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DEDICATION  

 

The solitude of Latin America 

 

By Gabriel Garcia Marquéz (1927 – 2014) 

Nobel Lecture - 8 December, 1982, at the Royal Swedish Academy 

 

Antonio Pigafetta, a Florentine navigator who went with Magellan on the first 

voyage around the world, wrote, upon his passage through our southern lands of 

America, a strictly accurate account that nonetheless resembles a venture into 

fantasy. In it he recorded that he had seen hogs with navels on their haunches, 

clawless birds whose hens laid eggs on the backs of their mates, and others still, 

resembling tongueless pelicans, with beaks like spoons. He wrote of having seen a 

misbegotten creature with the head and ears of a mule, a camel’s body, the legs of a 

deer and the whinny of a horse. He described how the first native encountered in 

Patagonia was confronted with a mirror, whereupon that impassioned giant lost his 

senses to the terror of his own image. 

This short and fascinating book, which even then contained the seeds of our 

present-day novels, is by no means the most staggering account of our reality in that 

age. The Chronicles of the Indies left us countless others. Eldorado, our so avidly 

sought and illusory land, appeared on numerous maps for many a long year, shifting 

its place and form to suit the fantasy of cartographers. In his search for the fountain 

of eternal youth, the mythical Alvar Núñez Cabeza de Vaca explored the north of 

Mexico for eight years, in a deluded expedition whose members devoured each 

other and only five of whom returned, of the six hundred who had undertaken it. One 

of the many unfathomed mysteries of that age is that of the eleven thousand mules, 

each loaded with one hundred pounds of gold that left Cuzco one day to pay the 

ransom of Atahualpa and never reached their destination. Subsequently, in colonial 

times, hens were sold in Cartagena de Indias, that had been raised on alluvial land 

and whose gizzards contained tiny lumps of gold. One founder’s lust for gold beset 

us until recently. As late as the last century, a German mission appointed to study 

the construction of an interoceanic railroad across the Isthmus of Panama concluded 



that the project was feasible on one condition: that the rails not be made of iron, 

which was scarce in the region, but of gold. 

Our independence from Spanish domination did not put us beyond the reach 

of madness. General Antonio López de Santa Anna, three times dictator of Mexico, 

held a magnificent funeral for the right leg he had lost in the so-called Pastry War. 

General Gabriel García Moreno ruled Ecuador for sixteen years as an absolute 

monarch; at his wake, the corpse was seated on the presidential chair, decked out in 

full-dress uniform and a protective layer of medals. General Maximiliano Hernández 

Martínez, the theosophical despot of El Salvador who had thirty thousand peasants 

slaughtered in a savage massacre, invented a pendulum to detect poison in his food, 

and had streetlamps draped in red paper to defeat an epidemic of scarlet fever. The 

statue to General Francisco Moraz´n erected in the main square of Tegucigalpa is 

actually one of Marshal Ney, purchased at a Paris warehouse of second-hand 

sculptures. 

Eleven years ago, the Chilean Pablo Neruda, one of the outstanding poets of 

our time, enlightened this audience with his word. Since then, the Europeans of good 

will – and sometimes those of bad, as well – have been struck, with ever greater 

force, by the unearthly tidings of Latin America, that boundless realm of haunted 

men and historic women, whose unending obstinacy blurs into legend. We have not 

had a moment’s rest. A promethean president, entrenched in his burning palace, 

died fighting an entire army, alone; and two suspicious airplane accidents, yet to be 

explained, cut short the life of another great-hearted president and that of a 

democratic soldier who had revived the dignity of his people. There have been five 

wars and seventeen military coups; there emerged a diabolic dictator who is carrying 

out, in God’s name, the first Latin American ethnocide of our time. In the meantime, 

twenty million Latin American children died before the age of one – more than have 

been born in Europe since 1970. Those missing because of repression number 

nearly one hundred and twenty thousand, which is as if no one could account for all 

the inhabitants of Uppsala. Numerous women arrested while pregnant have given 

birth in Argentine prisons, yet nobody knows the whereabouts and identity of their 

children who were furtively adopted or sent to an orphanage by order of the military 

authorities. Because they tried to change this state of things, nearly two hundred 

thousand men and women have died throughout the continent, and over one 

hundred thousand have lost their lives in three small and ill-fated countries of Central 



America: Nicaragua, El Salvador and Guatemala. If this had happened in the United 

States, the corresponding figure would be that of one million six hundred thousand 

violent deaths in four years. 

One million people have fled Chile, a country with a tradition of hospitality – 

that is, ten per cent of its population. Uruguay, a tiny nation of two and a half million 

inhabitants which considered itself the continent’s most civilized country, has lost to 

exile one out of every five citizens. Since 1979, the civil war in El Salvador has 

produced almost one refugee every twenty minutes. The country that could be 

formed of all the exiles and forced emigrants of Latin America would have a 

population larger than that of Norway. 

I dare to think that it is this outsized reality, and not just its literary expression, 

that has deserved the attention of the Swedish Academy of Letters. A reality not of 

paper, but one that lives within us and determines each instant of our countless daily 

deaths, and that nourishes a source of insatiable creativity, full of sorrow and beauty, 

of which this roving and nostalgic Colombian is but one cipher more, singled out by 

fortune. Poets and beggars, musicians and prophets, warriors and scoundrels, all 

creatures of that unbridled reality, we have had to ask but little of imagination, for our 

crucial problem has been a lack of conventional means to render our lives 

believable. This, my friends, is the crux of our solitude. 

And if these difficulties, whose essence we share, hinder us, it is 

understandable that the rational talents on this side of the world, exalted in the 

contemplation of their own cultures, should have found themselves without valid 

means to interpret us. It is only natural that they insist on measuring us with the 

yardstick that they use for themselves, forgetting that the ravages of life are not the 

same for all, and that the quest of our own identity is just as arduous and bloody for 

us as it was for them. The interpretation of our reality through patterns not our own, 

serves only to make us ever more unknown, ever less free, ever more solitary. 

Venerable Europe would perhaps be more perceptive if it tried to see us in its own 

past. If only it recalled that London took three hundred years to build its first city wall, 

and three hundred years more to acquire a bishop; that Rome laboured in a gloom of 

uncertainty for twenty centuries, until an Etruscan King anchored it in history; and 

that the peaceful Swiss of today, who feast us with their mild cheeses and apathetic 

watches, bloodied Europe as soldiers of fortune, as late as the Sixteenth Century. 

Even at the height of the Renaissance, twelve thousand lansquenets in the pay of 



the imperial armies sacked and devastated Rome and put eight thousand of its 

inhabitants to the sword. 

I do not mean to embody the illusions of Tonio Kröger, whose dreams of 

uniting a chaste north to a passionate south were exalted here, fifty-three years ago, 

by Thomas Mann. But I do believe that those clear-sighted Europeans who struggle, 

here as well, for a more just and humane homeland, could help us far better if they 

reconsidered their way of seeing us. Solidarity with our dreams will not make us feel 

less alone, as long as it is not translated into concrete acts of legitimate support for 

all the peoples that assume the illusion of having a life of their own in the distribution 

of the world. 

Latin America neither wants, nor has any reason, to be a pawn without a will 

of its own; nor is it merely wishful thinking that its quest for independence and 

originality should become a Western aspiration. However, the navigational advances 

that have narrowed such distances between our Americas and Europe seem, 

conversely, to have accentuated our cultural remoteness. Why is the originality so 

readily granted us in literature so mistrustfully denied us in our difficult attempts at 

social change? Why think that the social justice sought by progressive Europeans for 

their own countries cannot also be a goal for Latin America, with different methods 

for dissimilar conditions? No: the immeasurable violence and pain of our history are 

the result of age-old inequities and untold bitterness, and not a conspiracy plotted 

three thousand leagues from our home. But many European leaders and thinkers 

have thought so, with the childishness of old-timers who have forgotten the fruitful 

excess of their youth as if it were impossible to find another destiny than to live at the 

mercy of the two great masters of the world. This, my friends, is the very scale of our 

solitude. 

In spite of this, to oppression, plundering and abandonment, we respond with 

life. Neither floods nor plagues, famines nor cataclysms, nor even the eternal wars of 

century upon century, have been able to subdue the persistent advantage of life over 

death. An advantage that grows and quickens: every year, there are seventy-four 

million more births than deaths, a sufficient number of new lives to multiply, each 

year, the population of New York sevenfold. Most of these births occur in the 

countries of least resources – including, of course, those of Latin America. 

Conversely, the most prosperous countries have succeeded in accumulating powers 

of destruction such as to annihilate, a hundred times over, not only all the human 



beings that have existed to this day, but also the totality of all living beings that have 

ever drawn breath on this planet of misfortune. 

On a day like today, my master William Faulkner said, “I decline to accept the 

end of man”. I would fall unworthy of standing in this place that was his, if I were not 

fully aware that the colossal tragedy he refused to recognize thirty-two years ago is 

now, for the first time since the beginning of humanity, nothing more than a simple 

scientific possibility. Faced with this awesome reality that must have seemed a mere 

utopia through all of human time, we, the inventors of tales, who will believe 

anything, feel entitled to believe that it is not yet too late to engage in the creation of 

the opposite utopia. A new and sweeping utopia of life, where no one will be able to 

decide for others how they die, where love will prove true and happiness be possible, 

and where the races condemned to one hundred years of solitude will have, at last 

and forever, a second opportunity on earth. 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"Science is a cooperative enterprise, spanning the generations. It's the 

passing of a torch from teacher, to student, to teacher. A community of 

minds reaching back to antiquity and forward to the stars." 

Neil deGrasse Tyson (1958 -), American astrophysicist  
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RESUMO 

Este trabalho traz uma nova classe de catalisadores para a reação de 

oxidação preferencial de monóxido de carbono (PROX-CO) baseados em 

nanobastões de céria decorados com nanopartículas de ouro na superfície. Uma 

síntese hidrotérmica com diversas vantagens tais como one-step, one-pot e fácil de 

purificar possibilitou a preparação de nanopartículas de céria com alto grau de 

pureza, além de tamanho e morfologia controlados. Um inédito processo de 

lixiviação baseado na exposição das nanopartículas a uma solução de ácido 

sulfúrico foi empregado, no qual os poros nativos dos nanobastões foram 

expandidos, melhorando a capacidade total de armazenamento de oxigênio (OSC) 

do material. Os resultados da espectroscopia de emissão óptica de plasma 

acoplada indutivamente (ICP-OES) revelaram que as condições de lixiviação ácida 

empregadas foram eficazes para expandir a estrutura dos poros sem comprometer 

a estrutura das facetas cristalinas dos nanobastões de céria e evitar sua dissolução. 

Além disso, os resultados de espectroscopia Raman confirmaram o aumento da 

concentração de vacâncias de oxigênio na amostra lixiviada. Os nanobastões 

também foram dopados com íons Zr (IV) por meio de uma por co-precipitação. Para 

completar o catalisador, nanopartículas de ouro foram depositadas na superfície do 

óxido por deposição-precipitação (DP), na qual HAuCl4, é depositado na superfície 

do óxido após um ajuste controlado do pH da solução para 3, precipitando Au(OH)3, 

e posteriormente ouro metálico depois de tratamento térmico tratamento com a 

superfície do suporte desempenhando um papel como agente de nucleação. 

Diferentes métodos para aumentar o pH da solução, como adição de NaOH e 

decomposição térmica da ureia e diferentes temperaturas de tratamento térmico 

foram empregados, o que levou a diferentes desempenhos catalíticos. Demonstrou-

se que os catalisadores compostos pelos nanobastões lixiviados são catalisadores 

mais apropriados para a reação de PROX-CO, aumentando a conversão total de 

CO e diminuindo a temperatura de conversão máxima, o que é favorável para o uso 

potencial deste material como catalisador em células combustíveis. Os nanobastões 

dopados com Zr também foram determinados como suportes mais eficientes, o que 

foi atribuído à capacidade dos íons Zr(IV) de elevar a OSC do material. 

  



ABSTRACT 

This work brings a novel class of catalysts for the reaction of preferential 

oxidation of carbon monoxide (PROX-CO) based on ceria nanorods decorated with 

gold nanoparticles on the surface. A hydrothermal synthesis with several advantages 

such as a one-step, one-pot, low-cost and easy-to-purify process that enables the 

preparation of high purity ceria nanoparticles of controlled size and morphology. 

Afterward, a novel acid lixiviation process based on treating the nanoparticles with 

sulfuric acid solution was employed in which the native pores of ceria nanorods were 

expanded improving the total oxygen storage capacity (OSC) of the material, a 

physical-chemical property of utmost importance to understand chemisorption 

phenomena in catalysis. Inductively coupled plasma optical emission spectroscopy 

(ICP-OES) results revealed that the acid leaching conditions employed were 

effective to expand the pore structure without compromising the facets structure of 

ceria nanorods and avoiding their dissolution. Raman results confirmed the increase 

in oxygen vacancies concentration in the lixiviated sample of nanorods. Cerium 

nanorods were also successfully doped with Zr (IV) ions via a co-precipitation 

technique. In order to complete the nanohierarchy of the catalyst, gold nanoparticles 

were placed down onto the oxide surface by the deposition-precipitation (DP) 

method. In the methodology carried out in this work, gold precursor, HAuCl4, is 

brought out of the solution in the presence of a suspension onto the support by 

increasing the pH in order to precipitate Au(OH)3, which gives out metallic gold after 

thermal treatment. The surface of the support plays a role as a nucleating agent 

controlling. Different methods to increase the pH of the solution, such as addition of 

NaOH and thermal decomposition of urea and different annealing temperatures were 

employed, which led to different catalytic performances. The catalysts composed by 

lixiviated ceria nanorods were proved to be better for PROX-CO reaction as they 

increased the total CO conversion and decreased the maximum conversion 

temperature, which is appropriate for the potential use of this catalyst in fuel cells. 

The Zr-doped nanorods also were determined to be more effective which was 

attributed to the capacity of Zr (IV) to improve the oxygen vacancy concentration of 

the nanorods.   



RÉSUMÉ 

Ce travail-ci apporte une nouvelle classe de catalyseurs pour la réaction 

d'oxydation préférentielle du monoxyde de carbone (PROX-CO) à base de nanotiges 

de ceria décorées de nanoparticules d'or à la surface. Une synthèse hydrothermale 

avec plusieurs avantages en tant qu’il s’agit d’un procédé en une étape, à faible coût 

et facile à purifier, ce qui permet la préparation de nanoparticules de ceria de haute 

pureté avec taille et morphologie contrôlées. Par la suite, un nouveau procédé de 

lixiviation acide basé sur le traitement des nanoparticules avec une solution d'acide 

sulfurique a été utilisé, dans lequel les pores natifs des nanotiges de ceria ont été 

élargis améliorant la capacité totale de stockage d'oxygène (OSC) du matériau. Les 

résultats de spectroscopie d'émission optique à plasma à couplage inductif (ICP-

OES) ont révélé que les conditions de lixiviation acide utilisées étaient efficaces pour 

accroître la structure poreuse sans compromettre la structure des facettes des 

nanotiges de céria, en échappant leur dissolution. Les résultats de la spectrométrie 

photoélectronique X et Raman ont confirmé l'augmentation de la concentration des 

lacunes d'oxygène dans l'échantillon lixivié de nanotiges. Les nanotiges de cérium 

ont également été dopées avec succès avec des ions Zr (IV) via coprécipitation. Afin 

de compléter la nanohiérachie du catalyseur, des nanoparticules d'or ont été 

déposées sur la surface de l'oxyde par la méthode de dépôt-précipitation (DP). Le 

précurseur d'or, HAuCl4, est precipité de la solution sur le support en augmentant le 

pH afin de précipiter Au(OH)3, qui se transforme em or métallique après traitement 

thermique. Différentes méthodes pour augmenter le pH de la solution, telles que 

l'addition de NaOH et la décomposition thermique de l'urée et différentes 

températures de traitement thermique ont été utilisées, ce qui a conduit à différentes 

performances catalytiques. Les catalyseurs composés par les nanotiges de ceria 

lixiviées se sont avérées être meilleur pour la réaction de PROX-CO, une fois qui ils 

ont augmenté la conversion totale de CO et diminué la température de conversion 

maximale, ce qui rend ce máteriau approprié pour l'utilisation potentielle dans des 

piles à combustible. Les nanotiges dopés au Zr ont également été jugés plus 

efficaces, ce qui a été attribué à la capacité du Zr (IV) à améliorer la concentration 

de lacunes d’oxygène dans les nanotiges.  
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1. INTRODUCTION 

1.1 – Hydrogen, a multitask chemical  
 

Hydrogen is the most abundant chemical element in the Universe and modern 

human society relies heavily on its applications. [1] [2] This element, which in its 

elemental form is found as a diatomic molecule, H2, is a fundamental building block 

to produce ammonia, and therefore fertilizers, and methanol, a precursor to make 

acetic acid and formaldehyde, which in turn are used in products like adhesives, 

foams, construction materials, solvents and windshield washer fluids. [3] 

Hydrogen is also widely used for the processing of intermediate oil products, 

such as in hydrodesulfuring and cracking processes. Thus, about 55 % of the 

hydrogen produced around the world is used for ammonia synthesis, 25 % in 

refineries and about 10 % for methanol production. The other applications worldwide 

account for only about 10 % of global hydrogen production. [4] 

Although hydrogen finds itself a plenitude of applications, its production faces 

one major problem in a sustainable designed society, as there is no economically 

viable natural source of hydrogen in Earth.  

The most common method for obtaining H2 is steam reforming process of 

methane (SRM), in which hydrocarbons react with water vapor producing a non-

equimolar gas mixture of H2 and CO, according to Equation 1. [5] 

 

𝐶𝐻4(𝑔) +  𝐻2𝑂(𝑔) → 3𝐻2(𝑔)  +   𝐶𝑂(𝑔)                   ∆𝐻 = + 206.3 𝑘𝐽 𝑚𝑜𝑙−1                     (1) 

 

The H2/CO mixture, which is obtained in steam reforming and other industrial 

processes for H2 production is called water gas. However, for certain industrial uses, 

as in the synthesis of ammonia or its use in many types of fuel cells, it is necessary 

to obtain H2 with extremely high degree of purity, that is, with lower CO contents, 

since this gas also poisons industrial catalysts involved in the synthesis of ammonia 

or in fuel cells (FC’s) catalysts. Therefore, in order to maximize H2 content, a post-

steam reforming step was introduced, in which most of the remaining CO is 

converted into CO2 in a process called the "water gas shift reaction" (WGSR). In this 

reaction, carbon monoxide reacts with a water vapor flow, producing CO2 and 
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hydrogen gas, according to Equation 2. Then, CO2 is removed through an alkaline 

treatment or via zeolite capture. [6] 

 

𝐶𝑂(𝑔) +  𝐻2𝑂(𝑔) 𝐶𝑂2(𝑔) + 𝐻2(𝑔)                   ∆𝐻 = −41.6 𝑘𝐽 𝑚𝑜𝑙−1                    (2) 

 

Afterwards, hydrogen gas purified by the WGSR still has a CO content above 

the operational threshold for its application in fuel cells, in which values below 50 

ppm are more suitable. This limitation stems from the fact that platinum (material 

which is one of the main constituents of the cell electrode) strongly adsorbs CO at 

low temperatures, with severe loss of its catalytic activity. [5] Thus, to reduce CO 

content to even lower values (< 10 ppm), a reactional step called preferential 

oxidation of carbon monoxide (PROX-CO) is used, as indicated in Equation 3. 

 

2𝐶𝑂(𝑔) +  𝑂2(𝑔) → 2𝐶𝑂2(𝑔)    𝑚𝑜𝑙−1            ∆𝐻 = − 565.9 𝑘𝐽 𝑚𝑜𝑙−1           (3) 

 

Hydrogen used as a fuel has the potential to be a powerful effective 

accelerator towards a low-carbon energy system, adequate of addressing multiple 

energy challenges at a time: from facilitating the massive integration of renewables 

and decarbonisation of energy production, to energy transportation in a zero carbon 

energy economy, to electrification of end uses. [5] 

The main goal of this project is to develop a new effective catalyst for PROX-

CO reaction based on gold nanoparticles deposited over cerium (IV) oxide 

nanoparticles and study its chemical, optical, surface and textural properties.  

This dissertation is inserted into a larger context of the research lines 

conducted at the Laboratory of Functional Materials of the Institute of Chemistry at 

UNICAMP, in which it can be highlighted efficient techniques to deposit metallic 

nanoparticles (NP’s) over oxide surfaces and studies about non-stoichiometric 

compounds, such as cerium (IV) oxide NP’s with Raman spectroscopy, the porous 

characteristics of its nanorods and its potential applications as a catalyst for WGS 

and PROX-CO reactions. These published studies served as reference for this 

dissertation. [7-8] 
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1.2 - Recent Advances in Design of H2 Purification Methods 

 

The increasing demands for high-purity hydrogen to be used in fuel cell 

systems triggered a renewed interest in the water-gas shift reaction. This notable 

industrial process provides an attractive approach for hydrogen generation and 

additional increase of its concentration in the gas mixtures obtained by processes 

utilizing coal, petroleum, or biomass resources, as seen in Figure 1. An effective step 

for further elimination of CO traces from the reformate stream after water–gas shift 

unit is the preferential CO oxidation.  

 

Figure 1. Hydrogen production techniques distributed according to their forecast of 

being widespread as an economically viable process (near-term, mid-term or long 

term). Currently, natural gas reforming accounts for more 95% of worldwide 

production of hydrogen. Image adapted from [9]. 

 

Ivanova et al. have described CO clean-up fundamentals in detail highlighting 

on the current practice in industrial hydrogen production and highlighting the 

requirements that should be met by processes and catalysts for small-scale 

applications such as residential fuel cells or on-board hydrogen generators. [9] 

Because of safety and technical constraints, it was shown that well established 

commercial Cu/ZnO-based and Fe2O3-Cr2O3-based catalysts currently used for 
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large-scale hydrogen production are not suitable for fuel cells. Besides the fact that 

these catalysts require special activation procedures before usage; they are highly 

pyrophoric, intolerant to poisons, susceptible to oxidation and condensation. 

Additionally, some technical issues like small catalyst volume and low weight, 

reduced start-up time, stability under steady state and transient conditions impose 

new goals and challenges for design of WGS and PROX-CO catalysts. Developing 

well-performing, stable, and selective catalysts for WGS and PROX reactions is of 

primary importance for efficient upgrading of hydrogen purity for fuel cell 

applications. 

CO2 release into the atmosphere due to fossil fuel burning machines accounts 

for over 50 % of the enhancement of the greenhouse effect, one of the main causes 

attributed to the global warming. This has culminated in an ever-increasing demand 

of efficacious clean-up technologies and search for alternative fuels, their utilization 

being accompanied by toxic free emissions. Bringing about a zero-waste emission 

by using clean energy sources and cutting down greenhouse gas emissions would 

positively affect social and economic development and would contribute greatly into 

improving current environmental conditions. [10] 

Due to the increasing amounts of CO2 into the atmosphere, hydrogen emerge 

with many advantages as an energy carrier, specially the fact that its combustion 

generates only water. Excluded the nuclear fuels, it has the highest energy content 

per unit mass among all fuels, which is almost three times higher than that of 

gasoline. [11] Moreover, hydrogen can deliver economically feasible, financially 

attractive, and socially beneficial solutions of the growing concerns about global 

warming and increasing world energy demand and to produce it, several methods 

have already been reported and discussed in the following sections. 

This section focuses on providing a bibliographical review of several 

approaches to synthesize hydrogen described in the literature.  

 

1.2.1 - Fossil fuel based methods 

 

Fossil-based hydrogen production methods are among the most full-fledged 

technologies available nowadays, as they present higher efficiency and lower 

production cost ranges than the other methods available. Natural gas is mostly 
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composed of methane, but it commonly includes varying amounts of other higher 

alkanes, and sometimes lower fractions of other gases, such as carbon dioxide, 

nitrogen, hydrogen sulfide, or helium.  

Most of the hydrogen produced in a worldwide scale comes from the steam 

reforming process of methane (SRM) derived from natural gas sources with an 

efficiency range of 65-75%. Higher alkanes can also be reformed to produce it 

although with lower efficiency and yields. [13] 

The SRM reaction is part of the C1 Chemistry, which refers to the study of 

one-carbon molecules reactions. This Chemistry subdivision includes molecules, 

such as CO, CO2, CH4, CH2O, CH3OH and HCOOH, and plays a pivotal role in the 

current supply of energy and chemicals. These C1 molecules, which either are 

naturally found or can be easily produced from natural carbon resources, are 

abundant and cheap carbon feedstocks. C1 chemistry will most likely become even 

more critical because of the worldwide increasing need for the production of liquid 

fuels and building-block chemicals from alternative carbon resources such as the 

emerging shale gas in the United States or coal in China to replace crude oil. [14]  

The industrial methane steam reforming process usually makes use of a 

heated tubular furnace and downstream cleaning units. In a simplified process for 

SRM, the feed is at first hydrodesulfurized and subsequently mixed with superheated 

steam in a heated furnace, which is named reformer. The reformer contains a series 

of catalytic reforming tubes in a row packed with a nickel-containing catalysts bed 

and is commercially operated with a temperature gradient, with the difference of 450-

650 °C for inlet and 800-950 °C for outlet. Latest steam reformers units can attain 

capacities up to 300,000 m³ of H2 h-1 with average heat fluxes over 100,000 kcal m-2 

h-1 (0.12 MW m-2 h-1). [15] 

Another procedure to produce hydrogen from natural gas is via the reaction of 

partial oxidation (POX) of hydrocarbons. This reaction takes place when a 

substoichiometric fuel-air mixture is partially combusted inside a reformer yielding a 

hydrogen-rich syngas which can further used. Although its efficiency is lower than 

the one observed for steam reforming, it can be performed under lower temperatures 

and it might be suitable to be employed for small-scale applications featuring fast 

catalytic conversion of hydrocarbons. Previous works established that nickel-based 

catalysts are very active towards partial oxidation reaction, nevertheless, many 
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potential alternatives have already been probed, including supported Co or Fe, 

supported noble metal, or transition metal carbide catalysts. [15] 

Coal gasification is another alternative to produce hydrogen from a fossil fuel. 

In this process, coal is blown through with oxygen and steam currents while also 

being heated under substoichiometric conditions in order to avoid total oxidation to 

carbon dioxide. During the coal gasification reaction, the coal is heated in the gasifier 

under a well-controlled oxygen and steam environment. Oxygen and water 

molecules partially oxidize the coal without resulting in combustion and the primary 

products are the desired gaseous mixture with by-products like phenols and tar. The 

procedure was developed as an alternative to hydrogen production in countries that, 

despite not having large reserves of natural gas, had huge stocks of natural coal 

deposits, such as the United Kingdom and Germany. [15] 

And yet, a fourth alternative is called drying reforming of methane (DRM) 

which was first studied by the German chemists Franz Fischer (1877-1947) and 

Hans Tropsch (1889-1935) in the Max Planck Institute for Coal Research. As the 

name suggests, this reaction consists of the combination of CH4 with CO2 in 

anhydrous conditions yielding synthesis gas (CO and H2) at 700-900°C in a process 

that operates at a 20% lower cost with respect to other reforming processes. [16] 

Even though with the cost advantages, several side reactions that might take 

place in the reactor, like reverse water-gas shift (RWGS) reaction, methane cracking, 

CO reduction and Boudouard reaction, which is the disproportionation of CO into 

CO2 and elemental carbon, hinder the expansion of the DRM into larger scales. [16] 

The most studied metal catalysts for DRM are the highly active and relatively 

cheap nickel based ones, yet they are vulnerable to coke formation. Therefore, 

recent research has been oriented into developing catalysts based on noble metals, 

including Pt, Ru, Rh, Pd, and Ir, which present lower carbon solubility potential and 

longer times before deactivation. [17] 

 

1.2.2 - Biomass based methods 

 

Hydrogen can also be produced from biomass via pyrolysis/gasification, 

making use of processes quite like the ones used for coal gasification. Thermal 

methods are convenient for hydrogen production from biocrude (also known as bio-
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oil) and biogas, derivatives of biomass. In developing countries, such as China, India 

and Brazil, biogas is an attractive energy alternative for regions relying heavily on 

traditional biomass for their energy needs. [18] 

Biomass gasification is a multiple-step process. The first one consists of 

pyrolyzing the material in an oxygen-lean condition below 600°C to produce a gas 

mixture of H2, CO, CO2, and other hydrocarbon compounds. In the second stage, 

tars are catalytically reformed to acquire a clean syngas. The syngas is purified to 

obtain the hydrogen product by conversion of CO into CO2 via water gas shift 

reaction and subsequent absorption of CO2. [19] 

Organic matter degradation processes based on photochemical or 

photoelectrochemical chemical reactions are under development aiming to produce 

electricity and hydrogen from organic waste materials. [20-21] 

 

1.2.3 - Water based methods 

 

Water has been regarded for a long time as one of the main potential sources 

for producing hydrogen as it is a cheap and readily available resource. Several 

methods of hydrogen production from water are available including electrolysis, 

direct thermal decomposition or thermolysis, thermochemical processes, radiolysis 

and photolysis.  

Electrolysis consists of using electricity to split water molecules atoms into 

hydrogen and oxygen gases. Whilst steam reforming of natural gas has a thermal 

efficiency between 70-85%, water electrolysis is 70-80% efficient, with the forecast 

that its efficiency will reach 82-86% before 2030, if the progress in the research in 

this area continues at the current pace. [22] The main advantages of using electrolysis 

are, first, its operational temperature: while steam methane reforming requires 

temperatures between 700-1100 °C, water electrolysis systems can operate 

between 50-80 °C. Secondly, the fact that hydrogen produced by electrolysis can be 

produced on-site, meaning that the costly process of delivery via truck or pipeline is 

avoided. [23] 

Based on life cycle analysis (LCA) studies, it has been shown that electrolysis 

processes powered by electricity from renewable energy sources have low global 

warming potential (GWP), less than 5 kg CO2 eq/kgH2, wind electrolysis having the 
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lowest. Whereas for electrolysis using electricity from the current grid, GWP can be 

as high as 30 kg CO2 eq/kg H2. [24] 

Water molecules spontaneously dissociate at temperatures above 2000 K 

(the extent of single-step water dissociation varies directly with temperature from 1% 

at 2000 K to 34% at 3000 K) in a reaction called thermolysis. However, temperatures 

to perform water thermolysis are too high to be accomplished in usual process piping 

and equipment and for this reason, catalysts are required to reduce the dissociation 

temperature. The reaction is also sensitive to pressure variations being favoured if 

the pressure of the system is lowered.  

Hydrogen can be produced at relatively lower temperatures, through 

thermochemical cycles, in which water dissociation into hydrogen and oxygen is 

achieved through two or more successive reaction steps involving redox materials 

such as sulphur and some metal oxides. Approximately 2000-3000 thermochemical 

cycles have been studied, each with different sets of operating conditions, 

engineering challenges, and hydrogen production opportunities, and only 20-30 of 

which, with efficiencies up to 40-50% reported in the literature, may be technically 

feasible for large-scale hydrogen production. Critical issues of these processes are 

the separation of the hydrogen produced and the corrosion problems associated with 

the chemicals involved in the cycles. 

One promising thermochemical cycle that operates at lower temperatures 

than most thermochemical cycles is the Cu-Cl thermochemical cycle, which splits 

water into hydrogen and oxygen through intermediate copper and chlorine 

compounds. Due to its low temperature requirements, this cycle can be integrated 

with various nuclear power plants, which generate enough heat in order to make the 

thermal decomposition reaction sustainable or even concentrated solar power CSP 

(systems which generate solar power by using mirrors or lenses to concentrate a 

large area of sunlight onto a small area and can achieve the necessary temperature 

to promote the thermochemical cycle). 

Nuclear radiation can also break water bonds through radiolysis. In 2005, in 

the Mponeng gold mine, South Africa, the deepest mine in the world, it has been 

discovered a new phylotype of Desulfotomaculum bacteria which was able to obtain 

its primary energy feeding on radiolytically produced hydrogen, due to exposition to 

radioactive decay of radioisotopes of uranium, thorium and potassium. Since this 
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discovery has been accomplished, spent nuclear fuel is also being looked at as a 

potential source of hydrogen. [25] 

Hydrogen can also be released from water via light-driven procedures 

involving photobiological, photochemical and photoelectrochemical systems, 

although they are at early stages of development and have considerably low 

efficiency levels at the present days. Undergoing research is still on the way to come 

up with methods to produce hydrogen for longer periods of time and increase the 

rate of hydrogen production. 

Certain algae and cyanobacteria photoproduce hydrogen by photobiological 

processes for short times to get rid of excess energy before starting up the 

photosynthetic carbon fixation process. Algal photosynthesis and hydrogen 

production are correlate processes, as both start with the same solar-energy-

activated splitting of water to oxygen, electrons, and protons. Then protons and 

electrons go to a second enzymatic reaction. In one case, carbon dioxide is reduced 

to produce sugars, which might be used subsequently to provide energy for the 

algae. In the other case, a chemical reaction reduces H+ ions to produce H2. An 

alternative approach to sustaining algal hydrogen production artificially is to partially 

inactivate the normal photosynthetic process, promoting instead the hydrogen 

production. [26] 

Moreover, it is also possible to decompose water by photochemical 

processes. Pure water only absorbs few IR frequencies of the solar spectrum light 

that reaches out Earth’s surface, and such IR radiation is not enough to dissociate 

water molecules. Therefore, a photocatalyst is necessary in order to achieve water 

splitting by solar radiation, i.e., a species that absorbs higher energy photons and 

prompts the redox elementary steps required to break H2O into H2 and O2. Positive 

and negative charges must, then, reach the surface of the particles without 

recombining each other and promote the oxidation of oxygen and the reduction of 

hydrogen, respectively. Hydrogen reduction is thermodynamically viable if the 

electric potential associated with electrons in the conduction band is more negative 

than the redox potential of H+/H2, whereas holes in the valence band oxidize the 

oxygen atom of water if their potential is more positive than that of the pair O2/H2O. 

Among the many possible photocatalysts, heterogeneous metal oxides are 

particularly appealing due to their resistance to photo-corrosion and long-term 
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stability. Metal oxides are often semiconductors that absorb solar photons with 

energy equal to or higher than their band gaps.  

It is also possible to produce hydrogen by photoelectrochemical processes, 

commonly referred as PEC water-splitting. This method consists of two 

semiconductor photocatalysts, separated by an electric circuit with a suitable 

electrolyte, which, upon photo-irradiation with enough energy, absorb the energy 

from the photons and generate charge separation at the valence and conduction 

bands and a photocurrent. This creates holes in the valence band, triggering the 

water oxidation at the surface of the photoanode, while photo-excited electrons in the 

conduction band facilitate the reduction of the H+ to H2 at the surface of the 

photocathode.[27] 

 

1.2.4 - Other inorganic compounds 

 

Hydrogen production can also be accomplished through pyrolysis and 

hydrolysis of metal hydrides. Lithium hydride (LiH), magnesium hydride (MgH2), 

lithium borohydride (LiBH4), sodium borohydride (NaBH4), lithium aluminium hydride 

(LiAlH4) and sodium aluminium hydride (NaBH4,) are frequently employed 

compounds chosen in this category. These compounds are often chosen as a more 

efficient way to storage hydrogen in an indirect way, once gaseous hydrogen has low 

energy density and presents serious dangers associated with flammability issues. [28] 

It is also possible to obtain hydrogen from hydrogen sulphide in twofold goal 

processes that combines hydrogen recovery with the abatement of a highly toxic 

pollutant gas, as H2S represents a serious risk factor in acute and chronic poisoning 

for workers. Thermal dissociation, catalytic cracking, multistep thermochemical 

methods photocatalytic splitting and plasmochemical methods at different stages of 

maturity are still under research for further improvement in converting H2S into H2. [29] 

 

1.3 - Application of fuel cells  
 

Presently, the emerging hydrogen economy demonstrates a very high 

potential of fuel cells to replace the internal combustion engine in vehicles and to 

supply power in stationary and portable devices due to their high-energy efficiency, 
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cleanness, and fuel flexibility. Together, hydrogen and fuel cells represent a radically 

different approach to energy conversion. 

As reported in the previous session, despite the numerous methods under 

development for hydrogen production, SRM is still the main source of hydrogen gas 

production. Due to the operational limitations of purification, the hydrogen gas 

obtained by this method has CO contamination in different proportions. 

The hydrogen-rich gas stream CO content in volume after WGS reaction 

ranges close to 0.5-1 % because of thermodynamic limitation of this reversible and 

moderately exothermic reaction. Due to the high sensitivity of platinum anode 

electrode in polymer electrolyte membrane fuel cells (PEMFC’s) towards very low 

CO levels, the CO concentration must be lowered to levels below 10 ppm (below 100 

ppm for improved tolerance alloy anodes). An effective step for elimination of CO 

traces from the hydrogen-rich reformate gas stream after WGS unit is the PROX 

reaction. 

The development of new portable electronic devices is involved in the growing 

interest in FC technology to replace or supplement batteries in portable applications. 

FC’s generate electrical power in an environmentally clean and secure way with very 

high energy densities (four to six times larger when compared to Li-ion batteries - 

fuel cells have been shown to provide 530Wh/kg compared to 44 Wh/kg for lithium 

ion batteries). However, while the weight of fuel cell systems offers a distinct 

advantage the current costs are not in their favour. While a Li-ion battery system will 

generally cost around 1.20 USD/Wh, fuel cell systems cost around 5 USD/Wh, 

putting them still at a significant disadvantage. [30] 

However they have limited power capacity and cannot respond to the sudden 

changes in the load that may occur in some applications. The design of hybrid FC-

battery systems as well as the development of strategy for management of the 

energy may mitigate among others the problem of oversizing of the FC associated 

with the changes in the load. For these hybrid systems, PEMFC’s have been 

considered to enhance the energy density of batteries. However, some challenges 

remain relevant, such as H2 storage and water and thermal management, and are 

still unresolved for PEMFC’s. [31] 

In a PEMFC, the fuel, which is purified hydrogen and the oxidant (air or 

oxygen) are supplied to the FC passing through a series of plates, which have the 

purpose to diffuse them in the most uniform way to the two membrane sides. A 
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PEMFC transforms the chemical energy liberated during the electrochemical 

reaction of hydrogen and oxygen to electrical or thermal energy, as indicated in 

Figure 2. A stream of hydrogen is delivered to the anode side of the FC and at the 

anode side, it is catalytically split into protons and electrons, conducting the oxidation 

reaction. These protons permeate through the polymer electrolyte membrane to the 

cathode side. The electrons travel along an external load circuit to the cathode side 

of the FC, thus creating the current output. In the meantime, a flow of oxygen is 

delivered to the cathode side, where oxygen molecules are reduced and, 

subsequently, react with the protons permeating through the membrane to form 

water molecules and to liberate heat. 

 

 

Figure 2. Polymer electrolyte membrane fuel cell diagram showing the H2 oxidation at 

the anode and the O2 reduction at the cathode. Image adapted from [31]. 

 

So, as previously stated, most of the hydrogen produced worldwide comes 

from the SRM reaction, including the one used as fuel in FC’s and for this reason, 

PROX-CO is an important reaction for purification so that hydrogen reaches the 

required levels of purity. For PROX-CO reaction, whatever the catalyst employed, 
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the operating temperature optimal range for the maximal CO oxidation is quite 

narrow. Over this temperature range, the CO conversion decreases as the 

temperature increases because of oxygen consumption in the reaction of hydrogen 

oxidation. Moreover, the heat released in these two oxidation reactions favours the 

slightly endothermic reverse water-gas shift reaction (RWGS). 

Under the current perspectives of an upcoming hydrogen economy, fuel cells 

demonstrate a very high potential to replace, at least partially, internal combustion 

engines in vehicles and to supply power in stationary and portable devices due to 

their high-energy efficiency, cleanness, and fuel flexibility, and for this reason, the 

development of PROX-CO catalysts for this purpose is of utmost importance. 

 

1.4 - Development of PROX-CO catalysts 

 

Taking in account several published works, it is undeniable that searching for 

novel appropriate supports is of utmost importance to prepare well-performing 

catalysts for the WGS and PROX-CO reactions. [32-33] 

The first patent for the PROX catalyst was awarded to Engelhard in the 

1960’s, in which supported Pt catalysts were applied to purify the hydrogen for the 

application of ammonia synthesis. Later, various catalysts were developed, with the 

aim of selectively removing CO while minimizing H2 consumption in a wide operation 

temperature window (e.g., 80-180 °C) for application on PEMFC’s. [34] 

Usually PROX-CO catalyst are composed of the active metal NP’s and the 

support in which they are anchored to. According to the active metal used, the 

catalysts can be classified either into group VIII metal catalysts (mainly platinum 

group metal catalysts, denoted as PGM catalysts) or into group IB metal catalysts 

(Cu, Ag, and Au-based catalysts).[35] 

On the other hand, the support materials do have a great influence on the 

catalytic performance of the metals and can be classified into “non-reducible” and 

“reducible” supports categories, as it will be discussed in the next few sections. 

When the surface is non-reducible, the metallic NP’s are said to be unpromoted, as 

the atoms from the surface do not produce a synergic effect which might result into 

an improvement of PROX-CO performance. When the surface is reducible, there is a 
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synergistic effect that arises from the interaction between the surface atoms and the 

metallic particles. These class of catalysts materials are summarized in Figure 3.  

The support may take part directly in the reaction or govern catalytic 

performance by affecting shape and gold particle size, gold-support interface 

interaction, and stabilization of electronic-structural properties of gold. Shekhar et al 

accomplished kinetic and operando FTIR measurements of the WGS reaction over 

gold nanoparticles of different average size supported on model Al2O3 and TiO2 and 

sustained further evidence for a direct role of the support in water activation, while 

adsorption of CO and formation of CO2 and H2 took place over gold NP`s. [36] 

 

 

Figure 3. Conceptual illustration of catalytic performances of different classes of 

catalysts for PROX-CO reaction. For clarity, only the maximum CO conversion and 

reaction temperature window are shown, while the selectivity is not shown here. 

Image adapted from [35]. 

 

Due to their high CO conversion at lower temperatures when compared to 

other classes of catalyst, resistance towards deactivation by water or CO, thermal 

stability preventing sintering at low temperatures, and absence of pyrophoricity, gold 

based catalysts were the one chosen to be studied in this work. [35] As previously 
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stated, isolated Au NP’s are weakly effective to promote PROX-CO, but when 

supported on oxide supports, the systems if functional as a catalyst.  

Gold on non-reducible supports, such as SiO2, Al2O3, or MgO, exhibited lower 

activity in contrast to deposited gold on reducible materials, such as CeO2-x, MnO1+x, 

CuO1-x, CoO1+x or FeO1+x, that exhibited a significantly enhanced CO oxidation. A 

similar support effect was observed in the case of gold-catalysed WGS reaction. 

Andreeva et al. were the first to measure and compare WGS activity of gold 

nanoparticles supported on Fe2O3 and Al2O3. Despite the similarity of gold particle 

size on both supports (3.5 nm), a very low activity of Au/Al2O3 was observed, 

indicating a decisive role of support nature. [37] 

Sandoval et al. have studied Au/TiO2, Au/CeO2, Au/Al2O3, and Au/SiO2 and 

found out a much higher WGS activity of gold nanoparticles on reducible supports 

(such as CeO2) than on Al2O3 and SiO2.[38] Lenite et al. evaluated gold supported on 

CeO2 and (α-γ)/Al2O3 prepared by the method of solution combustion synthesis and 

observed that the Al2O3-supported gold catalysts attained only about 30% CO 

conversion. [39] In this case, the authors pointed out an indirect role of the support 

allowing penetration of small gold particles (2-3 nm) into pores of 4 nm average size, 

thus negatively affecting access of CO and water. In a recently released review, 

Carter and Hutchings also underscored about the support effects in WGS gold 

catalysts using reducible and non-reducible materials. [40] Many gold-based catalysts 

for PROX-CO reaction reported in the literature are summarized in Table 1.  

 

1.4.1 - Non-reducible support 

 

Alumina as support 

 

Alumina is one of the most commonly applied commercial supports in 

heterogeneous catalysis due to its high surface area, thermal endurance, and 

mechanical strength. Although alumina is a non-reducible oxide and Au/Al2O3 

catalysts exhibit a poor CO oxidation activity, Quinet et al. have shown that, at low 

temperatures, small amounts of hydrogen in the reactant mixture are able to 

enhance CO oxidation rate, which paves the way for promising applications in 

PROX-CO. [41] The promotional effect of hydrogen was attributed to the formation of 
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very active peroxide species, –OOH on the surface of gold particles that can interact 

efficiently with CO to form CO2. 

Grisel and Nieuwenhuys have also examined the role of surface OH groups 

on the gold-catalysed PROX. [42] They performed one of the first studies to 

demonstrate Au/Al2O3 performance in PROX. Alumina modified by doping with MgO 

or MnO1+x, or both metal oxides, altered activity and selectivity in CO oxidation to 

CO2 positively. MgO-doped Al2O3 allowed the formation of smaller size Au particles, 

while MnO1+x improved CO oxidation activity by oxygen activation. Modified alumina 

microspheres by the addiction of MnO2 favoured CO oxidation over gold catalyst 

(size distribution from 2.5 to 7.5 nm).  

Lakshmanan et al. have studied the effect of various promoters (La2O3, CeO2, 

and MgO) on Au/Al2O3 performance for PROX. [43] In contrast to the aforementioned 

promotional role of MgO on gold dispersion and PROX activity, Au/MgO/Al2O3 was at 

least an active catalyst in this case, probably because of accelerated hydrogen 

oxidation below 100 °C [42] 

The catalytic activity of the best-performing Au/La2O3/Al2O3 catalyst was 

tested after different reduction pre-treatments, implying that the abundance of 

negatively charged gold species is beneficial for CO oxidation. A detailed study has 

been carried out to clarify the reduction treatment effect on Au/La2O3/Al2O3 catalytic 

behaviour in PROX. Variation of the CO conversion was related to differences in 

average gold particle size and oxidation state of the gold species due to different 

reduction methods. [44] 

The lanthanum-doped Al2O3 support was prepared by incipient wetness 

impregnation method of γ-Al2O3 with a La(NO3)3 solution followed by calcination at 

850 °C for 4 h. The average size of the gold particles varied slightly based on the 

support (2.18 ± 1.6 nm for Au/ γ-Al2O3; 1.8 ± 0.4 nm for Au/LaAlO3) [45] 100 % CO 

conversion was achieved at 30 °C, and the conversion remained stable in the 

temperature range 30-70 °C in the case of the Au/γ-Al2O3 (80 % at 100 °C) catalyst 

[45]. In comparison, with the Au/LaAl2O3 catalyst, the CO conversion reached 100 % 

at 50 °C and remained stable in the temperature range 30-100 °C. However, long-

term stability in the presence of CO2 was not achieved with the latter catalyst [45] The 

specific rate of H2 oxidation during CO-PROX decreased because of doping with 

lanthanum. 
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Table 1. List of Au-based PROX-CO catalyst summarized by Carter and Hutchings. 

Data extracted from [40]. 

Catalyst DAu (nm) 

Feed composition (mol%; bal. He/N2) 
Tmax 

(°C) 

CO 

conversion 

at Tmax (%) 
CO O2 H2 CO2 H2O 

Au/Fe2O3 6.7 0.9 0.9 50 22 4.7 80 >99.5 

Au/Fe2O3 15-25 1.03 1.37 65.4 24 3 80 99.8 

Au/Al2O3 2.8 ± 1.6 1 1 40 20 10 30-60 100 

Au/La-Al2O3 1.8 ± 0.4 1 1 40 20 10 50-70 100 

Au/TiO2 5 1 1 50 15 3 40-60 100 

Au/MgO/TiO2 2.7 1.3 1.3 65.3 - - 50-80 100 

Au/FeOx/TiO2 4 1.3 1.3 65.3 - - 50-80 100 

Au/CuO/TiO2 2.5 1.3 1.3 65.3 - - 50-100 100 

Au/MnOx/MgO/ Al2O3 2.7 ± 1 2 1 4 - - 50 95 

Au/MnOx 2.8 1 1 98 - - 50 100 

Au/FeOx 3 1 2 40 2 2.6 50 100 

Au/ZnO 4.9 1 1 40 - - 50-70 100 

Au/Fe-SiO2 0.5-6 0.5 1 50 - - 125 100 

Au/Ti-SBA15 4 2.3 10 10 - - 50 100 

Au-Pt/Zeolite 51 1 1 40 10 10 190 99 

Au-Cu/SBA15 3.0 1 1 78 18 - 23 100 

Au/ZrO2 5 1 1 60 - - 45 100 

Au-K/C 5 2 1.4 70 - - 120 100 

Au/MnO2/TiO2 2.5 1.3 1.3 65.3 - - 80 98 

Au/MgO/Al2O3 <5 1 1.6 60 - - 90 80 

Au/CoOx/TiO2 2.5 1.3 1.3 65.3 - - 65 100 

Au/ZnO/TiO2 <5 1.3 1.3 65.3 - - 70 100 

Au/CuO <5 1 2 10 - 2 100 100 

Au/CuO/ZnO 5 1 1 40 - - 80 100 

Au/TiO2-coated SiO2 6 1 1 40 - - 140 100 

Nanoporous Au 3-10 1 1 50 10 10 80 100 
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The best performance was demonstrated by a catalyst of 4-nm average gold 

particle size that was not the smallest size. This finding revealed that decreasing the 

gold particle size is not the only reason to increase the rate of CO conversion, but 

also undesirable hydrogen oxidation could be affected, and a proper modification of 

alumina could solve the problem with selectivity. 

Cerium-modified alumina supports for gold nano-particles were synthesized 

by mixing cerium acetate with aluminium isopropoxide using a typical sol–gel 

method. Analysis of the resulting catalyst revealed that ceria was either in the form of 

small crystallites or in a mixed structure with aluminium. The Tmax value shifted to 

lower temperature because of modification of alumina with ceria, however, the CO2 

selectivity did not vary significantly at 80 °C. An Au/Ce-10Al catalyst was 

detrimentally affected by CO2, whereas the Au/Al2O3 catalyst was resistant to CO2 

effects. 

 

1.4.2 - Reducible supports  

 

MnO2 and Co3O4 as support 

 

The Au/MnOx (Au/Mn = 1/50) catalyst showed quite good performance with 

full conversion of CO at 50 °C in a feed stream containing 1 % CO and 1 % O2 in H2. 

Increasing the reaction temperature above 50 °C lowered the CO conversion from 

100 % to lower values because of competition coming from the reaction of H2 

oxidation by O2. The reversible transformation between the three forms that the ionic 

manganese oxides exhibit, MnO, Mn3O4, and Mn2O3, depends on the O2 

concentration and temperature, which may plausibly account for the stability of Au on 

Mn oxides in H2 atmosphere. Au (3 nm)/MnO2 exhibited full conversion at 25 °C. In 

another study, Au (14.6 nm)/MnO2 was found to promote a 90 % CO conversion at 

130 °C in H2O-free and CO2-free conditions but was struck with activity loss in the 

presence of CO2. [46] 

The Au (5 nm)/Co3O4 (32 nm) catalyst produced a maximum CO conversion 

of 75 % and CO2 selectivity of 45 % at 100 °C. Inclusion of ceria into this system 

lowered the sintering degree of the cobalt oxide support. Transformation of Co3O4 

into CoO and detrimental effects due to CO2 during PROX-CO were reported. [47] 
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Transition metal carbides as supports 

It has been reported that transition metal carbides, such as TiC, Mo2C, WC, 

VC, etc., present similar properties quite like the platinum group metals, even though 

their application as a support in catalytical systems still find limitation when 

compared with metal oxides. Posada-Pérez and co-workers first reported that Pt, Au, 

Pd, and Ni supported on Mo2C were about 4-8 times more active per superficial area 

than the commercial Cu/ZnO/Al2O3 catalyst at 120 °C.[48] for WGS and PROX-CO 

systems. Although the system presents the absence of oxygen vacancies as in non-

reducible supports, the study of the system shed more light onto the mechanistical 

characteristics of the system and it was concluded that the active site for the system 

to be of the same type as that of conventional Au/CeO2 catalysts, that is, the metal–

support interface. Ma and co-workers recently discovered that the phase and 

structure of the Mo2C was crucial to high catalytic activity. [49] 

In a paper reported from Posada-Pérez and co-workers, β-MoCx was used as 

the support, but when they used instead α-MoC, the activity of the supported Au 

catalyst was dramatically improved for WGS reaction.[48] The origin of the high 

catalytic activity was concluded to be the facile activation of water molecules, which 

was observed at temperatures as low as 303 K and attributed to the presence of 

“carbon vacancies”, making MoCx a non-stoichiometric compound, such as MoO3 

and CeO2. 

Dong et al. showed that it was possible to synthesize Au/MoCx after treatment 

of Au/MoO3 under a flux of CH4/H2 at 700 °C and not only demonstrated that the 

Au/MoCx catalyst could undergo reversible aggregation-redistribution cycles upon 

reversible calcination-carbonization conditions, but also revealed that Au/MoCx 

exhibited high activity for the WGS at low temperature.[50] Despite the fact that it lost 

20% of its original activity in the first 4 h on-stream at 180 °C in a feed containing 3% 

CO and 10% H2O, it was shown that the catalyst could be totally regenerated in a 

20% CH4/H2 flux at 600 °C, which hinders it for a full-fledged application in fuel cell 

systems due to the necessary temperature to recover it. 

 

TiO2 as support 

 

Catalysts of gold supported over titania generally exhibit inferior performance 

in the CO-PROX reaction than those employing other oxides such as aluminium 
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oxide, iron oxide, and zinc oxide regarding CO conversion and CO2 selectivity. Even 

though full CO conversion has been achieved with Au (5 nm)/TiO2 catalysts, the 

selectivity toward CO2 fell rapidly with temperature. [51] 

Aiming to boost PROX-CO performance of catalysts gold supported on TiO2, 

many strategies have been approached. The elementary technique involves 

modification of the titania surface with other metal oxides such as FeO, CuO, CeO2, 

Co3O4, ZnO, MnO2, and MgO.  

Other possible chemical modifications that might be undertaken include 

supporting titania on silica or even SBA-15, a variety of mesoporous silicate with a 

hexagonal array of pores, before loading them with gold. Gold loaded supports 

generated by loading a vast range of gold amounts on amorphous FeOx over TiO2 by 

an incipient wet impregnation method were evaluated as catalysts for PROX-CO. A 

limited amount of iron oxide loading (1:9 mol ratio) resulted in full CO conversion at 

80 °C (80 % CO conversion for Au/TiO2) and a slight increase in CO2 selectivity was 

also observed (from 40 to 48 %).[52] The complete CO conversion was attributed to 

the formation of smaller gold particles (2.5 nm) due to the presence of the FeOx layer 

over TiO2. 

It has also been demonstrated that the CO conversion was dramatically 

improved with the use of copper oxide supported on titania as supports for gold 

catalysts.[53] In contrast with Au/TiO2, the vast majority of the CuOx-promoted 

catalysts exhibited stable and steady CO conversion values after reaching a 

maximum in the temperature range 50-100 °C. Particularly, the amount of oxygen 

consumed by H2 decreased with increasing Cu content, accounting for the full CO 

conversion achieved over the Au (2.5 nm)/CuOx-TiO2 system. One of the systems, 

the Au/CuOx-TiO2 catalyst (4.8 - 95.2 mol ratio) gave rise to full CO conversion with a 

CO2 selectivity of 68 % at 80 °C. The performance of the same system, Au/CuOx–

TiO2 (4.8-95.2 mol ratio) catalyst was also found to be very stable during the stability 

test (without addition of H2O and CO2) and no gold sintering was noticed for the 

spent sample after the stability test. [54]  

Deposition of amorphous ceria on the surface of titania by an incipient 

wetness impregnation technique (Au/CeO2-TiO2, 10:90 mol ratio) improved neither 

the CO conversion nor the CO2 selectivity significantly. Further addition of 0.5 mol% 

CuO resulted in significant enhancement of both the CO conversion (80 → 100 %) 

and the CO2 selectivity (40 → 55 %). While the addition of other promoters that were 
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effective as additives to other PROX-CO supports, such as oxides of Co and La 

were not effective, MgO-promoted Au/TiO2 appeared to be beneficial for CO 

conversion. However, addition of the MgO promoter did not improve CO2 selectivity. 

Rather than forming a thin layer on the surface of TiO2, MgO was present on the 

TiO2 surface in the form of thin isolated sparse islands without an explicit shape, 

which also occurred in the form of Mg(OH)2.[55] 

Instead of the traditional deposition-precipitation method commonly used to 

deposit Au NP’s over the oxide surfaces, a photo-deposition method was employed 

and led to the production of relatively smaller gold particles that covered the surface 

of titania, even though for both techniques, the gold size distributions were in the 

range 1-5 nm. The increase in the number of smaller gold particles did not improve 

the catalytic performance significantly. Chen et al. altered the cobalt loading on the 

TiO2 support and obtained the optimal results using Au/Co3O4/TiO2 with a Co/Ti 

molar ratio of 5/95. Amorphous Co3O4 and ZnO supported on TiO2 stabilized the 

small gold particles and suppressed H2 oxidation, while the addition of MnO2 on TiO2 

improved the CO2 selectivity without jeopardizing CO conversion values.[56]  

 

CeO2 as support 

 

The variation of the redox properties of ceria-based oxides with the size, 

composition, and morphology of the oxides has prompted the preparation of 

supported gold nanoparticles on pure ceria and various ceria-based mixed oxides.[57] 

As a means of improving and controlling the catalytic properties of ceria, 

instead of utilizing the nanoparticles of pure ceria (A, Figure 4), cerium oxide has 

been dispersed on other oxide surfaces (such as TiO2 and SiO2) for use as a support 

for gold-based catalysts (B, Figure 4). Further improvements of such gold catalysts 

supported on dispersed ceria have also been demonstrated in the presence of 

promoters (D, Figure 4). Doping foreign cations into the ceria lattice has improved 

the redox properties of ceria because of the structural and electronic changes 

induced by the dopants (E, Figure 4). The various dopants include Mn, Fe, Co, Cu, 

Zn, Ti, and Zr. Alternatively, cerium oxide has been used after forming nano-

composite oxides with other oxides such as cobalt oxide (C, Figure 4). 
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Figure 4. Various approaches for the synthesis of gold supported on ceria-based 

oxides. Image adapted from [58].  

Doping ceria with small amounts of cobalt (II) oxide was shown to improve the 

PROX oxidation activity in the presence of CO2 and H2O in the gas stream of a 

series of catalysts based on Au/CeO2/Al2O3. Alongside with the promotional effect of 

Co (II) ions, some important questions have been raised that allow clarifying the 

PROX reaction, in particular, the support and gold nanoparticle function in hydrogen 

oxidation, and existence of a support-dependent hydrogen effect on CO oxidation. It 

was suggested that hydrogen oxidation could be used as a criterion for selection of 

suitable catalytic formulations for H2 clean-up reactions. [59] 

Samarium oxide was also employed as a ceria promoter and compared with 

alumina as a dopant. It was reported that the nature of the created oxygen vacancies 

depends on the dopant: Al2O3 creates vacancies in the bulk ceria, while the SmOx 

sample presented vacancies only located around SmOx, and the ceria structure 

seems to be better ordered than the Al2O3 doped one. In addition, the concentration 

of Ce was higher when SmOx was used as a promoter and the amount of formate 

species was also superior in a parallel way with the activity in the WGS reaction. 

They proposed a higher concentration of oxygen vacancies sites on the surface of 

the SmOx doped catalyst, which facilitates the dissociation of water and enhances 

the activity. 

An Au-mixed lanthanum/cerium oxide catalyst was proposed by Wang et al. 

as promising systems for the WGS reaction. The authors’ attention was focused on 

the impact of La addition on the structure and reducibility of CeO2 and on the 

reactivity of Au-based LaCeO2 mixed oxides in the WGS reaction. Both structure and 

reducibility could be tailored by adjusting the LaOx content and the reducibility of the 



48 
 

Au-free sample was improved by the addition of LaOx, with 25 % of atomic doping 

being the optimum loading to achieve the highest reducibility and therefore the best 

performance in the WGS reaction. [60] 

The addition of Zr to Ce is one of the most effective modifications to Au/CeO2 

catalytical systems, but there are numerous other elements that have been 

employed to make a mixed metal oxide as a support for the WGS and PrOX-CO 

reaction. In this list are included Al, Fe, rare earth metals (La, Sm, Gd, Yb, Y, Ga), 

and Sn. Reina et al. reported the activity and stability of iron-promoted 

Au/CeO2/Al2O3 for the WGS reaction at low temperature. Although comparisons with 

similar supported gold catalysts were not made, the catalyst longstanding stability 

was auspicious, despite the fact it lost circa 17% of its initial activity in the first 60 h 

of operation when exposed to a realistic reformate stream (9% CO, 11% CO2, 30% 

H2O, 50% H2), it maintained the same value of conversion over the course of the 

next 80 h on-stream. It should be highlighted that the operation temperature was of 

330 °C, which is much higher than typical temperatures reported for similar catalysts. 

[61] 

Recently, there has been a bursting interest for a novel class of 

heterogeneous catalysts that emerged: atomically-dispersed supported metal 

catalysts. These have been reported to catalyse a few reactions, including CO 

oxidation and WGS reaction, and have received some focus, with highlight to their 

efficient use of precious metal, making use of smaller amounts of metal to achieve 

higher catalytical activities. Flytzani-Stephanopoulos and co-workers were the first to 

fully describe the activity of atomically-dispersed Au on several reducible oxide 

supports. In a recent published overview, Flytzani-Stephanopoulos summarised the 

evidence for the active site of Au catalysts being atomically-dispersed Au clusters in 

the LTS reaction. By employing the method of gold cyanidation, in which the element 

in its metallic form is converted to a water-soluble coordination complex, Au(CN)2
-, 

the removal of metallic Au nanoparticles was achieved (over 90% of gold loading 

was removed), leaving only cationic, atomically-dispersed Au on the support. 

Catalysts synthesized by different techniques (DP and UV-assisted DP) and with 

different gold weight contents exhibited almost the same activation energy in the 

Arrhenius plots, which strongly suggests a common active site in all of them, which 

was thought to be  Au–Ox(OH)-S site, where S is the support. [62] 
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It is even possible to modify the surface of non-reducible oxides, so that they 

become active for PrOX-CO and WGS. Li and co-workers recently reported that it 

was possible to create oxygen vacancies on the surface of ZrO2 by etching oxygen 

atoms under a hydrogen flux.[63] When gold was supported on this modified version 

of ZrO2-x, it was active for the LTS reaction. Normally, Au/ZrO2 exhibits poor WGS 

activity and does not event stand competition when compared to with catalysts 

supported on reducible metal oxides, however the Au/ZrO2-x exhibited remarkable 

activity of the WGS reaction. This etching technique was successfully applied to 

conventionally prepared TiO2 and TiO2 nanoribbons.[63] 

Recently, hydrogen-etching technology was applied as a successful approach 

to stabilize oxygen vacancies on the surface of TiO2 According to the synthesis 

procedure, white anatase was synthesized under calcination in an air flux, while 

thermal treatment at 550 °C for 4 hours under high-purity H2 atmosphere resulted in 

its conversion into black TiO2−x support.[64] Gold deposited on this black modified 

anatase sample exhibited a higher and more stable WGS activity than that of gold 

supported on traditional white titania, as shown by comparing temperature 

dependences of CO conversion, TOF’s, and CO conversion during a 30-h stability 

test at 600 °C. Numerous structural analysis techniques (EPR, Raman, H2-TPR, 

HRTEM, XRD, XPS) provided details on how this hydrogen-etching method 

contributed to increase the abundance of stable surface oxygen vacancies, which 

increased availability of more metallic gold species at the surface, more active 

catalytical sites for adsorption of CO molecules and, therefore, higher activity for 

WGS and PROX-CO reactions.  

The authors of this paper also applied this hydrogen-etching technology to 

prepare blue-black TiO2−x nanoribbons and came up to analogous conclusions for 

the effect of reduction treatment to increase the number of oxygen vacancies on the 

oxide surface. [63] 

 

1.4.3 - Unsupported gold catalysts  

 

In addition of the catalytical systems based on gold NP’s supported on a vast 

range of inorganic supports previously discussed, there has been the report of 
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catalytical systems based on unsupported gold nanoparticles successfully applied to 

PROX-CO reaction. 

Haruta et al. applied gold powder prepared from colloidal metal particles with 

diameters of circa 20 nm to CO oxidation as well as to H2 oxidation and reported that 

this unsupported gold catalyst was more active for H2 oxidation than for CO 

oxidation. [65]  

However, subsequentially Schaefer et al. revealed that a sample consisting of 

nanoporous gold (np-Au) surface can stabilize a large amount of atomic 

chemisorbed oxygen at a total coverage of ~0.8 monolayer at 120 °C and were able 

to promote CO conversion at 20 °C within 24 h. Full CO conversion was maintained 

for 100 min over these catalysts at 80 °C under realistic conditions (1 % CO, 1 % O2, 

50 % H2, 10 % CO2, 10 % H2O, space velocity = 240,000 mL h-1 gcat-1) with 100 % 

CO2 selectivity. [66] 

However, coarsening of the nanopores (which has been attributed to the fast 

diffusion of the gold atoms at the chemically active surface due of the exothermicity 

of CO oxidation) was the major drawback of these np-Au catalysts. The average 

particles diameter increased from an original value of 8 nm to circa 15 nm after 

reaction at 20 °C and increased to over 40 nm after reaction at 80 °C.  

In a completely novel approach to synthesize a PROX-CO catalytical system, 

Kim et al. demonstrated that selective oxidation of CO in H2-rich gas mixtures can be 

accomplished by making use of a catalyst system composed of aqueous 

polyoxometalate (POM) solutions, such as [H3PMo12O40], and gold nanoparticles on 

carbon (0.8 wt% Au, dAu = 10.5 nm), where POM plays the role as an oxidizing agent 

for reaction of CO with liquid water and as an energy-storage agent for electrons and 

as an oxygen carrier to curtail the H2 oxidation. [67] 

The authors proposed that at first, water molecules are adsorbed on gold 

surface and dissociates heterolytically forming a hydroxy group adsorbed on the 

metal surface and hydrogen atom that is subsequently oxidized by transfer of an 

electron into the metal and formation of a proton stabilized in liquid water. The 

electron is then transported through the metal to the reducible POM species present 

on the metal. Subsequently, CO molecules react with -OH groups adsorbed on the 

gold surface leading to the formation of a COOH intermediate that subsequently 

decomposed into CO2 and a proton.  
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The gold was neither sintered nor lost in solution by leaching, unlike other 

metals such as Pt and Ir. As CO molecules are not strongly chemisorbed on the Au 

surface, this allowed them to desorb easily as CO2, differently from what happened 

to other metals, such as Pt and Pd, that got poisoned and rapidly lost their catalytical 

activity. 

 At room temperature, CO could be oxidized to CO2, and in the presence of 

CO, the oxidation of H2 was inhibited. The authors observed 10-20 % loss of the 

initial catalytic activity after the initial use, but stable activity was maintained at levels 

of at least 50 % of the initial activity after exposure of the catalyst to 0.05 mol L-1 

POM solution for 3 months. 

Figure 5. Reaction schematic for CO oxidation using aqueous polyoxometalate 

([H3PMo12O40]) solutions over gold catalysts. The POM reduced by 1 electron is 

represented by showing 1 Mo atom in the distinct blue color of the reduced 

compound, the other Mo centers are yellow, O turquoise, P gray. Image adapted from 

[67].  

 

The investigation revealed the sensitivity of the catalyst to different pre-

treatments and identified sub-nanometre Au(0) nanoparticles as the active species. 

The co-ordination number of Au throughout the reaction did not change and while 

Auδ+ was also stable during the reaction, it was found that Au(III) species were short-

lived under the reaction conditions. 
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1.5 - Deposition methods for deposition of Au NP’s over 

oxide surfaces 

Depositing Au NP’s over metal oxide nanoparticles by impregnation methods 

is not as easy as it is for other metals, such as Pd and Pt. Nanometric gold tend to 

show low melting point and to exhibit lower affinity for metal oxides, which makes the 

process more difficult. Furthermore, Au NP’s are usually obtained from 

tetrachloroauric acid, HAuCl4, which is the most widely available gold precursor.  

During the annealing process in order to eventually obtain the metallic NP’s, 

remaining chloride ions from the precursor are known to form bridge bonds between 

gold atoms, which might lead to a process of particle sintering and loss of catalytical 

activity.  

As summarized in Table 2, there are in the literature four categories of 

methodologies to be carried out in order to obtain Au NP’s with diameter below 10 

nm over a range of different supports, i.e. carbonaceous materials, single crystals, or 

acidic or basic oxides. They are described in the following sections. 

 

1.5.1 - Preparation of mixed precursors of Au and the metal 

component of the supports 

 

The first category consists on the synthesis of well-mixed gold precursors (i.e. 

hydroxide, oxide or the element per se in its metallic form) together with the 

component of the support by different techniques, such as coprecipitation, 

amorphous alloying or co-sputtering. The mixed samples are annealed in air at 

temperatures above 550 K, transforming Au precursors into metallic nanoparticles 

strongly anchored to crystalline metal oxides. This technique can be applied to salts 

of metals in the first row of the transition series in groups 4–12 and to Al and Mg, 

which can be precipitated as hydroxides or hydrated oxides. [68] 

Among the vast number of techniques available, coprecipitation is the most 

convenient and simplest of the preparation methods. It consists of mixing up an 

aqueous solution of HAuCl4 and water-soluble metals salts, in preference nitrates, 

pouring them together into an alkaline aqueous solution under stirring for a few 

minutes.  



53 
 

 

Table 2. Preparation Techniques for Nanoparticulate Gold Catalysts. Adapted from 

[68]. 

 Preparation technique Compatible Support Material 

Strong 

interaction of Au 

precursors with 

support materials 

deposition-precipitation 

(HAuCl4 in aqueous 

solution) 

Mg(OH)2, Al2O3, TiO2, Fe2O3, 

Co3O4, CeO2 

liquid-phase grafting 

(organogold complex in 

organic solvent) 

TiO2, MnO, Fe2O3 

gas-phase grafting 

(organogold complex in 

vapour phase) 

Most of them, including SiO2, 

Al2O3 

Mixing colloidal 

Au with support 

materials 

Colloid mixing CM Activated C, TiO2 

Preparation of 

mixed precursors 

of Au and the 

metal component 

of the supports 

Coprecipitation of 

hydroxides or carbonates 

CP 

Be(OH)2, SnO2, Mn2O3, Fe2O3, 

Co3O4 

Amorphous alloy formation ZrO2 

Co-sputtering of oxide in 

presence of O2 
Co3O4 

Model catalyst 
Vacuum deposition (at low 

temperature) 

Defects are the site for 

deposition – MgO, SiO2, TiO2 

 

Gold hydroxide, which seems to be the intermediate gold species prior to the 

formation of gold nanoparticles, is an amphoteric compound whose solubility 

increases at high values of pH due to the tendency of forming Au(OH)4
-, a water-

soluble species, which justifies why the most efficient range for the precipitation is 7–

10 in this technique. [69] 

In order to increase the pH, common inorganic bases, such as NaOH, KOH or 

NH4OH, or even basic salts, for example, Na2CO3 or Li2CO3. When these 

compounds are used, pH inevitably changes during the process of precipitation 
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which usually leads to broad NP’s size distribution and uneven distribution of metallic 

particles over the oxide surface. Nevertheless, it has been recently reported that 

when homogeneous precipitation is performed with slow-decomposing reagents, 

such as urea or hexamethylenetetramine (urotropine), after ageing for some hours, 

higher crystallinity, smaller size, higher specific surface area and higher average 

pore diameter Au NP’s might be obtained. 

Aqueous solutions for coprecipitation should be warmed to a temperature in 

the range of 320-360K to promote the exchange of chloride from the AuCl4- ion with 

OH- ions. Most authors indicate that after co-precipitation the solid is supposed to be 

washed until no chloride is detected in the washing solution (i.e., detection reaction 

with silver nitrate).[68] 

 

1.5.2 - Mixing colloidal Au with support materials 

 

In the second category, monodisperse gold nanoparticles colloids are prior 

synthesized via classical Au NP’s synthetical methods, in which HAuCl4 is reduced 

yielding metallic gold nanoparticles, which are stabilized by the addition of capping 

agents, in order to prevent them to flock together.  Several of these agents have 

already been reported by literature, such as citrate ion (in the classical Turkevich 

methodology developed in the 1950’s), polyvinylpyrrolidone (PVP), 

tetrakis(hydroxymethyl)phosphonium chloride (THPC) or cetyltrimethylammonium 

bromide (CTAB). [68] 

These sols made up of these capped Au NP’s are subsequently are put 

together with the target oxide particles aimed to be decorated with gold 

nanoparticles, however substrates surfaces are usually not fully compatible for Au 

NP’s deposition. For this reason, the oxide surfaces must be previously 

functionalized with organosilanes linkers, such as MPTMS, APTMS, APTES. One 

part of these linkers connects to the oxide surface via covalent silicon-oxygen bonds, 

while at the other extremity of the molecule, a polar moiety, such as an amino or a 

thiol group, enables the anchoring of the gold nanoparticles.  

The main advantage of this technique lies principally in the fact that it is suited 

regardless of the type of support employed and the feasible control on particle 

size/distribution, obtaining normally metal catalyst with good dispersion. 
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1.5.3 - Deposition or adsorption of Au compounds into the 

oxide surface 

 

The third category relies on the deposition or adsorption of Au compounds 

onto the oxide surface, which is previously synthesized in the desired morphology in 

the final catalyst composition. This category might be based on the deposition-

precipitation of gold (III) hydroxide, liquid-phase grafting or even gas-phase grafting 

of an organogold complex, such as dimethyl(acetylacetonate) gold (III), onto the 

desired surface.  

The DP method is the easiest to handle and the one used for making Au 

catalysts in industrial scale. In the DP method, a metal precursor is dissolved into an 

aqueous suspension of the support and subsequently precipitated as a hydroxide by 

increasing the solution pH. The support surface plays the role as a nucleating agent 

and accounts for the key factor of this preparation method that is the prevention of 

precipitation away from the support surface. Nechayev et al reported that Au 

adsorption on alumina, a frequently chosen support oxide, is maximized at pH values 

close to the isoelectric point, IEPalumina = 8, that is, at a pH at which the number of 

neutral OH is maximized. [70] 

Machesky et al has already reported that the deposition extent is not only 

dependent on the number of hydroxyl groups on the surface, but also on the degree 

of hydroxylation of the ionic gold species. He and collaborators accounted that the 

deposition-precipitation efficiency of hydroxochloro complexes on goethite (FeOOH, 

IEP = 8.1) to form gold metallic NP’s increases as pH is increased from 4 to 7, which 

is the opposite trend behaviour expected for anion adsorption on positively charged 

oxide surfaces. This backward tendency is attributed to a shift in Au composition 

distribution as the pH is increased from 4 to 7, decreasing the fraction of gold 

present as AuCl4- and increasing the amount as AuCl(OH)3
- and AuCl2(OH)2

-. It 

seems likely that the more hydroxyl groups are present in the hydroxochloro gold 

complexes ions in solution, the higher the interaction between the hydroxyl groups 

on the surface and the gold precursor ions, probably by a mechanism that involves 

the formation of crossed hydrogen bonds followed by chemisorption.  [71] 
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All this in account leads to the conclusion that DP technique achieves its best 

performance in the 7-10 pH range, the same as in the coprecipitation technique. 

Inside this range, several oxide isoelectric points are found, such as for CeO2, NiO, 

ZrO2.  

If low values of pH are used, most of the hydroxyl groups are protonated, 

preventing the approximation of hydroxochloro gold complexes ions and, 

furthermore, gold will be entirely found as AuCl4-, which was discovered to be not the 

best species to interact with the surface hydroxyl groups. Therefore, very-low 

isoelectric point oxides, such as V2O5 (IEP =1.5), SiO2 (IEP = 2) or MnO2 (IEP = 2.5) 

are not suited for this technique. Another support which is totally incompatible for DP 

is carbon, as there are no hydroxyl groups on the surface of activated carbon 

supports. 

Inside this category, another technique named liquid-phase grafting is also 

inserted. By this method, a freshly precipitated metal hydroxide is impregnated with 

an organic solution of a gold precursor, such as Au(PPh3)(NO3) in acetone. Vacuum 

drying at room temperature and calcination in air followed leading to the production 

of the gold catalyst. Differences between similar catalytical systems have been 

attributed mainly to changes of the Au particle size distribution occurring during 

calcination. [72] 

And the third technique inside this category is the gas-phase grafting, which is 

highly efficient and does not suffer the limitation of DP preparation, i.e., it is suited to 

any kind of support and not limited to the preparation pH. By this technique, a gold 

coordination complex compound, such as methyl(acetylacetonate) gold (III), 

Me2Au(acac), is vaporized inside a vacuum chamber by heating and subsequently 

deposited over the support. For this specific case of oxide supports, the process of 

grafting the gold species on the surface involves ligand exchange processes 

between Me2Au(acac) and the surface hydroxyl groups, where the acetylacetonate 

group interact with the OH groups via hydrogen bonding. After the process of 

deposition, the samples are then annealed at T > 500 K to burn out the organic 

ligands attached to gold.   

A improved impregnation preparation by gas-phase grafting method reported 

by Wu et al. [73], named solvated metal atom impregnation (SMAI), involves the 

preparation of an air-sensitive and thermally-unstable bis(toluene) gold(0) complex 

solution at -196 °C under dynamic vacuum. The mean diameter of Au particles 
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prepared by SMAI, results in generally smaller particles than those prepared by 

conventional impregnation preparation methods. 

Due to the high toxicity and dangers commonly associated with gold 

organometallic complexes, alternatives which make use of metallic gold have been 

target to intense research recently. In the first one of these alternatives named 

magnetron sputtering, a high purity gold precursor sample can be attached to a 

magnetron source that is sputtered at an applied power of 14 W in an argon plasma. 

The magnetron sputtering process entails deposition of an atomic flux of Au atoms 

onto the support surface where the atoms nucleate and grow to form clusters 

nanoparticles due to the low interfacial binding energy between the gold and the 

support. When an insufficient concentration of deposited material is employed might 

lead to the undesired creation of a metallic thin-film or coating on the substrate. The 

sputtering process is said to be a line-of-sight technique, so only surfaces directly 

exposed to the metal flux will be prone to form metallic particles. Thereupon, 

catalysts are grown in “egg-shell”-like configurations on the outside of a support 

material and not within a support material or within the microporous structure. Gold 

loading and particle size are a function of deposition time, material volume, and the 

exposed surface area. This is why it is possible to deposit Au NP’s over hydroxyl-

free surfaces, such as active carbon or graphite. by gas-phase grafting. 

Another alternative to using gas-phase grafting without resorting to gold 

organometallic compounds is the technique named solvated metal atoms dispersion 

(SMAD). 

A bulk metal sample is vaporized under vacuum by resistive heating or 

electron beam exposition and subsequently deposited on the walls of a reactor 

cooled with liquid nitrogen at -196 °C in the presence of vapours of an organic 

solvent. Polar, organic solvents can be employed, such as acetone, ethanol, 

isopropanol, dimethyl sulfoxide (DMSO) and dimethylformamide (DMF). During the 

cooling process, the metal atoms get trapped inside the frozen matrix of the solvent 

and prevented to recombine to form again the bulk metal.  After the solidification step 

is complete, the frozen matrix is warmed until the solvent melts.  When this frozen 

metal/organic mixture is heated up, metallic NP’s nucleate and grow until a point a 

colloidal dispersion of the metal is then obtained. Colloid stability in this case is 

apparently achievable due to solvation effects of the solvent combined with 
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electronic effects of electron scavenging exerted by the solvent molecules to form 

negatively charged colloidal particles. 

This solution is allowed to get in contact with a previously treated catalyst 

support, whereupon metal atoms nucleate on the support surface. Variables such as 

the metal concentration, temperature and impregnation time, and also evaporation 

rate and method, solvent polarity and viscosity can be modulated, all of which 

influencing the final metal particle size and morphology. 

The major drawbacks in employing SMAD for making a supported Au catalyst 

are the need for metal vapor reactors and skilful experimentalists to operate them as 

it is not a routine experimental procedure, scarce reproducibility of the method due to 

the poor control in the evaporation of bulk metal and the fact that scaleup has not 

been demonstrated. [74] 

 

1.6 - The Mechanism of PROX-CO reaction on Promoted 

PGM Catalysts 

 

1.6.1 - Nonpromoted PGM catalysts 

 

For the PROX reaction occurring on the nonpromoted PGM catalysts, there is 

a process of competitive adsorption on the same active sites between the three 

molecule that compose the flux: O2, CO, and H2. At low temperatures, the surface is 

covered predominantly with adsorbed CO, whereas O2 and H2 can be adsorbed on 

the surface at high temperatures only when the desorption of CO gets more 

favourable as indicated in Figure 6.  

Therefore, the desorption of CO from the surface or the adsorption of O2 is 

proposed as the rate-determining step on the nonpromoted PGM catalysts. Taking in 

account much of the literature that has been published about PROX-CO reaction up 

to this day, the reaction over Al2O3-supported noble metal catalysts can be 

expressed by a simple power-law rate equation as indicated in Equation 4 [75-77] 

 

𝑟 = 𝐴 𝑒𝑥𝑝(−𝐸𝑎/𝑅𝑇) 𝑃𝐶𝑂
𝛼  𝑃𝑂2

𝛽
      (4) 
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in which, 𝑟 is the reaction rate; 𝐴 is the exponential factor; 𝐸𝑎 is the activation energy, 

and 𝛼 and 𝛽 are the reaction orders for CO and O2 pressures, respectively. 

The apparent activation energy is found to be in the range of 70−100 kJ/mol 

at temperatures up to 200 °C, increasing at higher temperatures and CO partial 

pressures. The reaction orders are found to be negative for the CO partial pressure 

and positive for the oxygen partial pressure, respectively. 

 

 

Figure 6. Different reaction pathways of PROX: (a) competitive 

Langmuir−Hinshelwood mechanism over nonpromoted PGM catalysts, (b) non-

competitive Langmuir−Hinshelwood mechanism over promoted PGM catalysts, and 

(c) Mars−van Krevelen mechanism over promoted PGM catalysts. Image adapted from 

[81].  

 

The kinetical data obtained for this kind of systems are consistent with a 

Langmuir−Hinshelwood reaction mechanism in the low-rate branch, on a surface 

predominantly covered with adsorbed CO. Such a competitive 
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Langmuir−Hinshelwood reaction mechanism predicts quite well the low activity of 

noble metals at low temperatures owing to the inhibiting effect of CO adlayer 

preventing the adsorption of O2 molecules. Increasing temperatures leads to the 

desorption of CO so that O2 can be adsorbed and activated on the surface of noble 

metals. 

 

1.6.2 - Promoted PGM catalysts 

 

For the case of MOx-promoted PGM catalysts, the widely accepted 

mechanism is the non-competitive Langmuir−Hinshelwood mechanism in which CO 

molecules that are adsorbed on the noble metal sites reacts with O atoms provided 

by MOx at the interface of the noble metal and MOx, as indicated in Figure 6. 

According to this mechanism, the adsorption and activation of O2 is no longer a rate-

determining step, as it has already been demonstrated by numerous kinetical studies 

for this type of system. [78] 

The kinetics of the PROX reaction over this kind of catalysts can also be 

expressed by the same power-law rate equation as shown in the previous section, 

but for this case 𝛽 = 0. 𝐸𝑎  was found to be smaller when compared to the 

nonpromoted PGM catalysts, which was in the range of 5-44 kJ/mol. The reaction 

order was found to be positive for CO partial pressures on IrFe catalyst produced by 

Kim and collaborators, implying that the poisonous effect of CO is eliminated by 

introducing promoters. [79] 

On the other hand, since MOx’s classified in the category of reducible oxides, 

such as CeO2 or FeO, are easily reduced at the reaction temperature with the aid of 

PGM’s located on their surface, the Mars-van Krevelen mechanism (MvK 

mechanism also named redox mechanism) has also been proposed to describe 

PROX-CO reaction. By this mechanism, which is depicted in Figure 6, surface lattice 

oxygen atoms directly take part in the CO oxidation reaction. For example, Huang 

and collaborators studied a catalyst based on an Ir/CeO2 system in which iridium 

nanoparticles particles are embedded in a ceria matrix and they concluded that the 

strong interaction with the ceria support could get surface Ce-O bonds weaker and 

facilitate the formation of more reducible oxygen. [80] 
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In general lines, by the MvK mechanism, CO molecules firstly interact with an 

oxygen atom on the ceria surface and extract it, creating an oxygen vacancy. The O2 

molecules in the gas-phase, subsequently adsorb on the vacancies via an interaction 

stablished between their electronic cloud and the electron-deficient sites in the 

vacancies, being the role of the O2 molecules to heal these vacancies.  

As the O2 molecules displace their electronic cloud to the vacancies, they 

become electron-deficient and activated prone to suffer nucleophilic attacks by other 

molecules. The activated O2 reacts with CO to form a carbonate ion adsorbed on the 

surface, which decomposes to release CO2 and heals the oxygen vacancy; thus, this 

way closing the catalytic cycle from CO to CO2, without direct participation of noble 

metals for providing CO adsorption sites. 

Despite the fact that evidences for the MvK mechanism have been provided 

for Au/MOx systems, a similar mechanism may be applicable to PGM/MOx catalysts, 

taking in account the fact that the chemical behaviour of many PGM NP’s resemble 

that of Au NP’s in promoting the reduction of MOx support at a significantly 

decreased temperature, which has been confirmed by Liu et al. that did indeed find 

out that Pt/ FeOx and Pd/FeOx catalysts also followed the noble metal-assisted 

Mars−van Krevelen mechanism in the PROX reaction. [81] 

Notwithstanding, it must be kept in mind that various types of mechanisms 

may work together for some catalyst systems, depending on the reaction 

temperature. For example, Wootsch suggested that four types of reaction 

mechanisms would be accouted simultaneously in Pt/CeZrOx catalysts: (i) a 

competitive Langmuir−Hinshelwood mechanism on the Pt particles; (ii) a non-

competitive Langmuir−Hinshelwood mechanism on the interface of Pt and CeZrOx, 

which was predominant at 90−130 °C; (iii) a hydrogen oxidation on the CeZrOx 

support; and (iv) a WGSR at high temperatures. [81]  

The interaction between the MOx surface and the noble metals NP’s not only 

provides reactive oxygen but also weakens the adsorption of CO on the noble metal 

sites due to the strong interaction between the noble metals and the MOx. For PtFe 

or IrFe catalysts, FTIR, TPR, and TPD data revealed that CO coverage and metal-

CO bond strength on Pt or Ir were significantly lowered by the addition of FeOx. 

However, it should not be concluded straight away that the weaker the CO 

adsorption, the higher the activity or selectivity. It was reported that the easier CO 

desorption from the niobia-promoted Pt catalyst resulted in lowering in the selectivity 
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for CO oxidation, as the CO molecules ended up desorbing too fast and accelerating 

instead the H2 oxidation reaction to H2O. 

For Rh/Nb2O5 catalyst, although the chemisorption ability toward CO changed 

drastically by the strong metal−support interactions induced by the calcination or 

reduction treatments, no direct correlation between the CO chemisorption ability and 

the activity and selectivity has been found. 

 

1.7 Size of Au NP’s and its impact on the PROX-CO 

performance 

 

The size of supported gold particles is one of the most pivotal factors in the 

synthesis of active catalysts for various reactions, including several of relevant 

industrial importance, such as the oxidation of alcohols, oxidation of carbon 

monoxide (CO), and various selective hydrogenation reactions (e.g. p-

chloronitrobenzene to p-chloroaniline or crotonaldehyde to crotyl alcohol). A general 

opinion exists that the abundance of small gold particles on the catalyst surface 

guarantees good performance. However, in the case of CO oxidation, one of the 

most studied gold-catalyzed reactions, Valden et al have observed an optimum gold 

particle size over Au/TiO2 ranging from 2.5 to 3.0 nm due to quantum size effects 

with respect to gold particle thickness. [82] 

Some of the above-commented works focused on stablishing a relationship 

between the performance for PROX-CO and gold particle size and it was claimed 

that the presence of very small gold particles contributed not only to increase the 

rates of CO conversion but also of unwanted hydrogen oxidation. [82]  

Very recently, Qiu et al. (2019) studied the relationship between catalytic 

behaviour in PROX-CO reaction, dispersion and oxidation states of active Au 

species in a series of Au/CeO2 catalysts with gold loading ranging within 0.05-1.2 

wt.%. Based on previous reports that had already came out to the understanding that 

the strong interaction between gold and ceria relies on an electron density transfer 

from Au to Ce, which ultimately leads to the partial oxidation of Au (creating Auδ+ 

species) and partial reduction of Ce(IV) into Ce(III) and has a strong effect on 

catalytic activity, they have reported a higher CO oxidation activity registered at a low 

temperature with an increase in gold amount up to 0.6 wt.%. A further increase in 
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gold content gave rise to lower CO conversion and selectivity, probably due to the 

competition with undesired side reactions. [83] 

As it was quite difficult to notice any particles in transmission microscopy 

images in low gold content samples, it was suggested that gold was present as 

highly dispersed particles. However, larger particles were verified at a higher gold 

loading, estimated to be about 4 nm in 0.6 wt.% Au/CeO2 and 10 nm in 1.2 wt.% 

Au/CeO2 samples, thus explaining diminished activity. XPS analysis and in situ 

DRIFTS measurements allowed them to explain the best performance of low loaded 

Au/CeO2 (0.3 wt.% Au) with stabilization of Auδ+ species by strong Au–support 

interaction.  

More information about particle size effects on gold-catalysed PROX reaction 

were gained by preparation of series of gold catalysts by Beck et al with well-defined 

gold nanocrystals of three different average sizes of about 2.1, 3.8, and 7.3 nm 

supported on CeO2, ZnO, and Al2O3. Regardless of the employed support type, 

samples with the smallest gold particles always exhibited the highest reaction rates 

and the increase in size caused a drop of gold activity over all three supports. Based 

on the correlation between particle diameter and reaction rate, it was suggested that 

in the case of Au/CeO2, the most active species were perimeter corner sites 

consisting of low coordinated gold in close contact with ceria. [81] 

According to previous literature report, corner and edge sites are the centers 

where hydrogen dissociation also proceeds. [84] In view of this, the finding of Beck et 

al. for higher selectivity over samples of smaller gold particle size implies that 

depending on the experimental conditions, the CO oxidation could dominate over 

dissociative hydrogen adsorption. These very last findings confirm the importance of 

highly dispersed gold nanoparticles (2–3 nm) for the CO oxidation activity during 

PROX. 

 

1.8 - The Roles of the OH Group in PROX-CO mechanism 

 

The PROX-CO mechanism is frequently assumed as the competitive reaction 

of CO and H2 with O2. Taking in account this bias, the presence of H2 will impose 

only the negative effect of decreasing the selectivity of CO oxidation. This is the 

actual case at high temperatures. However, the presence of H2 is observed to have 
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instead a remarkable improvement for the low-temperature CO oxidation reaction. 

Moreover, this effect is much more conspicuous when a reducible oxide, such as 

CeO2, or an alkali promoter is present. [81] 

It is visible that this promotional effect cannot be accounted thoroughly by the 

competitive reaction mode previously described. In order to provide a deeper 

understanding of the effect of H2 or H2O, both the kinetic and theoretical calculations 

have been conducted, and various reaction mechanisms have been proposed 

accordingly. 

Tanaka and collaborators investigated the intermediates dynamics for low 

temperature PROX-CO reaction over FeOx/Pt/TiO2 and Pt/carbons with in situ DRIFT 

technique and proposed that hydroxyl groups participate directly in the CO oxidation 

reaction through the following pathway: [81] 

 

𝐶𝑂(𝑎𝑑𝑠) +  𝑂𝐻− → 𝐻𝐶𝑂𝑂 +  𝑒− 

𝑂 + 𝑒− + 𝐻+ → 𝑂𝐻  

𝐻𝐶𝑂𝑂 + 𝑂𝐻 → 𝐶𝑂2 + 𝐻2𝑂  

 

According to this mechanism, the reaction between the formate ion (HCOO) 

and hydroxyl groups is regarded as the rate-determining step.  

 

Alkali metal cation effect on increasing OH concentration 

 

It is known from the literature that alkali metal doping in oxide supports is 

usually associated with enhancement of PROX-CO and can bring about up to a 10-

fold enhancement in the low temperature PROX activity. It has been suggested that 

the promotional role of alkali metals is also closely related to the increased 

concentration of OH groups neighbouring to the noble metals.  

According to these observations, the promotional role of alkali metals can be 

understood in two aspects: one is to stabilize the active Pt atoms, and the other is to 

provide the reactive OH species neighbouring to the Pt atoms. [81] 

 

Further remarks about OH group reactivity on PROX-CO catalysis  
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In the above examples, the OH groups are associated with the presence of 

promoters, either on the reducible oxide support or on the alkali metal-promoted 

oxides surfaces. Quite different from these examples, Fukuoka’s group found that Pt 

nanoparticles supported on FSM-type mesoporous silica were extremely active and 

selective for the PROX of CO; both the CO conversion and the CO2 selectivity were 

above 95% at 25−150 °C over Pt/FSM-16. By using an isotopic tracer technique in 

combination with the IR experiments, the authors concluded that the OH groups at 

the internal surface of mesoporous silica are reactive toward CO to produce CO2. [81] 

Such an unprecedented reactivity of OH groups on the silica surface appears 

to be closely related with the pore structure and pore size. Since only a very limited 

number of mesoporous silica possess such highly reactive OH groups, a more 

rational correlation between the reactivity of OH groups and the silica structure need 

to be established. 

The important roles of OH groups are also demonstrated in the effect of 

water. It is commonly observed that the addition of water to the reaction stream or 

the pre-treatment of catalyst with water vapor can lead to a large increase in the 

activity for a low-temperature PROX reaction. It could be suggested that such 

enhancement could be attributed to WGS that would promote the depletion of CO, 

but no evident WGS reaction was detected on most of the noble metal catalyst 

systems at relatively low reaction temperatures. Then this behaviour was then 

attributed to the formation of oxidant hydroxyl groups on the catalyst surface. 

The mechanism of the reactions then proceeds differently according to the 

support in which the noble metals NP’s have been anchored. 

 

1.9 - Mechanism of PROX-CO in the case of Au catalyst 

over a non-reducible oxide support 

 

Quinet et al. proposed that the mechanism of PROX-CO for the case of 

catalyst composed of Au NP’s over a non-reducible oxide support, more specifically 

Au/Al2O3, and concluded that the mechanism proceeds by two cycles: the CO 

oxidation cycle and the H2 oxidation cycle. The reactions continuously shift from H2 

oxidation to CO oxidation as the temperature decreases. [85] 



66 
 

The mechanistic details for the CO oxidation are as follows: molecularly 

adsorbed O2 is activated on Au by reaction with H2 to form OOH* and H* species; 

this mechanism does not require O2 dissociation on Au, and CO* reacts with OOH* 

to produce CO2 and OH*; OH* then reacts with CO* to produce CO2 and H*. The 

cycle is closed when the two H* species recombine into H2 or react with O2 

molecules to form new OOH* species. The direct oxidation path dominates over the 

indirect path in the water-promoted CO oxidation, whereas the indirect carboxyl path 

plays a role of great importance in the WGS and PROX simulations: 

 

𝐶𝑂∗ + 𝑂𝑂𝐻∗ →  𝐶𝑂2𝑂𝐻∗ 

𝐶𝑂2𝑂𝐻∗ → 𝐶𝑂2 + 𝑂𝐻∗ 

𝐶𝑂∗  +  𝑂𝐻∗ →  𝐶𝑂𝑂𝐻∗ 

𝐶𝑂𝑂𝐻∗  → 𝐶𝑂2 + 𝐻∗ 

𝐻∗ + 𝐻∗ → 𝐻2 

 

By this mechanism, the formate path was suggested to be unimportant for 

PROX-CO. Clearly, under the conditions that two H* species recombine to form H2, 

hydrogen acts as a “catalyst” for CO oxidation. 

The mechanistic details for the H2 oxidation are as follows: dissociative 

adsorption of H2 and adsorption of molecular O2 on gold generate OOH* species (for 

this step, an Eley-Rideal mechanism (O2* + H2 → OOH* + H*; or O2 + H* → OOH*) 

proceeds). [84] 

Next, reaction of a gold-carbonyl (Au-CO) species with the gold-

hydroperoxide (Au-OOH) may involve the formation of a bicarbonate ion (CO2OH*) 

with subsequent decomposition to a gold–hydroxyl (Au-OH) and CO2* adsorbed at 

the particle-support interface. After CO2 release, the second CO* involved in the 

cycle reacts with OH* on gold to form H* and CO2 via the hydroxycarbonyl 

intermediate decomposition. Associative desorption of H2 or reaction of H* with O2 

and desorption of CO2 close the catalytic cycle. 

 

1.10 - Mechanism of PROX-CO in the case of Au catalyst 

over a reducible oxide support 
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Given that the lattice oxygen of ceria can participate in the reaction (either 

without gold or enhanced by gold), the Mars-van Krevelen mechanism gains 

prominence, in addition to the gold perimeter effects. The reaction mechanism 

involving hydroperoxy intermediates has been proposed for CO-PROX over the 

Au/CeO2-Co3O4 catalyst, which may proceed via the reaction of Au-CO with 

hydroperoxy (OOH) intermediates.  

Initially, Au undergoes oxidation to form an effective ‘‘Au–oxide’’ (Auδ+) 

species, and H2 that is dissociatively adsorbed on gold which then recombines with 

the atomic oxygen in the Au–oxide to form –OOH and/or –OH species. CO adsorbed 

on the metallic Au sites then reacts with the highly active –OOH intermediate to form 

CO2, and simultaneously leaves behind a hydrogen atom (H*) and an oxygen 

vacancy in the Au–oxide. [84] 

An O2 molecule is subsequently adsorbed and activated on the oxygen 

vacancy, which then reacts with the remaining H* to form new –OOH species and 

initiates the CO oxidation process again. However, the pathway involving conversion 

and decomposition of carbonate-like species to CO2, induced by water, cannot be 

excluded from the reaction mechanism and it is known that might take place 

simultaneously, as previously discussed.  

Evidence substantiating the predominant operation of the gold-assisted Mars–

van Krevelen mechanism has been vastly provided in the literature. [85] The low 

temperature CO-oxidation proceeds via inclusion of adsorbed CO into the Au-OH 

bond, resulting in formation of a hydroxycarbonyl, which undergoes oxidation to 

generate a bicarbonate, followed by decarboxylation into CO2 and Au-OH. Because 

the oxide support lattice-activated oxygen is available, the mechanism may differ 

from that of gold supported on inert oxides, where the oxygen supply originates 

mainly via direct dissociative adsorption on the gold particles. 

The rutile TiO2 (110) support energetically favoured H2 dissociation on the 

gold clusters, and the active sites for H2 dissociation were located at the corners and 

edges of the gold nanoparticle surface in the vicinity of the support, indicating that 

the catalytic activity of gold nanoparticles supported on the rutile TiO2 (110) surface 

is proportional to the length of the perimeter interface between the nanoparticle and 

the support. 

 



68 
 

1.11 - Mechanism of PROX-CO in the case of unpromoted 

Au catalyst  

 

Evaluation of the effect of molecular hydrogen on CO oxidation over an 

unsupported gold powder showed that a support-free pathway for the oxidation of 

CO was operative and is enhanced by the presence of hydrogen. However, this 

oxidation pathway was less efficient than the oxide-supported counterparts. The 

adsorbed hydroxyl groups are gradually and simultaneously transformed to gas-

phase water in the course of the reaction at increasing temperatures.  

The promotional effect of hydrogen is ascribed to highly oxidative HxOy 

intermediates formed from the interaction between H2 and O2 on the gold surface [86] 

Lyalin and Taketsugu demonstrated that the molecular and dissociative adsorption of 

H2 on Au n clusters containing n = 1, 2, 8, and 20 atoms depended on the cluster 

size, geometry structure, cluster flexibility, and the interaction with the support 

material. 

In the absence of hydroxyl groups on the support surface, the hydroxyl groups 

can be produced by the reaction between H2 and O2 via the following pathway: 

 

𝑂2 + 𝐻 → 𝐻𝑂2
∗ 

𝐻𝑂2
∗ → 𝑂∗ + 𝑂𝐻∗ 

 

This route is also called H-assisted O2 dissociation, which is with good 

experimental agreement with the chemical behaviour observed for the promotional 

effect of H2 on the CO oxidation over Ru@Pt core−shell NP’s systems. For some 

catalysts, the carboxyl (COOH) intermediates are proposed to play an important role 

in the PROX-CO reaction. Microkinetic studies of CO oxidation, the WGSR, and the 

PROX reaction on Pt and Rh catalysts reveal that the CO + O direct reaction in WGS 

and PROX reactions is slow, and additional CO-H2 coupling reactions, including the 

carboxyl and hydroxyl intermediates as well as H2O, are crucial steps for these 

processes.[81] 
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1.12 - Ceria support 

 

Cerium is a well-known light rare earth element. Elemental cerium was first 

discovered from a mineral named “cerite” by Jöns Jakob Berzelius and Wilhelm 

Hisinger in Sweden, and independently by Martin Heinrich Klaproth, a German 

chemist. Berzelius and Hisinger named it after the asteroid Ceres that had just been 

discovered a few years earlier. 

Despite their name, the rare earth elements are moderately abundant 

elements in the crust of the planet and occur in many minerals. Cerium is the 25th 

most abundant element on Earth and it is thus almost as abundant as copper in the 

Earth’s Crust, although it has not found as many applications as the latter. 

One of the most important cerium compounds and the most widely employed 

is cerium (IV) oxide, also known as ceria, a non-natural, ionic solid which crystallizes 

in a fluorite structure. The popularity has been increasing in recent years in several 

applications, and in some cases, ceria has been established as an irreplaceable 

component. It finds uses, such as in: a) automobile three-way catalytic (TWC) 

converters, where it catalyses redox reactions for gas exhaust pollutant purification 

promoting CO oxidation process, unburnt hydrocarbon oxidation and reduction of 

nitrogen oxides, NOx; b) glasses where CeO2 is used to decolorize glass by 

converting green-tinted ferrous impurities colourless compounds; c) polishing 

products, in which it is the active component due to its special physicochemical 

properties; d) fluorescent lamps, in which it is used as a photosensitizer e) catalysts 

for industrially important reactions, e. g. water gas shift, CO and NOx oxidation. And 

the ongoing research about ceria mostly orbits in areas, such as heterogeneous 

catalysis, photocatalysis, fuel cell technology and biological mimetization. [87] 

The most unique property of ceria relies on the fact that it is prone to form 

oxygen vacancies defects, making it suitable for reduction-oxidation processes and 

catalytic activity systems. Such oxygen vacancy defects improve the oxygen 

diffusion rate in the ceria lattice, and considerably assist in the high performance of 

the catalytic reactions. More into details, ceria is a material with high excellent 

oxygen buffers properties, making it very efficient in terms of reduction-oxidation 

capability. As mentioned earlier, this situation is attributed to the presence of oxygen 

vacancies and the concentration of defects m However, this defect may dependent 
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on reaction parameters such as: (i) temperature; (ii) oxygen partial pressure; (iii) the 

presence of doping ions; (iv) surface stresses; (v) electrical field. [88] 

Due to the relative easiness of reduction of cerium (IV) ion to cerium (III) ion, 

when the reduction of ions Ce4+ takes place in the lattice, in order to ensure the 

electroneutrality, there is the generation of oxygen vacancies 𝑉𝑂
¨ , as depicted in 

Figure 7. This takes place in the proportion of one 𝑉𝑂
¨  generated for every two Ce4+ 

ions reduced to Ce3+, according to Equation 5 written in Kröger-Vink notation. 

2𝐶𝑒𝐶𝑒
𝑋 + 𝑂𝑂

𝑋 ⇌ 2𝐶𝑒𝐶𝑒
′ +

1

2
 𝑂2 + 𝑉𝑂

¨   (5) 

 

Figure 7. Formation of 𝑽𝑶
¨  in fluorite-type CeO2 unit cell. In order to ensure the lattice 

electrical neutrality, at the time one 𝑽𝑶
¨  is formed, two Ce4+ ions are reduced to Ce3+. 

Image adapted from Silva [88]. 

 

The degree of non-stoichiometry (x) presented by cerium (IV) oxide (CeO2-x) 

ranges from 0 ≤ x ≤ 0.5, i.e. from the extreme case in which all cations are cerium 

(IV), being represented as CeO2, to another in which all cations are cerium (III), 

represented as Ce2O3, which would be equivalent to the form CeO1.5. Within this 

range there are several stages of stoichiometry distinguishable from each other, as 

shown in Table 3, and which are also dependent on the temperature. 

The crystalline facets exhibited by CeO2 crystals in the nanoscale hugely 

influence its chemical properties. Typically, cube and octahedral morphologies will 

expose (100) and (111) crystal planes, respectively, while rod morphology expose 
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mostly (110) and (100) crystal planes while the growing axis of the crystal follows the 

(110) direction, as highlighted in Figure 8. [89] 

It is well known that the interatomic action force between cerium and oxygen 

ions atoms is different for various crystal facets as their interatomic distances are 

also different from each other. As a result, the energy necessary for extracting 

oxygen ions and, consequently, the formation energy of the oxygen vacancies is 

different for each one of the crystal facets. This difference in the nanoscopic level 

has been exploited in order to develop different nanotechnological applications for 

CeO2 and this aspect is known as shape or morphology-dependent nanocatalysis. 

 

Table 3. Some of the phases exhibited by CeO2-y at 1 bar pressure. Adapted from Silva 

[88]. 

Representation Oxygen-cerium atoms ratio 
Temperature 

Range (K) 

Crystal 

system/group 

F, F’, α, α’ 2 - x < 2566 Cubic, 𝐹𝑚3̅𝑚 

δ 1.818 < 734 Triclinic, 𝑃1̅ 

p1 1.806 – 1.808 < 762 - 

ε 1.800 < 856 - 

p2, M19 1.790 < 882 Triclinic 

ζ 1.778 < 912 - 

Τ, Ι 1.714 < 885 Trigonal, 𝑅3̅ 

C (5 ± x)/3 885 - 1676 Trigonal, 𝑅3̅ 

A (3 - x)/2 < 2341 Trigonal, 𝑃3̅𝑚1 

 

Benzene hydrogenation and CO oxidation reactions are two of many 

reactions in which CeO2 can be used as catalyst. When both are compared, the 

CeO2 NP’s that exhibit the nano-octahedron morphology, in which the (111) facets 

are predominant, and the nanocube morphology, in which (100) facets are 

predominant, showed opposite catalytic performance in each type of reaction. [90] 

The nano-octahedron morphology presented higher conversion rate for the 

hydrogenation reaction, while the nanocube one showed a higher rate of conversion 

to oxidation reaction. It has been proposed that the explanation for this behaviour 

mainly relies on oxygen vacancy formation, which is more thermodynamically 



72 
 

favoured on the (100) facets favouring oxidation, while the vacancies formation is not 

favoured on (111) facets, favouring hydrogenation.  

 

Figure 8. TEM images of ceria nanostructured catalysts: (a) nanorods, (b) nanocubes, 

and (c) nano-octahedra. (d-f) are the corresponding high-resolution zoom-in images 

directly below each of the nanostructured ceria. The different exposed facets for each 

one of the polyhedra are highlighted to each one of them. Image adapted from the 

[89]. 

There have been reports of the CeO2 synthesis in different morphologies, 

obtained by different synthetic methodologies [91]: rods, wires, flowers, tubes, discs, 

plates, mesoporous crystals, hollow spheres, cubes and other polyhedra.  

Mai et al. [92] synthesized CeO2 in different morphologies, nanorods, 

nanocubes and nanopolyhedra, via a hydrothermal synthesis, without the use of 

surfactants or promoters, and obtained different values of OSC in the following order: 

nanorods > nanocubes > nano-polyhedra. This difference was attributed to the 

different crystalline facets exposed in each one of these morphologies. 

As there are reports that the easiness of creating an oxygen vacancy at the 

surface is positively associated with the capacity of the material to be efficient for 

PROX-CO reaction, this was the reason CeO2 was chosen as the support material 

for Au NP’s. [92] This will be further discussed in detail in section 4.5. In addition, the 

hydrothermal procedure developed by Mai was adapted into the methodology 

conducted in this work and porous nanorods were obtained. A completely novel acid 
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leaching procedure developed in this work was evaluated to increase the average 

pore size and positively increase the catalytical capacity of the material. [92] 

The Au/CeO2 system was chosen for the development of this project since the 

development of robust synthetical procedures for Au NP`s synthesis is one of the 

main research lines of the Laboratory of Functional Materials and several 

approaches have already been conducted, including their deposition on metal oxide 

surfaces. Furthermore, the Au/CeO2 system exhibits several advantages when 

compared to similar systems, as previously discussed on section 1.4, such as 

resistance towards deactivation by water or CO, thermal stability preventing sintering 

at low temperatures and absence of pyrophoricity. 

In addition, another important line of research developed in the laboratory is 

the conception of experimental procedures for the synthesis of metal oxides in 

different morphologies, especially cerium (IV) oxide, CeO2. In addition to syntheses 

that enable the control of the nanoparticle morphology of this compound, post-

synthesis experimental procedures aimed to modify CeO2 NP`s have also been 

studied aimed to modify their physicochemical properties with possible applications. 

Up to this date, several procedures have been studied aimed to modify 

textural properties of CeO2 properties. Esmailpour and collaborators reported that 

pre-treating CeO2 with UV light, its catalytical performance in the catalytic ozonation 

of salicylic acid (SA) can be enhanced three-fold relative to the untreated catalyst as 

well as outperforming hydrogen-reduced ceria. [93] In an even easier to perform 

experimental procedure, Silva reported that by grinding CeO2 nanorods inside a 

mortar in a process called comminution, it was possible to modify the amount of 

oxygen vacancies, as confirmed by Raman Spectroscopy, and as a consequence, its 

catalytical performance in CO oxidation reaction.[88] 

In this work, an experimental procedure based on acid solution leaching was 

performed to expand native pores, which allowed the pores to be expanded and the 

amount of oxygen vacancies, a structural defect that is intrinsically related to the 

catalytic capacity exhibited by the material as discussed in the results section. 

Furthermore, based on previous works about increasing the catalytical power 

of ceria, this work is proposed to study the process of doping ceria with zirconia and 

evaluate the impact on the catalysis of PROX-CO reaction for this ceria-zirconia 

support. 



74 
 

It has been shown that OSC values reach its highest when zirconia content is 

close to 40%. Larger ZrO2 contents lead to a decrease of cerium ions concentration 

in the lattice, decreasing the capacity of the system to accomplish oxygen atoms 

exchange as well, which will further discussed in Section 4.5 as an important feature 

for the mechanism of PROX-CO reaction. It has also been revealed that for ceria-

zirconia solutions, the larger the zirconia content the higher the surface area up to 

20%. For higher contents of zirconia, there is a decrease in the specific surface of 

the material. [94] 

In order to find a compromise so that the material would present a good 

specific surface for the deposition of Au nanoparticles and still maintain high values 

of oxygen storage capacity, the content of 15% of zirconia has been chosen as the 

one to be studied as the ceria-zirconia solution in this work. The methodology to 

synthesize it was properly adapted from the one proposed by Suda et al. [94] 
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2. OBJECTIVES 
 

Main Objective  

Develop an efficient catalyst for PROX-CO reaction based on CeO2 nanorods 

decorated with gold nanoparticles. 

 

Specific Objectives 

- Exploit a method to synthesize porous CeO2 nanorods with high yield to the desired 

morphology, and afterwards, employ a novel method to expand the porous structure.  

 

- Evaluate how modification on the porous structure can affect the catalytical 

performance of the material. 

 

- Study how doping CeO2 with another transition metal, such as zirconium, can lead 

to catalytical modifications. 

 

- Probe how different Au NP’s deposition methods can lead to different behaviors in 

PrOx-CO reaction. 
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3. EXPERIMENTAL PROCEDURES 
 

For all procedures, ultra-pure deionized water milli-Q (18.2 MΩ.cm resistivity 

at 25 °C) was used. The complete list of reagents can be found in Table 4. All 

chemicals were of analytical grade and used as received without further purification. 

 

Table 4. List of chemicals used in this work and their specifications. 

Chemical Formula Manufacturer 
Purity / 

Concentration 

Cerium(III) nitrate 

hexahydrate 
Ce(NO3)3∙ 6H2O Sigma-Aldrich 99% 

Zirconium(IV) oxynitrate 

hexahydrate 
ZrO(NO3)2∙ 6H2O Sigma-Aldrich 99% 

Sodium hydroxide NaOH Sigma-Aldrich >98 % 

Ethanol C2H5OH Anidrol 99.5% 

Sodium chloride NaCl Sigma-Aldrich > 99.5% 

Sulphuric acid H2SO4 Synth 96%  

Nitric acid HNO3 Merck 65% 

Hydrochloric acid HCl Synth 36.5% 

Hydrofluoric acid HF Merck 48% 

Orthoboric acid H3BO3 Labkem 99.5% 

Hydrogen peroxide H2O2 Synth 30% 

Tetrachloroauric(III) acid 

trihydrate 
HAuCl4∙ 3H2O Sigma-Aldrich 99.9% 

Urea (NH2)2CO Sigma-Aldrich 99% 

Oxygen diluted in 

nitrogen (synthetic air) 
O2 White Martins 20% 

Hydrogen diluted in 

argon 
H2 White Martins 5% 

Carbon monoxide 

diluted in helium 
CO White Martins 10% 
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3.1 - CeO2 nanorods synthesis  

This methodology approach was adapted from Mai et al. [92] 35 mL of a 6.85 

mol L-1 NaOH aqueous solution is mixed slowly and under stirring to 5 mL of a 0.4 

mol L-1 solution of Ce(NO3)3∙ 6H2O. The resulting solution is left under stirring for 30 

min, while a grey-purplish precipitate is formed. Afterwards, the whole content is 

transferred to a Teflon cup, which is eventually sealed inside a steel autoclave 

vessel and set inside an oven at 100°C for 24 h. Afterwards, reaction products, 

which consist of a fine grey-purplish solid are washed thrice with water and thrice 

with absolute ethanol and dried in oven at 60 °C during 12 h. Finally, the solid is 

taken to a crucible to be calcined at 600 °C for 2 h, with heating ramp set at 5°C min-

1 and synthetic air flux at 150 mL min-1. This sample was designated NRCeO2. 

 

3.2 - CeO2 nanorods acid leaching in H2SO4 

200 mg of NRCeO2 were added to 10 mL of a 0.5 mol L-1 aqueous solution of 

H2SO4 and stirred for 15 seconds. Afterwards, samples were washed thrice with 

water, using centrifugation in each step for removing supernatant solution and dried 

at 60 °C for 12 h. This sample was designated LNRCeO2. 

 

3.3 - CexZr1-xO2 nanorods synthesis (x = 0.15; 0.20; 0.40) 

As previously described, the content of zirconium doping in ceria influences 

several characteristics of the resulting material, such as surface area and oxygen 

storage capacity, which, in consequence, influence the catalytical properties of the 

material as support. Three concentrations were chosen of ZrO2 doping: 15, 20 and 

40% as they encompass a range where the OSC of the materials should increase 

the higher the concentration of zirconia doping. 

CexZr1-xO2 nanorods are synthesized by the technique of co-precipitation. 35 

mL of a 6.85 mol L-1 NaOH solution is mixed slowly and under stirring to 5 mL of a 

solution of Ce(NO3)3∙ 6H2O and ZrO(NO3)2∙ 6H2O in the correct proportion to 

synthesize CexZr1-xO2 according to x. The sum of the concentration of both salts 

must equal 0.4 mol L-1 as in the previous procedure. The remaining parts of the 

procedure are the same as for the synthesis of NRCeO2, including the lixiviation step 
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with sulfuric acid. The samples obtained by this method are named NRCexZr1-xO2, if 

non-lixiviated, and LNRCexZr1-xO2, if lixiviated.  

 

3.4 - Decoration with Au nanoparticles via synthesis by deposition-

precipitation 

Two methods to deposit Au nanoparticles were employed.  

1) 200 mg of nanorods samples were dispersed* (see note below) in 5 mL of 

deionized water under strong stirring for 1 h. Meanwhile, in another flask, 8∙10-5 mol 

HAuCl4 were added to 95 mL of deionized water. To this solution, 0.2 mol L-1 NaOH 

was poured dropwise until the pH reached 9. Then, the initial dispersion of ceria 

nanorods was mixed with this solution. The final solution was left under stirring for 2 

hours, while the solution acquires a grey-purplish coloration as the reaction 

proceeds. Subsequently, the grey solid was washed 6 times with warm water and 

dried at 80 °C during 12 h. By the end of this step, a purple solid was calcined at 300 

°C for 2 h under static air atmosphere with a 5 °C min-1 heating ramp.  

2) 200 mg of nanorods samples were dispersed in 5 mL of deionized water 

under strong stirring for 1 h. Meanwhile, in another flask, 8 ∙ 10-5 mol HAuCl4 and 

2.523 g of urea was added to 95 mL of deionized water. Then, the initial dispersion 

of ceria nanorods was mixed with this solution and the final mixture is heated at 90 

°C for 4 hours. The remaining steps are the same as in the other preparation 

procedure. 

*Independently of the initial sample of nanorods used for the deposition of the 

gold nanoparticles, the sample (NRCeO2, LNRCeO2, etc.), an addition of the notation 

“/Au” indicates that gold nanoparticles have been anchored to the system. 

 

3.5 - N2 Physisorption Isotherm Determination at 77 K 

Physisorption isotherms were measured in a Micromeritics Quantachrome 

ASAP 2020, at the Laboratory of Solid State Chemistry, IQ-UNICAMP, coordinated 

by Dr. Oswaldo Luiz Alves. Samples were first degassed at 80 °C for 12 h to driven 

off contaminants. Afterwards, samples were put in a liquid nitrogen bath, while 

nitrogen gas was used as probe gas and injected into the samples up to the 

saturation point.  Brunauer-Emmet-Teller (BET) and Barret-Joyner-Halenda (BJH) 
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methods were used for the determination of surface area and diameter of pores 

respectively.  

 

3.6 - Oxygen Storage Capacity (OSC) Measurements  

Analyses for the determination of oxygen storage capacity were performed in 

a TA Instruments Thermogravimetric Analyser SDT Q600, also located at the 

Laboratory of Solid State Chemistry, IQ-UNICAMP. The gases which were used in 

the analyses were hydrogen diluted in argon (2.5 % H2/ 97.5 % Ar) and oxygen 

diluted in nitrogen (19% O2/ 71% N2), both at a flow rate of 100 mL min-1. The 

temperature of the oven was increased under a heating ramp of 5 °C min-1 and the 

samples were analysed under isothermal conditions at different plateau 

temperatures, 200 °C, 300 °C, 400 °C and 500 °C. Once the desired temperature 

was reached, the sample was left for 5 minutes in order to stabilize the temperature 

and then, exposed at alternate atmospheres, reducing and oxidizing, with a 15 min 

long exposure to each one of them. After 3 full cycles of exposure in each one of 

them, the sample was heated up until reaching out the next plateau temperature. 

The mass variation was registered throughout the whole experiment. 

 

3.7 - Raman Spectroscopy measurements 

A Raman Horiba Jobin Yvon Spectrometer, model T64000, was used with a 

532 nm laser (Coherent) at 60% power. The spectral resolution was 0.58 cm-1 All 

samples analysed were in powder form, and four spectrum acquisitions were made 

at a time of 60s per acquisition, in the range between 200 and 1000 cm-1. 

 

3.8 - (Diffuse reflectance spectroscopy) DRS measurements 

The spectra were collected from a Shimadzu UV-2450 equipment equipped 

with an integration sphere and 1 nm step. Barium sulfate was used as standard to 

set 100% reflectance. The Kubelka-Munk function, 𝐹(𝑅), was applied to reflectance 

(R) results to analyze the remission of each sample in the UV-Vis region, according 

to Equation 6. Then, the cerium oxide band gap values in the samples were 

determined by extrapolating the linear part of the graph of (𝐹(𝑅) ∙ ℎ𝑣)² as a function 

of ℎ𝑣 in eV. 
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𝐹 (𝑅) =  
(1 − 𝑅)²

2𝑅
         (6)    

 

3.9 - Catalytic tests 

Catalytic tests were performed on the Laboratory of Catalysis, IQ-Unicamp, 

coordinated by Dra. Daniela Zanchet. The tests were conducted on a small-scale 

reactor coupled with a gas chromatograph, using a mixture of 50 mg of the sample 

and 150 mg of powder silica (catalyst support). Test conditions based on ideal 

conditions used for PROX-CO were performed using a total gas flow of 100 mL min-1 

with the following composition: 70% H2, 15% He, 1% CO and 1% O2. The remaining 

composition are inert gases, such as nitrogen and argon, used as carried gases. The 

catalyst materials were tested in the temperature range from 50 °C to 350 °C, using 

a 2 °C min-1 heating ramp, performing gas chromatography analysis every 8 min. 

The gaseous products of the reaction were analyzed on an Agilent brand gas 

chromatograph 7890A equipped with a thermal conductivity detector (TCD), using 

helium as the carrier gas.  

CO and O2 conversions were calculated with the following expressions 

respectively: 

𝑋𝐶𝑂 =
𝐶𝑂𝑖𝑛 − 𝐶𝑂𝑜𝑢𝑡

𝐶𝑂𝑖𝑛
∙ 100%     (7) 

𝑋𝑂2
=

𝑂2,𝑖𝑛 − 𝑂2,𝑜𝑢𝑡

𝑂2,   𝑖𝑛
∙ 100%      (8) 

 

3.10 - X-ray Powder Diffraction (XRD) 

X-ray analyses were conducted using CuKα1 radiation (λ = 1,5418 Å) using a 

XRD7000 Shimadzu X-ray diffractometer available at the IQ-UNICAMP. For this 

equipment, continuous scan mode was employed with a 1° min-1 scan speed and 

0.02° sampling pitch.  

For the analysis of some of the materials used on this project, the instrumental 

set available at the XRD1 (λ = 1.034 Å) line in the Brazilian Synchrotron Light 

Laboratory. 
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3.11 - Transmission Electron Microscopy (TEM) 

Samples were analyzed in the Nanotechnology National Laboratory, in a Titan 

Cubed Themis, on the mode HR STEM-HAADF and in a Jeol JEM-2100F 

Microscope, 200 kV, STEM mode, dark field with equipped with an Oxford SDD X-

Max 80 mm² detector for Energy Dispersive X-ray Spectroscopy (EDS). The 

nanoparticles samples were deposited under ambient conditions on a standard 400 

mesh TEM grid. 

 

3.12 - Inductively coupled plasma atomic emission spectroscopy 

(ICP-OES) determinations 

Quantifications were performed on a Thermo Scientific iCAP 6000 Series 

analysing two emission lines for each one of the target elements. For gold, lines 

were at 𝜆 = 267.595 nm and 242.8 nm. For cerium, 𝜆 = 520.0 nm and 418.66 nm. 

For zirconium, 𝜆 = 360.1 nm and 339.198 nm. 

In order to quantify cerium and zirconium during the digestion procedure, 200 

mg of cerium or cerium-doped samples were mixed with 10 mL of H2SO4 0.1 mol L-1 

under stirring and after determined periods of time, 100 𝜇L of the leachate were 

collected and diluted to 10 mL in 50 mL Corning® CentristarTM tubes where 

quantifications were performed. In order to correct dilution effects, after each one of 

100 𝜇L extractions, volume was corrected in order to properly evaluate Ce and Zr 

concentrations.  

In order to quantify gold in the catalyst samples, it was necessary to digest 

them via a MW-assisted decomposition method. In order to do so, 50 mg of each 

sample were weighted and mixed with 4 mL HNO3, 2 mL HF, 1 mL HCl and 1 mL 

H2O2 inside microwave Teflon reactors. Samples were heated in an Analítica 

Provecto DGT 100 Plus MW oven with the following experimental setup: 3 min - 250 

W; 5 min – 500 W; 5 min – 600 W; 5 min – 700 W; 2 min – 80 W. Upon cooling 

down, 300 mg H3BO3 were added so that excess hydrofluoric acid would be totally 

consumed (4HF + H3BO3 → HBF4 + 3 H2O). Heating cycle was repeated on the MW 

oven under the same conditions. Then, solid remaining was filtered off, while the 

filtered solution was directly collected on 50 mL Corning® CentristarTM tubes, where 

dilutions and quantifications were performed.  
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Analyses were performed in the Group of Spectrometry, Sample Preparation 

and Mechanization, coordinated by Dr. Marco Aurélio Zezzi Arruda at the Chemistry 

Institute in Unicamp.  

 

3.13 - Zeta (𝛇) potential measurements and determination of 

isoelectric point (IEP) 

A Malvern Instruments® Zetasizer NANO-ZS-ZEN-3600 equipment with a He-

Ne laser (633 nm) in retroscattering mode (173°) was used to obtain zeta potential of 

the particles. 0.1% (m/m) dispersions of nanorods samples were prepared in order to 

fill 1 mL polycarbonate cuvettes DTS1070 (Malvern Instruments ®) in order to 

provide reliable data.  

In order to study the behavior of the synthesized nanoparticles in function of 

the medium pH and determine the IEP of the particles, colloidal sols of 0.1% (m/m) 

of nanorods were prepared in 0.1 mol L-1 solutions of NaCl. In order to determine the 

isoelectric point of the material, a Malvern Instruments® MPT-2 Titrator titration 

automated module coupled with the Zetasizer equipment. Titrating solutions used in 

this work was HCl (0,2 mol L-1) and NaOH (0,2 mol L-1), and the automated system 

was programmed to add titrating solutions so that pH variation would be around 0.5 

units per addition for the thorough scanning. For each addition, ζ-potential values 

were determined. Measurements were made in triplicate for reproducibility purposes.  
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4. RESULTS AND DISCUSSION 

4.1 Synthesis and characterization of CeO2-NR 

 

Different from many of the procedures commonly found in the literature for the 

synthesis, the synthesis employed in this work is totally template-free, not making 

use of surfactants. These characteristics led to the formation of nitrogen or sulfur-

based contaminant species such as nitrate or sulfate ions adsorbed on the surface of 

the nanorods after the calcination steps.[95] This might have had an impact on the 

catalytic performance of these materials, as these ions frequently act as poison and 

reduce the catalytic power. [96-98] 

Mai et al [92] accomplished a thorough study on the different experimental 

parameters involved in the synthesis of CeO2 nanoparticles of different 

morphologies. They concluded that CeO2 nanoparticles synthesized via the 

experimental procedure used in this project is formed via a mechanism that involves 

multiples steps, as it is depicted in Figure 9. First of all, Ce(III) aqueous ions react 

with hydroxide ions leading to the formation of cerium (III) hydroxide. This 

compound, which was characterized to have a hexagonal crystal structure by XRD, 

is subsequently converted in nanooctahedra NP’s. This is the privileged structure 

formed at first because low-energy crystallographic planes (111) are at evidence in 

this morphology. Previous DFT studies reveal that the low-index (111) surface has 

the lowest surface energy and, therefore, is the most stable surface, coming to the 

(110) surface, and then to high-energy surfaces of (100), (210), and (310), as 

depicted in Figure 10. [92] 

Afterwards, this nanooctahedron structure goes through a process of 

dissolution/recrystallization, in which OH- ions react with the ceria at the (111) 

planes, leading to a modification of the structure of the particle. This modification 

exposes the (100) and (110) planes and allows the particle to grow anisotropically in 

the (100) planes direction. This is optimized at the temperature of 100°C and [NaOH] 

= 6 mol L-1, conditions used in this project. Mai noticed as well, that if the 

temperature was even further raised, e.g., up to 180°C, the nanorods structure would 

be destroyed leading entirely to the formation of nanocubes. [92] 
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Figure 9. Scheme with mechanism for the shape-selective synthesis of CeO2 

nanorods. Adapted from [92]. 

 

Figure 10. Side view bulk truncated structures of CeO2 different exposed surface 

facets (a) (111), (b) (110) and (c) (100). Oxygen ions are assigned as red spheres, while 

cerium ions as white spheres. Image adapted from [99].  

 

When Mai et al. [92] employed the exact same procedure as the one used in 

this work, keeping all experimental parameters, but altering cerium precursor to 

ammonium cerium(IV) sulfate, (NH4)4Ce(SO4)4, nanorods were not obtained, but 

large chunky aggregated nanoparticles with undefined morphology. This is justified 

by the fact that cerium starts off the reaction already in (IV) state, not leading to the 

formation of hexagonal nuclei of Ce(OH)3.[92] 

HRTEM images in Figure 11 of CeO2-NR’s synthesized in this work have 

shown that nuclei of these nanoparticles indeed have the tendency of growing 
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anisotropically leading to the formation of nanorods with enclosing (110) and (100) 

facets. [100] It was possible to see diffraction fringes associated with (002) planes and 

interplane distance was estimated around 0.27 nm. 

 

 

 

Figure 11. HRTEM images for nanorods before lixiviation for different degrees of 

magnification.  
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Additionally, it was possible to see from a cross-sectional image that the habit 

of CeO2 crystals was hexagonal, even though its crystalline structure is cubic 

fluorite-type. This might be a consequence of the formation of hexagonal nuclei of 

Ce(OH)3. [92]  

HRTEM images also reveal that these nanorods present some native pores, 

which can be seen as lighter parts in the images. The characteristic of formation of 

these porous structures also seems to be intrinsically intertwined to the formation of 

precursors composed of CeO2 and Ce(OH)3 after partial oxidation of Ce(OH)3 

nuclei.[101] The dehydration process of cerium (III) hydroxide leads to the formation of 

cerium (III) oxide and water. Thereupon, cerium (III) oxide is subsequently oxidized 

to cerium (IV) oxide, not entirely as this compound always keeps a non-

stoichiometric character. The chemical reactions that describe these processes are: 

 

2 𝐶𝑒(𝑂𝐻)3  →  𝐶𝑒2𝑂3  +  3 𝐻2𝑂  (9) 

2 𝐶𝑒2𝑂3  +  𝑂2  →  4 𝐶𝑒𝑂2  (10) 

 

Wu et al tracked down throughout time by HRTEM-FFT-treated images the 

modification of crystallinity associated with the formation of mesopores in FeOOH 

nanorods. [102] Such mesopores seem to be formed from the release of water 

molecules that remain occluded inside the nanorods during the crystallization 

process, and upon heating, through an interinfiltration process, they leave some 

cavities behind and create a nanoarchitecture based on native pores.  

For similar synthetical experimental conditions as the ones used in this work, 

but in which there was excess oxygen, Li et al observed that the formation of 

Ce(OH)3 was decreased, assisting instead the direct formation of cerium (IV) oxide. 

[101] In this context, nanorods were also formed, but in lieu of the porous one, 

massive rods with no pores at all were produced. This is depicted in Figure 12, which 

schematizes the formation of the porous nanorods structure.  

Such non-porous ceria nanorods not only feature a lower surface area than 

the porous ones, but also lower OSC values and, according to XPS studies, a lower 

proportion of Ce ions in the +3 oxidation state, which are directly linked to the 

formation of oxygen vacancies in the crystalline structure of the ceria. While in non-

porous samples, the proportion of Ce3+ in porous samples is around 15%, this value 

exceeds 25% in porous samples. [101] 
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Figure 12. Schematic of the synthesis of porous and non-porous CeO2 nanorods. 

Porous CeO2 nanorods are prepared by the dehydration of Ce(OH)3, liberating 

occluded water molecules from the inside of the nanorods, followed by oxidation of 

Ce(III) to Ce (IV). Non-porous nanorods under conditions that oxidizes Ce(OH)3 

directly to CeO2, such as refluxing in excess of atmospheric oxygen. Image adapted 

from [103]. 

 

Altogether, everything seems to point out to the correlation that the 

intermediate formation of cerium hydroxide (III) in the formation of this native pore 

structure is intrinsically associated with the amount of 𝑉𝑂
¨  in ceria structure. 

Therefore, the subsequent applications of CeO2 that rely on the presence of these 

structural defects, such as the catalysis of reactions as WGS and PROX-CO are 

dependent on how structurally organized these nanorods are. This is why a lot of 

effort has been devoted into controlling the concentrations of surface Ce3+ and 

oxygen vacancies for different applications. [103-106] 
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4.2 - Leaching Procedure 

 

In order to evaluate the topological effects in the crystal structure of the ceria 

nanorods caused by the acid leaching procedure developed in this work, 

transmission electronic microscopy was used to obtain images of NRCeO2 and 

LNRCeO2 so that they could be compared in order to evaluate changes. Images 

reveal that there was a mean enlargement of the pores close to 2 nm after counting 

150 pores in each one of the samples. 

 

 

Figure 13. HRTEM images of NRCeO2-NR and LNRCeO2-NR, showing in evidence the 

expansion of native pores of CeO2-NR after treatment with a solution of 0.5 mol L-1 

H2SO4. 

 

Um et al performed a study about ceria solubility in different concentrations of 

sulfuric acid and different temperatures and found out that the dissolution of the 

material, although slow, can be achieved thoroughly after several minutes of 

exposition to the acid solution. [107] Beaudoux  et al performed studies based on UV-

VIS spectroscopy and found out that, although ceria exhibits slow dissolution in 

solutions of inorganic acids, ceria dissolution rate is dramatically increased in 

solutions of these acids in the presence of ascorbic acid. [108] Ascorbic acid, a well-

known potent antioxidant compound (therefore, a reducing chemical species), was 

proposed to take part in a prior adsorption on ceria surface leading reduction of Ce 

(IV) to Ce (III) ions. This would reduce the crystalline lattice stability energy, 𝑈, 
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according to the Born-Landé equation, and allow for cerium ions to be subsequently 

dissolved by the inorganic acid. [109-110] 

It was observed empirically during the nanorods leaching procedure with 

H2SO4 solution that, as soon as the solid material gets in contact with the acid 

solution, the liquid effervescences. The gas released in this step is confirmed to be 

O2 making a simple test: by approaching a lit match of the solution, the glow of the 

flame becomes more intense, implying it is indeed oxygen gas. 

Thus, the process should be implicated at first to the oxidation of water 

molecules on the surface of CeO2 nanorods leading to the formation of O2 and, at 

the same time, the reduction of Ce (IV) to Ce (III). Afterwards, sulfuric acid molecules 

take the role into lixiviating de facto Ce (III) ions to the solution breaking Ce–O and 

prompting the formation of cerium (III) sulfate and water. The proposed balanced 

chemical equation for this process is: 

 

4 𝐶𝑒𝑂2 (𝑠)  +  6 𝐻2𝑆𝑂4 (𝑎𝑞)  →  𝐶𝑒2(𝑆𝑂4)3 (𝑎𝑞) +  6 𝐻2𝑂(𝑙) + 𝑂2 (𝑔)     (11) 

 

H2SO4 was chosen as leaching agent in this project, as HNO3 and HCl were 

barely able to dissolve ceria, even on concentrated solutions. Although 

thermodynamically spontaneous, the reaction between H2SO4, and ceria takes place 

quite slowly. Kinetics curves obtained by ICP measurements depicted in Figure 14 

illustrate this behavior.  

For NRCe0.8Zr0.2O2, the rate of dissolution was a little bit higher than for 

NRCeO2 even though its surface area was lower than the one reported for NRCeO2, 

but despite of this, after 320 minutes of exposition to 0.1 mol L-1 H2SO4, total amount 

of cerium dissolved into solution did not surpass 2 %. As it will further be discussed 

in the next sections, enthalpy of dissociation of an oxygen atom from the surface of 

NRCe0.8Zr0.2O2 is lower than in NRCeO2, as empirically confirmed by OSC 

measurements. The more favorable it is to extract oxygen ions, the easier cerium 

ions are dissolved from the lattice into the solution. 

N2 physisorption isotherms depicted in Figure 15 show that acid leaching 

treatment increased native pore size in about 45%, increasing from 7.9 nm in 

NRCeO2 to 11.5 nm in LNRCeO2, which confirms the results from HRTEM images in 

Figure 16. Data is summarized in Table 5.  
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Figure 14. Dissolution kinetic curves related to the dissolution of 200 mg of (1) 

NRCeO2 (250 m² g-1) and (2) NRCe0.8Zr0.2O2 (250 m² g-1) in 10 mL H2SO4 0.5 mol L-1 

under magnetic stirring. 

 

 

Figure 15. N2 Physisorption isotherms for NRCeO2 and LNRCeO2 obtained at 77 K. 
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Figure 16. HAADF HRTEM images for: a) NRCeO2, i.e. ceria nanorods prior to H2SO4 

lixiviating process; b) and c) LNRCeO2, i.e. ceria nanorods after H2SO4 lixiviating 

process. Dark holes highlighted in the middle of the nanorods are ceria native pores. 

 

Table 5. Texture properties for different modified samples based on CeO2 nanorods:  

CeO2-NR; LNRCeO2 and LNRCeO2/Au.  

Sample Surface area BET (SBET)(m² g-1) Pore mean diameter (Dp)(nm) 

NRCeO2 94 7.9 

LNRCeO2-NR 110 11.5 

LNRCeO2/Au 111 11.3 
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Surface area has also seen an increment: 94 m²/g for NRCeO2, while this 

value increased to 110 m²/g for LNRCeO2. Isotherms from both samples exhibited 

behavior of type IV isotherms with H3 hysteresis loops according to the IUPAC 

classification, typical of mesoporous materials (pore size between 2 and 50 nm). The 

main features of these types of isotherms are the line referring to the adsorbed 

quantity of gas on the surface of the nanorods which slowly increases for low values 

of relative pressure (P/Po), while it takes a sharp increase for high values of P/Po. 

This indicates the formation of mesopores which are built by stacking of the 

nanorods. There is also a hysteresis loop, which is associated with capillary 

condensation taking place inside the mesopores. [111] 

 

4.3 - Synthesis and characterization of CexZr1-xO2 nanorods  

So far, literature reports that tetravalent ions, such as Zr4+, Hf4+, Tb4+, Ti4+, etc. 

are the best dopants for ceria, not only because they are able to improve thermal 

stability, but also improve CeO2 OSC (which will be further discussed in Section 4.5), 

due to their ability to form homogeneous solution due to the equality of charges with 

cerium (IV). [112-113] Part of the increase of the catalytic power of the material can be 

rationalized with the scheme found in Figure 17.  

 

 

Figure 17. Schematic structures of CeO2-ZrO2 solid-solution indicating oxidation and 

reduction. Image adapted from [112]. 

 

During the oxygen release in the doped material, the volume of Ce increases 

when the Ce oxidation state changes from Ce(IV) to Ce(III). The stress energy 
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arising from this volume increment would restrict further valence change of Ce. Since 

the effective ionic radius of Zr(IV) is smaller than that of Ce(IV) and Ce(III), the 

introduction of Zr into a Ce framework on a homogeneous level would compensate 

for the volume increase related to Ce(IV) reduction.  

This modification of the local oxygen environment around Ce and Zr will 

generate some active oxygen species that will play a role in OSC improvement. 

Meanwhile, when smaller Zr cations substitute larger Ce ions, the bond distance 

between oxygen and metal ion will be enlarged, thereby making oxygen more 

mobile. As the lattice shrinks down, there is more space for Ce4+ to become Ce3+, 

improving the formation of oxygen vacancies which are of crucial importance for the 

catalytic properties of the material. [114]  

Therefore, doping with Zr(IV) should lead to the reduction and a shrinkage of 

the cell unit volume, and as a direct consequence, cell parameter a. This is confirmed 

by XRD shown in Figure 18 and Figure 19, specifically the peak centered around 2𝜃 = 

19.00° (for pure ceria for λ = 1.034 Å, whose data is summarized in Table 6.  

 

Table 6. 2𝜽 values for peak central position for the different proportions os ceria 

doped with Zr (IV) – CexZr1-xO2. 

Ceria – zirconia composition (111) 2𝜽 peak position 

NRCeZrO2 19.000 

NRCe0.85Zr0.15O2 19.092 

NRCe0.8Zr0.2O2 19.105 

NRCe0.6Zr0.4O2 19.169 
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(a)

(b) 

Figure 18. (a) Variation of lattice parameter 𝒂 and unit cell volume in function of the Zr 

(IV) proportion in the doped sample. (b) XRD diffractograms performed at a beam line 

(λ = 1,034 Å) centered in the peak 2θ = 19.00° for cerium oxide doped with Zr (IV) in 

different proportions: There is a shift towards larger values of 2𝜽 due to modifications 

in the crystalline structure of the material. 
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4.4 - Characterization of NRCeO2/Au and NRCe0.8Zr0.2O2 by XRD and 

HRTEM 

XRD results in Figure 19(a)-(b) have shown that NRCeO2 crystallizes in the 

CeO2 cubic crystal structure, which is confirmed by comparison with reference data 

available in the literature, with slightly broader peaks due to the nanometric size.[115] 

(a) 

(b) 

Figure 19. X-ray diffractograms of NRCeO2/Au and NRCe0.8Zr0.2O2 with different 2𝜽 

ranges: (a) from 25° to 60°; (b) from 27° to 35°. 
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For NRCe0.8Zr0.2O2 sample, a small shift to larger number of 2𝜃 is observed 

for all peaks compared to CeO2 ones. This observation, together with the fact that no 

peak for ZrO2 is observed leads to the conclusion that during the coprecipitation with 

ZrONO3, Zr(IV) ions might have entered into ceria crystalline structure. As Zr(IV) is 

smaller than Ce(IV), (0.84 Å for Zr4+ and 0.97 Å for Ce4+) [116] this results in a 

contraction in the lattice and a shift to larger 2𝜃 values.  

HRTEM images shown in Figure 20 reveal that the doping in the synthesis 

preserved the nanorod morphology, as EDS mappings showed that Zr is 

homogeneously dispersed throughout the rods, providing further evidence evidences 

that zirconium ions have been homogeneously incorporated in ceria crystal lattice, 

which corroborates data obtained by XRD.  

Crystallite size is calculated by Scherrer Equation, presented in Equation 9, 

which is possible using X-ray radiation wavelength (𝜆), diffraction angle (𝜃), half-

width height of one of the peaks of the sample (𝐵𝑇) and of a reference (𝐵), in 

radians, and a dimensionless constant 𝐾, called shape factor which depends on the 

actual shape of the crystallite. Used standard data for the value of B was attributed 

to polycrystalline silicon, for which 𝐵 = 2.110-3 and K was set as equal to 0.9, which 

is the value for spherical-shaped crystallites. Data is summarized in Table 7.  

𝜏 =
𝐾𝜆

√𝐵𝑇
2 − 𝐵2 𝑐𝑜𝑠𝜃

   (12) 

 

Table 7. Crystallite size for NRCeO2, LNRCeO2 and NRCe0.8Zr0.2O2 calculated by 

Scherrer Equation 

Sample Crystallite size (nm) 

NRCeO2 13.7 

LNRCeO2 13.7 

NRCe0.8Zr0.2O2 11.5 
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(a) 

 

(b) 

  

Figure 20. (a) HRTEM image for cerium oxide nanorods Ce0.8Zr0.2O2. (b) Energy 

Dispersive Spectroscopy (EDS) mapping for zirconium (blue dots) and cerium (yellow 

dots). Mapping shows that zirconium (IV) ions are homogeneously dispersed in the 

whole composition of the ceria nanorod. 
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It is observed that the leaching procedure did not alter the crystallite size of 

ceria nanorods. This is probably because, although there might have been some 

lixiviation of the peripheral zone of the rods, most of the lixiviation took place in the 

native pores that were expanded not altering significantly the crystallite sizes. 

However, when the nanorods synthesis was performed with zirconium doping, 

the crystallite size decreased from 13.7 to 11.5 nm. This might also be associated 

with the contraction of the fluorite-cell unit with the inclusion of smaller Zr4+ ions. 

Doping with zirconium also increases the amount of formation of Ce3+, which leads 

to more formation of vacancies and displacements of oxygen atoms, driving to a 

nanorods with smaller crystallites.  

Cerium-zirconium oxide with other composition, such as Ce0.85Zr0.15O2 and 

Ce0.60Zr0.40O2 have also been synthesized although they have not been used as 

supports due to the limitation of time of the project. Even though, HRTEM images 

were taken (Figure 21) and have revealed that the nanorod morphology was also 

produced, even keeping the structure of the native pores. This suggests that the 

addition of Zr ions up to 40 % in the hydrothermal conditions as proposed by Mai et 

al [92] still leads to hexagonal intermediates, which are subsequently converted to the 

nanorods. Zirconium probably precipitates together with cerium forming a mixture of 

cerium (III) hydroxide and zirconium (IV) hydroxide.  
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Figure 21. HRTEM images for cerium oxide nanorods doped with Zr (IV) in different 

proportions: (a) Ce0.85Zr0.15O2; (b) Ce0.8Zr0.20O2 and (c) Ce0.60Zr0.40O2. 
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4.5 - Raman measurements 
 

 Raman spectroscopy is a powerful technique to analyze nanoceria structural 

properties at a local level, owing to the strong sensitivity of the phonon 

characteristics to the crystalline nature of the material, being useful to directly probe 

the defect sites in doped and undoped ceria particles. The samples were also 

analyzed by Raman spectroscopy to study how the leaching procedure altered their 

structural features and thus their catalytic activity. [88] 

Four features can be identified in the room temperature spectra: the main Ce-

O8 crystal unit vibration around 464 cm−1, which is the characteristic F2g mode of the 

fluorite lattice, and three weaker Raman peaks at 261 cm−1, 598 cm−1, and 1165 

cm−1. The first and the third ones can be assigned to the higher order modes of 

ceria, namely to the second order transverse acoustic mode (2TA) and to the second 

overtone of the longitudinal optical band (2LO). The Raman peak at 598 cm−1, 

named D band or Defect band, as it is instead a disorder induced mode arising from 

oxygen vacancies defects The relative intensity ratio of the Defect band (ID) and the 

F2g band (IF2g) of the CeO2 fluorite phase (i.e., ID/IF2g) can be used as an indicator of 

the oxygen defects density. [117] 

Esmailpour and collaborators made use of Raman spectroscopy and noticed 

that ID/IF2g increased by 32% when ceria samples were exposed to a H2 reducing 

treatment and increased even more when the sample was submitted to exposition 

under UV light illumination revealing that the light pre-treatment increased the 

oxygen vacancy concentration by 46%. [93] 

A group in Japan led by Taniguchi also used Raman spectroscopy and the 

ID/IF2g ratio to analyze Gd-doped samples of ceria where the D band intensity 

became more pronounced with the increase in the dopant concentration in the range 

between 0 and 20%. As the oxygen vacancy concentration is correlated with the 

concentration of Ce(III) ions, the group regarded Raman Spectroscopy as a robust 

alternative to XPS and EDS measurements to estimate [Ce(III)]/[Ce(IV)] ratio. [118] 

The Raman spectra for ceria nanorods prior and after lixiviation are presented 

in Figure 22. The spectra were normalized having set the maximum intensity of the 

F2g band mode as 1.0 for both. 
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Figure 22. (a) Normalized Raman spectra for non-lixiviated (NRCeO2) and lixiviated 

ceria nanorods (LNRCeO2) highlighting the F2g band mode centered at 464 cm−1and 

the D mode centered at. 598 cm−1. (b) Magnification of the region between the Raman 

shift range between 540 cm-1 and 680 cm-1 highlighting the difference in intensity for 

the D mode band peaks between the two samples, associated with the difference in 

oxygen vacancy defects. 
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As it is seen in Table 8 data, ID/IF2g ratio increased close to 50% when ceria 

nanorods were submitted to acid leaching treatment indicating that not only the pore 

size was expanded, but also there was in increase in the number of oxygen 

vacancies, which was corroborated by the catalytical tests results.  

 

Table 8. ID/IF2g ratio for NRCeO2 and LNRCeO2 calculated with their Raman spectra. 

Sample ID/IF2g 

NRCeO2 0.24 

LNRCeO2 0.36 

 

4.6 - OSC measurements 

 

As described in the experimental section, samples were exposed to alternate 

atmospheres (oxidizing/reducing). The behavior is depicted on Figure 23. When the 

sample is heated, there is a natural weight decrease due to a shift on the equilibrium 

to the right: 

 

𝐶𝑒𝑂2 ⇌ 𝐶𝑒𝑂2−𝑥 +
𝑥

2
𝑂2      (13) 

 

As the reaction is endothermic in the direct way, it is favored upon heating 

leading to a decrease of weight due to the loss of oxygen by the lattice, until a 

thermodynamical equilibrium is reached. After the equilibrium is reached, the sample 

is set to reach temperature plateaus. When the temperature is stabilized, alternate 

injections of H2 and air (80% of N2 and 20% of O2) are performed. The profile on how 

the weight behaves is depicted on Figure 23. Injection of oxygen leads to a fast 

incorporation of oxygen ions into the lattice until the weight variations ceases.  

Then, when hydrogen is added to the system, the mass of ceria decreases 

again, as 𝑉𝑂
¨  are formed again. The difference in mass between the minimum mass 

after the exposition to hydrogen and the threshold mass after exposition to oxygen 

can be used to calculate the OSC of the samples in μmol O2 g-1 CeO2 unit. 

OSC measurements were performed for all the samples synthesized in this 

work and the results are summarized in Tables 9 and 10 and Figure 24. It is 

observed that OSC values for LNRCeO2 samples are 3.2 times higher than the ones 
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for NRCeO2 for each one of the four temperatures used experiments for the 

determination of OSC.  

 

 

Figure 23. (a) percentual mass variation for NRCeO2 and LNRCeO2 highlighting the 

alternate exposition to oxidizing and reducing atmosphere for different temperature 

plateaus. (b) zoom of the cyclic mass variation for LNRCeO2 at the temperature of 300 

°C with emphasis at the points in which the atmosphere inlet into the system was 

changed.  

 



104 
 

This points out that the acid lixiviation procedures indeed increased the OSC 

by increasing the native pores surface area where the Ce3+/Ce4+ ratio is higher 

compared to the nanorod bulk and the formation of oxygen vacancies is more 

energetically favourable.  

 

Table 9. OSC values in 𝝁mol O2 g-1 CeO2 for NRCeO2, LNRCeO2 and LNRCe0.8Zr0.2O2 

samples at different temperatures. 

 NRCeO2 LNRCeO2 LNRCe0.8Zr0.2O2 

200°C 162.6 534.3 598.1 

300°C 163.4 547.9 514.1 

400°C 188.7 604.6 492.7 

500°C 206.9 666.6 487.8 

 

Table 10. OSC values in 𝝁mol O2 g-1 CeO2 for NRCeO2, LNRCeO2 and LNRCe0.8Zr0.2O2 

samples at different temperatures. 

 

 

Figure 24. Oxygen storage capacity values in 𝝁mol – O2/g CeO2 for ceria samples used 

in this work at the temperatures of 200, 300, 400 and 500 °C.  

 

 NRCeO2/Au LNRCeO2/Au 

200°C 342.8 1173.7 

300°C 393.2 1209.3 

400°C 521.2 1430.5 

500°C 629.6 1796.1 
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4.7 - Gold deposition-precipitation reaction  

 

[AuCl4]- is a gold square planar ion commonly used as a precursor for the 

synthesis of gold nanoparticles. According to Corma, when dissolved in water, this 

species stablishes an equilibrium with several other gold chlorohydroxyl coordination 

ions as depicted: [119] 

 

[𝐴𝑢𝐶𝑙4](𝑎𝑞)
− + 𝑂𝐻(𝑎𝑞)

− ⇄ [𝐴𝑢𝐶𝑙3𝑂𝐻](𝑎𝑞)
− + 𝐶𝑙(𝑎𝑞)

−      (14) 

[𝐴𝑢𝐶𝑙3𝑂𝐻](𝑎𝑞)
− + 𝑂𝐻(𝑎𝑞)

− ⇄ [𝐴𝑢𝐶𝑙2(𝑂𝐻)2](𝑎𝑞)
− + 𝐶𝑙(𝑎𝑞)

−      (15) 

[𝐴𝑢𝐶𝑙2(𝑂𝐻)2](𝑎𝑞)
− + 𝑂𝐻(𝑎𝑞)

− ⇄ [𝐴𝑢𝐶𝑙(𝑂𝐻)3](𝑎𝑞)
− + 𝐶𝑙(𝑎𝑞)

−      (16) 

[𝐴𝑢𝐶𝑙(𝑂𝐻)3](𝑎𝑞)
− + 𝑂𝐻(𝑎𝑞)

− ⇄ [𝐴𝑢(𝑂𝐻)4](𝑎𝑞)
− + 𝐶𝑙(𝑎𝑞)

−      (17) 

 

The percentual distribution of each one of these species is indeed pH-

dependent and it was properly calculated by Hönes et al who summarized all the 

information in the graph shown in the Figure 25. [120-121]  

 

 

Figure 25. pH-dependent distribution of gold(III) species in aqueous solution. Image 

adapted from [119]. 
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The dominating species in solution at the preparation pH (pH 9) and 

temperature (80 °C) is [Au(OH)4]- which is the chemical species involved in the 

mechanism of chemisorption, crucial to the anchoring of Au NP’s on the surface of 

the ceria nanorods, as seen in Figure 26.  

 

𝐶𝑒 − 𝑂𝐻(𝑠𝑢𝑟𝑓𝑎𝑐𝑒) + [𝐴𝑢(𝑂𝐻)4](𝑎𝑞)
− → 𝐶𝑒 − 𝑂 − 𝐴𝑢(𝑂𝐻)3(𝑠𝑢𝑟𝑓𝑎𝑐𝑒)

+ 𝐻2𝑂 (18) 

 

 

Figure 26. Mechanism of chemisorption of [Au(OH)4]-. Hydroxyl groups accomplish a 

nucleophilic attack to form gold-hydroxyl species anchored to the ceria nanorods, 

which are subsequently heated leading to the formation of small Au NP’s. 

 

In order to study the surface properties of the nanorods, zeta (𝜁) potential 

values were analyzed over a range pH values between 3 and 10 to determine the 

point in which the net charge over the surface of the NP’s would be neutral, i.e. the 

isoelectric point. As it can been seen in Figure 27, at low pH values, nanorods exhibit 

positive 𝜁-potential values, which are accounted for protonated hydroxyl groups 

present at the surface of NRCeO2 that are under the form 𝐶𝑒 − 𝑂𝐻2
+. For high pH 

values, nanorods exhibit negative values of 𝜁-potential value, explained for the 

formation of deprotonated forms of hydroxyl groups, 𝐶𝑒 − 𝑂−. At an intermediate 

value, exactly at 9.11, 𝜁-potential equals zero, which means hydroxyl groups are at 

their neutral form, 𝐶𝑒 − 𝑂𝐻.  

For very positive 𝜁-potential values, the protonated hydroxyl groups are not 

nucleophilic enough to perform nucleophilic substitutions on the gold complexes. For 

very negative 𝜁-potential values, the negative charge may lead to electrostatic 

repulsion between ceria surface and gold complexes (all of them are negatively 

charged regardless the pH of the solution). Thereafter, the best compromise is to 
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perform the reaction close to the isoelectric point. The determination of the 

isoelectric point of the material used in this work at 9.11 corroborates that the pH 

proposed by experimental procedure (pH = 9) found on the literature is the optimal 

for the performance of the deposition-precipitation method. [122] 

 

 

Figure 27. 𝜻-potential determination for a dispersion of CeO2-NR in deionized water 

over a range of different pH’s values ranging from 3 to 10. 

 

LNRCeO2 and LNRCe0.8Zr0.2O2 exhibited lower, although not quite different, 

values of IEP’s (8.89 and 8.32 respectively). Zirconia is known to be a more acidic 

oxide when compared to ceria. Although many features might interfere in a transition 

metal oxide acidity, such as crystal structure (tetragonal zirconia, for example, is 

more acidic than monoclinic), surface orientation, surface area, etc., higher acidity 

attributed to zirconia and, as a consequence, its lower isoelectric point might be 

attributed to the higher effective nuclear charge of Zr4+ when compared to Ce4/3+. 

Parks [123] have reported that ceria-zirconia solid solutions present an intermediate 
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IEP, not necessarily proportional to the metal ratio. This seems to be the case here 

where LNRCe0.8Zr0.2O2 presented an IEP = 8.32.  

Urea was used in this work as an alternative to sodium hydroxide in order to 

accomplish a slower and more homogeneous DP reaction over the surface of CeO2, 

as urea slowly undergoes hydrolysis in water upon heating:  

 

𝐶𝑂(𝑁𝐻2)2(𝑎𝑞)  +  𝐻2𝑂(𝑙)  →  𝐶𝑂2(𝑎𝑞)  +  2 𝑁𝐻3(𝑎𝑞)  (19) 

 

Zanella and coworkers has already successfully employed this method for 

depositing Au NP’s over the surface of titania, choosing an appropriate amount of 

ammonia so that the solution final pH would be around IEP of titania. [124] For this 

work, a procedure was adapted so that the final pH would be around the IEP of the 

nanorods determined previously by DLS. The pH of solution was monitored over 

time during the 4 hours the reaction took place and the results are displayed in 

Figure 28. It evolved from 4.24 at the start of the reaction, as HAuCl4 was used as 

the gold precursor species for the NP’s and ended at around 9.51, not quite far from 

the pH desired for the DP synthesis.  

Urea decomposition reaction is endothermic, which implies that an increase in 

the temperature not only favors the reaction kinetically, but also thermodynamically. 

Even though urea hydrolysis leads to the formation of either CO2, an acidic oxide, 

and ammonia, a basic compound, the net effect is that the solution pH increases 

over time as the reaction proceeds. The reasons for this are that ammonia is not only 

produced as twice as carbon dioxide, but it is also way more soluble in water at 80 

°C (9.01 mol L-1 for ammonia and 7.8910-3 mol L-1 for carbon dioxide, i.e. NH3 is 

more than 1000 times more soluble than ammonia at the set temperature used for 

the reaction).  This might arise from the fact that while ammonia is composed of 

quite polar molecules which establishes strong hydrogen bonds with water, carbon 

dioxide, even though it reacts in a small extent to form carbonated species in water 

(H2CO3, HCO3
-, etc.), is a non-polar molecule with restricted solubility in water. [125] 
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Figure 28. Evolution of solution pH during the aqueous decomposition of urea 

measured by a pH meter for the reaction of DP of Au NP’s over the ceria nanorods at 

80 °C.  

 

With the growth of Au NP’s over the nanorods, which is seen in Au diffraction 

peaks are possible to be seen, although with a specific zoom as in the Figure 29, as 

they are considerably broad and of low intensity due to the small size of the 

nanoparticles obtained by DP synthesis (< 5 nm). Au NP’s crystallize in a cubic 

crystal structure (𝑎 = 4.079 Å), which is confirmed by comparison with reference data 

[126] and in quite good concordance for both peaks at 2𝜃 = 38.2° and 44.4° for 111 

and 200, respectively. 

HRTEM images were obtained from CeO2/Au samples and showed that gold 

nanoparticles exhibited excellent crystallinity and size determined at (2.4 ± 0.9) nm, 

as depicted in Figure 30. It is even possible to see diffraction fringes associated with 

some of the crystallographic planes associated with gold, as seen in Figure 31.  
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Figure 29. X-ray diffractograms of NRCeO2 NR/Au and NRCe0.8Zr0.2O2/Au with focus on 

two different 2𝜽 ranges: (a) from 25° to 60°; (b) from 37° to 48Reference diffraction 

patterns used were: for cubic CeO2 JCPDS 34-394 and for Au JCPDS 4-784.  
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Figure 30. HRTEM image for CeO2/Au. EDS mapping for cerium and gold were also 

performed in order to confirm the position of the nanorods and the metallic 

nanoparticles over the surface. 

 

 

Figure 31. HRTEM image for CeO2/Au. Diffraction fringes for some of the 

crystallographic planes of gold and ceria can be seen in evidence in the picture.  
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4.8 - DRS results 
 

Diffuse reflectance spectroscopy was used to analyze and compare 

LNRCeO2 and Au/LNRCeO2 in order to understand their optical properties and 

estimate band gap values.  

The Kubelka-Munk function, 𝐹(𝑅), was applied to reflectance data (𝑅) to 

analyze the remission of each sample in the UV-Vis region. 

𝐹 (𝑅) = 𝛼 =  
(1 − 𝑅)²

2𝑅
         (6)    

When 𝐹 (𝑅) is plotted against 𝜆 values, absorbance results are obtained for a 

wavelength range.  

The Kubelka-Munk function plot for catalyst samples is depicted in Figure 32. 

As it is shown in Figure 32, there is a strong absorption band below 400 nm in the 

spectra for both samples, which is due to the charge transfer from O2- 2p orbitals to 

Ce4+ 4f orbitals in CeO2. [127] According to the rule-of-thumb colour wheel disk, when 

a sample absorbs radiation close to upper energy limit of visible range, i.e., the violet 

colour, the sample will exhibit the complementary colour, which is yellow, which is in 

good agreement to the pale-yellow colour shown by ceria nanorods. 

 

Figure 32. Absorbance plot for LNRCeO2 and LNRCeO2 obtained by Kubelka-Munk 

plot applied to reflectance data obtained for LNRCeO2 and LNRCeO2/Au.  
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However, when gold NP’s are deposited over the surface of ceria nanorods, 

there are optical modifications in the sample, which is seen by the appearance of a 

band centred at 551 nm which is accounted to the Au NP`s absorption plasmon 

band. 

In a few words, a plasma is a macroscopically neutral substance containing 

interacting free charged particles such as electrons and ionized atoms or molecules. 

In metals, such as gold, the free electron gas around metal atoms is treated as a 

solid-state plasma and plasmons can be regarded as the quantization of the plasma 

oscillations. [127] 

When light strikes a metallic NP whose size is much smaller than its own 

wavelength, the radiation oscillating electric field interacts with the conduction 

electrons of the metal. The electron cloud is disturbed and shifted with respect to the 

positive ionic core. Due to this charge displacement, a dipole is established, and a 

coulombic force arises in order to restore the equilibrium position of the electron 

cloud. Therefore, the dipole oscillates in coherence with respect to the incident light, 

as shown in Figure 33. These collective electron oscillations occur at the metal 

surface and are called surface plasmons and are the responsible for the absorption 

of some specific wavelengths such as in the Au/CeO2 catalyst system. 

 

Figure 33: Plasmon oscillation on a metallic sphere with respect to the electric field of 

the incident light. Consequently, the conduction electron density is displaced relative 

to the nuclei to the negative side of the particles as indicated in the figure. Image 

adapted from [128]. 
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The optical band gap values for the samples can be estimated from the 

transmittance spectra following Tauc's rule. The Tauc plot formula for determining 

optical band gap is: 

 

𝐹(𝑅)ℎ𝜈 = 𝐹(𝑅)(ℎ𝜈 − 𝐸𝑔)1/𝑛   (20) 

 

where 𝐹 (𝑅) is the Kubelka-Munk function, ℎ𝜈 is the photon energy, 𝐸𝑔 is the band gap 

energy, 𝑛 is a constant which can take values of 2, 2/3, 1/2, and 3 for the direct 

allowed, direct forbidden, indirect allowed and indirect forbidden, respectively. The 

band gap corresponding to the direct transition was obtained by extrapolating the 

linear portions of (𝐹(𝑅)ℎ𝜈)² versus the ℎ𝜈 curves up to the point (𝐹(𝑅)ℎ𝜈)² equals 

zero in a plot of (𝐹(𝑅)ℎ𝜈)² as a function of photon energy ℎ𝜈 for the sample, as shown 

in Figure 34.  

 

Figure 34. Tauc’s plot of (𝑭(𝑹)𝒉𝝂)² versus the energy in electrons-volts for the 

samples of ceria nanorods prior and after lixiviation and LNRCeO2. Band gap values 

corresponding to the direct transition were obtained by extrapolation of linear 

portions of the graph up to the point where (𝑭(𝑹)𝒉𝝂)² equals zero. 

 

According to literature, the band gap (Eg) energy of bulk CeO2 is 3.19 eV. [129] 

When a semiconductor is in nanometric size, the energy split between the valence 
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band and the conduction band increase due to the quantum confinement effect, so 

that the smaller the nanoparticles are, the larger the energy of band gap. 

Ceria nanorods either before or after acid lixiviation exhibit 3.32 eV and 3.41 

eV values of band gap, respectively, which are indeed larger the value for bulk ceria. 

This is expected once ceria nanoparticles are indeed under quantum confinement 

effect. There is also a decrease of the band gap value, which might be attributed to 

the fact that once lixiviated ceria nanorods exhibit a larger density of oxygen 

vacancies defects, this is also associated with a larger density of Ce (III) ions, as it 

was confirmed by Raman spectroscopy. 

When the oxide is totally stoichiometric, all the constituent cerium atoms exist 

in the Ce(IV) oxidation state, but in the partially reduced form for each missing lattice 

oxygen atom, it is implied the existence of two Ce(III) ions in sites close, although not 

necessarily adjacent, to the vacancy. The stoichiometric oxide is therefore 

characterised by a completely empty f-band (located in an energy gap between the 

occupied O 2p states and the unoccupied Ce 5d states with electronic configuration 

[Xe] 4f0) whilst the partially reduced oxide features Ce(III) (electronic configuration 

[Xe] 4f1), and as consequence, in the diagram of states highly-localised partially-

occupied f orbitals split-off below the unoccupied f states [130], as seen in Figure 35.  

 

 

Figure 35. Diagram of density of states (DOS) depicting electronic structure of the 

stoichiometric CeO2 surface (left) and the oxygen-vacancy-containing reduced 

surface (right) with occupied states shaded and unoccupied states unshaded. The 

density of the Fermi levels is set at zero and the units of the energy (y) axis are in eV. 

Image adapted from Zhang [130]. 
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The presence of electrons in this 4f level accounts for the decrease in band 

gap when the ceria nanorods were lixiviated which corroborated the increase in 

number of oxygen vacancy defects.  

It is known that the deposition of metallic NP’s over the surface of 

semiconductors results in a decrease of the band gap values. This is essentially 

because the Fermi level energy of metals, i.e. the upper limit energy of electrons 

band, is usually right inside the semiconductor band gap, i.e. the energetic division 

between the occupied and unoccupied electronic states, as it is the case for ceria 

and summarized in Figure 36. The Fermi level energy of gold is situated right in the 

middle of the band gap of ceria and as the two components establish a chemical 

interaction, it is possible that electrons from gold might be promoted to the 

semiconductor conduction band and may account for the fact that the band gap of 

the metal/semiconductor system (Eg(2)) is smaller than for the semiconductor 

isolated. (Eg(1)). 

 

 

Figure 36. Representation of band energy for a system composed of metallic 

nanoparticles, in this specific case, gold, deposited over the surface of 

semiconductor nanoparticles, in this case, ceria.  

 

This was seen for the Au/CeO2 where the band gap value found (3.07 eV) is 

smaller than the values found for the nanorods and even smaller than for bulk ceria. 

These results might be rationalized via the interaction previously described in which 

the gold band structure is intertwined with the ceria band structure and it is 

responsible for the decrease in the band gap. 
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4.9 - XPS results 
 

XPS (X-ray photoelectron spectroscopy) analysis is a surface-probing 

technique obtained by exposing a solid surface to an X-rays beam while 

simultaneously measuring the kinetic energy and electrons that are ejected from the 

surface layer, i.e., the 10 nm-deep upper layer over the material.  

When an atom or molecule absorbs an X-ray photon, a core electron can be 

ejected. The kinetic energy (KE) of the electron is dependent on the incident photon 

energy (ℎ𝜈) and the binding energy (BE) of the electron (i.e., the energy required to 

remove the electron from the surface). 

Peaks appear in the spectrum from atoms emitting electrons of a 

characteristic energy correspondent to a specific BE. The binding energies and 

intensities of the photoelectron peaks enable element analysis and identification. 

For the lixiviated ceria nanorods, the analysis revealed that no peaks which 

could be attributed to the presence of sulfur S(2p) peaks, which indicates that there 

was no remaining of sulfate ions adsorbed on ceria surface after the acid leaching 

treatment and successive water washings. It is known that sulfur-based compounds 

are potent contaminants that might hinder the catalytical performance of the material 

for PROX-CO reaction. [131] 

The spectra for fully oxidized vacancy-free CeO2 and fully reduced CeO2, i.e. 

Ce2O3, contain six and four peaks, respectively. The actual sample which is made up 

of CeO2-x are composed up to ten peaks, originated from a hybrid of both forms. XPS 

spectra for lixiviated ceria nanorods is exhibited in Figures 38 e 39.  
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Figure 37. XPS spectrum for lixiviated ceria nanorods (LNRCeO2). 

 

Figure 38. XPS spectrum for lixiviated ceria nanorods (LNRCeO2) zoomed in the 

region of binding energies between 925 and 875 eV. 
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The peaks labeled V’’’ and U’’’ are associated with the Ce 3d9 O 2p6 Ce 4f0 

final state with a spin-orbit splitting of 16.5 eV. The spin-orbit coupling effect is a 

result of an interaction between the electron’s spin and its orbital motion around the 

nucleus. When an electron moves in the electric field of the nucleus, the spin–orbit 

coupling causes a shift in the electron’s atomic energy levels due to the 

electromagnetic interaction between the spin of the electron and the electric field. 

The additional peaks result from so-called “shake-down” states where 

electrons are transferred from the O 2p level to the Ce 4f level in the excited state. 

 

4.10 - CO oxidation catalytic results  

The catalytic performance of five relevant samples is exhibited in Figure 39. It 

is known that ceria nanorods by themselves do not present expressive catalytic 

activity for the oxidation of CO below 300 °C. The catalytic activity of these samples 

arises from the interaction of the Au NP’s and the oxide support. Major information 

about each one of the samples is summarized in Table 10. The code used for each 

one of the samples is [Type of ceria nanorods employed, either lixiviated or 

not]_[Method of deposition employed for the sample])_[Annealing temperature 

for the preparation of the catalyst] and they have been name Cat1 to Cat5 for 

short reference onward in this work. 

 

Table 11. Information about Au weight content and mean Au NP`s radius size in each 

one of the catalyst. 

Sample Au content (%) Mean Au radius size (nm) 

Cat1 (NRCeO2_NaOH_300) 0.94 2.5 ± 0.4 

Cat2 (LNRCeO2 _NaOH_300) 0.97 2.6 ± 0.5 

Cat3 (NRCe0.8Zr0.2O2_NaOH_300) 1.09 2.4 ± 0.6 

Cat4 (LNRCeO2_urea_300) 0.94 1.8 ± 0.3 

Cat5 (LNRCeO2_NaOH_400) 0.92 3.6 ± 0.2 

 

High selectivity to the formation of CO2 at lower temperatures have been constantly 

associated to the presence of H2O molecules, formed by the oxidation of H2, which 

remain chemisorbed to the surface of ceria. These chemisorbed H2O molecules tend 

to react with CO molecules also adsorbed on the surface, on a WGS reaction 

leading to the production of CO2 and H2.[132] As the temperature increases, water 
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molecules desorb more easily from the oxide surface. Consequently, the 

aforementioned WGS reaction on the surface is inhibited and, therefore, CO2 

selectivity decreases.  

 

Figure 39. CO and O2 conversions for the samples Cat1 through Cat5 in the 50 °C – 

350 °C range temperature.  

(b)  (a

)  

(c

)  

(d)  

(e)  
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Koo et al [132] highlight that, despite the activation energy for the oxidation of 

CO is smaller than the one observed for the oxidation of H2, the latter is in vast 

excess in the used experimental conditions that its oxidation prevails over CO’s. 

 

4.10.1 - Mechanism of the reaction  

 

Widmann et al and collaborators argue that two mechanisms are possible.[134] 

The first one is the Mars-Van-Krevelen (MvK) type. By the description of this 

mechanism, the oxidation of CO is carried out at the peripherical zone between the 

Au NP’s and the ceria support with some of the oxygen ions from the ceria lattice 

taking part of the reaction together the oxygen atoms provided by the O2 molecules. 

The other mechanism is the Langmuir-Hinshelwood. According to this one, the 

reaction is carried out only between adsorbed molecules on the surface of Au NP’s 

without participation of atoms from the CeO2 support.  

The results of the catalytic tests however, for example, for Cat2, Cat4 and 

Cat5, reveal that the maximum of conversion of CO takes place when the oxygen 

supplied to the system has been totally consumed allowing us to infer that the 

oxygen accounted for the oxidation of CO is coming not from the O2 molecules, but 

from the ceria lattice. This suggests that although these two mechanisms might be 

taking place simultaneously, MvK might be the favoured one. A general schema for 

this mechanism is provided in Figure 40. 

Song et al accomplished DFT studies about the MvK mechanism for the 

oxidation of CO on CeO2/Au systems like the ones in this work. [99] According to the 

authors, at first, gold nanoparticle would strongly bind to a CO molecule by -1.13 eV 

and, then, the CO molecules interacts with the ceria support forming a transition 

state (TS) in which the geometry around the carbon atom is trigonal. This step is 

highly exothermic with an energy barrier of only 0.01 eV. Kim et al also modelled for 

the system in which ceria would be totally stochiometric with no vacancy at all, and 

the barrier energy for this step would be 0.47 eV, confirming the importance on the 

formation of vacancies. [135] The next step then is the CO2 desorption that, by far, 

shows the highest energy barrier of +2.17 eV. Although the formation of a C=O bond 

in CO2 is highly exergonic, this does not compensate in the transition state to the 



122 
 

energy necessary for ripping out an oxygen from the ceria lattice and that justifies 

why the 𝐸𝑎 is so high.[99] 

 

Figure 40. Mars-Van-Krevelen mechanism for the oxidation on the surface of Au/CeO2 

catalysts. Image adapted from [97].  
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Then, a surface oxygen vacancy on CeO2 establishes a strong bond by with a 

gas-phase molecule -2.58 eV and heals a vacancy left behind by the elimination of a 

CO2 molecule. Then, another CO molecule is adsorbed on the surface of Au NP’s, 

which is subsequently followed by the formation of a transition with barrier energy = 

0.32 eV in which a trigonal-shaped carbon atom is bonded to one of the oxygen 

atoms previously attached to the vacancy. The final steps are then, the formation of 

a CO2 molecule, which is quite exothermic (∆𝐸 = -2.99 eV) and its endothermic 

desorption (∆𝐸 = +0.53 eV) leaving an oxygen-replenished ceria behind. 

This might be associated not only to the mean size of Au NP’s , which is, in 

Cat4, (1.8 ± 0.4) nm, while in Cat2 is 2.6 ± 0.5. Furthermore, in a qualitative, there 

seems to be a better distribution of particles in Cat4, as seen in Figure 45 in the 

appendix. As the pH increases slowly for the urea-based DP, this leads to the 

formation of more deposition sites for the formation of. The better distribution of gold 

particles over the surface might also interfere to rationalize why the sample 

synthesize by the urea-based DP was better than the NaOH-based. 

 

4.10.2 - Effect of annealing temperature used in catalyst 

synthesis 

When samples Cat2 and Cat5 are compared, the effect of the annealing 

temperature is studied. It is observed than when higher annealing temperature is 

used, a lower catalytical conversion is observed. While for Cat2, it attains a 

maximum conversion of 89 % and at 181 °C, for Cat5 it only reaches a maximum of 

73% at 210 °C. HRTEM images as seen in Figure 46 in the appendix reveal that 

higher annealing temperature lead to the production of larger and more rounded gold 

nanoparticles.  

 

4.10.3 - Comparison of lixiviated and non-lixiviated nanorods 

for catalysis 

It has been already reported that when ceria nanorods with native pore 

structure are compared to similar in which the pores have been expanded, the 

temperature for maximum conversion for PROX-CO reaction dropped.[101] For this 

case, OSC measurements allowed us to see that OSC values for LNRCeO2 are 

more than three times higher than the one observed for pristine nanorods for the 
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range of temperatures used for the catalysis in this work. Song has studied by DFT 

the mechanism of CO oxidation in Au/CeO2 and proposed that it proceeds 

preferentially via a gold-assisted Mars-Van-Krevelen mechanism, as depicted in 

Figure 40. By the mechanism, the atoms exchange processes happen in the 

peripheral zone between the Au NP’s and the ceria surface. The rate limiting step is 

the transition from (v), where oxygen atoms are linked to the surface of ceria to a TS 

where one oxygen establishes a bond with an Au atom. 

When the catalytic activity of Cat1 and Cat2 are compared, it is observed that 

the lixiviation of ceria nanorods prior to the deposition of Au NP’s have a profound 

impact on the catalytic performance. As the weight fraction and dispersibility of Au 

NP’s are practically the same, as seen in Figures 42 and 43 in the appendix, the 

difference might be due changes in the O vacancies in each one of them. Li et al has 

shown that ceria nanorods whose native pores have been expanded exhibit larger 

Ce3+/Ce4+ ratio. This also seems to be the case for the lixiviated nanorods developed 

in this work. They showed higher values of OSC when compared to pristine 

nanorods, which can be correlated with the fact that these samples have larger 

Ce3+/Ce4+, higher number of 𝑉𝑂
¨ . Therefore, it should exhibit a smaller enthalpy of 

abstraction of an O atom on the surface, which is directly intertwined with the 

reduction on the activation energy of the aforementioned rate-determining step 

(RDS). As this step, the easier thermodynamically it is to break the ceria surface – 

oxygen bond, the lower the RDS activation energy gets. 

 

4.10.4 - Effect of zirconium doping 

 

When the catalytic activity of Cat1 and Cat3 are compared, it is noticed that 

the latter tops up a maximum conversion of 63% at 95 °C, while the former is not 

quite effective for the catalysis as it only reaches 26% of conversion at 209 °C. This 

might be associated with the fact that NRCe0.8Zr0.2O2 OSC values are 30% higher 

than non-doped ceria nanorods. As previously discussed, as the effective ionic 

radius of Zr (IV) is smaller than that of Ce(IV) and Ce(III), the introduction of 

zirconium increases the concentration of 𝑉𝑂
¨ , and as a consequence, OSC values 

verified are larger. As discussed for the MvK mechanism, the RDS is the desorption 

of the CO2 molecule, whose energy which is intrinsically associated with the 
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thermodynamic trend of the support to form vacancies, which is favored in the case 

of LNRCe0.8Zr0.2O2/Au. HRTEM images for this catalyst are seen in Figure 44 of the 

appendix. 

 

4.10.5 - Effect of deposition-precipitation procedure  

 

Haruta et al were the first to report that the reactivity of Au NP’s sharply rises 

when the diameter decreases below 4 nm. [122] Afterwards, Valden and Goodman 

complemented Haruta’s studies and pointed out that there would be an optimum 

diameter around 3 nm for which the activity of these particles would be at the very 

best. [135] Laoufi performed operando studies for Au/TiO2 systems by operando 

GISAXS and reported that with a shifted sigmoidal behavior as depicted in Figure 

27.[136] Minor variations from the optimum diameter led to a sharp decrease in the 

catalytic activity. This might be the case also for the systems studies in this work.  

 

 

Figure 41. Reaction rate for PROX-CO as a function of the Au mean particle diameter 

over the surface of TiO2 determined by operando-GISAXS. Adapted from [136]. 

 

When the catalytic activity of Cat2 and Cat4 are compared, it is noticed that 

the method by which the DP is performed induces differences for catalytic 
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applications. While Cat2 while attains a maximum conversion of 89 % and at 181 °C, 

for Cat4, the catalyst tops up 95 % conversion at 170 °C. 

Zanella et al performed similar studies for systems composed of Au NP’s 

deposited over the surface of titania by DP via decomposition of urea et and 

concluded by EXAFS and XANES results that the composition of the colloidal gold 

compound over the oxide surface be AuN2.2O1.2C0.9H4.2Cl0.1.
[48] This leads to the 

reasonable conclusion that gold might have reacted with some of the species 

formed in the decomposition of urea in the aqueous solution forming n nitrogen-

containing compounds. Zanella [137] proposed that these species could be 

coordination complexes, such as [Au(NH3)Cl3], or even mixed precipitates, e.g. 

(AuHNNH2).3H2O or NH(AuNH2Cl)2.  

After thermal annealing, these compounds would be converted into the Au 

NP`s, which could still be containing nitrogen in their composition, which could 

interfere in the catalytical performance of the material. 
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5. CONCLUSION AND PERSPECTIVES 

 

In this work, the synthetic procedure chosen to synthesize CeO2 nanorods 

was proven to be effective for the synthesis of the desired morphology in a controlled 

manner. When the strategy was adapted to produce Zr-doped ceria nanorods, the 

morphology control was still maintained, even for higher levels of the doping agent 

(up to levels as high as 40%), maintaining the porous structure included 

The novel method that has been developed to lixiviate the native pore 

structure of ceria nanorods have been proven successful by HRTEM images which 

showed the expansion of the porous structure. OSC measurements of the materials 

proved that the lixiviated porous CeO2 nanorods exhibited OSC values more than 3 

times larger, while Raman measurements proved that the Ce3+/Ce4+ was also 

modified after the lixiviation process. The crystalline structure though was not 

compromised or modified as shown by XRD results after the acid exposure and the 

mass loss was minimal and smaller than 0.5%, as it was shown by ICP results. 

Isoelectric point of the materials was determined to be close to pH 9, and 

based on this, a procedure based on the DP technique was successfully applied for 

the synthesis of quite small Au NP’s on the surface of nanorods, smaller than 4 nm. 

DRS results showed that the deposition of Au NP’s over the surface of CeO2 

changed the band structure of the semiconductor and the band gap was significantly 

altered, an indication of a strong interaction between the Au NP’s and CeO2 

nanorods in the catalyst.  

Finally, it turned out that the leaching treatment indeed increased the catalytic 

power of the material as a support. In addition, the zirconium doping process for the 

synthesis of Ce0.8Zr0.2O2 nanorods also increased the ability of this system regarding 

the PROX-CO reaction, showing that maximum conversion for the reaction has 

increased, while the maximum conversion temperature has decreased, which is the 

sought characteristic for a catalyst with potential application for purifying hydrogen 

gas to be used PROX-CO catalytical systems. 

The flash lixiviation process employed in this project may also be applied to 

other porous oxide nanoparticles synthesized in the research group in order to 

evaluate what might be the impact on topological, optical and catalytical properties 

as well. Au/CeO2 is a potential catalyst class for the studied reaction with recent 
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bursting interest. This work adds more information into this class of catalyst for 

PROX-CO and paves the way to more studies about metal NP’s deposited non-

stoichiometric oxide NP’s to be studied in the future. 
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7. APPENDIX – MICROSCOPY IMAGES  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. HAADF HRTEM images for sample Cat1 (NRCeO2_NaOH_573) (a) before 

and (b) after the catalytic test. 
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Figure 43. HAADF HRTEM images for sample Cat2 (LNRCeO2 _NaOH_573) (a) before 

and (b) after the catalytic test. 
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Figure 44. HAADF HRTEM images for sample Cat3 (NRCe0.8Zr0.2O2_NaOH_573) (a) 

before and (b) after the catalytic test. 
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Figure 45. HAADF HRTEM images for sample Cat4 (LNRCeO2_urea_573) (a) before 

and (b) after the catalytic test. 
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Figure 46. HAADF HRTEM images for sample Cat5 (LNRCeO2_NaOH_673)) (a) before 

and (b) after the catalytic test. 
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