence time and smaller number of spectrum evaluations,

despite the greater number of generations. In the brick-wall, the higher number of generations

can be associated with the fact that the variables that correspond to the Pareto-optimum can lie

near the bounds, so it is improbable to generate solutions that do not violate the boundaries,

slowing the population progress. The smaller number of spectrum evaluations for the brick-wall

can be associated with the penalty applied – since the target vector is chosen whenever the

boundaries are violated by the trial vector. So it is probable that the trial vectors generated by

brick-wall have been mapped before, consequently reducing the total number of evaluations

and the convergence time. These characteristics are the same of tables 5.2 and 5.3 for the

twin-structure which parameters are known. Again, it is important to point that the algorithm

convergence time does not correspond to the tuning total time, since each spectrum evaluation

requires data acquisition during 1 s.

Since this tuning is non-deterministic – a fact associated with the DE –, it is important to

perform it in a loop and choose the best results among all the tests to tune the MEMS spectrum

analyzer. The best result can be understood as the voltage combination, between those that meet

the distortion requirement, that results in maximum sensitivity.

5.3.2 Multi-objective tuning results: approach 1

First, to validate the implementation of the DE algorithm for the problem of Equa-

tion 4.21, the same non-ideal twin-accelerometers of the previous section was used, since their

parameters are known. The results of one test for the populations evolution, together with the
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distortion and sensitivity solutions are shown in Figure 5.6 to the bounce-back strategy used

to deal with the boundary constraints. In Figure 5.6, the generations in the decision space are

plotted over the sensitivity and distortion level curves, while in the objective space are presented,

besides the results of the evolution, the results of the mapping of Section 5.2.
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Figure 5.6: Multi-objective tuning evolution for a non-ideal twin-structure – approach 1, bounce-back
boundary strategy, test 1. (a) DE population (magenta), DE optimization variables boundaries (black),
and mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The same as
(a), over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in
the objective space. (1) First generation. (2) Intermediate generation (3) Last generation.

It is possible to observe that the proposed tuning algorithm evolves to the approximation

of the Pareto-solutions. In the decision space, it is possible to observe that the populations evolve

to regions with lower distortion level and higher sensitivity, approximating the Pareto-set. In

the objective space, the evolution to the Pareto-front is even easier to observe. The evolution

results for one test of the other boundary strategies are similar and shown in Appendix E, in

figures E.16, E.17 and E.18 for the brick-wall, random reinitialization, and resampling.

Since the meta-heuristic used to solve the optimization problem is non-deterministic,

as previously stated, the results of different tests can be slightly diverse. In order to visualize

those variations and compare the results, the evolution results are shown in Figure 5.7 for a test

different from that of Figure 5.6.

Comparing the plots in the last line of Figure 5.6 with Figure 5.7, it is possible to note

that the approximation of the Pareto-front is slightly different, specially concerning the sampling

of the Pareto-front. Since the DE multi-objective adaptation used does not have a tool to ensure

diversity between the points in the Pareto-front, the points can be randomly more or less spaced

on the different tests.
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Figure 5.7: Multi-objective tuning evolution for a non-ideal twin-structure – approach 1, bounce-back
boundary strategy, test 2. (a) DE population (magenta), DE optimization variables boundaries (black),
and mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The same as
(a), over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in
the objective space. (1) First generation. (2) Intermediate generation (3) Last generation.

Given this non-deterministic behavior of the DE algorithm in – with different number

of elements and spacing in the Pareto-set for each trial –, to obtain a better sampling of the

Pareto-set, it is possible to combine the final results of all the tests. Besides, as previously

stated, it is important to use mean and standard deviation to evaluate the algorithm average

convergence. The results obtained combining all the tests are shown in Figure 5.8 for the bounce-

back boundary strategy using the non-ideal twin-structure. The analogous results for brick-wall,

random reinitialization and resampling strategies are presented in figures E.19, E.20, and E.21.
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Figure 5.8: Multi-objective tuning combined final results for a non-ideal twin-structure – approach 1,
bounce-back boundary strategy. (a) DE population (magenta), DE optimization variables boundaries
(black), and mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The
same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front
(purple) in the objective space.
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Now, the mean and standard deviation results obtained to convergence time, number of

spectrum evaluations and number of generations by using each one of the different strategies

described to deal with the boundaries constraints are shown in Table 5.8 for the same non-ideal

differential structure.

Table 5.8: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for a non-ideal twin-structure with different
boundary strategies – approach 1.

Strategy Time (s) Generations Spectrum Eval.

Bounceback 50.21 ± 8.23 63.80 ± 28.37 686.80 ± 132.45
Brickwall 44.17 ± 24.75 66.00 ± 45.15 589.60 ± 274.87

Random reinit. 64.47 ± 7.25 90.80 ± 61.90 857.60 ± 172.46
Resampling 57.97 ± 4.39 60.60 ± 11.59 805.40 ± 96.11

The first result that can be noticed from Table 5.8 is the average time. Despite the

complexity of the search for the optimization variables – associated not only with the presence

of two optimization parameters, but also with its quadratic relation in the accelerometer model –

and the process of obtaining the spectrum itself, the convergence time remains below 60 s since

only a small portion of the spectrum is computed and used to the tuning for each combination of

the operating voltages. It can be highlighted that the standard deviation found in this result is a

consequence of the non-deterministic characteristic of the DE algorithm. As the mono-objective

tuning, the convergence time is not a real measure of the total tuning time, that must consider

the number of spectrum evaluations.

Another important characteristic is that the average number of spectrum evaluations is

less than the number of generations multiplied by the number of the members in each population.

This is due to use of the memory – as described in Chapter 4 – to avoid the spectrum evaluation

in points previously mapped.

After the validation of the proposed multi-objective tuning, it is possible to apply the

strategy to different non-ideal twin-accelerometers. In Table 5.9, the results obtained for ten

different twin-accelerometer structures are shown, considering the bounce-back strategy. The

mean values of the convergence time, as well as the number of spectrum evaluations and the

number of generations, are presented along with their respective standard deviation values.

Similarly, tables E.7 to E.9 in Appendix E present the mean results for the ten twin-accelerometers,

considering the other strategies to deal with the bounds, and the same discussion made to the

results of Table 5.8 remain valid.

Since Table 5.8 shows the behavior of the strategies subjected to a single twin-structure,

these results do not represent the mean behavior of the strategies themselves. Now, in order

to compare the average behavior of the boundary strategies, it is possible to use the last line

of Table 5.9 – as well as the last line of the results for the other boundary strategies shown in

Appendix E in tables E.7 to E.9, as summarized in Table 5.10. As well as the mono-objective

approach, the average behavior of the multi-objective algorithm is influenced by the boundary
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strategy used.

Table 5.9: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– approach 1, bounce-back boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 59.73 ± 10.16 175.20 ± 42.02 670.40 ± 236.91
(2) 55.35 ± 7.28 175.40 ± 55.01 612.60 ± 223.15
(3) 63.62 ± 8.86 131.60 ± 63.41 874.00 ± 56.00
(4) 59.45 ± 10.65 108.20 ± 55.09 870.80 ± 219.88
(5) 52.72 ± 8.82 55.00 ± 13.42 884.20 ± 137.24
(6) 41.81 ± 6.13 67.80 ± 19.15 645.20 ± 99.08
(7) 37.51 ± 13.23 96.00 ± 73.83 489.80 ± 217.00
(8) 55.48 ± 12.06 84.00 ± 66.77 856.60 ± 149.49
(9) 55.46 ± 9.14 90.00 ± 64.05 844.20 ± 192.26
(10) 47.19 ± 4.58 87.60 ± 63.08 693.60 ± 103.50

mean 52.83 ± 9.09 107.08 ± 51.58 744.14 ± 163.45

Table 5.10: Average behavior of multi-objective tuning mean and standard deviation simulation
results of convergence time, number of generations, and spectrum evaluations for (1) to (10) non-ideal
twin-accelerometers with different boundary strategies – approach 1.

Strategy Table Time (s) Generations Spectrum Eval.

Bounce-back 5.9 52.83 ± 9.09 107.08 ± 51.58 744.14 ± 163.45
Brick-wall E.7 47.94 ± 11.61 87.72 ± 42.68 717.00 ± 155.26

Random reinit. E.8 70.11 ± 18.84 83.84 ± 46.33 978.46 ± 229.77
Resampling E.9 62.46 ± 11.17 103.18 ± 54.12 862.62 ± 154.60

The combined results obtained for the Pareto-optimal approximation for the ten non-

ideal twin-accelerometers, similarly to the results of Figure 5.8, are shown in figures E.22 to E.25

in Appendix E, for bounce-back, brick-wall, random reinitialization, and resampling boundary

strategies, respectively. The combined results considers the dominance between them.

In all the boundary strategies, it is possible to observe – similarly to the mono-objective

tuning – the influence of the accelerometers parameters in the results obtained, even though

all the structures present some good approximations for the Pareto-optimum in some regions.

In structures which the maximum amplitude voltages that ensure the stability of the positive

feedback are higher than the DE boundaries – as the case of structures 1 and 2 –, the tuning

is capable of approximating the Pareto-set that lies in the DE voltages boundaries; however,

the Pareto-set that lies outside these boundaries is not appropriately approximated, and the

tuning result corresponds to the voltage boundary. This highly influences the aspect of the

Pareto-front, which approximates the mapping results just for a few points, returning dominated

solutions – when comparing to the mapping results – for the others. In structures that present

critical voltages to stability lower than the DE boundaries, the effect is the opposite, resulting in

unfeasible solutions in the Pareto-front when the tuning results are compared to the mapping

results; this is the case of structures 5 and 8. An interesting feature is observed in structures 3,



78

4, and 6, which present one of the maximum actuation voltages lower than the DE boundary

and the other one higher; consequently, the results for the Pareto-optimum approximation

present unfeasible and dominated solutions, besides the Pareto-set and Pareto-front correct

approximations for some points. In the meantime, in cases where the DE boundaries are similar

to the maximum voltages to the system stability, the results for the Pareto-set and the Pareto-

front are good approximations to the mapping results, as depicted in the results of structures

7, 9, and 10. The unfeasible and dominated solutions found, although, do not invalidate the

tunings, and their effects are explored in Section 5.4.

5.3.3 Multi-objective tuning results: approach 2

Similarly to the first approach, the results for the populations evolution, together with

the distortion and sensitivity solutions are shown in Figure 5.9 for the bounce-back strategy. The

evolution results for the other boundary strategies are presented in Appendix E, in Figure E.26

for brick-wall, in Figure E.27 for random reinitialization, and in Figure E.28 for resampling

boundary strategy.
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Figure 5.9: Multi-objective tuning evolution for a non-ideal twin-structure – approach 2, bounce-back
boundary strategy. (a) DE population (magenta), DE optimization variables boundaries (black), and
mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The same as (a),
over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the
objective space. (1) First generation. (2) Intermediate generation (3) Last generation.

The behavior of the populations evolution is analogous to that presented in Figure 5.7 for

the approach 1: considering the distortion, the population seeks the minimum levels; considering

sensitivity, the population tends to its maximum; considering the objective space results, the

population approaches the Pareto-front appropriately. These results validate the proposed
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approach to the selection, evidencing that the algorithm can converge when the alterations

described in Subsubsection 4.2.3.3 are implemented in the differential evolution to solve the

multi-objective tuning.

The mean and standard deviation results obtained to convergence time, number of

spectrum evaluations, and number of generations by using each one of the different strategies

described to deal with the boundaries constraints are shown in Table E.10 for the same twin-

accelerometer structure. These results also validate the algorithm implementation, especially

the proposed stopping criteria.

The final result to the optimization problem via this approach, similarly with the multi-

objective approach 1, can combine the results of some trials to sample the Pareto-front in a

greater number of points. The results for this twin-structure are given in Figure 5.10 for bounce-

back strategy and in figures E.29, E.30, and E.31 for brick-wall, random reinitialization and

resampling. The results are quite similar to those obtained with approach 1, since both the

approaches are able to approximate the Pareto-optimal set.
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Figure 5.10: Multi-objective tuning combined final results for a non-ideal twin-structure – approach 2,
bounce-back boundary strategy. (a) DE population (magenta), DE optimization variables boundaries
(black), and mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The
same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front
(purple) in the objective space.

The analysis of the average behavior – presented in tables E.11 to E.14 – is similar to

that presented in the mono-objective tuning and in the other multi-objective approach – varying

according to the strategy used to handle the boundary constraints. However, it is possible to

evaluate if this approach is capable of reducing the convergence time. The average behavior,

given in Table 5.11, must be analyzed in comparison with those of the first approach – Table 5.10.

Table 5.11: Average behavior of multi-objective tuning mean and standard deviation simulation
results of convergence time, number of generations, and spectrum evaluations for (1) to (10) non-ideal
twin-accelerometers with different boundary strategies – approach 2.

Strategy Table Time (s) Generations Spectrum Eval.

Bounce-back E.11 54.04 ± 8.83 107.50 ± 57.30 737.62 ± 161.89
Brick-wall E.12 49.88 ± 11.82 93.14 ± 39.92 708.66 ± 166.31

Random reinit. E.13 66.33 ± 19.61 83.62 ± 44.58 975.58 ± 268.45
Resampling E.14 58.75 ± 9.68 92.36 ± 48.48 794.20 ± 140.47
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Generally speaking, approach 2 presents an average convergence time and number of

generation very similar to the approach 1 behavior, with some small percentage reductions

and increments, which can be possibly associated with the DE algorithm non-deterministic

characteristic. However, the most important reduction is in the spectrum evaluation. Despite the

low percentage difference – with the smallest reduction of 0.29% and the largest of 7.93%, when

compared to approach 1 –, since this number highly influences the total tuning time – as previ-

ously discussed –, even this small improvement is advantageous. Since this proposal is based

on Robič and Filipič [49], but the original proposal has other modifications and characteristics,

it is possible to conclude that this characteristics may be determinant for a more prominent

reduction of the total processing time. This fact, however, does not invalidate the results of this

approach. The combined results are shown in Appendix E for ten different twin-accelerometers

in figures E.32, E.33, E.34, and E.35 for the four boundary strategies considered.

5.4 Tuning validation results

The tuning results validation can be done by subjecting the twin-accelerometers to an

acceleration signal and choosing the voltage combinations according to the requirement on the

maximum distortion level – or on the minimum sensitivity, in the case of the multi-objective

tuning results. This choice of the sensitivity, however, does not seem to be an easy definition,

since its absolute value varies considerably as a function of the accelerometers parameters. The

distortion level, on the other hand, has a more direct quantification, since it is normalized,

according to the proposal of Section 4.1.

Hence, the maximum distortion level is the requirement chosen to guide the voltages

selection. Besides, the choice on the maximum distortion allows the validation of the mono- and

multi-objective tunings altogether.

The results from the left-hand column of Figure 5.11 show the spectra without tuning,

with V1 = V2 = 7.6 V, while on the other two columns are the spectra raised using the tuned

voltages for the same non-ideal twin-accelerometers used in the previous sections. The results in

the middle column refer to the choice of the excitation voltages that ensure maximum sensitivity

with distortion level less than 0.8, i.e., in the trade-off between sensitivity and distortion, the

first one is preferred. On the other hand, the results on the right-hand column refer to the choice

of the maximum sensitivity with distortion level less than 0.2; in this case, the preference is the

distortion. The external acceleration signal used is the same of Section 5.1.

According to the previous sections, both results of the multi-objective approaches are

capable to approximate the Pareto-front; besides, the mono-objective tuning can map into a

single point of the Pareto-set each time a different maximum distortion is chosen. This fact is

evidenced by Figure 5.11, since all the three tunings are able to adjust the raised spectrum so

the distortion-sensitivity requirements are reached. Comparing figures 5.11(a) and 5.11(b), it is

possible to visually note, for the three tunings, only a small reduction of the distortion in the

final tuned spectra. However, in 5.11(b), the spectra presents adequate amplitude, since the
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system overall gain is also adjusted during the proposed tuning. In 5.11(c) it is also possible to

see the correct spectrum amplitudes, but the appearance of the final spectrum is more clean –

since the maximum distortion level is lower –, presenting only the expected components. The

analogous results for brick-wall, random reinitialization, and resampling boundary strategies

are shown in figures E.36, E.37, and E.38, respectively. Like the results in Figure 5.11, the results

of all the three tunings compare well for the other boundary strategies.
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Figure 5.11: Tuning validation results for a non-ideal twin-structure – bounce-back boundary strategy.
(a) Spectrum before tuning. (b) Tuned spectrum, maximum distortion level 0.8. (c) Tuned spectrum,
maximum distortion level 0.2. (1) Mono-objective tuning. (2) Multi-objective tuning, approach 1.
(3) Multi-objective tuning, approach 2.

For the ten twin-structures tuned previously, the validation results are shown in Ap-

pendix E. For the mono-objective tuning, considering bounce-back, brick-wall, random reinitial-

ization and resampling, the results are presented in figures E.39 to E.42. For the multi-objective

tuning, the results considering the same boundary strategies are presented in figures E.43 to

E.46 for the approach 1, and in figures E.47 to E.50 for the approach 2.

In these figures, it is interesting to note the differences between each twin-structure.

The twin-accelerometers 5 and 9, for example, present completely polluted spectra before

the tuning, indicating that the voltages initially used are superior than the critical value to

positive feedback stability – a fact evidenced by voltages limits in the distortion and sensitivity

mapped previously, given in Figure E.1. The other structures present, before the tuning, diverse

spectra appearance, with more or less undesired spectral components depending on the twin-
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accelerometers parameters. Considering the tuned spectra to maximum distortion 0.8, in

general, it is possible to note that the spectra present the adequate amplitudes for the expected

frequencies, besides some spurious components that may present amplitudes similar to the

desired components. Those undesired components, however, are mostly eliminated for the twin-

structures when the maximum allowed distortion is 0.2; in these cases, the spectra amplitudes

are also corrected and correspond to the external acceleration real amplitudes. This general

behavior can be found even for the structures with before-tuning completely polluted spectrum.

However, some special cases can be found in all the three tuning methodologies for

all the boundary strategies. These cases correspond to spectra that, even after the tuning,

present components over all the frequencies analyzed, and, therefore, there is no possibility

of distinction between the desired frequency components. These cases are found both to the

maximum distortion levels 0.8 and 0.2, and to structures with before-tuning spectrum completely

polluted, but also to structures with clean before-tuning spectrum. This behavior associates

with the unfeasible solutions found in some of the tunings – as previously discussed – due to

the differences in accelerometer parameters and the corresponding maximum voltages to the

system stability. The dominated solutions found with the tunings, on the other hand, do not

visually influence the tuned spectra.

The dominated and unfeasible solutions found during the tunings – where these last

result in the polluted tuned spectra special cases – do not invalidate the tunings for some reasons.

First, the tunings are non-deterministic, which means that the unfeasible and dominated solu-

tions are randomly found and, therefore, there is also the possibility of finding non-dominated

solutions for twin-structures with any tuning methodology. Besides, the twin-accelerometers

simulated have their parameters varied 20% around the respective rated values, which is a

tolerance realistic for prototypes, but a high value for devices produced in industrial scale. This

means that, with lower tolerance, the differences between the DE variables boundaries and

the maximum voltages to positive feedback stability are smaller, reducing the unfeasible and

dominated problems, with a better approximation of the Pareto-optimal. Still, if the problems

persist in the twin-accelerometers tunings, it is possible to adjust the DE variables boundaries in

order to reduce – or amplify – the algorithm borders to match the maximum voltages to system

stability.
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Chapter 6

Conclusions and Future Steps

The simulations performed for the real-time spectrum analyzer showed the spectrum

distortion when accelerometers with different parameters are used in the differential configura-

tion. To overcome these problems, the proposed strategy for the spectral analyzers tuning based

on DE proved itself to be adequate.

The mono-objective tuning strategy presented good results considering the comparison

with the exhaustive search for a known accelerometer twin-structure, with optimal results

obtained via the DE algorithm close to the results via the objective space mapping. These results

were also validated to different non-ideal twin-accelerometers when the voltages obtained by

the DE were applied to the twin-structures and an acceleration signal distinct to the one used

for the tuning was used. It was evidenced that the value chosen for the maximum distortion

level highly influenced the resulting mechanical vibration spectrum.

The proposed multi-objective tuning was able to approximate the Pareto-optimal set.

With this variables set, it was possible to choose between different Pareto-optimal solutions

that increased the importance of one cost function over another. Thus, in applications where

there is no previous information about the mechanical vibration spectrum to be mapped,

several different combinations may be tested before choosing the most appropriated. The main

advantage of this strategy consists in eliminating noise even in extreme cases, provided that

proper compromise relation between distortion and sensitivity is chosen.

In both mono- and multi-objective optimization, although the voltage adjustment pre-

sented considerably high complexity – due to the quadratic factor of the actuation voltage and

its presence in the feedback of the accelerometer model – the convergence time was considerably

small, since just a small part of the spectrum was used. The main drawback is that the spectrum

needs to be mapped each time an optimization vector not tested before is considered, increasing

the total time, that does not correspond only to the algorithm convergence time. Considering,

however, that the tuning strategies are proposed for initial calibration of twin-accelerometers in

a controlled environment, the total processing time is not a limiting factor.

Considering this fact and comparing the mono- and multi-objective average convergence

time and number of spectrum evaluations, since both of them are capable of obtaining the
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appropriated voltage combination that results in the required trade-off between distortion level

and sensitivity, the multi-objective scenario is advantageous. This is due to the fact that this

approach is capable of obtaining several Pareto-optimal results within the same tuning and,

therefore, is more flexible. Even when the behavior of the spectrum to be mapped is known,

it seems to be a good option to apply the multi-objective tuning; so, if for any reason the

application suffers a variation, there are already other possible solutions available to adjust the

characteristics of the mapped spectrum. Hence, the multi-objective tuning can be understood

as an application-free approach: provided the Pareto-optimal points, any requirements for

mechanical vibration spectrum can be obtained.

Besides, the mono-objective tuning presents another disadvantage: since the accelerome-

ters parameters are unknown and influence the shape of the objective space, it is not possible

to know a priori if the feasible region is large or small – or even if there is a feasible region that

satisfies the distortion level chosen, given the trend to restrict the feasible region when lower

distortions levels are chosen.

To future works, an optimization method that ensures a good approximation of the

Pareto-set and the Pareto-front can be explored. However, the most important future investi-

gation to be performed is the application of the proposed tuning methodology to real physical

microelectromechanical spectrum analyzers. Although the simulation of the spectrum analyzer

system was performed to mimic the real physical system – considering the variation of the

system parameter among the values of the rated parameters of a physical microaccelerometer, as

well as a quasi-static model that considers the interaction between the mechanical and electrical

domains –, only a physical test with the device can really ensure the reliability of the proposed

tuning.
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49 ROBIČ, T.; FILIPIČ, B. DEMO: Differential Evolution for Multiobjective Optimiza-
tion. In: . Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005. P. 520–533. ISBN 978-3-540-31880-4.

50 OPPENHEIM, A.; WILLSKY, A.; NAWAB, S. Signals and Systems. Upper Sad-
dle River, N.J: Prentice Hall, 1997. (Prentice-Hall signal processing series). ISBN
9780138147570.

51 AMBARDAR, A. Analog and Digital Signal Processing. Pacific Grove, CA: Brooks
Cole Pub. Co, 1999. ISBN 9780534954093.

52 ADNANI, A. A.; DUPLICY, J.; PHILIPS, L. Spectrum analyzers today and tomor-
row: Part 2. IEEE Instrumentation Measurement Magazine, Institute of Electrical
and Electronics Engineers (IEEE), v. 16, n. 6, p. 36–40, Dec. 2013. ISSN 1941-0123.
DOI: 10.1109/MIM.2013.6704970.

53 IWANIEC, M.; HOLOVATYY, A.; TESLYUK, V.; LOBUR, M.; KOLESNYK, K.; MA-
SHEVSKA, M. Development of vibration spectrum analyzer using the Raspberry
Pi microcomputer and 3-axis digital MEMS accelerometer ADXL345. In: 2017 XII-
Ith International Conference on Perspective Technologies and Methods in MEMS
Design (MEMSTECH). [S.l.]: IEEE, Apr. 2017. P. 25–29. DOI: 10.1109/memstech.
2017.7937525.

54 IGLESIAS, V.; GRAJAL, J.; SANCHEZ, M.-A.; LOPEZ-VALLEJO, M. Implemen-
tation of a Real-Time Spectrum Analyzer on FPGA Platforms. IEEE Transactions
on Instrumentation and Measurement, Institute of Electrical and Electronics En-
gineers (IEEE), v. 64, n. 2, p. 338–355, Feb. 2015. DOI: 10.1109/tim.2014.2344411.

55 SENTURIA, S. D. Microsystem Design. Norwell, MA, USA: Springer US, 8 Dec.
2004. 720 pp. ISBN 0-7923-7246-8.

56 YOUNIS, M. MEMS Linear and Nonlinear Statics and Dynamics. [S.l.]: Springer
US, 2011. (Microsystems). ISBN 1441960201.

57 MAHMOOD, M. S.; CELIK-BUTLER, Z.; BUTLER, D. P. Design, fabrication and
characterization of flexible MEMS accelerometer using multi-Level UV-LIGA. Sen-
sors and Actuators A: Physical, Elsevier BV, v. 263, p. 530–541, Aug. 2017. ISSN
0924-4247. DOI: https://doi.org/10.1016/j.sna.2017.07.007.

58 BEEBY, S. P.; TUDOR, M. J.; WHITE, N. M. Energy harvesting vibration sources for
microsystems applications. Measurement Science and Technology, IOP Publish-
ing, v. 17, n. 12, r175–r195, Oct. 2006. DOI: 10.1088/0957-0233/17/12/r01.

https://doi.org/10.1109/cec.2003.1299429
https://doi.org/10.1109/MIM.2013.6704970
https://doi.org/10.1109/memstech.2017.7937525
https://doi.org/10.1109/memstech.2017.7937525
https://doi.org/10.1109/tim.2014.2344411
https://doi.org/https://doi.org/10.1016/j.sna.2017.07.007
https://doi.org/10.1088/0957-0233/17/12/r01


91

59 SANYAL, K.; BISWAS, K. Structural design and optimization of MEMS based
capacitive accelerometer. In: 2017 Devices for Integrated Circuit (DevIC). [S.l.]:
IEEE, Mar. 2017. P. 294–298. DOI: 10.1109/devic.2017.8073955.

60 TEZ, S.; TORUNBALCI, M. M.; AKIN, T. A novel method for fabricating MEMS
three-axis accelerometers using low temperature Au-Sn eutectic bonding. In: 2016
IEEE SENSORS. [S.l.]: IEEE, Oct. 2016. P. 1–3. DOI: 10.1109/icsens.2016.7808705.

61 ZHOU, X.; CHE, L.; SHENGLIN, L.; LIN, Y.; LI, X.; WANG, Y. Design and fabri-
cation of a MEMS capacitive accelerometer with fully symmetrical double-sided
H-shaped beam structure. Microelectronic Engineering, Elsevier BV, v. 131, p. 51–
57, Jan. 2015. DOI: 10.1016/j.mee.2014.10.005.

62 KOBAYASHI, T.; OKADA, H.; MASUDA, T.; MAEDA, R.; ITOH, T. A digital output
accelerometer using MEMS-based piezoelectric accelerometers and arrayed CMOS
inverters with satellite capacitors. Smart Materials and Structures, IOP Publishing,
v. 20, n. 6, p. 065017, May 2011. DOI: 10.1088/0964-1726/20/6/065017.

63 LI-PENG WANG; WOLF, R. A.; YU WANG; DENG, K. K.; ZOU, L.; DAVIS, R. J.;
TROLIER-MCKINSTRY, S. Design, fabrication, and measurement of high-sensitivity
piezoelectric microelectromechanical systems accelerometers. Journal of Microelec-
tromechanical Systems, Institute of Electrical and Electronics Engineers (IEEE),
v. 12, n. 4, p. 433–439, Aug. 2003. ISSN 1057-7157. DOI: 10.1109/jmems.2003.
811749.

64 ROY, A.; BHATTACHARYYA, T. Design, fabrication and characterization of high
performance SOI MEMS piezoresistive accelerometers. Microsystem Technologies,
Springer Science and Business Media LLC, v. 21, n. 1, p. 55–63, Jan. 2015. DOI:
10.1007/s00542-013-1904-y.

65 SHEIKHALEH, A.; ABEDI, K.; JAFARI, K. A Proposal for an Optical MEMS Ac-
celerometer Relied on Wavelength Modulation With One Dimensional Photonic
Crystal. Journal of Lightwave Technology, Institute of Electrical and Electron-
ics Engineers (IEEE), v. 34, n. 22, p. 5244–5249, Nov. 2016. ISSN 0733-8724. DOI:
10.1109/jlt.2016.2597539.

66 CUI, T.; WANG, J. Polymer-based wide-bandwidth and high-sensitivity microma-
chined electron tunneling accelerometers using hot embossing. Journal of Micro-
electromechanical Systems, Institute of Electrical and Electronics Engineers (IEEE),
v. 14, n. 5, p. 895–902, Oct. 2005. ISSN 1057-7157. DOI: 10.1109/jmems.2005.851865.

67 LIU, C.-H.; KENNY, T. W. A high-precision, wide-bandwidth micromachined tun-
neling accelerometer. Journal of Microelectromechanical Systems, Institute of
Electrical and Electronics Engineers (IEEE), v. 10, n. 3, p. 425–433, Sept. 2001. ISSN
1057-7157. DOI: 10.1109/84.946800.

https://doi.org/10.1109/devic.2017.8073955
https://doi.org/10.1109/icsens.2016.7808705
https://doi.org/10.1016/j.mee.2014.10.005
https://doi.org/10.1088/0964-1726/20/6/065017
https://doi.org/10.1109/jmems.2003.811749
https://doi.org/10.1109/jmems.2003.811749
https://doi.org/10.1007/s00542-013-1904-y
https://doi.org/10.1109/jlt.2016.2597539
https://doi.org/10.1109/jmems.2005.851865
https://doi.org/10.1109/84.946800


92

68 VOPILKIN, E. A.; KLIMOV, A. Y.; ROGOV, V. V.; PRYAKHIN, D. A.; GUSEV, S. A.;
SKOROHODOV, E. V.; SHULESHOVA, I. Y.; SHASHKIN, V. I. MEMS Tunneling
Sensor Without the Feedback Loop. IEEE Sensors Journal, Institute of Electrical
and Electronics Engineers (IEEE), v. 14, n. 6, p. 1831–1835, June 2014. ISSN 1530-
437X. DOI: 10.1109/jsen.2014.2305307.

69 MAILLY, F.; MARTINEZ, A.; GIANI, A.; PASCAL-DELANNOY, F.; BOYER, A.
Design of a micromachined thermal accelerometer: Thermal simulation and experi-
mental results. Microelectronics Journal, Elsevier BV, v. 34, n. 4, p. 275–280, Apr.
2003. DOI: 10.1016/s0026-2692(02)00194-5.

70 MEZGHANI, B.; TOUNSI, F.; REKIK, A.; MAILLY, F.; MASMOUDI, M.; NOUET, P.
Sensitivity and power modeling of CMOS-MEMS single axis convective accelerom-
eters. Microelectronics Journal, Elsevier BV, v. 44, n. 12, p. 1092–1098, Dec. 2013.
DOI: 10.1016/j.mejo.2013.06.006.

71 TAVAKKOLI, H.; MOMEN, H. G.; SANI, E. A.; YAZGI, M. An inductive MEMS
accelerometer. In: 2017 10th International Conference on Electrical and Electronics
Engineering (ELECO). [S.l.: s.n.], Nov. 2017. P. 459–463.

72 MOHAMMED, Z.; DUSHAQ, G.; CHATTERJEE, A.; RASRAS, M. An optimization
technique for performance improvement of gap-changeable MEMS accelerometers.
Mechatronics, Elsevier BV, v. 54, p. 203–216, Oct. 2018. ISSN 0957-4158. DOI: 10.
1016/j.mechatronics.2017.10.011.

73 KAMPEN, R. van; WOLFFENBUTTEL, R. Modeling the mechanical behavior of
bulk-micromachined silicon accelerometers. Sensors and Actuators A: Physical,
Elsevier BV, v. 64, n. 2, p. 137–150, Jan. 1998. ISSN 0924-4247. DOI: 10.1016/s0924-
4247(98)80007-1.

74 XIAO, D.; LI, Q.; HOU, Z.; XIA, D.; XU, X.; WU, X. A double differential torsional
micro-accelerometer based on V-shape beam. Sensors and Actuators A: Physical,
Elsevier BV, v. 258, p. 182–192, May 2017. ISSN 0924-4247. DOI: 10.1016/j.sna.
2017.03.011.

75 HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentals of Physics. [S.l.]: John
Wiley & Sons, 2010. ISBN 9780470469118.

76 COLLARD, D.; FUJITA, H.; TOSHIYOSHI, H.; LEGRAND, B.; BUCHAILLOT, L.
Electrostatic Micro-actuators. In: BOUSSEY, J. (Ed.). Microsystems technology:
fabrication, test & reliability. London Sterling, VA: Kogan Page Science, 2003.
chap. 4, p. 75–116. ISBN 1903996473.

77 THOMAS, G.; WEIR, M. Thomas’ Calculus. Boston: Pearson Education, 2015. ISBN
0321878965.

https://doi.org/10.1109/jsen.2014.2305307
https://doi.org/10.1016/s0026-2692(02)00194-5
https://doi.org/10.1016/j.mejo.2013.06.006
https://doi.org/10.1016/j.mechatronics.2017.10.011
https://doi.org/10.1016/j.mechatronics.2017.10.011
https://doi.org/10.1016/s0924-4247(98)80007-1
https://doi.org/10.1016/s0924-4247(98)80007-1
https://doi.org/10.1016/j.sna.2017.03.011
https://doi.org/10.1016/j.sna.2017.03.011


93

78 CRETU, E.; BARTEK, M.; WOLFFENBUTTEL, R. F. Analytical Modelling for Ac-
celerometers with Electrically Tunable Sensitivity. In: TECHNICAL Proceedings
of the 1999 International Conference on Modeling and Simulation of Microsys-
tems. Cambridge, MA: Computational Publications, Apr. 1999. P. 601–604. ISBN
0966613546.

79 ROCHA, L. A.; DIAS, R. A.; CRETU, E.; MOL, L.; WOLFFENBUTTEL, R. F. Auto-
calibration of capacitive MEMS accelerometers based on pull-in voltage. Microsys-
tem Technologies, Springer Science and Business Media LLC, v. 17, n. 3, p. 429–436,
Feb. 2011. DOI: 10.1007/s00542-011-1252-8.

80 GOLNARAGHI, M. F.; KUO, B. C. Automatic Control Systems. 9 ed. Hoboken,
NJ: Wiley, 2010. ISBN 9780470048962.

81 OGATA, K. Modern Control Engineering. Boston: Prentice Hall, 2010. (Instrumen-
tation and controls series). ISBN 9780136156734.

82 ANSTEY, N. A. Correlation techniques - a review. Geophysical Prospecting, Wiley,
v. 12, n. 4, p. 355–382, Dec. 1964. DOI: 10.1111/j.1365-2478.1964.tb01911.x.

83 DERRICK, T. Time Series Analysis: The Cross-Correlation Function. In: [s.l.]: Hu-
man Kinetics Publishers, 29 July 2003. P. 189–205. ISBN 0736044671.

84 DONDURUR, D. Chapter 4 - Fundamentals of Data Processing. In: . Ac-
quisition and Processing of Marine Seismic Data. Ed. by Derman Dondurur. [S.l.]:
Elsevier, 13 Mar. 2018. P. 211–239. ISBN 0128114908. DOI: https://doi.org/10.
1016/B978-0-12-811490-2.00004-9.

85 MOHAMMED, Z.; ELFADEL, I.; RASRAS, M. Monolithic Multi Degree of Freedom
(MDoF) Capacitive MEMS Accelerometers. Micromachines, MDPI AG, v. 9, n. 11,
p. 602, Nov. 2018. DOI: 10.3390/mi9110602.

86 GUNTHER, L. The Physics of Music and Color. 1st ed ed. New York: Springer
New York, 2012. DOI: 10.1007/978-1-4614-0557-3.

87 DOUBLE. [S.l.: s.n.]. https://la.mathworks.com/help/matlab/ref/double.html.
Accessed: 2020-01-29.

88 LJUNG, L. System Identification - Theory for the user. Ed. by Thomas Kailath.
2nd ed. [S.l.]: Prentice Hall, 1999. 658 pp. ISBN 0136566952.

https://doi.org/10.1007/s00542-011-1252-8
https://doi.org/10.1111/j.1365-2478.1964.tb01911.x
https://doi.org/https://doi.org/10.1016/B978-0-12-811490-2.00004-9
https://doi.org/https://doi.org/10.1016/B978-0-12-811490-2.00004-9
https://doi.org/10.3390/mi9110602
https://doi.org/10.1007/978-1-4614-0557-3
https://la.mathworks.com/help/matlab/ref/double.html


94

Appendix A – Fourier Analysis

In this appendix, the basis of the Fourier analysis – which enables the evaluation of

signals in the frequency domain – is described. Initially, the idea of the Fourier series for periodic

signals is explored, and, later, this representation is enlarged to the Fourier transform. The

approach used here is mainly based on the book of Oppenheim, Willsky, and Nawab 1.

Fourier Series

A signal is periodic if, for some positive value T0,

x(t) = x(t + T0) , (A.1)

for all t.

The fundamental period of x(t), T0, in seconds, is the minimum positive, nonzero value

for which Equation A.1 is satisfied. Therefore, the fundamental frequencyω0, in rad/s, is given

by

ω0 =
2π
T0

. (A.2)

The periodic complex exponential,

x (t) = e jω0t , (A.3)

has a set of harmonically related complex exponentials associated:

φn (t) = e jnω0t = e jn(2π/T0)t, n = 0,±1,±2, . . . . (A.4)

Each of these signals has a fundamental frequency nω0 – i.e., a multiple ofω0 – and a

fundamental period T0/n – i.e, a fraction of T0. Thus, each signal φn (t) is also periodic with

period T0. A linear combination of harmonically related complex exponentials of the form

x (t) =
+∞
∑

n=−∞ ane jnω0t =
+∞
∑

n=−∞ ane jn(2π/T0)t (A.5)

is also periodic with period T0. In Equation A.5, the term for n = 0 is constant and the

components for n = ±N are referred to as the Nth harmonic components – specifically, the

1OPPENHEIM, A.; WILLSKY, A.; NAWAB, S. Signals and Systems. [S.l.]: Prentice Hall, 1997.
(Prentice-Hall signal processing series). ISBN 9780138147570.
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first harmonic components are also called fundamental components. The representation of a

periodic signal in the form of Equation A.5 is the signal Fourier Series (FS) representation in the

exponential form.

The process to obtain the expressions for the coefficients an of the Fourier series begins

with the multiplication of both sides of Equation A.5 by e− jmω0t, where m = 0,±1,±2, . . .

x (t) e− jmω0t =
+∞
∑

n=−∞ ane jnω0te− jmω0t (A.6)

Integrating both sides from 0 to T0 = 2π/ω0, results in Equation A.7.

T0∫
0

x (t) e− jmω0tdt =
T0∫

0

+∞
∑

n=−∞ ane jnω0te− jmω0tdt (A.7)

Switching the order of integration and summation:

T0∫
0

x (t) e− jmω0tdt =
+∞
∑

n=−∞ an

 T0∫
0

e j(n−m)ω0tdt

 . (A.8)

Using Euler’s formula,

e jθ = cosθ+ j sinθ , (A.9)

the integral between the brackets can be written as:

T0∫
0

e j(n−m)ω0tdt =
T0∫

0

cos (n−m)ω0t dt + j
T0∫

0

sin (n−m)ω0t dt . (A.10)

For n 6= m, cos(n−m)ω0t and sin(n−m)ω0t are periodic sinusoids with fundamental

period (T0/ |n−m|). Thus, in Equation A.10, the integration is performed over an interval that

is an integral number of periods of the signals cos(n−m)ω0t and sin(n−m)ω0t, and therefore

the integrals of these signals are zero.

Considering now n = m, the left-hand side of Equation A.10 can be used:

T0∫
0

e j(n−m)ω0tdt =
T0∫

0

e0dt

=

T0∫
0

dt

= T0 .

(A.11)

In summary,
T0∫

0

e j(n−m)ω0tdt =

 T0 , if n = m

0 , if n 6= m .
(A.12)
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Consequently, when n = m, Equation A.8 is reduced to:

T0∫
0

x (t) e− jmω0tdt =
+∞
∑

n=−∞ anT0 (A.13)

and the coefficient an is given by

an =
1
T0

T0∫
0

x (t) e− jnω0tdt . (A.14)

Since during the evaluation of Equation A.10, the integration occurs over an interval

of length T0, the same result is valid if different limits to the integral are chosen, as long as the

interval length T0 is maintained. Then, denoting integration over any interval length T0 by
∫

T0
,

equations A.12 and A.14 can be rewritten as equations A.15 and A.16, respectively.

∫
T0

e j(n−m)ω0tdt =

 T0 , if n = m

0 , if n 6= m
(A.15)

an =
1
T0

∫
T0

x (t) e− jnω0tdt (A.16)

Thereby, the Fourier series of a periodic continuous-time signal is given by Definition 6.1.

Definition 6.1: Fourier Series of a periodic continuous-time signal

If x(t) has a Fourier series representation – i.e., if it can be expressed as a linear combination of
harmonically related complex exponentials in the form of Equation A.17 –, then the coefficients are
given by Equation A.18.

x (t) =
+∞
∑

n=−∞ ane jnω0t =
+∞
∑

n=−∞ ane jn(2π/T0)t (A.17)

an =
1
T0

∫
T0

x (t) e− jnω0tdt =
1
T0

∫
T0

x (t) e− jn(2π/T0)tdt (A.18)

Equation A.17 is called the synthesis equation, while Equation A.18 is the analysis

equation, which defines the set of coefficients an – called the Fourier series coefficients or spectral

coefficients of x(t). These coefficients measure the portion of the signal x(t) that is at each

harmonic of the fundamental component.

The coefficient a0 is the DC or constant component of x(t) – given by Equation A.18 with

n = 0, resulting in Equation A.19 –, and represents the average value of x(t) over one period.

a0 =
1
T0

∫
T0

x (t) dt (A.19)

To real periodic signals, it is possible to write the Fourier series alternatively in the

polar and trigonometric forms. To obtain the trigonometric representation – used later in this
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text –, it is supposed that x(t) is real and can be expressed in the form of Equation A.17. Since

x(t) = x∗(t) – where x∗(t) is the complex conjugate of x(t) –, then:

x (t) =
∞
∑

n=−∞ a∗ne− jnω0t . (A.20)

Replacing n by −n in the summation:

x (t) =
∞
∑

n=−∞ a∗−ne jnω0t , (A.21)

which, by comparison with Equation A.17 requires that

an = a∗−n (A.22)

or, equivalently, that

a∗n = a−n . (A.23)

Now, rearranging the summation of Equation A.17 as

x (t) = a0 +
∞
∑

n=1

[
ane jnω0t + a−ne− jnω0t

]
. (A.24)

Substituting Equation A.23 in Equation A.24:

x (t) = a0 +
∞
∑

n=1

[
ane jnω0t + a∗ne− jnω0t

]
(A.25)

Then, Equation A.25 can be written in function of the real part of ane jnω0t, since the terms

inside the summation of Equation A.25 are complex conjugates of each other.

x (t) = a0 +
∞
∑

n=1
2<
{

ane jnω0t
}

(A.26)

The trigonometric form is obtained by writing an in the rectangular form

an = Bn + jCn (A.27)

where Bn and Cn are real. Substituting Equation A.27 in Equation A.26 and using Euler’s

formula, the Fourier series trigonometric form is obtained, as Equation A.28.

x (t) = a0 +
∞
∑

n=1
2<
{
(Bn + jCn) e jnω0t

}
= a0 +

∞
∑

n=1
2< {(Bn + jCn) (cos nω0t + j sin nω0t)}

= a0 +
∞
∑

n=1
2< {(Bn cos nω0t− Cn sin nω0t) + j (Bn sin nω0t + Cn cos nω0t)}

= a0 +
∞
∑

n=1
2 (Bn cos nω0t− Cn sin nω0t)

(A.28)
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Equation A.28 can also be represented as

x (t) = a0 +
∞
∑

n=1
(bn cos nω0t + cn sin nω0t) . (A.29)

where

bn = 2Bn (A.30)

and

cn = −2Cn . (A.31)

Now, to obtain the trigonometric Fourier series coefficients bn and cn, the analysis

equation – Equation A.18 – can be used together with the Euler’s formula:

an =
1
T0

∫
T0

x (t) e− jnω0tdt

=
1
T0

∫
T0

x (t) (cos nω0t− j sin nω0t) dt

=
1
T0

∫
T0

x (t) cos nω0t dt− j
1
T0

∫
T0

x (t) sin nω0t dt

(A.32)

Comparing Equation A.27 with Equation A.32, the expressions for the coefficients Bn

and Cn are obtained, according to equations A.33 and A.34.

Bn =
1
T0

∫
T0

x (t) cos nω0t dt (A.33)

Cn = − 1
T0

∫
T0

x (t) sin nω0t dt (A.34)

Finally, the trigonometric coefficients are given by equations A.35 and A.36.

bn =
2
T0

∫
T0

x (t) cos nω0t dt (A.35)

cn =
2
T0

∫
T0

x (t) sin nω0t dt (A.36)

Summarizing, in the trigonometric form, the Fourier series synthesis equation is given by

Equation A.29, while the analysis equations are Equation A.19, Equation A.35 and Equation A.36,

rewritten as equations A.37 to A.40.

x (t) = a0 +
∞
∑

n=1
(bn cos nω0t + cn sin nω0t) (A.37)

a0 =
1
T0

∫
T0

x (t) dt (A.38)

bn =
2
T0

∫
T0

x (t) cos nω0t dt (A.39)

cn =
2
T0

∫
T0

x (t) sin nω0t dt (A.40)
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Fourier Transform

The concepts used to represent periodic signals in a Fourier Series – as a linear combi-

nations of complex exponentials – can be extended to non-periodic signals. While for periodic

signals the complex exponential are harmonically related, for aperiodic signals the complex

exponentials become infinitesimally close in frequency and their linear combination takes the

form of an integral.

The development of the Fourier Transform (FT) representation of aperiodic signals is

based on the fact that an aperiodic signal can be viewed as a periodic one with infinite period.

The attainment of such representation begins with the continuous-time periodic square wave,

which is given in Equation A.41 over one period and periodically repeats with period T0, as

depicted in Figure A.1.

x(t) =

 1 , if |t| < T1

0 , if T1 < |t| < T0/2
(A.41)

The Fourier series coefficients an for this square wave, according to Equation A.18 are:

an =
1
T0

∫
T0

x (t) e− jnω0tdt

=
1
T0

T0/2∫
−T0/2

x(t)e− jnω0tdt

=
1
T0

T1∫
−T1

e− jnω0tdt

= − 1
jnω0T0

e− jnω0t
∣∣∣T1

−T1

=
2

nω0T0

[
e jnω0T1 − e− jnω0T1

2 j

]
=

2 sin (nω0T1)

nω0T0
,

(A.42)

while the constant component a0 is

a0 =
1
T0

∫
T0

x (t) dt

=
1
T0

T0/2∫
−T0/2

x(t)dt

=
1
T0

T1∫
−T1

dt

=
2T1

T0
.

(A.43)

Equation A.42 can be used to write an envelope function, as Equation A.44.

T0an =
2 sin (ωT1)

ω

∣∣∣
ω=nω0

(A.44)
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Figure A.1: Continuous-time periodic square wave. Adapted from Oppenheim, Willsky, and Nawab
[p. 285].

In Equation A.44,ω is considered as a continuous variable and the coefficients an are

equally spaced samples of the envelope T0an, and this envelope is independent of T0. In

Figure A.2 the envelope T0an of the periodic square wave is shown, highlighting that as the

fundamental period T0 increases – i.e., asω0 = 2π/T0 decreases –, the envelope is sampled with

a closer spacing. As T0 becomes arbitrarily large, the set of Fourier series coefficients approaches

the envelope function as T0 → ∞. Also, with an arbitrarily large value for T0, the square wave

comes close to a rectangular pulse – an aperiodic signal corresponding to one period of the

square wave.
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Figure A.2: Envelope of Fourier series coefficients for the periodic square wave for several values of
T0 with T1 fixed. (a)T0 = 4T1; (b)T0 = 8T1; (c)T0 = 16T1. Adapted from Oppenheim, Willsky, and
Nawab [p. 286].

This is the basic idea of the Fourier representation for aperiodic signals: an aperiodic

signal is considered as the limit of a periodic signal as the period becomes arbitrarily large, and

the limiting behavior of the Fourier series representation for this signal is examined. Particularly,

considering an aperiodic signal x(t) with finite duration, i.e., x(t) = 0 for |t| > T1, as depicted
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in Figure A.3(a). A periodic signal x̃(t) can be constructed from the aperiodic signal x(t), taking

x(t) as one period, as illustrated in Figure A.3(b). As the period T0 is increased, x̃(t) is equal to

x(t) over a longer interval – as indicated in Figure A.3(c), and as T0 → ∞, x̃(t) is equal to x(t)
for any finite value of t.
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Figure A.3: Aperiodic signal x(t) (a). Periodic signal x̃(t) constructed to be equal x(t) over one
period, with period T0 = 4T1 (b) and T0 = 8T1 (c). Adapted from Oppenheim, Willsky, and Nawab
[p.287].

This idea reflects on the Fourier series representation of x̃(t). Back to equations A.17 and

A.18, integrating between −T0/2 and T0/2:

x̃ (t) =
+∞
∑

n=−∞ ane jnω0t =
+∞
∑

n=−∞ ane jn(2π/T0)t , (A.45)

an =
1
T0

T0/2∫
−T0/2

x̃ (t) e− jnω0tdt , (A.46)

where ω0 = 2π/T0. Since x̃(t) = x(t) for |t| < T0/2 and x(t) = 0 outside this interval,

Equation A.46 becomes:

an =
1
T0

T0/2∫
−T0/2

x (t) e− jnω0tdt

=
1
T0

∞∫
−∞ x (t) e− jnω0tdt .

(A.47)

Defining the envelope X( jω) of T0an as

X ( jω) =

∞∫
−∞ x (t) e− jωtdt , (A.48)
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the coefficients an are:

an =
1
T0

X ( jnω0) . (A.49)

Combining Equations A.45 and A.49:

x̃ (t) =
∞
∑

n=−∞
1
T0

X ( jnω0) e jnω0t

=
1

2π

∞
∑

n=−∞ X ( jnω0) e jnω0tω0 .
(A.50)

Graphically, each term of the summation on the right-hand side is the area of a rectangle

of height X ( jnω0) e jnω0t and width ω0. When T0 → ∞, ω0 → 0, so the right-hand side of

Equation A.50 becomes an integral. Besides, as T0 → ∞, x̂(t) approaches x(t) and, in the

limit, Equation A.50 represents x(t). Therefore, in the limit, equations A.50 and A.48 become,

respectively, equations A.51 and A.52.

x (t) =
1

2π

∞∫
−∞ X ( jω) e jωtdω (A.51)

X ( jω) =

∞∫
−∞ x (t) e− jωtdt (A.52)

Equations A.51 and A.52 are called the Fourier transform pair, where Equation A.52

is referred to as the Fourier transform or Fourier integral of x(t), while Equation A.51 is the

inverse Fourier transform equation. Equation A.51 is a synthesis equation and, similarly to

the synthesis equation of the Fourier series – Equation A.17 –, represents a signal as a linear

combination of complex exponentials. These complex exponentials have amplitudes an, as

given by Equation A.18, and occur at a discrete set of harmonically related frequencies nω0,

n = 0,±1,±2, . . . – as previously described. On the other hand, for aperiodic signals, the

complex exponentials occur at a continuum of frequencies and have amplitudes

X( jω)

(
dω
2π

)
. (A.53)

The Fourier transform X( jω) is often referred to as the spectrum of x(t) since it pro-

vides the information to describe x(t) as a linear combination of sinusoidal signals at different

frequencies.

Although the argument used to derive the Fourier transform pair of Equations A.51 and

A.52 assumed that x(t) was of arbitrary but finite duration, these equations remain valid for a

myriad class of signals of infinite duration, that must satisfy a set of conditions so the Fourier

transform converges.
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Appendix B
Trigonometric Identities

sin2 A + cos2 A = 1 (B.1)

sin (A + B) = sin A cos B + sin B cos A (B.2)

sin (A− B) = sin A cos B− sin B cos A (B.3)

cos (A + B) = cos A cos B− sin A sin B (B.4)

cos (A− B) = cos A cos B + sin A sin B (B.5)
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Appendix C – A Brief Table of Integrals

∫
αdx = αx + C (C.1)∫

sin (ax) dx = −1
a

cos (ax) + C (C.2)∫
cos (ax) dx =

1
a

sin (ax) + C (C.3)∫ 1
a2 + x2 dx =

1
a

arctan
( x

a

)
+ C (C.4)∫ 1

x
dx = ln |x|+ C (C.5)
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Appendix D
Closed-Loop Gain Fourier Series
Decomposition

It is possible to deduce the expressions for the Fourier series coefficients of the MEMS

spectrum analyzer system closed-loop gain, derived in Subsection 3.1.1. Back to Equation 3.51,

rewritten here as

Gdi f (t) =
xdi f (t)
aext (t)

= G1 (t)− G2 (t)

=

(
m1

k1

1
1− β1

2 −
β1
2 cos(ωdt)

− m2

k2

1
1− β2

2 + β2
2 cos(ωdt)

)
,

(D.1)

and to the Fourier series coefficients in the trigonometric form, given by equations A.38 to A.40,

also rewritten here.

a0 =
1
T0

∫
T0

x (t) dt (D.2)

bn =
2
T0

∫
T0

x (t) cos nω0t dt (D.3)

cn =
2
T0

∫
T0

x (t) sin nω0t dt (D.4)

Considering the fundamental angular frequencyω0 = ωd – and, therefore, T0 = Td =

2π/ωd –, replacing x(t) by the second expression of Equation D.1 for Gdi f (t) in equations D.2,

D.3 and D.4 and defining the integration between −Td/2 and Td/2:

adi f ,0 =
1
Td

Td/2∫
−Td/2

[G1(t)− G2(t)] dt

=
1
Td

Td/2∫
−Td/2

G1(t)dt− 1
Td

Td/2∫
−Td/2

G2(t)dt

= a1,0 − a2,0 ,

(D.5)
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bdi f ,n =
2
Td

Td/2∫
−Td/2

[G1(t)− G2(t)] cos nωdtdt

=
2
Td

Td/2∫
−Td/2

G1(t) cos nωdtdt− 2
Td

Td/2∫
−Td/2

G2(t) cos nωdtdt

= b1,n − b2,n ,

(D.6)

cdi f ,n =
2
Td

Td/2∫
−Td/2

[G1(t)− G2(t)] sin nωdtdt

=
2
Td

Td/2∫
−Td/2

G1(t) sin nωdtdt− 2
Td

Td/2∫
−Td/2

G2(t) sin nωdtdt

= c1,n − c2,n .

(D.7)

Then, the trigonometric Fourier coefficients for the closed-loop gains G1(t) and G2(t)
can be obtained using Equation 3.31 and Equation 3.49, rewritten as equations D.8 and D.9.

G1 (t) =
m1

k1

1
1− β1

2 −
β1
2 cos(ωdt)

=
2m1

k1

1
2−β1 −β1 cos(ωdt)

(D.8)

G2 (t) =
m2

k2

1
1− β2

2 + β2
2 cos(ωdt)

=
2m2

k2

1
2−β2 +β2 cos(ωdt)

aext (t)
(D.9)

The Fourier series can be computed separately for each gain. For the closed-loop gain

G1(t), considering the first four harmonics:

a1,0 =
1
Td

Td/2∫
−Td/2

2m1

k1

1
2−β1 −β1 cos(ωdt)

dt (D.10)

b1,1 =
2
Td

Td/2∫
−Td/2

2m1

k1

1
2−β1 −β1 cos(ωdt)

cos(ωdt)dt (D.11)

b1,2 =
2
Td

Td/2∫
−Td/2

2m1

k1

1
2−β1 −β1 cos(ωdt)

cos(2ωdt)dt (D.12)

b1,3 =
2
Td

Td/2∫
−Td/2

2m1

k1

1
2−β1 −β1 cos(ωdt)

cos(3ωdt)dt (D.13)

b1,4 =
2
Td

Td/2∫
−Td/2

2m1

k1

1
2−β1 −β1 cos(ωdt)

cos(4ωdt)dt (D.14)



107

c1,1 =
2
Td

Td/2∫
−Td/2

2m1

k1

1
2−β1 −β1 cos(ωdt)

(sinωdt)dt (D.15)

c1,2 =
2
Td

Td/2∫
−Td/2

2m1

k1

1
2−β1 −β1 cos(ωdt)

sin(2ωdt)dt (D.16)

c1,3 =
2
Td

Td/2∫
−Td/2

2m1

k1

1
2−β1 −β1 cos(ωdt)

sin(3ωdt)dt (D.17)

c1,4 =
2
Td

Td/2∫
−Td/2

2m1

k1

1
2−β1 −β1 cos(ωdt)

sin(4ωdt)dt . (D.18)

To solve equations D.10 to D.18, some individual variables replacements and considera-

tions must be made, but there are some common considerations to several of them. During the

deduction developing these substitutions will be more clear.

The first variable replacement is

u1 =ωdt , (D.19)

with
du1

dt
= ωd =

2π
Td

. (D.20)

The second substitution is:

u2 = tan (u1/2) . (D.21)

Now, to obtain du2/du1, the derivative quotient and the chain rules can be used.

du2

du1
=

d [tan (u1/2)]
du1

=
d
[

sin(u1/2)
cos(u1/2)

]
du1

=
1
2

[
cos2 (u1/2) + sin2 (u1/2)

cos2 (u1/2)

]

=
1
2

1
cos2 (u1/2)

(D.22)

To obtain an expression for cos2 (u1/2) as a function of u2, the trigonometric identity of

Equation B.1 can be used with A = u1/2.

sin2 (u1/2) + cos2 (u1/2) = 1 (D.23)

Dividing both sides of Equation D.23 by cos2 (u1/2):

sin2 (u1/2)
cos2 (u1/2)

+ 1 =
1

cos2 (u1/2)
. (D.24)
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Rearranging the terms and using Equation D.21:

cos2 (u1/2) =
1

1 + tan2 (u1/2)

=
1

1 + u2
2

,
(D.25)

so Equation D.22 becomes:

du2

du1
=

1 + u2
2

2
. (D.26)

Now, to obtain an expression for cos u1 as a function of u2, Equation B.4 can be used

considering A = B = u1/2.

cos (u1/2 + u1/2) = cos2 (u1)− sin2 (u1) (D.27)

Rearranging Equation D.23 and substituting in Equation D.27:

cos u1 = 2cos2 (u1/2)− 1 . (D.28)

Using Equation D.25 in Equation D.28:

cos u1 =
2

1 + u2
2
− 1

=
1− u2

2

1 + u2
2

.
(D.29)

The general considerations used are:

v1 =
2−β1

β1
, (D.30)

and

v2
2 =

v1 − 1
v1 + 1

= 1−β1 . (D.31)

Back to Equation D.10, using equations D.19 and D.20:

a1,0 =
1
Td

u1 f∫
u1i

2m1

k1

1
2−β1 −β1 cos u1

Td

2π
du1

=
m1

πk1

π∫
−π

1
2−β1 −β1 cos u1

du1 .

(D.32)

Replacing Equation D.30 in Equation D.32:

a1,0 =
m1

πk1β1

π∫
−π

1
v1 − cos u1

du1 . (D.33)
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Equations D.26 and D.29 can be used to rewrite Equation D.33 as:

a1,0 =
m1

πk1β1

u2 f∫
u2i

1

v1 −
(

1−u2
2

1+u2
2

) 2
1 + u2

2
du2

=
2m1

πk1β1

tan(π/2)∫
tan(−π/2)

1
(v1 − 1) + (v1 + 1) u2

2
du2 .

(D.34)

Using Equation D.31 in Equation D.34:

a1,0 =
2m1

πk1β1 (v1 + 1)

tan(π/2)∫
tan(−π/2)

1
v2

2 + u2
2

du2 . (D.35)

According to Equation C.4, if v2
2 > 0 – i.e., β1 < 1, which is the same condition for the

stability of the positive feedback loop given in Equation 3.40 – Equation D.35 can be solved.

a1,0 =
2m1

πk1β1 (v1 + 1)
1
v2

arctan
(

u2

v2

) ∣∣∣tan(π/2)

tan(−π/2)
(D.36)

Using equations D.30 and D.31 in Equation D.36:

a1,0 =
m1

πk1

1√
1−β1

arctan
(

u2√
1−β1

) ∣∣∣tan(π/2)

tan(−π/2)
. (D.37)

Since, at the limit,

tan (π/2)√
1−β1

= tan (π/2) , (D.38)

tan (−π/2)√
1−β1

= tan (−π/2) , (D.39)

Equation D.37 can be computed.

a1,0 =
m1

πk1

1√
1−β1

[π
2
−
(
−π

2

)]
=

m1

k1

1√
1−β1

(D.40)

Now, referring to Equation D.11, the procedure is similar to that used with Equation D.10,
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so its steps are condensed.

b1,1 =
2m1

πk1

π∫
−π

cos u1

2−β1 −β1 cos u1
du1

=
2m1

πk1β1

π∫
−π

cos u1

v1 − cos u1
du1

=
2m1

πk1β1

π∫
−π

(
−1 +

v1

v1 − cos u1

)
du1

=
2m1

πk1β1

− π∫
−π

du1 + 2v1

tan(π/2)∫
tan(−π/2)

1
(v1 − 1) + (v1 + 1) u2

2
du2


=

2m1

πk1β1

− π∫
−π

du1 +
2v1

(v1 + 1)

tan(π/2)∫
tan(−π/2)

1
v2

2 + u2
2

du2


=

2m1

πk1β1

[
−u1

∣∣∣π
u1=−π

+
2v1

(v1 + 1)
1
v2

arctan
(

u2

v2

)∣∣∣tan(π/2)

u2=tan(−π/2)

]
=

2m1

k1β1

[
−2 +

2−β1√
1−β1

]

(D.41)

Similarly, to b1,2, the method take the same steps starting from Equation D.12:

b1,2 =
2m1

πk1

π∫
−π

cos(2u1)

2−β1 −β1 cos u1
du1

=
2m1

πk1β1

π∫
−π

cos(2u1)

v1 − cos u1
du1 .

(D.42)

Now cos(2u1) can be expressed using Equation B.4 with A = B = u1:

cos (2u1) = cos2u1 − sin2u1 . (D.43)

Considering A = u1 in Equation B.1:

sin2u1 + cos2u1 = 1⇒ sin2u1 = 1− cos2u1 . (D.44)

Replacing Equation D.44 in Equation D.43:

cos (2u1) = 2cos2u1 − 1 . (D.45)
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Using Equation D.45 in Equation D.42:

b1,2 =
2m1

πk1β1

π∫
−π

2cos2u1 − 1
v1 − cos u1

du1

=
2m1

πk1β1

π∫
−π

(
−2 cos u1 − 2v1 +

2v2
1 − 1

v1 − cos u1

)
du1

=
2m1

πk1β1

 π∫
−π

(−2 cos u1 − 2v1) du1 + 2
(

2v2
1 − 1

) tan(π/2)∫
tan(−π/2)

1
(v1 − 1) + (v1 + 1) u2

2
du2


=

2m1

πk1β1

 π∫
−π

(−2 cos u1 − 2v1) du1 +
2
(
2v2

1 − 1
)

(v1 + 1)

tan(π/2)∫
tan(−π/2)

1
v2

2 + u2
2

du2


=

2m1

πk1β1

[
(−2 sin u1 − 2v1u1)

∣∣∣π
u1=−π

+
2
(
2v2

1 − 1
)

(v1 + 1)
1
v2

arctan
(

u2

v2

) ∣∣∣tan(π/2)

u2=tan(−π/2)

]

=
2m1

πk1β1

[
−4v1π +

2
(
2v2

1 − 1
)

(v1 + 1)
1√

1−β1
π

]

=
2m1

k1β1

[
4− 8

β1
+

8− 8β1 +β
2
1

β1
√

1−β1

]
.

(D.46)

Now, Equation D.13 leads to:

b1,3 =
2m1

πk1

π∫
−π

cos(3u1)

2−β1 −β1 cos u1
du1

=
2m1

πk1β1

π∫
−π

cos(3u1)

v1 − cos u1
du1 .

(D.47)

Again, using Equation B.4 of Appendix B, now with A = u1 and B = 2u1:

cos (u1 + 2u1) = cos u1 cos (2u1)− sin u1 sin (2u1) . (D.48)

Equation D.45 can be used to express cos(2u1). On the other hand, using Equation B.2

with A = B = u1 allows to write sin(2u1):

sin (2u1) = 2 sin u1 cos u1 . (D.49)

Replacing equations D.45 and D.49 in Equation D.48:

cos (3u1) = cos u1

(
2cos2u1 − 1

)
− sin u1 (2 sin u1 cos u1)

= 2cos3u1 − cos u1 − 2sin2u1 cos u1 .
(D.50)

Using Equation D.44:

cos (3u1) = 2cos3u1 − cos u1 − 2
(

1− cos2u1

)
cos u1

= 4cos3u1 − 3 cos u1 .
(D.51)
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Substituting Equation D.51 in Equation D.47:

b1,3 =
2m1

πk1β1

π∫
−π

4cos3u1 − 3 cos u1

v1 − cos u1
du1

=
2m1

πk1β1

π∫
−π

[
−4cos2u1 − 4v1 cos u1 −

(
4v2

1 − 3
)
+

4v3
1 − 3v1

v1 − cos u1

]
du1 .

(D.52)

Equation D.45 can be used, rearranging its terms, so:

b1,3 =
2m1

πk1β1

π∫
−π

[
−2 [cos (2u1) + 1]− 4v1 cos u1 −

(
4v2

1 − 3
)
+

4v3
1 − 3v1

v1 − cos u1

]
du1

=
2m1

πk1β1

π∫
−π

[
−2 cos (2u1)− 4v1 cos u1 −

(
4v2

1 − 1
)
+

4v3
1 − 3v1

v1 − cos u1

]
du1

=
2m1

πk1β1


π∫
−π

[
−2 cos (2u1)− 4v1 cos u1 −

(
4v2

1 − 1
)]

du1

+

+
2m1

πk1β1

2
(

4v3
1 − 3v1

) tan(π/2)∫
tan(−π/2)

1
(v1 − 1) + (v1 + 1) u2

2
du2


=

2m1

πk1β1


π∫
−π

[
−2 cos (2u1)− 4v1 cos u1 −

(
4v2

1 − 1
)]

du1

+

+
2m1

πk1β1

2
(
4v3

1 − 3v1
)

(v1 + 1)

tan(π/2)∫
tan(−π/2)

1
v2

2 + u2
2

du2


=

2m1

πk1β1

[
− sin (2u1)− 4v1 sin u1 −

(
4v2

1 − 1
)

u1

] ∣∣∣π
u1=−π

+

+
2m1

πk1β1

[
2
(
4v3

1 − 3v1
)

(v1 + 1)
1
v2

arctan
(

u2

v2

)] ∣∣∣tan(π/2)

u2=tan(−π/2)

=
2m1

πk1β1

[
−2
(

4v2
1 − 1

)
π +

2
(
4v3

1 − 3v1
)

(v1 + 1)
1√

1−β1
π

]

=
2m1

k1β1

[
−6 +

32
β1
− 32
β2

1
+

32− 48β1 + 18β2
1 −β3

1

β2
1
√

1−β1

]
.

(D.53)

Finally, back to Equation D.14:

b1,4 =
2m1

πk1

π∫
−π

cos(4u1)

2−β1 −β1 cos u1
du1

=
2m1

πk1β1

π∫
−π

cos(4u1)

v1 − cos u1
du1 .

(D.54)

Using Equation B.4 with A = B + 2u1:

cos (2u1 + 2u1) = cos2 (2u1)− sin2 (2u1) . (D.55)
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Considering equations D.45 and D.49:

cos (4u1) =
(

2cos2u1 − 1
)2
− (2 sin u1 cos u1)

2

= 4cos4u1 − 4cos2u1 + 1− 4sin2u1cos2u1 .
(D.56)

Replacing Equation D.44 in Equation D.56:

cos (4u1) = 4cos4u1 − 4cos2u1 + 1− 4
(

1− cos2u1

)
cos2u1

= 8cos4u1 − 8cos2u1 + 1 .
(D.57)

Back to Equation D.54, considering Equation D.57:

b1,4 =
2m1

πk1β1

π∫
−π

8cos4u1 − 8cos2u1 + 1
v1 − cos u1

du1

=
2m1

πk1β1

π∫
−π

[
−8cos3u1 − 8v1cos2u1 − (8v2

1 − 8) cos u1 −
(

8v3
1 − 8v1

)
+

8v4
1 − 8v2

1 + 1
v1 − cos u1

]
du1 .

(D.58)

Now, to obtain a expression for cos3 u1, it is possible to use Equation D.44, rearranged.

cos3u1 = cos u1cos2u1

= cos u1

(
1− sin2u1

)
= cos u1 − cos u1sin2u1

(D.59)

Substituting Equations D.45 – rearranged – and D.59 in Equation D.58:

b1,4 =
2m1

πk1β1

π∫
−π

[
8 cos u1sin2u1 − 4v1 cos (2u1)− 8v2

1 cos u1 −
(

8v3
1 − 4v1

)
+

8v4
1 − 8v2

1 + 1
v1 − cos u1

]
du1 . (D.60)

It is possible to evaluate each of the five parts of the integral of Equation D.60 separately.

The first one is:

I1 =
2m1

πk1β1

π∫
−π

8 cos u1sin2u1du1 . (D.61)

Substituting u3 = sin u1, du3 = cos u1du1:

I1 =
2m1

πk1β1

sin π∫
sin(−π)

8u2
3du3

=
2m1

πk1β1

8u3
3

3

∣∣∣sin(π)

sin(−π)

= 0 .

(D.62)

The second part of Equation D.60:

I2 =
2m1

πk1β1

π∫
−π

−4v1 cos (2u1) du1

=
−4m1v1

πk1β1
sin (2u1)

∣∣∣π
−π

= 0 .

(D.63)
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The third portion, I3, is:

I3 =
2m1

πk1β1

π∫
−π

−8v2
1 cos u1du1

=
−16m1v2

1
πk1β1

sin u1

∣∣∣π
−π

= 0 .

(D.64)

The fourth part of Equation D.60 is given by Equation D.65.

I4 =
2m1

πk1β1

π∫
−π

−
(

8v3
1 − 4v1

)
du1

=
2m1

πk1β1

(
−8v3

1 + 4v1

)
u1

∣∣∣π
−π

=
2m1

πk1β1

(
−8v3

1 + 4v1

)
2π

=
2m1

k1β1

(
8− 80

β1
+

192
β2

1
− 128
β3

1

)
(D.65)

Finally, the last part I5 is:

I5 =
2m1

πk1β1

π∫
−π

8v4
1 − 8v2

1 + 1
v1 − cos u1

du1

=
2m1

πk1β1
2
(

8v4
1 − 8v2

1 + 1
) tan(π/2)∫

tan(−π/2)

1
(v1 − 1) + (v1 + 1) u2

2
du2

=
2m1

πk1β1

2
(
8v4

1 − 8v2
1 + 1

)
(v1 + 1)

tan(π/2)∫
tan(−π/2)

1
v2

2 + u2
2

du2

=
2m1

πk1β1

2
(
8v4

1 − 8v2
1 + 1

)
(v1 + 1)

1
v2

arctan
(

u2

v2

) ∣∣∣tan(π/2)

tan(−π/2)

=
2m1

πk1β1

2
(
8v4

1 − 8v2
1 + 1

)
(v1 + 1)

1√
1−β1

π

=
2m1

k1β1

(
128− 256β1 + 160β2

1 − 32β3
1 +β

4
1
)

β3
1
√

1−β1
.

(D.66)

So, the coefficient b1,4:

b1,4 =
2m1

k1β1

(
8− 80

β1
+

192
β2

1
− 128
β3

1
+

128− 256β1 + 160β2
1 − 32β3

1 +β
4
1

β3
1
√

1−β1

)
. (D.67)

Now, back to Equation D.15, to compute the coefficient c1,1:

c1,1 =
2m1

πk1

π∫
−π

sin u1

2−β1 −β1 cos u1
du1

=
2m1

πk1β1

π∫
−π

sin u1

v1 − cos u1
du1 .

(D.68)
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To solve Equation D.68, a third variable replacement is needed, as given by Equa-

tion D.69, which derivative is given by Equation D.70.

u3 = v1 − cos u1 (D.69)

du3

du1
= sin u1 (D.70)

Back to Equation D.68:

c1,1 =
2m1

πk1β1

u3, f∫
u3,i

sin u1

u3

1
sin u1

du3

=
2m1

πk1β1

v1+1∫
v1+1

−1
v1 − u3

du3

=
2m1

πk1β1
ln |u3|

∣∣∣v1+1

v1+1

= 0 .

(D.71)

Now referring to Equation D.16:

c1,2 =
2m1

πk1

π∫
−π

sin (2u1)

2−β1 −β1 cos u1
du1

=
2m1

πk1β1

π∫
−π

sin (2u1)

v1 − cos u1
du1 .

(D.72)

Using Equation D.49 and variable replacement

u4 = cos u1 , (D.73)

du4

du1
= − sin u1 (D.74)
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in Equation D.72:

c1,2 =
2m1

πk1β1

π∫
−π

2 sin u1 cos u1

v1 − cos u1
du1

=
2m1

πk1β1

u4, f∫
u4,i

2u4 sin u1

v1 − u4

−1
sin u1

du4

=
4m1

πk1β1

−1∫
−1

u4

u4 − v1
du4

=
4m1

πk1β1

−1∫
−1

[
1 +

v1

u4 − v1

]
du4

=
4m1

πk1β1

 −1∫
−1

du4 +

−1∫
−1

v1

u4 − v1
du4


=

4m1

πk1β1

u4

∣∣∣−1

−1
+

−1∫
−1

v1

u4 − v1
du4


=

4m1

πk1β1

−1∫
−1

v1

u4 − v1
du4 .

(D.75)

Replacing

u5 = u4 − v1 , (D.76)

du5

du4
= 1 (D.77)

in Equation D.75:

c1,2 =
4m1

πk1β1

u5, f∫
u5,i

v1

u5
du5

=
4m1v1

πk1β1

−1−v1∫
−1−v1

1
u5

du5

=
4m1v1

πk1β1
ln |u5|

∣∣∣−1−v1

−1−v1

= 0 .

(D.78)

To compute the coefficient c1,3, according to Equation D.17:

c1,3 =
2m1

πk1

π∫
−π

sin (3u1)

2−β1 −β1 cos u1
du1

=
2m1

πk1β1

π∫
−π

sin (3u1)

v1 − cos u1
du1 .

(D.79)
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Using Equation B.2 with A = u1 and B = 2u1:

sin(3u1) = sin u1 cos(2u1) + sin(2u1) cos u1 . (D.80)

Replacing equations D.45 and D.49 in Equation D.80:

sin(3u1) = sin u1

(
2cos2u1 − 1

)
+ 2 sin u1 cos u1 cos u1

= 4 sin u1cos2u1 − sin u1 .
(D.81)

Back to Equation D.79:

c1,3 =
2m1

πk1β1

π∫
−π

4 sin u1cos2u1 − sin u1

v1 − cos u1
du1

=
2m1

πk1β1

π∫
−π

[
−4 sin u1 cos u1 − 4v1 sin u1 +

(
4v2

1 − 1
)

sin u1

v1 − cos u1

]
du1 .

(D.82)

The first part of Equation D.82 can be solved using the variable substitution of Equa-

tion D.73, the second part can be solved without further variable substitution, and the third part

can be solved with the substitution of Equation D.69. Performing this procedure:

c1,3 =
2m1

πk1β1

4
−1∫
−1

u4du4 − 4v1

π∫
−π

sin u1du1 +
(

4v2
1 − 1

) v1+1∫
v1+1

1
u3

du3


=

2m1

πk1β1

[
2u2

4

∣∣∣−1

−1
+ 4v1 cos u1

∣∣∣π
−π

+
(

4v2
1 − 1

)
ln |u3|

∣∣∣v1+1

v1+1

]
= 0 .

(D.83)

Finally, Equation D.18 allows the calculation of c1,4:

c1,4 =
2m1

πk1

π∫
−π

sin (4u1)

2−β1 −β1 cos u1
du1

=
2m1

πk1β1

π∫
−π

sin (4u1)

v1 − cos u1
du1 .

(D.84)

The expression for sin (4u1) can be obtained using Equation B.2 with A = B = 2u1,

besides Equations D.45 and D.49:

sin(4u1) = 2 sin(2u1) cos(2u1)

= 4 sin u1 cos u1

(
2cos2u1 − 1

)
= 8 sin u1cos3u1 − 4 sin u1 cos u1 .

(D.85)
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Back to Equation D.84:

c1,4 =
2m1

πk1β1

π∫
−π

8 sin u1cos3u1 − 4 sin u1 cos u1

v1 − cos u1
du1

=
2m1

πk1β1

π∫
−π

[
−8 sin u1cos2u1 − 8v1 sin u1 cos u1 −

(
8v2

1 − 4
)

sin u1 +

(
8v3

1 − 4v1
)

sin u1

v1 − cos u1

]
du1 .

(D.86)

The first two parts of Equation D.86 can be solved using Equation D.73, the third part

can be solved directly, and the last part can be solved using Equation D.69:

c1,4 =
2m1

πk1β1

8
−1∫
−1

u2
4du4 + 8v1

−1∫
−1

u4du4 −
(

8v2
1 − 4

) π∫
−π

sin u1du1 +
(

8v3
1 − 4v1

) v1+1∫
v1+1

1
u3

du3


=

2m1

πk1β1

[
8
3

u3
4

∣∣∣−1

−1
+ 4v1u2

4

∣∣∣−1

−1
+
(

8v2
1 − 4

)
cos u1

∣∣∣π
−π

+
(

8v3
1 − 4v1

)
ln |u3|

∣∣∣v1+1

v1+1

]
= 0 .

(D.87)

Summarizing, for the closed-loop gain G1(t), the Fourier composition is given by:

a1,0 =
m1

k1

1√
1−β1

(D.88)

b1,1 =
2m1

k1β1

[
−2 +

2−β1√
1−β1

]
(D.89)

b1,2 =
2m1

k1β1

[
4− 8

β1
+

8− 8β1 +β
2
1

β1
√

1−β1

]
(D.90)

b1,3 =
2m1

k1β1

[
−6 +

32
β1
− 32
β2

1
+

32− 48β1 + 18β2
1 −β3

1

β2
1
√

1−β1

]
(D.91)

b1,4 =
2m1

k1β1

(
8− 80

β1
+

192
β2

1
− 128
β3

1
+

128− 256β1 + 160β2
1 − 32β3

1 +β
4
1

β3
1
√

1−β1

)
(D.92)

c1,1 = 0 (D.93)

c1,2 = 0 (D.94)

c1,3 = 0 (D.95)

c1,4 = 0 . (D.96)

The procedure to obtain the Fourier composition of the gain G2(t) is analogous to that

adopted for the gain G1(t), and, therefore, the steps are omitted in the following.

a2,0 =
1
Td

Td/2∫
−Td/2

2m2

k2

1
2−β2 +β2 cos(ωdt)

dt

=
m2

k2

1√
1−β2

(D.97)
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b2,1 =
2
Td

Td/2∫
−Td/2

2m2

k2

1
2−β2 +β2 cos(ωdt)

cos(ωdt)dt

=
2m2

k2β2

[
2− 2−β2√

1−β2

] (D.98)

b2,2 =
2
Td

Td/2∫
−Td/2

2m2

k2

1
2−β2 +β2 cos(ωdt)

cos(2ωdt)dt

=
2m2

k2β2

[
4− 8

β2
+

8− 8β2 +β
2
2

β2
√

1−β2

] (D.99)

b2,3 =
2
Td

Td/2∫
−Td/2

2m2

k2

1
2−β2 +β2 cos(ωdt)

cos(3ωdt)dt

=
2m2

k2β2

[
6− 32

β2
+

32
β2

2
− 32− 48β2 + 18β2

2 −β3
2

β2
2
√

1−β2

] (D.100)

b2,4 =
2
Td

Td/2∫
−Td/2

2m2

k2

1
2−β2 +β2 cos(ωdt)

cos(4ωdt)dt

=
2m2

k2β2

(
8− 80

β2
+

192
β2

2
− 128
β3

2
+

128− 256β2 + 160β2
2 − 32β3

2 +β
4
2

β3
2
√

1−β2

) (D.101)

c2,1 =
2
Td

Td/2∫
−Td/2

2m2

k2

1
2−β2 +β2 cos(ωdt)

(sinωdt)dt

= 0

(D.102)

c2,2 =
2
Td

Td/2∫
−Td/2

2m2

k2

1
2−β2 +β2 cos(ωdt)

sin(2ωdt)dt

= 0

(D.103)

c2,3 =
2
Td

Td/2∫
−Td/2

2m2

k2

1
2−β2 +β2 cos(ωdt)

sin(3ωdt)dt

= 0

(D.104)

c2,4 =
2
Td

Td/2∫
−Td/2

2m2

k2

1
2−β2 +β2 cos(ωdt)

sin(4ωdt)dt

= 0

(D.105)

A Brief Discussion on the Integration Period

Considering the development shown in Appendix A to the envelope T0an, for an aperi-

odic signal defined for t ≥ 0 the deduction here is analogous. According to the definition of

Fourier series in Appendix A, the coefficient an can be obtained by computing the integral of
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Equation A.18 in any interval T0. Since the vibration signals considered are defined to t ≥ 0,

it is interesting to choose the integration interval between 0 and T0, which is the period of the

correspondent periodic signal formed repeating the aperiodic signal. Then,

an =
1
T0

T0∫
0

aext (t) e− jnω0tdt . (D.106)

In the limit, T0 → ∞, soωd = nω0 = 2πn/T0 is a continuous variable and the Fourier

transform A( jω) of the external acceleration aext(t) is:

A ( jωd) = lim
T0→∞

T0∫
0

aext (t) e− j(2πn/T0)tdt . (D.107)

Cretu, Rocha, and Wolffenbuttel [22] indicate that, similarly to the FFT approach, the

selectivity of the MEMS spectrum analyzer depends on the integration time, as it is confirmed

in Equation D.107. Since the integration period is not infinite, the variableωd is not continuous;

instead, the spectral components are sampled withω0 = 2π/T0 spacing. This is equivalent to

say that the excitation voltage angular frequencyω must be varied with π/T0 steps.

According to Equation A.53, the amplitudes of the spectral components are given by

A( jω)(dω/2π) in the limit T0 → ∞. In the case of the micro spectrum analyzer used, however,

these amplitudes are

2A( jω)
(ω0

2π

)
= 2

A( jω)

T0
, (D.108)

where the factor 2 is used since only the positive frequencies are of interest.

Therefore, the MEMS spectrum analyzer approximates the spectral component by Equa-

tion D.107 in discrete frequenciesω = n2π/T0.

As the angular frequency of the excitation voltageω raises, its period reduces. Therefore,

to represent the signal as aperiodic, it is necessary a smaller integration period. The choice of

the integration period must consider that characteristic, so T0 must be chosen to be much larger

than the period correspondent to the smaller frequency that is present in the spectrum mapping.

The expected result of this choice is that, as the excitation frequency enlarges, the approximation

of the spectral component by the MEMS spectrum analyzer is more accurate. The choice of

the integration period must also consider the resulting frequency discretization of the mapped

spectrum.
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Appendix E
Complementary Results

In this appendix, the complementary simulation results obtained for mapping, tuning,

and validation are presented.

Table E.1: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– maximum distortion level 0.8, brick-wall boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 24.58 ± 6.95 59.80 ± 22.16 290.00 ± 63.32
(2) 24.51 ± 6.61 60.20 ± 21.99 317.80 ± 57.37
(3) 27.06 ± 9.07 61.20 ± 23.51 351.40 ± 114.10
(4) 27.46 ± 9.79 61.40 ± 23.97 370.00 ± 120.99
(5) 33.48 ± 11.28 62.60 ± 25.10 448.00 ± 132.50
(6) 24.52 ± 6.81 57.20 ± 20.75 330.20 ± 76.17
(7) 26.21 ± 7.32 60.80 ± 22.73 344.20 ± 77.25
(8) 35.58 ± 14.08 68.40 ± 31.00 473.40 ± 183.16
(9) 29.58 ± 9.78 58.60 ± 21.66 398.00 ± 120.88
(10) 27.54 ± 10.17 65.00 ± 25.42 370.20 ± 117.75

mean 28.05 ± 9.19 61.52 ± 23.83 369.32 ± 106.35

Table E.2: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– maximum distortion level 0.2, brick-wall strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 32.40 ± 11.90 66.80 ± 26.35 393.20 ± 118.68
(2) 14.90 ± 1.60 21.00 ± 0.00 217.40 ± 23.58
(3) 30.04 ± 11.00 70.20 ± 27.84 390.60 ± 127.22
(4) 29.40 ± 9.51 60.40 ± 22.39 382.80 ± 112.52
(5) 23.19 ± 12.58 40.20 ± 26.33 333.80 ± 162.96
(6) 34.87 ± 14.81 66.80 ± 27.94 481.80 ± 209.99
(7) 30.82 ± 9.06 61.20 ± 22.61 418.60 ± 110.47
(8) 29.43 ± 8.86 58.00 ± 21.68 390.60 ± 102.38
(9) 32.36 ± 10.80 62.80 ± 23.75 414.40 ± 125.38
(10) 29.82 ± 9.26 58.40 ± 21.97 390.40 ± 100.13

mean 28.72 ± 9.94 56.58 ± 22.09 381.36 ± 119.33
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Table E.3: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– maximum distortion level 0.8, random reinitialization boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 41.26 ± 10.37 58.60 ± 21.27 571.40 ± 94.02
(2) 38.31 ± 8.34 59.00 ± 21.53 536.60 ± 96.58
(3) 36.97 ± 8.93 57.60 ± 21.09 528.80 ± 92.42
(4) 38.20 ± 7.81 59.20 ± 21.61 539.60 ± 82.52
(5) 37.40 ± 9.79 61.00 ± 23.70 526.20 ± 139.88
(6) 33.82 ± 5.71 54.60 ± 19.26 485.40 ± 50.36
(7) 36.96 ± 7.48 59.00 ± 22.01 522.40 ± 94.55
(8) 37.57 ± 7.08 58.80 ± 21.59 525.00 ± 95.06
(9) 36.83 ± 8.54 59.00 ± 21.99 503.00 ± 80.50
(10) 41.69 ± 11.60 62.40 ± 24.02 583.00 ± 132.53

mean 37.90 ± 8.56 58.92 ± 21.81 532.14 ± 95.84

Table E.4: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– maximum distortion level 0.2, random reinitialization boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 42.59 ± 10.17 58.60 ± 21.17 552.00 ± 83.71
(2) 26.56 ± 0.98 21.00 ± 7.16 406.40 ± 4.88
(3) 49.05 ± 15.75 66.80 ± 26.32 700.60 ± 202.05
(4) 37.50 ± 6.64 57.40 ± 20.45 516.80 ± 61.16
(5) 41.90 ± 15.61 54.00 ± 30.53 606.00 ± 213.85
(6) 39.38 ± 10.62 58.20 ± 21.10 565.20 ± 125.38
(7) 39.19 ± 11.38 61.20 ± 23.45 548.80 ± 121.78
(8) 32.92 ± 7.53 54.80 ± 19.83 461.40 ± 72.23
(9) 40.57 ± 9.07 59.60 ± 21.73 577.60 ± 114.48
(10) 35.63 ± 6.60 57.40 ± 20.40 500.80 ± 86.05

mean 38.53 ± 9.44 54.90 ± 21.21 543.56 ± 108.56
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Table E.5: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– maximum distortion level 0.8, resampling boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 24.79 ± 2.56 47.20 ± 14.97 311.80 ± 46.01
(2) 26.39 ± 3.81 50.80 ± 16.84 363.80 ± 59.36
(3) 27.47 ± 4.98 50.40 ± 17.08 376.20 ± 72.74
(4) 31.28 ± 6.89 56.60 ± 20.40 439.00 ± 75.32
(5) 39.15 ± 13.45 67.40 ± 32.83 544.00 ± 170.03
(6) 26.96 ± 1.59 51.00 ± 17.04 371.80 ± 16.77
(7) 24.91 ± 0.94 48.00 ± 15.38 342.20 ± 35.63
(8) 38.32 ± 16.88 63.40 ± 29.37 542.20 ± 243.24
(9) 30.06 ± 4.98 55.40 ± 20.48 422.40 ± 21.82
(10) 27.31 ± 2.65 51.80 ± 17.28 375.20 ± 33.24

mean 29.66 ± 5.87 54.20 ± 20.17 408.86 ± 77.42

Table E.6: Mono-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– maximum distortion level 0.2, resampling boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 32.64 ± 5.88 51.80 ± 17.64 408.60 ± 26.61
(2) 25.46 ± 0.73 21.00 ± 0.00 396.00 ± 1.22
(3) 32.69 ± 8.35 54.80 ± 20.54 451.80 ± 88.06
(4) 31.13 ± 4.15 53.00 ± 18.07 426.00 ± 25.53
(5) 33.97 ± 7.16 54.80 ± 19.80 479.80 ± 88.47
(6) 35.07 ± 6.79 56.60 ± 20.16 499.60 ± 70.92
(7) 32.97 ± 7.77 54.20 ± 19.77 467.60 ± 81.21
(8) 31.24 ± 6.14 54.40 ± 19.63 435.60 ± 74.76
(9) 39.52 ± 14.14 62.00 ± 24.73 567.20 ± 188.11
(10) 30.34 ± 3.92 57.40 ± 20.96 411.80 ± 31.95

mean 32.50 ± 6.50 52.00 ± 18.13 454.40 ± 67.69

Table E.7: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– approach 1, brick-wall boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 42.24 ± 8.72 80.80 ± 33.02 605.80 ± 69.04
(2) 48.80 ± 14.89 136.60 ± 68.11 674.60 ± 206.70
(3) 49.11 ± 13.47 88.20 ± 43.26 751.40 ± 187.28
(4) 56.27 ± 6.55 104.60 ± 53.48 829.40 ± 66.60
(5) 49.42 ± 14.14 65.80 ± 17.92 778.00 ± 211.17
(6) 44.54 ± 10.37 71.20 ± 22.35 672.80 ± 140.42
(7) 47.88 ± 11.27 93.40 ± 61.24 707.80 ± 121.12
(8) 42.55 ± 13.89 60.60 ± 21.76 664.80 ± 203.11
(9) 49.71 ± 10.09 96.40 ± 62.88 715.80 ± 161.91
(10) 48.91 ± 12.72 79.60 ± 42.83 769.60 ± 185.22

mean 47.94 ± 11.61 87.72 ± 42.68 717.00 ± 155.26
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Table E.8: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– approach 1, random reinitialization boundary strategy.

Structure Time (s) Generations Spectrum Eval.

1 72.80 ± 22.54 102.80 ± 60.34 1009.40 ± 267.31
2 63.97 ± 25.41 85.00 ± 66.48 976.80 ± 296.19
3 71.41 ± 17.85 101.20 ± 65.32 1063.40 ± 248.86
4 70.65 ± 13.30 91.20 ± 62.32 917.40 ± 107.64
5 68.05 ± 15.93 65.20 ± 28.36 986.20 ± 204.49
6 57.77 ± 13.13 53.40 ± 3.21 788.40 ± 155.10
7 74.22 ± 23.64 93.60 ± 61.49 1042.20 ± 276.36
8 73.88 ± 19.99 68.20 ± 23.51 1079.60 ± 260.35
9 73.44 ± 17.53 96.20 ± 61.67 941.80 ± 289.85
10 74.96 ± 19.09 81.60 ± 30.64 979.40 ± 191.52

mean 70.11 ± 18.84 83.84 ± 46.33 978.46 ± 229.77

Table E.9: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– approach 1, resampling boundary strategy.

Structure Time (s) Generations Spectrum Eval.

(1) 66.38 ± 9.74 124.40 ± 60.98 828.00 ± 22.10
(2) 75.06 ± 7.01 174.00 ± 58.14 884.00 ± 178.66
(3) 61.03 ± 13.05 89.00 ± 64.23 877.00 ± 203.76
(4) 62.61 ± 12.71 97.00 ± 62.29 875.80 ± 90.49
(5) 60.20 ± 13.89 88.20 ± 65.21 865.60 ± 274.44
(6) 53.13 ± 14.36 88.40 ± 45.10 740.80 ± 175.70
(7) 52.59 ± 8.05 63.00 ± 11.98 801.80 ± 115.56
(8) 72.23 ± 14.92 106.20 ± 57.66 1034.80 ± 167.80
(9) 55.94 ± 6.36 95.40 ± 59.20 788.00 ± 224.21
(10) 65.44 ± 11.61 106.20 ± 56.44 930.40 ± 93.24

mean 62.46 ± 11.17 103.18 ± 54.12 862.62 ± 154.60

Table E.10: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for a non-ideal twin-structure with different
boundary strategies – approach 2.

Strategy Time (s) Generations Spectrum Eval.

Bounceback 50.37 ± 14.21 57.80 ± 18.14 820.00 ± 245.56
Brickwall 47.70 ± 9.25 72.00 ± 18.67 734.80 ± 132.85

Random reinit. 46.74 ± 8.94 50.60 ± 14.17 747.80 ± 144.38
Resampling 55.99 ± 13.05 81.40 ± 39.96 841.40 ± 156.29
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Table E.11: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– approach 2, bounce-back boundary strategy.

Structure Time Generations Spectrum Eval.

1 61.41 ± 12.54 173.20 ± 59.93 625.20 ± 135.14
2 49.53 ± 10.14 172.00 ± 62.61 496.20 ± 190.85
3 58.47 ± 7.00 99.20 ± 57.70 846.80 ± 161.46
4 54.44 ± 5.77 87.00 ± 63.93 802.80 ± 164.05
5 65.31 ± 13.82 90.00 ± 62.67 998.40 ± 160.16
6 46.46 ± 9.32 70.00 ± 18.17 699.20 ± 156.70
7 39.77 ± 5.59 86.20 ± 64.86 541.40 ± 174.11
8 48.03 ± 3.50 76.00 ± 69.43 716.80 ± 122.09
9 61.02 ± 14.65 115.20 ± 60.00 856.20 ± 213.22
10 55.99 ± 5.96 106.20 ± 53.69 793.20 ± 141.09

mean 54.04 ± 8.83 107.50 ± 57.30 737.62 ± 161.89

Table E.12: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– approach 2, brick-wall boundary strategy.

Structure Time Generations Spectrum Eval.

1 45.85 ± 9.07 91.40 ± 41.87 580.20 ± 107.36
2 54.16 ± 6.01 145.40 ± 59.33 710.60 ± 13.65
3 41.50 ± 18.00 64.80 ± 28.52 620.60 ± 274.28
4 50.21 ± 14.62 92.80 ± 63.60 697.60 ± 184.07
5 47.82 ± 13.89 63.80 ± 18.05 729.00 ± 198.16
6 54.46 ± 5.28 96.40 ± 20.53 798.20 ± 90.56
7 44.49 ± 7.95 91.80 ± 62.07 622.80 ± 69.94
8 51.71 ± 24.07 72.20 ± 31.48 795.80 ± 342.20
9 59.31 ± 11.51 124.40 ± 50.08 808.00 ± 268.30
10 49.30 ± 7.79 88.40 ± 23.67 723.80 ± 114.62

mean 49.88 ± 11.82 93.14 ± 39.92 708.66 ± 166.31

Table E.13: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– approach 2, random reinitialization boundary strategy.

Structure Time Generations Spectrum Eval.

1 68.31 ± 20.19 74.00 ± 18.33 970.80 ± 221.83
2 79.14 ± 26.33 109.80 ± 50.54 1126.80 ± 331.97
3 71.36 ± 17.14 95.80 ± 60.25 1045.60 ± 301.57
4 72.70 ± 29.81 93.40 ± 63.18 1072.40 ± 391.26
5 55.60 ± 20.93 56.20 ± 28.49 860.40 ± 308.58
6 52.66 ± 9.30 58.20 ± 13.10 798.00 ± 139.04
7 67.10 ± 32.29 86.40 ± 66.36 992.80 ± 414.41
8 68.95 ± 21.22 91.00 ± 63.89 1004.80 ± 250.58
9 67.23 ± 9.13 92.00 ± 60.93 985.60 ± 184.54
10 60.26 ± 9.76 79.40 ± 20.71 898.60 ± 140.71

mean 66.33 ± 19.61 83.62 ± 44.58 975.58 ± 268.45



126

Table E.14: Multi-objective tuning mean and standard deviation simulation results of convergence
time, number of generations, and spectrum evaluations for (1) to (10) non-ideal twin-accelerometers
– approach 2, resampling boundary strategy.

Structure Time Generations Spectrum Eval.

1 60.62 ± 11.96 95.20 ± 63.08 779.00 ± 140.10
2 69.98 ± 12.83 169.60 ± 67.98 807.80 ± 154.76
3 64.65 ± 10.49 99.80 ± 39.26 901.40 ± 142.54
4 61.90 ± 7.90 95.80 ± 58.48 845.00 ± 230.68
5 59.87 ± 15.26 60.40 ± 22.43 894.80 ± 213.62
6 51.21 ± 6.69 58.20 ± 14.38 768.80 ± 97.22
7 47.94 ± 10.19 83.80 ± 66.02 635.60 ± 115.15
8 64.50 ± 6.54 88.80 ± 62.55 861.80 ± 91.91
9 52.38 ± 9.75 98.60 ± 65.30 672.40 ± 143.84
10 54.44 ± 5.17 73.40 ± 25.29 775.40 ± 74.86

mean 58.75 ± 9.68 92.36 ± 48.48 794.20 ± 140.47
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Figure E.1: Mapping results for (1) to (10) non-ideal twin-accelerometers. (a) Mapped distortion.
(b) Mapped sensitivity. (c) Mapped actuation voltages amplitudes V1 and V2 (cyan) and Pareto-set
(purple) in the decision space. (d) Mapped dominated (cyan) and non-dominated (purple) solutions
in the objective space for the MEMS spectrum analyzer.
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Figure E.2: Mono-objective tuning evolution for a non-ideal twin-structure – maximum distortion
level 0.8, brick-wall boundary strategy. (a) DE population (magenta), DE optimization variables
boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the decision
space; in red, the distortion constraint. (b) The same as (a), over sensitivity level curves. (c) DE cost
function (magenta) and mapped Pareto-front (purple) in the objective space. (1) First generation. (2)
Intermediate generation. (3) Last generation.
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Figure E.3: Mono-objective tuning evolution for a non-ideal twin-structure – maximum distortion
level 0.2, brick-wall boundary strategy. (a) DE population (magenta), DE optimization variables
boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the decision
space; in red, the distortion constraint. (b) The same as (a), over sensitivity level curves. (c) DE cost
function (magenta) and mapped Pareto-front (purple) in the objective space. (1) First generation. (2)
Intermediate generation. (3) Last generation.
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Figure E.4: Mono-objective tuning evolution for a non-ideal twin-structure – maximum distortion
level 0.8, random reinitialization boundary strategy. (a) DE population (magenta), DE optimization
variables boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the
decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity level curves.
(c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space. (1) First
generation. (2) Intermediate generation. (3) Last generation.
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Figure E.5: Mono-objective tuning evolution for a non-ideal twin-structure – maximum distortion
level 0.2, random reinitialization boundary strategy. (a) DE population (magenta), DE optimization
variables boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the
decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity level curves.
(c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space. (1) First
generation. (2) Intermediate generation. (3) Last generation.
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Figure E.6: Mono-objective tuning evolution for a non-ideal twin-structure – maximum distortion
level 0.8, resampling boundary strategy. (a) DE population (magenta), DE optimization variables
boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the decision
space; in red, the distortion constraint. (b) The same as (a), over sensitivity level curves. (c) DE cost
function (magenta) and mapped Pareto-front (purple) in the objective space. (1) First generation. (2)
Intermediate generation. (3) Last generation.
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Figure E.7: Mono-objective tuning evolution for a non-ideal twin-structure – maximum distortion
level 0.2, resampling boundary strategy. (a) DE population (magenta), DE optimization variables
boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the decision
space; in red, the distortion constraint. (b) The same as (a), over sensitivity level curves. (c) DE cost
function (magenta) and mapped Pareto-front (purple) in the objective space. (1) First generation. (2)
Intermediate generation. (3) Last generation.
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Figure E.8: Mono-objective tuning final results for (1) to (10) non-ideal twin-accelerometers – maxi-
mum distortion level 0.8, bounce-back boundary strategy. (a) DE population (magenta), DE opti-
mization variables boundaries (black), and mapped Pareto-set (purple) over distortion level curves
in the decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity level
curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.9: Mono-objective tuning final results for (1) to (10) non-ideal twin-accelerometers – maxi-
mum distortion level 0.2, bounce-back boundary strategy. (a) DE population (magenta), DE opti-
mization variables boundaries (black), and mapped Pareto-set (purple) over distortion level curves
in the decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity level
curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.10: Mono-objective tuning final results for (1) to (10) non-ideal twin-accelerometers –
maximum distortion level 0.8, brick-wall boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity
level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.11: Mono-objective tuning final results for (1) to (10) non-ideal twin-accelerometers –
maximum distortion level 0.2, brick-wall boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity
level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.12: Mono-objective tuning final results for (1) to (10) non-ideal twin-accelerometers – maxi-
mum distortion level 0.8, random reinitialization boundary strategy. (a) DE population (magenta),
DE optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity
level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space.



136

Figure E.13: Mono-objective tuning final results for (1) to (10) non-ideal twin-accelerometers – maxi-
mum distortion level 0.2, random reinitialization boundary strategy. (a) DE population (magenta),
DE optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity
level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.14: Mono-objective tuning final results for (1) to (10) non-ideal twin-accelerometers –
maximum distortion level 0.8, resampling boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity
level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.15: Mono-objective tuning final results for (1) to (10) non-ideal twin-accelerometers –
maximum distortion level 0.2, resampling boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space; in red, the distortion constraint. (b) The same as (a), over sensitivity
level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.16: Multi-objective tuning evolution for a non-ideal twin-structure – approach 1, brick-wall
boundary strategy. (a) DE population (magenta), DE optimization variables boundaries (black), and
mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The same as (a),
over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the
objective space. (1) First generation. (2) Intermediate generation (3) Last generation.
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Figure E.17: Multi-objective tuning evolution for a non-ideal twin-structure – approach 1, random
reinitialization boundary strategy. (a) DE population (magenta), DE optimization variables bound-
aries (black), and mapped Pareto-set (purple) over distortion level curves in the decision space.
(b) The same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped
Pareto-front (purple) in the objective space. (1) First generation. (2) Intermediate generation (3) Last
generation.
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Figure E.18: Multi-objective tuning evolution for a non-ideal twin-structure – approach 1, resampling
boundary strategy. (a) DE population (magenta), DE optimization variables boundaries (black), and
mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The same as (a),
over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the
objective space. (1) First generation. (2) Intermediate generation (3) Last generation.
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Figure E.19: Multi-objective tuning combined final results for a non-ideal twin-structure – approach
1, brick-wall boundary strategy. (a) DE population (magenta), DE optimization variables boundaries
(black), and mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The
same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front
(purple) in the objective space.
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Figure E.20: Multi-objective tuning combined final results for a non-ideal twin-structure – approach
1, random reinitialization boundary strategy. (a) DE population (magenta), DE optimization variables
boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the decision
space. (b) The same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped
Pareto-front (purple) in the objective space.
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Figure E.21: Multi-objective tuning combined final results for a non-ideal twin-structure – approach
1, resampling boundary strategy. (a) DE population (magenta), DE optimization variables boundaries
(black), and mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The
same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front
(purple) in the objective space.
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Figure E.22: Multi-objective tuning combined final results for (1) to (10) non-ideal twin-
accelerometers – approach 1, bounce-back boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space. (b) The same as (a), over sensitivity level curves. (c) DE cost function
(magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.23: Multi-objective tuning combined final results for (1) to (10) non-ideal twin-
accelerometers – approach 1, brick-wall boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space. (b) The same as (a), over sensitivity level curves. (c) DE cost function
(magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.24: Multi-objective tuning combined final results for (1) to (10) non-ideal twin-
accelerometers – approach 1, random reinitialization boundary strategy. (a) DE population (magenta),
DE optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space. (b) The same as (a), over sensitivity level curves. (c) DE cost function
(magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.25: Multi-objective tuning combined final results for (1) to (10) non-ideal twin-
accelerometers – approach 1, resampling boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space. (b) The same as (a), over sensitivity level curves. (c) DE cost function
(magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.26: Multi-objective tuning evolution for a non-ideal twin-structure – approach 2, brick-wall
boundary strategy. (a) DE population (magenta), DE optimization variables boundaries (black), and
mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The same as (a),
over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the
objective space. (1) First generation. (2) Intermediate generation (3) Last generation.
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Figure E.27: Multi-objective tuning evolution for a non-ideal twin-structure – approach 2, random
reinitialization boundary strategy. (a) DE population (magenta), DE optimization variables bound-
aries (black), and mapped Pareto-set (purple) over distortion level curves in the decision space.
(b) The same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped
Pareto-front (purple) in the objective space. (1) First generation. (2) Intermediate generation (3) Last
generation.
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Figure E.28: Multi-objective tuning evolution for a non-ideal twin-structure – approach 2, resampling
boundary strategy. (a) DE population (magenta), DE optimization variables boundaries (black), and
mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The same as (a),
over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front (purple) in the
objective space. (1) First generation. (2) Intermediate generation (3) Last generation.
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Figure E.29: Multi-objective tuning combined final results for a non-ideal twin-structure – approach
2, brick-wall boundary strategy. (a) DE population (magenta), DE optimization variables boundaries
(black), and mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The
same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front
(purple) in the objective space.
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Figure E.30: Multi-objective tuning combined final results for a non-ideal twin-structure – approach
2, random reinitialization boundary strategy. (a) DE population (magenta), DE optimization variables
boundaries (black), and mapped Pareto-set (purple) over distortion level curves in the decision
space. (b) The same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped
Pareto-front (purple) in the objective space.
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Figure E.31: Multi-objective tuning combined final results for a non-ideal twin-structure – approach
2, resampling boundary strategy. (a) DE population (magenta), DE optimization variables boundaries
(black), and mapped Pareto-set (purple) over distortion level curves in the decision space. (b) The
same as (a), over sensitivity level curves. (c) DE cost function (magenta) and mapped Pareto-front
(purple) in the objective space.
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Figure E.32: Multi-objective tuning combined final results for (1) to (10) non-ideal twin-
accelerometers – approach 2, bounce-back boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space. (b) The same as (a), over sensitivity level curves. (c) DE cost function
(magenta) and mapped Pareto-front (purple) in the objective space.



150

Figure E.33: Multi-objective tuning combined final results for (1) to (10) non-ideal twin-
accelerometers – approach 2, brick-wall boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in decision space. (b) The same as (a), over sensitivity level curves. (c) DE cost function
(magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.34: Multi-objective tuning combined final results for (1) to (10) non-ideal twin-
accelerometers – approach 2, random reinitialization boundary strategy. (a) DE population (magenta),
DE optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space. (b) The same as (a), over sensitivity level curves. (c) DE cost function
(magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.35: Multi-objective tuning combined final results for (1) to (10) non-ideal twin-
accelerometers – approach 2, resampling boundary strategy. (a) DE population (magenta), DE
optimization variables boundaries (black), and mapped Pareto-set (purple) over distortion level
curves in the decision space. (b) The same as (a), over sensitivity level curves. (c) DE cost function
(magenta) and mapped Pareto-front (purple) in the objective space.
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Figure E.36: Tuning validation results for a non-ideal twin-structure – brick-wall boundary strategy.
(a) Spectrum before tuning. (b) Tuned spectrum, maximum distortion level 0.8. (c) Tuned spectrum,
maximum distortion level 0.2. (1) Mono-objective tuning. (2) Multi-objective tuning, approach 1.
(3) Multi-objective tuning, approach 2.



154

0 100 200 300 400 500
2f (Hz)
 (a.1)

0

2

4

6

|A
di

f(2
f)

|

10-10

0 100 200 300 400 500
2f (Hz)
 (b.1)

0

20

40

|A
di

f(2
f)

|

0 100 200 300 400 500
2f (Hz)
 (c.1)

0

20

40

|A
di

f(2
f)

|

0 100 200 300 400 500
2f (Hz)
 (a.2)

0

2

4

6

|A
di

f(2
f)

|

10-10

0 100 200 300 400 500
2f (Hz)
 (b.2)

0

20

40

|A
di

f(2
f)

|

0 100 200 300 400 500
2f (Hz)
 (c.2)

0

20

40

|A
di

f(2
f)

|

0 100 200 300 400 500
2f (Hz)
 (a.3)

0

2

4

6

|A
di

f(2
f)

|

10-10

0 100 200 300 400 500
2f (Hz)
 (b.3)

0

20

40

|A
di

f(2
f)

|

0 100 200 300 400 500
2f (Hz)
 (c.3)

0

20

40

|A
di

f(2
f)

|

Figure E.37: Tuning validation results for a non-ideal twin-structure – random reinitialization
boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum, maximum distortion level 0.8.
(c) Tuned spectrum, maximum distortion level 0.2. (1) Mono-objective tuning. (2) Multi-objective
tuning, approach 1. (3) Multi-objective tuning, approach 2.
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Figure E.38: Tuning validation results for a non-ideal twin-structure – resampling boundary strategy.
(a) Spectrum before tuning. (b) Tuned spectrum, maximum distortion level 0.8. (c) Tuned spectrum,
maximum distortion level 0.2. (1) Mono-objective tuning. (2) Multi-objective tuning, approach 1.
(3) Multi-objective tuning, approach 2.
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Figure E.39: Mono-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers
– approach 1, bounce-back boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum,
maximum distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.40: Mono-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers –
brick-wall boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum, maximum distortion
level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.41: Mono-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers
– approach 1, random reinitialization boundary strategy. (a) Spectrum before tuning. (b) Tuned
spectrum, maximum distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.42: Mono-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers
– approach 1, resampling boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum,
maximum distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.43: Multi-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers
– approach 1, bounce-back boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum,
maximum distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.44: Multi-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers –
approach 1, brick-wall boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum, maximum
distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.45: Multi-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers
– approach 1, random reinitialization boundary strategy. (a) Spectrum before tuning. (b) Tuned
spectrum, maximum distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.46: Multi-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers
– approach 1, resampling boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum,
maximum distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.47: Multi-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers
– approach 2, bounce-back boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum,
maximum distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.48: Multi-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers –
approach 2, brick-wall boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum, maximum
distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.49: Multi-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers
– approach 2, random reinitialization boundary strategy. (a) Spectrum before tuning. (b) Tuned
spectrum, maximum distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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Figure E.50: Multi-objective tuning validation results for (1) to (10) non-ideal twin-accelerometers
– approach 2, resampling boundary strategy. (a) Spectrum before tuning. (b) Tuned spectrum,
maximum distortion level 0.8. (c) Tuned spectrum, maximum distortion level 0.2.
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