

UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Engenharia Elétrica e de Computação

LEONARDO LIMA GOMES

MINIMIZAÇÃO DE PERDAS DE POTÊNCIA EM SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA UTILIZANDO UM SISTEMA IMUNOLÓGICO ARTIFICIAL DEDICADO

MINIMIZATION OF POWER LOSSES IN DISTRIBUTION SYSTEMS USING A DEDICATED ARTIFICIAL IMMUNE SYSTEM

CAMPINAS 2020

LEONARDO LIMA GOMES

MINIMIZAÇÃO DE PERDAS DE POTÊNCIA EM SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA UTILIZANDO UM SISTEMA IMUNOLÓGICO ARTIFICIAL DEDICADO

Dissertação apresentada à Faculdade de Engenharia Elétrica e de Computação da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Engenharia Elétrica, na Área de Energia Elétrica.

Orientador: Prof. Dr. Carlos Alberto de Castro Junior

ESTE TRABALHO CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELO ALUNO LEONARDO LIMA GOMES, E ORIENTADO PELO PROF. DR. CARLOS ALBERTO DE CASTRO JUNIOR

CAMPINAS

2020

Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Luciana Pietrosanto Milla - CRB 8/8129

Gomes, Leonardo Lima, 1994-

G585m Minimização de perdas de potência em sistemas de distribuição de energia elétrica utilizando um sistema imunológico artificial dedicado / Leonardo Lima Gomes. – Campinas, SP : [s.n.], 2020.

Orientador: Carlos Alberto de Castro Junior. Dissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação.

1. Sistema imunológico. 2. Otimização. 3. Sistemas elétricos de potência. 4. Sistemas de energia elétrica - Distribuição. I. Castro Junior, Carlos Alberto de, 1960-. II. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Minimization of power losses in distribution systems using a dedicated artificial immune system
Palavras-chave em inglês:
Immune system
Optimization
Electric power systems
Electric power systems - Distribution
Área de concentração: Energia Elétrica
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Carlos Alberto de Castro Junior [Orientador]
Romis Ribeiro de Faissol Attux
Diogo Marujo
Data de defesa: 08-04-2020
Programa de Pós-Graduação: Engenharia Elétrica

Identificação e informações acadêmicas do(a) aluno(a)

- ORCID do autor: 0000-0002-6932-9360

⁻ Currículo Lattes do autor: http://buscatextual.cnpq.br/buscatextual/visu

COMISSÃO JULGADORA - DISSERTAÇÃO DE MESTRADO

Candidato: Leonardo Lima Gomes RA: 211484

Data da Defesa: 8 de abril de 2020

Título da Dissertação: "Minimização de perdas de potência em sistemas de distribuição de energia elétrica utilizando um sistema imunológico artificial dedicado"

Prof. Dr. Carlos Alberto de Castro Junior (Presidente, FEEC/UNICAMP)Prof. Dr. Romis Ribeiro de Faissol Attux (FEEC/UNICAMP)Prof. Dr. Diogo Marujo (UTFPR)

A Ata de Defesa, com as respectivas assinaturas dos membros da Comissão Julgadora, encontra-se no SIGA/Sistema de Fluxo de Dissertação e na Secretaria de Pós-Graduação da Faculdade de Engenharia Elétrica e de Computação.

AGRADECIMENTOS

Gratidão aos meus pais e namorada pelo incentivo e apoio para concluir este trabalho.

Meus agradecimentos aos professores da FEEC pelo ensino proporcionado, principalmente, ao professor Dr. Carlos Alberto de Castro Junior, que me orientou, se dedicou e me aconselhou durante a pós-graduação, e ao professor da FT (Faculdade de Tecnologia) da Unicamp, Dr. Guilherme Palermo Coelho que nos auxiliou no desenvolvimento inicial da metaheurística.

Aos meus amigos e colegas, pelo companheirismo e parceria em momentos bons e difíceis.

Agradeço também aos funcionários da FEEC, que viabilizam condições para a realização dos nossos trabalhos acadêmicos.

O presente trabalho foi realizado com apoio do CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil.

RESUMO

Ao longo dos anos os sistemas de distribuição ganharam importância na área de sistemas elétricos de potência. Em particular, a otimização das condições de operação do SD objetivando a minimização das perdas de potência tem recebido muita atenção. Esse trabalho propõe a aplicação de uma nova metaheurística para a otimização da operação, isto é, uma técnica bioinspirada dedicada conhecida como sistema imunológico artificial (SIA) é proposta. O objetivo do problema é minimizar as perdas de potência ativa no SD através da reconfiguração ótima dos alimentadores, além da conexão/desconexão de bancos de capacitores. Adicionalmente, um método de fluxo de carga linearizado recentemente proposto na literatura foi utilizado para avaliar as condições de operação das diferentes configurações candidatas. Algumas restrições operacionais são consideradas, como o balanço de potência, limites de magnitudes de tensão nas barras, topologia radial, e limites de fluxo de potência nos ramos. Resultados de simulações para três sistemas de distribuição são mostrados e discutidos. As perdas de potência ativa e o desempenho computacional do método proposto são comparados com um método clássico e determinístico de otimização.

Palavras-chave: Sistema imunológico artificial, reconfiguração, bancos de capacitores, otimização, perdas de potência, sistemas elétricos de potência, sistemas de distribuição

ABSTRACT

Through the years distribution systems have gained importance in the Power System area. In particular, optimizing distribution system operating conditions, aiming at minimizing real power losses has been receiving considerable attention. This work proposes the application of a novel metaheuristic for the optimal operation of distribution systems, namely, a dedicated bioinspired technique known as artificial immune system is proposed. The objective of the problem tackled in this work is to minimize distribution systems' real power losses through optimal feeder reconfiguration, and connection/disconnection of capacitor banks. In addition, a new linearized power flow method recently proposed in the literature was used for evaluating the operation conditions of different configuration candidates. Some operational constraints are considered namely, the power balance, bus voltage magnitude limits, radial topology, and branch power flow limits. The simulation results for three distribution systems will be shown and discussed. The real power losses and the computational performance of the proposed method are compared with a classical, deterministic optimization method.

Keywords – Artificial immune system, reconfiguration, capacitor banks, optimization, power losses, electric power system, distribution systems

LISTA DE ABREVIATURAS E SIGLAS

	A Mathematical Programming Language – linguagem de programação				
AMPL	matemática para resolver problemas de computação matemática				
BCAIS	Binary concentration-based artificial immune system				
CDF	Cumulative distribution function – distribuição de densidade cumulativa				
FC	Fluxo de carga				
FOB	Função objetivo				
	Algoritmo simplex programado em C adquirido pela ILOG e depois				
ILOG CPLEX	pela IBM				
LTC	Load Tap Changer – transformador com tap variável				
GD	Geração distribuída				
MIGOCD	Mixed-integer second order conic programming - programação cônica				
MISOCP	de segunda ordem misto-inteiro				
Min	Mínimo				
Max	Máximo				
SD	Sistemas de distribuição				
SEP	Sistemas elétricos de potência				
SIA	Sistema imunológico artificial				

LISTA DE SÍMBOLOS

Índices e conjuntos:

f	Função objetivo
g	Vetor das restrições de igualdade (balanço das potências nodais)
x	Vetor que corresponde às variáveis de estado (magnitudes e ângulos de fase das tensões)
In	Correntes no ramo n
М	Número de ramos
t	Índice do número da iteração corrente
h	Vetor das restrições de desigualdade
n	Índice do ramo
i	Índice do anticorpo
j	Conjunto de anticorpos
J	Conjunto de anticorpos melhores que o anticorpo i

Constantes e parâmetros:

NA	Número de chaves abertas da rede
nPOP	Número da população de anticorpos
R_n	Resistência do ramo n
nb	Número de barras
nb _s	Número de subestações

LS _{freq}	Parâmetro cujo valor define a realização de busca local
MedMov	Número de elementos do vetor que irão compor a média móvel

 $t_{máx}$ Número máximo de iterações

maxBank Número máximo de bancos de capacitores

Variáveis:

u	Vetor de variáveis de controle (por exemplo, estado das chaves)						
σ_s	Raio de afinidade ou de supressão						
C_t^i	Concentração da célula i na iteração t						
f_i^{Ag}	<i>Fitness</i> da célula <i>i</i> na iteração <i>t</i> , em que $f_i^{Ag} \in [0,1]$						
$f_i(t)$	Valor da FOB para a célula <i>i</i> na iteração <i>t</i>						
d(i,j)	Diferença entre os <i>fitness</i> das células i e j						
nC_t^i	Número de clones da célula i na iteração t						
Eacl	Variável resultado da multiplicação entre concentração e fitness do indivíduo.						
ESCt	Irá determinar o grau de mutação de seus clones						
Р	Perdas de potência ativa						
$lpha_i$	Variável relacionada com a concentração C_t^i						
M(t)	Média das últimas MedMov iterações do vetor fmin						
fmin	Melhor anticorpo da iteração (aquele com menor valor de FOB)						
capBank	População inicial de banco de capacitores						
nCh_t^i	Número máximo de bancos de capacitores a serem conectados ou desconectados						
	nos clones do anticorpo i na iteração t .						

SUMÁRIO

1.	Introdu	ıção	13
1.1		Objetivo	17
1.2		Contribuições	18
1.3		Estruturação	18
2.	Revisã	o bibliográfica	19
3.	Descri	ção do SIA dedicado discreto	24
3.1		Formulação do problema de otimização	24
3.2		Sistema imunológico artificial proposto	24
3.2.1	1	Gerar população inicial	27
3.2.2	2	Avaliar o fitness das células	28
3.2.3	3	Avaliar a afinidade entre as células da população	29
3.2.4	1	Definir o número de clones que deve ser gerado para cada indivíduo	30
3.2.5	5	Gerar os clones para cada célula da população	30
3.2.6	5	Aplicar o operador de hipermutação a cada um dos clones gerados	31
3.2.7	7	Avaliar o fitness das novas células geradas	32
3.2.8	3	Selecionar células que deverão ser mantidas (com inserção)	32
3.2.9	Ð	Avaliar a afinidade entre as células da população	33
3.2.1	10	Atualizar a concentração de todas as células	34
3.2.1	11	Aplicar o operador busca local aos indivíduos e atualizar seus fitness	34
3.2.1	12	Avaliar a afinidade entre as células da população	35
3.2.1	13	Atualizar a concentração de todas as células	36
3.2.1	14	Eliminar da população as células de concentração nula	36
3.2.1	15	Avaliar a afinidade entre as células da população	36
3.2.1	16	Aplicar o operador busca local aos indivíduos e atualizar seus fitness	36
3.2.1	17	Atualizar afinidade, concentração, e eliminar indivíduos	37
3.3		Critério de parada	37
3.4		Busca exaustiva	38
3.5		Alocação de banco de capacitores	38
3.5.1	1	Gerar população inicial	39
3.5.2	2	Aplicar o operador de hipermutação a cada um dos clones gerados	40
3.5.3	3	Resultado	40
3.6		Conclusão	41

4.	Resultados computacionais	42
4.1	Resultados gerais	42
4.2	Conclusões parciais	51
5.	Conclusões	53
6.	Trabalhos futuros	54
Ref	erências bibliográficas	55
ANE	EXO A – DADOS DO SISTEMA DE 136 BARRAS	59
ANE	EXO B – PUBLICAÇÃO RESULTANTE DESTE TRABALHO	63
ANE	EXO C – FLUXO DE CARGA LINEARIZADO	64
С	.1 Formulação básica	64
С	2.2 Aproximação linear	65
С	.3 Aproximação do FC	65
С	.4 Extensão para caso desbalanceado	66

1. Introdução

Segundo (KERSTING, 2002), o sistema de distribuição costumava ser o componente menos glamoroso dos sistemas elétricos de potência (SEP). A partir da segunda metade do século XX, o planejamento e a operação dos sistemas de geração e transmissão passaram a apresentar grandes desafios aos engenheiros e pesquisadores. As unidades de geração ficaram cada vez maiores. As linhas de transmissão se multiplicaram formando grandes redes interconectadas. A operação desses sistemas de grande porte requereu o desenvolvimento de técnicas avançadas de operação e análise. Enquanto isso, os sistemas de distribuição continuavam a suprir os consumidores com pouca ou nenhuma análise. Como consequência direta dessa situação, os sistemas de distribuição eram tipicamente superdimensionados.

Ainda de acordo com (KERSTING, 2002), os tempos mudaram. Tornou-se importante e necessário operar os sistemas de distribuição com seus equipamentos próximos de suas capacidades máximas. Nesse caso, algumas das questões que devem ser respondidas são:

- O que é essa máxima capacidade?
- Como se determina esta capacidade?
- Quais são os limites operacionais que devem ser respeitados?
- O que se pode fazer para operar o sistema de distribuição dentro de limites especificados?
- O que se pode fazer para o sistema de distribuição operar mais eficientemente?

Finalmente, (KERSTING, 2002) afirma que estas questões somente poderiam ser respondidas se os sistemas de distribuição fossem modelados de maneira precisa.

Ao longo dos anos, os sistemas de distribuição vivenciaram grandes mudanças. Uma das mais importantes foi a mudança de paradigma através da desregulamentação do setor elétrico (NORTHCOTE-GREEN; WILSON, 2007). Essa desregulamentação trouxe novas ideias como a do *open access* e levou à privatização das empresas causando alterações significativas nas práticas de planejamento e operação das redes elétricas. A desverticalização que provocou a separação das atividades de produção, da transmissão, da distribuição e da comercialização de energia elétrica levando ao surgimento dos diferentes agentes dentro do setor mudou o foco dessas organizações. Em particular, as empresas de distribuição foram forçadas, seja diretamente através do agente regulador do setor, seja indiretamente através das estruturas tarifárias e do aumento da consciência dos consumidores, a melhorar os níveis de qualidade do serviço prestado. O controle e a automação têm papel fundamental nesta mudança de práticas, sendo fatores cruciais para o sucesso do negócio da distribuição de energia elétrica. Atualmente isto é ainda mais evidente, com a crescente penetração de geração distribuída, principalmente através de energias renováveis, e com o uso intensivo de tecnologias de computação (principalmente a internet) e de comunicações para o desenvolvimento das chamadas redes inteligentes (*smart grids*).

A automação da distribuição pode ser definida como a utilização de um conjunto de tecnologias que permitem que uma empresa de distribuição possa monitorar, coordenar e operar os componentes de sua rede em tempo real e de maneira remota. Em outras palavras, corresponde à aplicação de tecnologias de comunicações, otimização e sistemas inteligentes para melhorar o desempenho das funções de rede durante a operação em condições normais e anormais (MOMOH, 2007). A automação pode levar aos seguintes benefícios ao SD (MOMOH, 2007; NORTHCOTE-GREEN; WILSON, 2007):

- Redução dos custos de operação e manutenção;
- Postergação de despesas com reforço das redes;
- Aumento da eficiência da operação;
- Aumento da confiabilidade;
- Oferecimento de novos serviços aos consumidores;
- Aumento da qualidade da energia elétrica;
- Melhora da qualidade das informações para as equipes de planejamento e operação.

Segundo (MOMOH, 2007), a integração da automação da distribuição fornece uma plataforma que resulta em um sistema de distribuição autônomo, eficiente e fortemente competitivo, tornando-se apto a responder a diversas situações, sendo autoconsciente, auto organizável e autorreconfigurável. Algumas das funções associadas à automação do SD, e que usualmente são mencionadas na literatura especializada, são:

- Monitoramento e alertas;
- Gestão da demanda;
- Localização e isolamento de faltas;
- Restauração do serviço;

- Controle de tensão/potência reativa;
- Monitoramento da qualidade da energia;
- Precificação em tempo real;
- Despacho da geração distribuída;
- Reconfiguração da rede.

Este trabalho refere-se especificamente à reconfiguração de redes de distribuição. Segundo (MOMOH, 2007), as redes de distribuição são configuradas de maneira geral em uma estrutura radial. A sua configuração (topologia) pode ser alterada através de operações de chaveamento manual ou automático de forma que todas as cargas sejam supridas e benefícios adicionais sejam obtidos, como a otimização das condições de operação, aumento da confiabilidade e aumento da segurança de operação. Os principais objetivos do procedimento de reconfiguração da rede são:

- Minimização das perdas de potência na distribuição de energia;
- Otimização do perfil de tensões da rede;
- Eliminação/alívio de sobrecargas.

O modelo genérico de otimização associado a sistemas de distribuição de energia elétrica pode ser representado por:

$$\min f(x)$$

s.a. $g(x, u) = 0$ (1.1)
 $h(x, u) \le 0$

em que f é a função objetivo (FOB), como por exemplo aquelas mencionadas anteriormente, g é um vetor das restrições de igualdade (balanço das potências nodais) e h é um vetor das restrições de desigualdade (limites das tensões nodais, limites dos fluxos de potência nas linhas de distribuição, etc). O vetor x corresponde às variáveis de estado (magnitudes e ângulos de fase das tensões) e u às variáveis de controle (por exemplo, estado das chaves). Além disso, deve ser imposta a restrição de radialidade da rede de distribuição, por exemplo conforme discutido e mostrado em (LAVORATO et al., 2013).

Os métodos para a resolução do problema de reconfiguração podem ser

basicamente divididos em:

- Métodos clássicos de otimização (programação linear, ou não linear, inteira ou inteira mista etc.);
- Métodos de inteligência artificial, que é uma área da ciência da computação que investiga como o pensamento e a ação de seres humanos podem ser modelados ou reproduzidos por máquina.

Técnicas de inteligência artificial amplamente discutidas na literatura técnica incluem os sistemas especialistas, as redes neurais artificiais, os sistemas de lógica nebulosa, os algoritmos genéticos e SIA.

Neste trabalho será explorada a utilização de SIAs, que têm sido utilizados para resolver problemas de otimização, baseando-se em certos aspectos do sistema imunológico humano (CHEN et al., 2006). O conceito do algoritmo imunológico é inspirado no fato de que o sistema imunológico humano contém vários mecanismos de defesa contra organismos patogênicos (AHMAD; RAHMAN; AMINUDDIN, 2012). A capacidade de reconhecimento de padrões e memorização que o algoritmo imunológico tem oferece uma forma bastante eficiente de resolver problemas de otimização discretos. Além disso, possui estratégias para tentar evitar pontos ótimos locais e buscar o ponto ótimo global. Exemplos de aplicação de algoritmo imunológico na resolução de problemas na área de sistemas elétricos de potência são:

- Alocação ótima de chaves em sistemas de distribuição (CHEN et al., 2006);
- Automação e *self healing* de sistemas de potência (BELKACEMI; FELIACHI, 2009);
- Reconfiguração de sistemas de distribuição (AN et al., 2010; AHMAD; RAHMAN; AMINUDDIN, 2012; ALONSO et al., 2014; ALONSO; OLIVEIRA; ZAMBRONI DE SOUZA, 2015);
- Minimização de perdas e do perfil de tensões de redes de distribuição (RAHIM et al., 2010; MUHTAZARUDDIN et al., 2014);
- Despacho econômico de micro redes (LIAO, 2013);
- Planejamento reativo de sistemas de distribuição (SHENGQI et al., 2013);
- Alocação ótima de geração distribuída e de bancos de capacitores (MUHTAZARUDDIN et al., 2014);

- Restabelecimento do serviço em redes de distribuição (ALONSO; OLIVEIRA; ZAMBRONI DE SOUZA, 2015);
- Controle de tensão (OLIVEIRA et al., 2016a);
- Balanceamento de carga (ZHANG et al., 2016).

1.1 Objetivo

O objetivo deste trabalho é oferecer uma contribuição ao desenvolvimento de métodos para a minimização de perdas de potência em sistemas de distribuição. O método a ser utilizado é uma versão dedicada do sistema imunológico artificial (SIA). Em particular, as variáveis de decisão do problema são a reconfiguração da rede (alteração de sua topologia) e a conexão/desconexão de bancos de capacitores. Em particular o foco será nos seguintes pontos:

- Seleção das funções objetivo pesquisa da eficácia e frequência das funções objetivo disponíveis na literatura.
- Seleção das restrições levantamento e pesquisa das restrições mais importantes do ponto de vista da operação da rede.
- Seleção do método de resolução do problema via sistemas imunológicos artificiais - seleção de algumas alternativas de algoritmos de sistemas imunológicos e verificação do mais efetivo na resolução do problema de reconfiguração de redes de distribuição, em função de suas características particulares.
- Contribuição para minimização de perdas no sistema de distribuição através da reconfiguração da rede e conexão de bancos de capacitores.
- Implementação de um novo SIA denominado *binary concentration-based artificial imune system* (BCAIS).
- Aplicação do fluxo de carga (FC) linearizado (GARCES, 2016), (CASTRILLON; GIRALDO; CASTRO, 2018), explicado no Anexo C, no BCAIS comparando tempos computacionais e resultados.
- Implementação do BCAIS sem ajustes de parâmetros pelo usuário em função da rede estudada, sendo estes automaticamente definidos em função dos dados da rede.
- Implementação de um programa cônico de segunda ordem misto-inteiro da

sigla em inglês MISOCP (LÓPEZ; LAVORATO; RIDER, 2016) que garante o ótimo global via o *solver* CPLEX (IBM, 2009) para atestar o ótimo encontrado e comparar tempos computacionais.

1.2 Contribuições

As contribuições são:

- Propor um método heurístico eficaz para resolver o problema de reconfiguração da rede de distribuição e conexão/desconexão de bancos de capacitores, de modo que seja mais rápido computacionalmente que os métodos clássicos de programação matemática e os SIAs clássicos, justamente por ser um SIA dedicado, e utilizar um FC linearizado.
- O SIA dedicado não necessita da ação do usuário no sentido de definir seus parâmetros em função da rede que se deseja analisar, sendo estes automaticamente definidos em função dos parâmetros da rede.

1.3 Estruturação

No Capítulo 2 é apresentada uma revisão bibliográfica abordando os modelos e técnicas de otimização usados para resolver o problema de otimização da reconfiguração do sistema de distribuição.

No Capítulo 3 é explicado o SIA proposto.

No Capítulo 4 são demonstrados os resultados de estudos de caso que foram obtidos através de diversas simulações computacionais explorando diferentes redes de distribuição. É feita uma comparação entre o BCAIS com e sem o FC linearizado, e com o MISOCP através do CPLEX.

No Capítulo 5 são apresentadas as conclusões deste trabalho e propostas de trabalhos futuros.

2. Revisão bibliográfica

Neste capítulo é feita uma revisão bibliográfica resumida abordando os modelos e técnicas de otimização usados para resolver o problema de otimização da reconfiguração do sistema de distribuição, que são encontrados na literatura especializada. Como o tema é bastante atual, serão descritos alguns trabalhos publicados recentemente.

As funções objetivo e as restrições que algumas referências contemplam ao otimizar as condições de operação de redes de distribuição estão, respectivamente, nas Tabela 2.1 e Tabela 2.2, em que "X" nas células das tabelas indica que o item é contemplado, e vazio caso contrário.

FOB\Referência	(OLIVEIRA et al., 2016a)	(OLIVEIRA et al., 2016b)	(ALONSO; OLIVEIRA; ZAMBRONI DE SOUZA, 2015)	(MUHTAZARUDDIN et al., 2014)	(ALONSO et al., 2014)	(LIAO, 2013)	(AHMAD; RAHMAN; AMINUDDIN, 2012)	(AN et al., 2010)	(BELKACEMI; FELIACHI, 2009)	(CHEN et al., 2006)
Min. Perda de potência	Х		X	Х	Х		X	Х	Х	
Min. Operações de chaveamento	Х				X				X	
Max. Estabilidade de tensão	Х						X			
Max. Cargas atendidas pós falta		X							Х	
Max. Confiabilidade			X							X
Min. Investimento em chaves										Х
Min. Custo da energia						X				

Tabela 2.1 - Funções objetivo abordadas por algumas referências

Restrição\Referência	(OLIVEIRA et al., 2016a)	(OLIVEIRA et al., 2016b)	(ALONSO; OLIVEIRA; ZAMBRONI DE SOUZA, 2015)	(MUHTAZARUDDIN et al., 2014)	(ALONSO et al., 2014)	(LIAO, 2013)	(AHMAD; RAHMAN; AMINUDDIN, 2012)	(AN et al., 2010)	(BELKACEMI; FELIACHI, 2009)	(CHEN et al., 2006)
Limites de nível de tensão nodal	Х	X	X	x	X			X	X	Х
Limite de corrente e/ou potência aparente no alimentador		X	X		X			x	x	X
Topologia radial		X	X		X			X		
Sem ilhamento		X	X		Х					
Mesma sequência de fases										X
Diferença de módulo e ângulo da tensão entre os 2 lados da chave										Х
Balanço de potência				Х		X				
Potência por unidade de GD				Х		X				
Limites de valores do capacitor				X						
Total de potência das GDs				X						
Prioridade de consumidores		X								
Número de operações no LTC	X									

Tabela 2.2 - Restrições adotadas por algumas referências

Analisando as Tabelas 2.1 e 2.2, é possível verificar as FOBs e restrições mais utilizadas. Além dessas referências, outras que abordam o mesmo assunto são comentadas a seguir.

Em (KUMAR et al., 2017) a reconfiguração da rede de distribuição tem como restrições os limites de tensão e a radialidade, e o processo de otimização é baseado em um método heurístico e meta-heurístico. A meta-heurística utilizada é baseada na chamada *harmony search*. A heurística é baseada nos índices de tensão de segurança, e de qualidade de tensão nos nós. Já a meta-heurística avalia a reconfiguração para diferentes probabilidades de imposições de tensão de segurança, a redução de perdas de potência também foi considerada. Alguns testes foram mostrados para demonstrar a eficiência dos métodos.

Já (FREITAS; TOLEDO; DELBEM, 2017) utiliza uma abordagem exata para otimizar a reconfiguração da rede de distribuição, com uma formulação matemática nova para o problema visando a minimização de perdas de potência. As restrições são lineares e garantem a radialidade, a queda de tensão com passagem de corrente, chaves não podem estar abertas e fechadas no mesmo tempo, limite máximo de correntes, limites de diferença de tensão entre barras, entre outras várias restrições. Esta referência se destaca pela diferente formulação matemática linear de diversas restrições, algumas inéditas. Três testes foram feitos, onde se utilizou o método de solução ILOG CPLEX.

Em (BAGDE et al., 2016) utiliza-se do algoritmo de otimização baseado em Biogeografia para obter a reconfiguração ótima da rede de distribuição. O objetivo é melhorar o perfil de tensões e minimizar as perdas de potência na linha. O método proposto foi testado para um sistema de 33 barras, e os resultados são bem ilustrados através de diversos gráficos. Além disso, os resultados são comparados com outras heurísticas, como o algoritmo genético, por exemplo, mostrando bom desempenho.

A referência (ARCHANA; KUMAR; GUPTA, 2016) otimiza as condições de operação de redes primárias de distribuição utilizando o algoritmo *Teaching Learning Based Optimization* modificado. O objetivo é minimizar o custo operacional e maximizar disponibilidade do sistema. Um parâmetro novo de confiabilidade também é verificado. Ambos os objetivos são considerados através de uma função com vários termos, cada um com os pesos apropriados. As restrições são o balanço dos fluxos de potência, os limites inferior e superior das tensões, os limites máximos de corrente, restrições de radialidade (LAVORATO et al., 2013) e o impedimento de ilhamento de barras de carga. O método proposto é testado para uma rede de 33 barras, sendo comparado com outros algoritmos heurísticos como o algoritmo genético, desempenhando-se melhor na busca pelo ponto ótimo global.

Em (ZHANG; ZHANG; ZHANG, 2017) a otimização da reconfiguração do sistema de distribuição é feita através de um algoritmo genético com o objetivo de minimizar as perdas de potência. As restrições utilizadas são limite superior e inferior de tensão, e limite superior de potência aparente. O algoritmo é testado em uma rede de 33 barras, em que se obteve um melhor resultado quando comparado ao método *Branch Exchange*.

Em (HAGHIGHAT; ZENG, 2016) trabalhou-se na otimização da reconfiguração da rede de distribuição sob carga incerta e geração renovável, em que se objetivou a minimização de perdas de potência. A restrição de radialidade foi imposta, entre outras, de modo a se detalhar matematicamente bem a formulação do problema. O algoritmo de resolução é dividido em quatro passos. Para a resolução do problema utilizou-se o solver CPLEX através da ferramenta AMPL, ou seja, trata-se de um método numérico. O trabalho foi testado para três redes de distribuição.

Considerando a formulação genérica apresentada em (1.1), verifica-se que as diversas referências bibliográficas mencionadas anteriormente apresentam variações quanto às definições da função objetivo f e das restrições g e h. Com base nisso, é possível analisar, principalmente pela Tabela 2.1, que a FOB mais abordada, e portanto, a utilizada nesse trabalho é a minimização de perdas de potência ativa. A escolha por uma única função objetivo deveuse ao fato de que essa FOB já implica na melhora indireta de outros objetivos do problema, como a melhora do perfil de tensões, por exemplo. As restrições mais utilizadas e mais relevantes também foram utilizadas, e serão discutidas adiante.

3. Descrição do SIA dedicado discreto

3.1 Formulação do problema de otimização

Retomando, o modelo de otimização é dado por:

$$\min f(x) \tag{3.1}$$

s.a.
$$g(x, u) = 0$$
 (3.2)

$$h(x,u) \le 0 \tag{3.3}$$

A função objetivo (FOB) é dada por:

$$P = \sum_{n=1}^{M} \sum_{m=1}^{M} P_{mn} + P_{nm}$$
(3.4)

em que *P* são as perdas de potência, P_{mn} é a potência que flui da barra *m* para a barra *n* e P_{nm} é a potência que flui no sentido contrário, para um total de M barras, em que $m \neq n$.

As restrições são: manutenção de topologia radial, proibição de ilhamentos, limites de tensão nodal, e balanço de potência. Uma forma de garantir a condição de radialidade é (LAVORATO et al., 2013):

$$M = nb - nb_s \tag{3.5}$$

em que M é o número de ramos, nb é o número de barras e nb_s é o número de subestações.

3.2 Sistema imunológico artificial proposto

A Tabela 3.1 faz uma associação do SIA com o problema de otimização em questão. O *fitness* é inversamente proporcional à função objetivo, pois, como se trata de um problema de minimização, quanto menores as perdas de potência, maior o *fitness*, ou seja, melhor a qualidade da solução.

SIA	Representação no problema
Anticorpo	Vetor binário correspondente ao estado das chaves
Atributo	Decisão do estado de cada chave (1 para fechado e 0 para aberto)
Fitness	Inversamente proporcional à função objetivo

Tabela 3.1 - Contextualização do problema com o SIA

O algoritmo proposto BCAIS pode ser resumido no fluxograma da Figura 3.1.

Figura 3.1 – BCAIS proposto

- O fluxograma da Figura 3.1 é composto pelas etapas básicas a seguir.
- 1. Gerar uma população inicial de anticorpos
- 2. Gerar clones de cada indivíduo da população
- 3. Aplicar hipermutação nos clones
- 4. Atualizar a população
- 5. Procurar por indivíduos melhores através de um procedimento de busca local
- 6. Se o critério de parada for atingido, parar. Caso contrário, voltar para o passo 2

Os passos descritos acima serão discutidos com mais detalhes a seguir. O método proposto neste trabalho apresenta maior robustez do que os SIAs convencionais, e maior eficiência em procurar o ótimo global, evitando-se os ótimos locais.

O algoritmo imunológico artificial proposto em (COELHO; DE FRANCA; VON ZUBEN, 2011) e (COELHO, 2011) foi tomado como base para o desenvolvimento de um novo algoritmo imunológico dedicado, considerando variáveis de decisão discretas. Assim, a ideia deste capítulo é descrever o algoritmo proposto neste trabalho passo a passo, utilizando a rede simples da Figura 3.2 como exemplo. Esta rede corresponde a uma adaptação da rede utilizada em (CIVANLAR et al., 1988) e (CASTRO JR.; WATANABE, 1990).

Figura 3.2 - Exemplo de rede de distribuição (caso base). Fonte: adaptado de (CIVANLAR et al., 1988)

O problema da reconfiguração consiste em alterar a topologia da rede, de forma a atender a certos objetivos operacionais. Tomando a rede da Figura 3.2, uma alteração possível seria fechar a chave 6 e abrir a chave 5. Com isso, o nó 7, antes alimentado pelo *Feeder II*, passa a ser alimentado pelo *Feeder I*. Esta nova topologia corresponde a um novo circuito, portanto, com um novo ponto de operação e características próprias.

Assume-se que as diferentes topologias estão sujeitas às seguintes restrições básicas:

- a configuração deve ser radial;
- a configuração deve ser totalmente conexa, ou seja, não deve haver ilhamentos (um nó isolado ou conjunto de nós isolados e sem alimentação);
- a operação deve ser factível, ou seja, o fluxo de carga aplicado à configuração deve convergir.

A rede exemplo admite seis configurações diferentes, correspondentes à abertura de cada uma das chaves, mantendo-se as demais fechadas, com exceção das chaves 1 e 3. Estas últimas não podem ser abertas, pois resultariam no ilhamento das barras 1 e 2, respectivamente. A Tabela 3.2 mostra uma das características que podem ser associadas a cada topologia, no caso, as perdas de potência ativa nos ramos de distribuição. Esta avaliação foi feita executando-se um fluxo de carga para cada configuração através do Matpower (ZIMMERMAN et al., 2011; MURILLO-SÁNCHEZ et al., 2013), um pacote *open-source* executado no MatLab©.

Chave aberta	Perdas (kW)
1	Infactível
2	678,7
3	Infactível
4	441,3
5	491,7
6	499,3

Tabela 3.2 - Perdas de potência ativa para cada configuração

Este procedimento exaustivo (verificação de todas as topologias possíveis) mostrou que a melhor topologia para este caso, ou seja, aquela que resulta nas mínimas perdas de potência, corresponde àquela com a chave 4 aberta.

3.2.1 Gerar população inicial

Considere que a rede tenha *NA* chaves abertas. No caso da rede exemplo, NA = 1. A população inicial terá $nPOP = (2 \cdot NA + 1)$ indivíduos (configurações de rede), sendo:

• um indivíduo referente à configuração do caso base;

• para cada chave aberta, gerar dois indivíduos, sendo que estes terão esta chave aberta agora fechada. De forma a manter a configuração radial, cada indivíduo terá uma chave normalmente fechada do caso base sendo aberta, uma de cada lado da malha formada pela chave aberta.

No caso da rede exemplo, a população inicial terá três indivíduos (nPOP = 3), sendo um deles referente ao caso base da Figura 3.2. A Figura 3.3 mostra dois exemplos de indivíduos após fechar a chave aberta 6.

Figura 3.3 - Possíveis indivíduos da população inicial.

Cada indivíduo (configuração, topologia) é representado por um vetor binário, com um número de elementos igual ao número de chaves. No caso da rede exemplo, o indivíduo correspondente ao caso base é representado por [1 1 1 1 1 0], onde o elemento 0 na sexta posição corresponde à chave 6, que está aberta. O indivíduo com a chave 4 aberta é [1 1 1 0 1 1], e aquele com a chave 2 aberta é [1 0 1 1 1 1].

A escolha dos demais indivíduos que formarão a população inicial conforme especificado acima está sujeita às restrições básicas descritas anteriormente.

3.2.2 Avaliar o fitness das células

Cada configuração de rede é também denominada anticorpo pelo algoritmo imunológico artificial. Assim, a cada anticorpo associa-se uma grandeza, denominada função objetivo (FOB), que no caso do problema de reconfiguração tratado aqui corresponde às perdas de potência ativa nos ramos. No caso da configuração do caso base, tem-se FOB = 499,3 kW (Tabela 3.2).

As perdas de potência de cada anticorpo factível são normalizadas, levando ao *fitness* deste anticorpo. Isso é feito por:

$$f_i^{Ag} = 1 - \frac{f_i(t) - \min_j[f_j(t)]}{\max_j[f_j(t)] - \min_j[f_j(t)]}$$
(3.6)

em que $f_i^{Ag} \in [0,1]$ é o *fitness* da célula *i* na iteração *t* e $f_i(t)$ é o valor da FOB para a célula *i* na iteração *t*. O índice *j* assume os valores [1, 2, ..., nPOP]. As melhores células possuem os maiores valores de f_i^{Ag} . Esta normalização é feita para que, independentemente da rede analisada e sua respectiva FOB, seja da ordem de poucos kW até vários MW, o BCAIS possa funcionar da mesma maneira.

No caso da rede exemplo, o cálculo do *fitness* correspondente ao caso base é feito da seguinte forma: $f_i(t) = 499,3$ kW (chave 6 aberta), $min_j[f_j(t)] = 441,3$ kW (chave 4 aberta), $max_j[f_j(t)] = 678,7$ kW (chave 2 aberta), logo:

$$f_1^{Ag}(t) = 1 - \frac{499,3 - 441,3}{678,7 - 441,3} = 0,75$$
(3.7)

Pode-se verificar que, no caso da chave 4 aberta, $f_2^{Ag}(t) = 1$ e para a chave 2 aberta, $f_3^{Ag}(t) = 0$. Ou seja, $f_2^{Ag}(t)$ é o melhor indivíduo da população, e $f_3^{Ag}(t)$, o pior.

3.2.3 Avaliar a afinidade entre as células da população

Define-se uma concentração inicial $C_0^i = 1$ para todos os indivíduos, para que se possa calcular a afinidade inicial entre as células (para t = 0). Além disso, define-se também um raio de afinidade ou de supressão $\sigma_s = var(f^{Ag})$, que determina o raio da região correspondente à vizinhança do anticorpo, igual à variância dos elementos do vetor f^{Ag} .

A afinidade entre as células da população é calculada por:

$$f_i^{Ab}(t) = \begin{cases} \frac{\sum_{j \in J} c_t^j [\sigma_s - d(i,j)]}{\sum_{j \in J} c_t^j} , \text{se } J \neq \emptyset \\ 0, \text{ caso contrário} \end{cases}$$
(3.8)

em que $f_i^{Ab}(t)$ é a afinidade entre o indivíduo *i* e as células da população na iteração *t* pertencentes ao conjunto *J*, que contém os anticorpos melhores que *i* (possuem maior fitness que *i*), e que estão próximos de *i* levando em conta o raio de supressão σ_s , C_t^j é a concentração da célula *j* na iteração *t* e d(i, j) corresponde à distância entre as células *i* e *j*. No caso do problema de reconfiguração, a distância entre duas células é definida como a diferença entre os

fitness normalizados dos indivíduos.

Para o exemplo utilizado tem-se:

$$f_1^{Ab}(t) = \frac{1 \cdot [0,2708 - 0,25]}{1} = 0,0208 \quad J = \{2\}$$

$$f_2^{Ab}(t) = 0 \qquad \qquad J = \emptyset$$

$$f_3^{Ab}(t) = 0 \qquad \qquad J = \emptyset$$
(3.9)

Esse cálculo de afinidade entre as células da população está diretamente relacionado com o cálculo da concentração C_t^i .

3.2.4 Definir o número de clones que deve ser gerado para cada indivíduo

Neste ponto, o algoritmo adentra um laço contendo ações que serão repetidas até que o critério de parada seja atendido. O número de clones de cada célula é proporcional à sua concentração, pois entende-se que, quanto maior a concentração, mais ativa está a célula na população. O número de clones do indivíduo *i* na iteração *t* é determinado por:

$$nC_t^i = \left[C_t^i \cdot \left(nC^{max} - nC^{min}\right) + nC^{min}\right]$$
(3.10)

em que C_t^i é a concentração da célula *i* na iteração *t*, nC^{max} e nC^{min} são, respectivamente, o número máximo e mínimo de clones que pode ser gerado por cada célula, e [.] é o operador teto, que arredonda para o número inteiro subsequente.

Considere que o critério de parada seja baseado no número de iterações, e que o número máximo de iterações seja $t_{max} = 100$. Como no momento t = 0, o critério de parada ainda não foi atendido. Assim, o algoritmo adentra o laço, começa a primeira iteração, para t = 1. Como ainda não foram calculadas novas concentrações, então $C_1^i = 1$ para todas as células. Os números máximo e mínimo de clones são definidos, respectivamente, como $nC^{max} = 2 \cdot NA$ e $nC^{min} = 1$. Logo, os números de clones de cada célula são dados por:

$$nC_1^i = [1.(2-1)+1] = [2] = 2$$
, para $i = 1,2,3$ (3.11)

3.2.5 Gerar os clones para cada célula da população

São então gerados dois clones correspondentes a cada indivíduo da população inicial. No caso da rede exemplo, os indivíduos da população inicial são:

[1 1 1 1 1 0] – chave 6 aberta [1 1 1 0 1 1] – chave 4 aberta [1 0 1 1 1 1] – chave 2 aberta

Tem-se agora nove indivíduos, sendo três da população inicial e seis clones.

3.2.6 Aplicar o operador de hipermutação a cada um dos clones gerados

Define-se um escalar Esc para cada célula, definido por:

$$Esc_t^i = f_i^{Ag}(t) \cdot C_t^i \tag{3.12}$$

onde Esc_t^i é o escalar de mutação de cada indivíduo *i* na iteração *t*. Os outros parâmetros já foram definidos anteriormente.

A Tabela 3.3 mostra o grau de mutação de cada conjunto de clones relacionados a um anticorpo. O parâmetro Esc_t^i , correspondente a cada indivíduo, pertence a uma das faixas de valores mostradas na Tabela 3.3. *NA* é o número de chaves inicialmente abertas. Assim, os clones de cada célula vão sofrer um número de mutações (chaveamentos) dependentes da faixa correspondente ao escalar do seu genitor.

Tabela 3.3- Lógica de mutação dos clones

Faixas de Esc_t^i	0 a (1/ <i>NA</i>)	(1/NA) a (2/NA)	 ((NA - 1)/NA) a (NA/NA)
Nº de	NA	NA — 1	 1
chaveamentos			 -

Assim, é possível calcular o escalar Esc:

$$Esc_{1}^{t} = 0,75 \cdot 1 = 0,75$$

$$Esc_{2}^{t} = 1 \cdot 1 = 1$$

$$Esc_{3}^{t} = 0 \cdot 1 = 0$$
(3.13)

3.2.7 Avaliar o fitness das novas células geradas

Avalia-se os valores de *fitness* de todos os indivíduos, utilizando o mesmo procedimento de 3.2.2.

3.2.8 Selecionar células que deverão ser mantidas (com inserção)

Para a rede exemplo, a população corrente é:

 $[population]^T =$

[1	1	1	1	1	0]
[1	1	1	1	0	1]
[1	0	1	1	1	1]
[1	1	1	1	0	1]
[1	1	1	1	0	1]
[1	1	1	1	1	0]
[1	1	1	1	0	1]
[1	0	1	1	1	1]
[1	0	1	1	1	1]

A seleção das células baseia-se no pseudocódigo 1.1 (COELHO, 2011) a seguir.

Pseudo-código 3.1: Mecanismo de seleção e inserção de novos indivíduos.

Entrada:

- maxAB: tamanho máximo da população;

- σ_s : limiar de supressão;
- AB: conjunto das células originais da população;
- *nAB*: número de células em *AB*;
- C_k : conjunto dos clones originados da célula k, após hipermutação;
- d(i; j): distância entre os indivíduos i e j, definida em 1.3;

para todo (indivíduo *i* pertencente a AB) faça

c = melhor célula presente em C_i ; se ([$d(AB_i; c) > \sigma_s$] e [nAB < maxAB] e [$d(c; k) > \sigma_s$, para toda célula k já selecionada]) então Insere $c \in AB_i$ na nova população (neste caso, c passa a ter a concentração inicial – no caso, igual a 1); senão s = melhor indivíduo entre $c \in AB_i$; Insere s na nova população (mantendo a concentração de AB_i); fim se fim para

Para a rede exemplo, define-se maxAB = 4 e $\sigma_s = var(f^{Ag})$. Utilizando o pseudocódigo anterior a população de indivíduos fica:

 $[population]^t =$

[1 1 1 1 0 1] [1 1 1 1 0 1] [1 0 1 1 1 1]

3.2.9 Avaliar a afinidade entre as células da população

Repete-se o procedimento descrito em 3.2.2 e 3.2.3 para todas as células da população. Para a rede exemplo:

$$f_1^{Ag}(t) = 1$$

$$f_2^{Ag}(t) = 1$$
$$f_3^{Ag}(t) = 0$$

Então:

$$f_1^{Ab}(t) = f_2^{Ab}(t) = f_3^{Ab}(t) = 0$$

3.2.10 Atualizar a concentração de todas as células

Primeiramente, é necessário calcular a variável α para cada indivíduo *i*:

$$\alpha_{i} = \begin{cases} 1 + 0.1 \cdot f_{i}^{Ag}(t) & \text{se } f_{i}^{Ab}(t) = 0, \\ 0.7 & \text{caso contrário} \end{cases}$$
(3.14)

Portanto:

$$\alpha_1 = 1,1$$
 $\alpha_2 = 1,1$
 $\alpha_3 = 1,0$

Depois, calcula-se as concentrações por:

$$C_{t+1}^{i} = \begin{cases} \min\left[\left(\alpha_{i} \cdot C_{t}^{i} - f_{i}^{Ab}(t)\right), 1\right] & \text{se } \left(\alpha_{i} \cdot C_{t}^{i} - f_{i}^{Ab}(t)\right) \ge 0 \\ 0 & \text{caso contrário} \end{cases}$$
(3.15)

Note que C_{t+1}^i e $C_t^i \in [0,1]$ são, respectivamente, as concentrações novas e antigas da célula *i*. Então:

$$C_{t+1}^1 = C_{t+1}^2 = C_{t+1}^3 = 1,0$$

3.2.11 Aplicar o operador busca local aos indivíduos e atualizar seus fitness

Conforme definido em (COELHO, 2011), o operador de Busca Local não é aplicado em todas as iterações, mas apenas quando ($t \mod LS_{freq} = 0$), ou seja, quando o resto da divisão da iteração atual pelo parâmetro LS_{freq} for igual a zero. LS_{freq} .

O operador de Busca Local consiste em fazer um chaveamento aleatório em cada célula da população, verificar se a nova configuração é factível e se o fitness melhorou ou não. Se for factível e o fitness melhorou, este chaveamento é mantido, caso contrário, retorna à topologia anterior.

Foi definido $LS_{freq} = 1$, ou seja, força-se a busca local em todas as iterações a fim de observar sua eficácia.

No caso da rede exemplo, esta operação resultou em:

 $[population]^t =$

[1	1	1	1	0	1]
[1	1	1	1	0	1]
[1	1	1	1	1	0]

Nota-se que a terceira célula foi atualizada.

Recalculando os fitness da população, tem-se:

$$f_1^{Ag}(t) = 1$$

$$f_2^{Ag}(t) = 1$$

$$f_3^{Ag}(t) = 0$$

Observa-se que, apesar do *fitness* correspondente ao indivíduo 3 não ter melhorado, sua FOB melhorou.

3.2.12 Avaliar a afinidade entre as células da população

Seguindo a expressão (3.8), e seguindo a ideia de 3.2.3, as afinidades são:

$$f_1^{Ab}(t) = f_2^{Ab}(t) = f_3^{Ab}(t) = 0$$

3.2.13 Atualizar a concentração de todas as células

Através de procedimento descrito no item 3.2.10, chega-se a:

$$C_{t+1}^1 = C_{t+1}^2 = C_{t+1}^3 = 1,0$$

3.2.14 Eliminar da população as células de concentração nula

De acordo com os resultados de 3.2.13 nenhuma célula foi eliminada.

3.2.15 Avaliar a afinidade entre as células da população

Como nenhuma célula foi eliminada, as afinidades permanecem:

$$f_1^{Ab}(t) = f_2^{Ab}(t) = f_3^{Ab}(t) = 0$$

3.2.16 Aplicar o operador busca local aos indivíduos e atualizar seus fitness

Após o critério de parada ser satisfeito, aplica-se o operador de *Busca Local* conforme descrito em 3.2.11. Para a rede exemplo, a população torna-se:

 $[population]^t =$

[1	1	1	0	1	1]
[1	1	1	1	0	1]
[1	1	1	1	1	0]

Os indivíduos dessa população possuem fitness de:

$$f_1^{Ag}(t) = 1$$

$$f_2^{Ag}(t) = 0,1313$$

 $f_3^{Ag}(t) = 0$

3.2.17 Atualizar afinidade, concentração, e eliminar indivíduos

As afinidades dos indivíduos da rede exemplo são:

$$f_1^{Ab}(t) = 0$$

$$f_2^{Ab}(t) = 0$$

$$f_3^{Ab}(t) = 0,1687$$

As concentrações das células passam a ser:

$$C_{t+1}^{1} = 1$$

 $C_{t+1}^{2} = 1$
 $C_{t+1}^{3} = 0,5313$

Como nenhuma célula possui concentração nula, não há eliminação.

Neste ponto é feita uma comparação entre as FOBs dos indivíduos, e o melhor indivíduo, ou seja, aquele que representa menores perdas no sistema é o primeiro indivíduo da população, que possui FOB de 441,3 kW de acordo com a Tabela 3.2, que também indica que esse é o ótimo global do sistema.

3.3 Critério de parada

O critério de parada é definido por:

Enquanto
$$[((t < MedMov) OU (|M(t) - fmin(t)| \ge 10^{-6})) E t < t_{máx}]$$

em que MedMov é o número de elementos do vetor que irão compor a média móvel, é definido como $MedMov = 2 \cdot NA$, fmin(t) é o menor valor da função objetivo dentre os indivíduos da iteração t, M(t) é a média das últimas MedMov iterações do vetor fmin, e $t_{máx}$ é o número de iterações máximas definido como $t_{máx} = 2 \cdot MedMov$. Ou ainda, colocando em palavras, "o processo iterativo para quando atingir um número mínimo de iterações predefinido, e quando não houver variação significativa da função objetivo nas últimas iterações, ou quando atingir o número máximo de iterações predefinido". Uma condição do comando Enquanto é OU, então, o laço vai se repetir enquanto pelo menos uma condição ainda seja satisfeita. A outra condição é E, portanto, o laço tem que respeitar ambas as condições para que o processo continue se repetindo.

3.4 Busca exaustiva

A busca exaustiva consiste em analisar todas as possíveis soluções factíveis, e neste trabalho foi utilizada para fim de comparação com os resultados obtidos pelo SIA. Assim, este exemplo, que com 6 chaves teria $2^6 = 64$ opções de topologia, passa a ter apenas as 4 opções factíveis, como mostrado na Tabela 3.4, pois as restrições são de radialidade, não ilhamento das barras, e não isolar alguma subestação, por não fazer sentido na operação prática do sistema.

No caso da rede exemplo, são calculadas todas as perdas de potência das opções factíveis, que já foram mostradas na Tabela 3.2, e são repetidas na Tabela 3.4.

Chave aberta	Perdas (kW)
1	Infactível
2	678,7
3	Infactível
4	441,3
5	491,7
6	499,3

Tabela 3.4- Perdas de cada indivíduo da população

Então, comparando as perdas de cada topologia factível, conclui-se que a ótima é aquela com a chave 4 aberta, [1 1 1 0 1 1].

3.5 Alocação de banco de capacitores

Após a rede ser reconfigurada, procede-se à verificação da necessidade de

conectar/desconectar bancos de capacitores para diminuir ainda mais as perdas de potência. Assume-se que existem bancos de capacitores já conectados a certas barras da rede. No caso da rede exemplo, assume-se que existem bancos de capacitores disponíveis nas barras 4 e 6. Assume-se também que cada banco de capacitores é de 0,3 MVAr, e que em cada barra há seis unidades, totalizando uma capacidade de 1,8MVAr (limite máximo por barra). O algoritmo para alocação de capacitores é semelhante ao da reconfiguração, a seguir é destacado alguns pontos específicos que necessitou de mais ajustes para o novo problema.

3.5.1 Gerar população inicial

Então, a população inicial será é representada como:

[capBank]	$\mathbf{l}^{t} =$
-----------	--------------------

[0]	0	0	0	0	0	0]
[0	0	0	1.2000	0	0.3000	0]
[0	0	0	1.5000	0	1.8000	0]

Assim como em 3.2.1, considerando que a rede tenha *NA* chaves abertas, a população terá $nPOP = (2 \cdot NA + 1)$ indivíduos. No caso da rede exemplo, NA = 1, consequentemente, nPOP = 3, como se nota em [capBank]^t, em que cada anticorpo é representado por um vetor, sendo:

- uma célula referente à configuração ótima obtida de 3.2 sem alocação de bancos de capacitores;
- para cada chave aberta, gerar dois indivíduos, cada um com número aleatório de bancos nas barras selecionadas.

No caso da rede exemplo, observando [capBank]^t, o primeiro indivíduo indica a ausência de capacitores. O segundo indica quatro unidades de 0,3 MVAr na barra 4 e uma na barra 6. Finalmente, o terceiro indivíduo indica a conexão de cinco unidades na barra 4 e seis na barra 6. A partir do segundo anticorpo, esses valores foram obtidos aleatoriamente com valores inteiros de 0 a 6 multiplicados pelo valor da unidade do banco, 0,3 MVA.

A partir da população inicial, o BCAIS procede com a mesma lógica descrita anteriormente. A diferença é que o algoritmo imunológico, ao invés de lidar com chaveamentos e estados das chaves representados por vetores binários, lida com a conexão ou desconexão de bancos de capacitores, conforme mostrado pelos vetores de [capBank]^t.

3.5.2 Aplicar o operador de hipermutação a cada um dos clones gerados

No passo referente à hipermutação descrito em 3.2.6, a obtenção do escalar é igual ao caso da reconfiguração, equação (3.12), e a definição das faixas de mutação é semelhante, mostrado na Tabela 3.5. Os clones provenientes do genitor com menor escalar estarão sujeitos, separadamente, a uma conexão ou desconexão de um número aleatório entre o número máximo de bancos (maxBank) e zero, ou seja, nCh_t^i (número de conexões/desconexões possíveis de cada clone do genitor *i* na iteração *t*) vai de +maxBank (máxima conexão) a -maxBank(máxima desconexão), desde que se respeite o limite máximo e mínimo de bancos alocados, e o indivíduo com maior escalar terá seus clones sujeitos à conexão ou desconexão de um banco ou zero, desde que respeite os limites. O número máximo de bancos depende da realidade da rede, ou seja, do número de bancos de capacitores instalados na rede, e o número mínimo de bancos alocados, obviamente, é zero. São, portanto, valores fixos. Na rede exemplo maxBank = 6.

Tabela 3.5 - Lógica de mutação dos clones

Faixas de	0 a (1/	(1/maxBank) a (2/	•••	((maxBank - 1)/maxBank) a
Esc ⁱ	maxBank)	maxBamk)		(maxBank/maxBank)
nCh _t i	maxBank	maxBank — 1		1

3.5.3 Resultado

O BCAIS procede com a mesma lógica descrita anteriormente, e encontra os resultados mostrado na Tabela 3.6.

N° de bancos de 300 kVAr			
Barra 4	5		
Barra 6	6		
Perdas (kW)	422,8		

Tabela 3.6 - Resultado para alocação de banco de capacitores

Após a reconfiguração, as perdas de potência somavam 441,3kW. Observa-se que a conexão de bancos de capacitores resultou em redução significativa das perdas de potência.

3.6 Conclusão

O BCAIS proposto neste trabalho não necessita de ajustes de parâmetros a depender da rede a ser tratada. Como é um método dedicado à rede, um parâmetro dela, o número de chaves abertas, define os parâmetros do BCAIS. Isso é uma notável contribuição, visto que a esmagadora maioria de heurísticas e meta-heurísticas não apresenta essa característica.

Comparando a reconfiguração da rede exemplo de 7 barras feita pelo cob-aiNet proposto e pela busca exaustiva, é possível observar que os resultados encontrados são os mesmos. Logo, isso valida o algoritmo proposto, uma vez que a busca exaustiva leva em conta todas as configurações factíveis segundo as restrições impostas para a rede. A desvantagem da busca exaustiva é o grande esforço computacional, e consequentemente o elevado tempo computacional no caso de redes reais de grande porte.

4. Resultados computacionais

4.1 Resultados gerais

BCAIS foi testado para uma rede de distribuição de 16 barras (CIVANLAR et al., 1988), uma de 33 (BARAN; WU, 1989), e uma de 136 barras (MANTOVANI; CASARI; ROMERO, 2000), sendo esta última uma rede real. Os diagramas unifilares das redes de 16, 33 e 136 barras são mostradas nas Figura 4.1, Figura 4.2 e Figura 4.3, respectivamente. Os dados para a rede de 136 barras estão no Anexo A.

Figura 4.1 - Rede de 16 barras (caso base). Fonte: adaptado de (CIVANLAR et al., 1988)

Figura 4.2 - Rede de 33 barras (caso base). Fonte: (ALVES, 2019)

Figura 4.3 - Rede de 136 barras (caso base). Fonte: adaptado de (MANTOVANI; CASARI; ROMERO, 2000)

O BCAIS foi testado para as redes de 16, 33 e 136 barras, como mostrados nas Tabela 4.1 a Tabela 4.3, e os resultados obtidos pelo SIA proposto são comparados com um modelo MISOCP implementado no AMPL e resolvido pelo CPLEX. Como o modelo é convexo, pode-se assegurar a obtenção de seu ótimo global (LÓPEZ; LAVORATO; RIDER, 2016). As redes de distribuição de 16, 33 e 136 barras foram simulados em um *laptop* de 2,50 GHz com 6,0 GB de RAM. Para o sistema de 136 barras simulado no AMPL, o *gap* de complementariedade foi definido em 3,0% para se obter resultados para comparação com os métodos propostos. Isso explica por que as perdas de potência para a rede de 136 barras utilizando o AMPL foram maiores do que utilizando o BCAIS. O *gap* de complementariedade representa a diferença entre o problema relaxado resolvido pelo CPLEX e o problema real (IBM, 2009).

Como definido no Capítulo 3, a população inicial é definida como o dobro do número de chaves abertas mais um (do próprio caso base). Ou seja, para os sistemas de 16, 33 e 136 barras, a população inicial consistiu em 7, 11, e 43 topologias respectivamente. O número máximo de clones e *MedMov* são definidos como duas vezes o número de chaves abertas, ou seja, uma unidade a menos que a população inicial, logo, são 6, 10, e 42 clones respectivamente. O número mínimo de clones é um para qualquer rede. Os números máximos de iterações permitidas, $t_{máx}$ são 30, 50 e 210. A concentração, para qualquer rede, é definida inicialmente como 1 e recalculada várias vezes por iteração, já σ_s é definido como a variância de f^{Ag} .

	Perdas (kW)	Tempo computacional (s)
CPLEX	468,3	1,31
BCAIS	468,3	1,05
BCAIS + FC linear	468,3	0,47

Tabela 4.1 – Sistema de 16 barras - resultados

Tabela 4.2 – Sistema de 33 barras - resultados

	Perdas (kW)	Tempo computacional (s)
CPLEX	139,6	35,52
BCAIS	139,6	17,24
BCAIS + FC Linear	139,6	11,87

Tabela 4.3 – Sistema de 136 barras - resultados

	Perdas (kW)	Tempo computacional (s)
CPLEX	281,3	51211,47
BCAIS	280,4	343,67
BCAIS + FC Linear	280,4	280,31

Como foi comentado, um FC eficiente recentemente proposto em (CASTRILLON; GIRALDO; CASTRO, 2018) foi utilizado para avaliar as diversas topologias sob análise. Seus resultados foram comparados com os do método convencional de Newton-Raphson utilizado pelo Matpower (ZIMMERMAN et al., 2011; MURILLO-SÁNCHEZ et al., 2013), e os resultados são mostrados na Figura 4.4. Percebe-se uma pequena diferença entre os dois métodos. Como o FC linear é computacionalmente mais eficiente que o método de Newton-Raphson, aquele é utilizado nas simulações. Uma vez que a melhor solução foi obtida pelo BCAIS, o método de Newton-Raphson foi utilizado para avaliar as perdas de potência dessa solução.

Figura 4.4 - Comparação entre FC linear e o método de Newton Raphson convencional: a) Rede de 33 barras b) Rede de 136 barras

Os resultados encontrados para o sistema de 16 e 33 barras foram os mesmos que constam em (CASTRO JR.; WATANABE, 1990) e (BARAN; WU, 1989). Buscas exaustivas (avaliação de cada topologia e suas perdas de potência ativa) mostram que esses resultados correspondem ao ótimo global. Já o resultado encontrado para o sistema de 136 barras foi melhor que os mostrados em (MANTOVANI; CASARI; ROMERO, 2000) e (ALVES, 2019), como indica a Tabela 4.4. (MANTOVANI; CASARI; ROMERO, 2000) utiliza um método heurístico baseado na máxima queda de tensão permitida nos alimentadores e nas definições de famílias e descendentes, estas últimas baseadas no conceito de blocos construtivos utilizados para provar a convergência dos Algoritmos Genéticos. A FOB é minimização de perdas também. (ALVES, 2019) utiliza o algoritmo de Prim para reconfigurar a rede e a Busca Tabu Reformulada para reconfiguração e alocação de banco de capacitores em seguida, a FOB é minimização das perdas de potência ativa na rede em alguns níveis de carregamento, tempo de operação (em horas) em cada nível no período de um ano e o custo da energia (\$/kWh), ou seja, é a minimização das perdas da rede. Os resultados do CPLEX e a definição de um gap de complementariedade de 3% sugerem que o BCAIS aplicado ao sistema de 136 barras resultou no ótimo global.

	Perdas (kW)
(MANTOVANI; CASARI; ROMERO, 2000)	285,5
(ALVES, 2019)	289,4
BCAIS + FC Linear	280,4

Tabela 4.4 - Comparação de resultados para o sistema de 136 barras

A evolução da função objetivo (FOB) ao longo das iterações pode ser visto nas Figura 4.5 e Figura 4.6. A Figura 4.5 mostra o comportamento do melhor e do pior anticorpo, assim como a média de todos os indivíduos para a rede de 136 barras. A Figura 4.6 é um *zoom* do comportamento da melhor célula. O critério de parada é baseado na média das 42 últimas FOBs mínimas (melhores). O processo termina quando a variação desta média é menor que uma tolerância de $1 \cdot 10^{-6}$ ou um número máximo de 210 iterações.

Figura 4.5 – Evolução da FOB no decorrer das iterações

Figura 4.6 – Evolução da FOB para o melhor anticorpo no decorrer das iterações

A robustez do BCAIS também foi avaliada. A Figura 4.7 mostra o histograma e a distribuição de densidade cumulativa, do inglês CDF dos resultados fornecidos pelo BCAIS para o sistema de 33 barras considerando 1.000 simulações. O SIA proposto atingiu soluções de excelente qualidade acima de 60% dos casos. No entanto, os resultados obtidos pelos 40% restantes podem ser considerados resultados de muito boa qualidade, com dispersão pequena. A CDF mostra que aproximadamente 90% das simulações forneceram uma solução menor ou igual a 0,145 MW de perdas de potência, que representa um erro de menos de 4% comparado à solução ótima.

Figura 4.7 – Soluções ótimas considerando 1.000 simulações para o sistema de 33 barras: a) Histograma b) Função de densidade cumulativa

A Figura 4.8 mostra o histograma e a CDF dos resultados obtidos pelo BCAIS para o sistema de 136 barras, considerando 1.000 simulações. O SIA proposto obteve excelentes soluções. A CDF mostra que aproximadamente 90% das simulações obtiveram resultados iguais ou inferiores a 0,2858 MW de perdas de potência, o que representa um erro de menos de 2% comparado à solução ótima.

Figura 4.8 – Soluções ótimas considerando 1.000 simulações para o sistema de 136 barras: a) Histograma b) Função densidade cumulativa

Após a reconfiguração da rede, é obtida a inserção ótima de bancos de capacitores em barras definidas da rede objetivando-se também a minimização das perdas na

rede. Normalmente, as concessionárias de distribuição definem as barras que têm a menor tensão para a alocação desses bancos, a fim de melhorar o perfil de tensão e perdas de potência na rede como um todo. Primeiramente, é necessário determinar a potência reativa de cada banco de capacitores. Com base em (CHANG, 2008; DOS SANTOS FONSECA et al., 2009; PARK et al., 2009; DOS et al., 2010; COSTA et al., 2019; MUJEZINOVIĆ et al., 2019), optou-se por especificar bancos de capacitores cujas unidades têm potência reativa de 300 kVAr. Adicionalmente, definiu-se que cada banco de capacitores terá seis unidades, perfazendo um total de 1,8Mar. As Tabela 4.5 e Tabela 4.6 mostram os resultados obtidos para as três redes testadas.

N° de bancos de 300 kVAr em 1 barra						
	16-barras	33-barras	136-barras			
Barra 12	4	1	2			
Perdas (kW)	464,8	134,2	276,4			

Tabela 4.5 – Alocação de bancos de capacitores em uma barra

Tabela 4.6 – Alocação de bancos de capacitores em três barras

N° de bancos de 300 kVAr em 3 barras							
	16-barras	33-barras	136-barras				
Barra 6	5	3	3				
Barra 12	3	1	3				
Barra 16	2	1	5				
Perdas (kW)	460,3	113,2	275,1				

Pela Tabela 4.7 pode -se notar que a inserção de bancos de capacitores reduziu significativamente as perdas, e quanto mais barras com alocação de bancos melhor, ou seja, menores são as perdas.

Banco de 300 kVAr	16-barras	33-barras	136-barras
Perdas de potência sem banco de capacitores (kW)	468,3	139,6	280,4
Perdas com banco de capacitores na barra 12 (kW)	464,8	134,2	276,4
Perdas com bancos nas barras 6, 12 e 16 (kW)	460,3	113,2	275,1

Tabela 4.7 - Comparação das alocações ótimas de banco de capacitores

A otimização do despacho de potência reativa pelos bancos de capacitores foi testada comparando com (ALVES, 2019). Utilizando a configuração do sistema de 33 barras de (ALVES, 2019) e a alocação de capacitores nas barras 9 e 30, a otimização do número de bancos de capacitores foi a mesma segundo a Tabela 4.8. A Figura 4.9 mostra a evolução das soluções para esse caso.

por (<i>I</i> L V LD , 2017)						
Ramos abertos	7, 9, 14, 32 e 37					
	Bancos de 300 kVAr					
Barra 9	1					
Barra 30	3					
Perdas (kW)	97,1					

Tabela 4.8 - Sistema de 33 barras – Resultados obtidos pelo método proposto e por (ALVES, 2019)

Figura 4.9 - Evolução do despacho de potência reativa dos bancos para o sistema de 33 barras

4.2 Conclusões parciais

Um novo algoritmo de SIA, chamado BCAIS, que considera variáveis de decisão binárias, é proposto nesse trabalho. O objetivo é minimizar as perdas de potência do sistema através de operações de chaveamento, sujeitas a restrições operacionais. O algoritmo proposto foi baseado na formulação do cob-aiNet (COELHO, 2011), (COELHO; DE FRANCA; VON ZUBEN, 2011), explorando suas principais características com relação à busca da solução ótima global e melhorando seu escopo incluindo variáveis de decisão binárias. Um FC linear e recente foi utilizado, mostrando resultados satisfatórios, e muito próximos comparados ao FC não linear convencional, além de, significativamente, melhorar o tempo computacional, desde que o FC é o que demanda maior tempo computacional no SIA. Então, o FC linearizado se provou eficiente e pertinente para este trabalho.

As vantagens de se utilizar o SIA proposto são mais evidentes em termos de tempos computacionais conforme o tamanho do problema aumenta. Além disso, o algoritmo proposto obteve sucesso em obter a solução ótima global quando comparado a um modelo MISOCP convexo. As soluções obtidas para os sistemas de 16 e 33 barras convergiram para a melhor solução conhecida pela literatura. Por outro lado, a solução obtida pelo sistema de 136 barras melhorou comparado a (MANTOVANI; CASARI; ROMERO, 2000) e (ALVES, 2019), fornecendo uma solução, que passa a ser uma referência para essa rede. Uma importante característica do BCAIS proposto é não requerer ajustes de seus parâmetros a depender da rede a ter sua reconfiguração otimizada. Por ser um método dedicado à rede, o ajuste é feito automaticamente por um único parâmetro do sistema, ou seja, o número de chaves abertas. Alguns parâmetros são definidos independentemente do sistema (como o mínimo número de clones gerados), e outros são automaticamente ajustados como função das características do sistema (como o número de chaves abertas).

A robustez e reprodutibilidade das soluções foi testada para 1.000 simulações diferentes, considerando que a geração de cada população é um processo aleatório. Os histogramas e CDF mostram que o algoritmo proposto fornece resultados de boa qualidade, muito próximos ao ótimo global, em pelo menos 90% dos casos para os sistemas de 33 e 136 barras.

A otimização do número de bancos de capacitores inseridos reduziu significantemente as perdas de potência ativa, contribuindo satisfatoriamente com a minimização da função objetivo desse trabalho. É possível observar também que quanto maior o número de barras para alocar os bancos, melhor é a minimização das perdas. Com isso, o SIA proposto contempla o que há de mais moderno na otimização das redes de distribuição, levando em consideração as restrições mais importantes e com as vantagens já indicadas.

5. Conclusões

Essa dissertação propôs um novo SIA denominado BCAIS baseado no cob-aiNet, sendo que este último foi desenvolvido para resolver problemas matemáticos contínuos. Já o BCAIS foi elaborado para resolver o problema da otimização da reconfiguração da rede de distribuição através de chaveamentos respeitando restrições operacionais como balanço de potência, limites de tensão nodais, e topologia radial da rede, objetivando a minimização das perdas de potência. Além disso, foi incorporado o FC linear, desenvolvido recentemente, e que destaca ainda mais uma das principais vantagens dos métodos heurísticos e meta-heurísticos, que é a maior velocidade de resolução de problemas de otimização quando comparados a sistemas clássicos de otimização.

No Capítulo 4, essa vantagem foi colocada à prova para o novo SIA, quando se comparou os tempos computacionais de um método clássico com o do BCAIS. Adicionalmente, pelo método matemático clássico se tratar de um MISOCP, atestou o ótimo global, encontrado por ambos os métodos. Adicionando-se o FC linear, o BCAIS ficou ainda mais rápido, isso demonstra que o maior custo computacional no método está nos cálculos de FC. Também no Capítulo 4 foi mostrado que a utilização do FC linear não prejudicou o andamento nem a solução final encontrada. Em relação à rede de 136 barras, o BCAIS encontrou uma melhor solução comparada a (MANTOVANI; CASARI; ROMERO, 2000) e (ALVES, 2019).

Além da reconfiguração da topologia da rede, com a otimização do número de banco de capacitores, as perdas apresentaram redução adicional, como esperado.

O BCAIS é um algoritmo que não necessita de parâmetros dependentes da rede a serem ajustados pelo usuário, os parâmetros do BCAIS são ajustados pelo parâmetro da rede, o número de chaves abertas, ou seja, é um método dedicado à rede. Isso é uma vantagem significativa em relação à maioria dos métodos heurísticos e meta-heurísticos, que necessitam ajustar diversos parâmetros a depender do problema. Além disso, como demonstrado no Capítulo 4, BCAIS apresenta a vantagem comum às heurísticas e meta-heurísticas frente aos métodos matemáticos clássicos, que é a maior velocidade na resolução da otimização.

6. Trabalhos futuros

Sugere-se como potenciais trabalhos futuros:

a) Avaliação da realização de reconfiguração e inserção de capacitores concomitantemente.

b) Realização do descrito em a) incluindo a otimização de geração distribuída (como por exemplo fontes fotovoltaicas, eólicas, de biomassa). Neste caso, pode-se considerar a estocasticidade da produção de energia dessas fontes. Pode-se considerar também a presença de dispositivos de armazenamento de energia (baterias).

c) Considerar desequilíbrio entre as fases, ramais monofásicos/bifásicos e trifásicos.

Referências bibliográficas

AHMAD, N. H.; RAHMAN, T. K. A.; AMINUDDIN, N. Multi-objective quantum-inspired artificial immune system approach for optimal network reconfiguration in distribution system.
2012 IEEE International Power Engineering and Optimization Conference, PEOCO 2012
Conference Proceedings, n. June, p. 384–388, 2012.

ALONSO, F. R. et al. Distribution system reconfiguration using artificial immune systems. **2014 North American Power Symposium, NAPS 2014**, 2014.

ALONSO, F. R.; OLIVEIRA, D. Q.; ZAMBRONI DE SOUZA, A. C. Artificial immune systems optimization approach for multiobjective distribution system reconfiguration. **IEEE Transactions on Power Systems**, v. 30, n. 2, p. 840–847, 2015.

ALVES, B. P. Busca tabu reformulada aplicada ao problema de operação de sistemas de distribuição de energia elétrica radiais. 2019. UNESP, 2019.

AN, W. D. et al. An immune genetic algorithm based approach for distribution system reconfiguration. **Proceedings - 2010 6th International Conference on Natural Computation, ICNC 2010**, v. 1, n. Icnc, p. 92–95, 2010.

ARCHANA; KUMAR, D.; GUPTA, V. K. Optimal Reconfiguration of Primary Power Distribution System using Modified Teaching Learning based Optimization Algorithm. In: Anais...2016.

BAGDE, B. Y. et al. Optimal network reconfiguration of a distribution system using Biogeography Based Optimization. **2016 IEEE 6th International Conference on Power Systems, ICPS 2016**, 2016.

BARAN, M. E.; WU, F. F. NETWORK RECONFIGURATION IN DISTRIBUTION SYSTEMS FOR LOSS REDUCTION AND LOAD BALANCING. **IEEE Transactions on Power Delivery**, v. 4, n. 2, p. 1401–1407, 1989.

BELKACEMI, R.; FELIACHI, A. An immune system approach for power system automation and self healing. **2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009**, p. 1–7, 2009.

CASTRILLON, J. A.; GIRALDO, J. S.; CASTRO, C. A. Mixed integer linear programming formulation for optimal reactive compensation and voltage control of distribution power systems. **IEEE Power and Energy Society General Meeting**, 2018.

CASTRO JR., C. A.; WATANABE, A. A. An Efficient Reconfiguration Algorithm for Loss Reduction of Distribution Systems. **Electric Power Systems Research**, v. 19, n. 2, p. 137–144,

1990. Disponível em: <https://doi.org/10.1016/0378-7796(90)90064-A>.

CHANG, C. F. Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm. **IEEE Transactions on Power Systems**, v. 23, n. 4, p. 1747–1755, 2008.

CHEN, C. S. et al. Optimal placement of line switches for distribution automation systems using immune algorithm. **IEEE Transactions on Power Systems**, v. 21, n. 3, p. 1209–1217, 2006.

CIVANLAR, S. et al. DISTRIBUTION FEEDER RECONFIGURATION FOR LOSS REDUCTION. **IEEE Transactions on Power Delivery**, v. 3, n. 3, p. 1217–1223, 1988.

COELHO, G. P. Redes Imunológicas Artificiais para Otimização em Espaços Contínuos: Uma Proposta Baseada em Concentração de Anticorpos. 2011.

COELHO, G. P.; DE FRANCA, F. O.; VON ZUBEN, F. J. A Concentration-based Artificial Immune Network for combinatorial optimization. **2011 IEEE Congress of Evolutionary Computation, CEC 2011**, p. 1242–1249, 2011.

COSTA, T. A. et al. Optimal Allocation of Capacitors Banks in Radial Distribution Systems Using Clonal Algorithm. **6th IEEE International Conference on Smart Grid, icSmartGrids 2018**, p. 92–97, 2019.

DOS SANTOS FONSECA, W. A. et al. Genetic algorithms and treatment of multiple objectives in the allocation of capacitor banks in an electric power distribution system. 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future,

p. 1–8, 2009.

DOS, W. A. et al. Genetic algorithms and treatment of multiple objectives in the allocation of capacitor banks in an electric power distribution system. **2010 9th IEEE/IAS International Conference on Industry Applications, INDUSCON 2010**, p. 1–6, 2010.

FREITAS, K. B.; TOLEDO, C. F. M.; DELBEM, A. C. B. Optimal reconfiguration of electric power distribution systems using exact approach. **2016 12th IEEE International Conference on Industry Applications, INDUSCON 2016**, 2017.

GARCES, A. A Linear Three-Phase Load Flow for Power Distribution Systems. **IEEE Transactions on Power Systems**, v. 31, n. 1, p. 827–828, 2016.

HAGHIGHAT, H.; ZENG, B. Distribution System Reconfiguration Under Uncertain.pdf. v. 31, n. 4, p. 2666–2675, 2016.

IBM. **CPLEX Optimization Subroutine Library Guide and Reference** Incline Village, NVCPLEX Division, ILOG, Inc., 2009.

KERSTING, W. Distribution System Modeling and Analysis. CRC Press, 2002.

KUMAR, P. et al. Imposing voltage security and network radiality for reconfiguration of distribution systems using efficient heuristic and meta-heuristic approach. **IET Generation**, **Transmission and Distribution**, v. 11, n. 10, p. 2457–2467, 2017.

LAVORATO, M. et al. Closure to discussion on "imposing radiality constraints in distribution system optimization problems". **IEEE Transactions on Power Systems**, v. 28, n. 1, p. 568–569, 2013.

LIAO, G. C. The optimal economic dispatch of smart Microgrid including Distributed Generation. **ISNE 2013 - IEEE International Symposium on Next-Generation Electronics 2013**, p. 473–477, 2013.

LÓPEZ, J. C.; LAVORATO, M.; RIDER, M. J. Optimal reconfiguration of electrical distribution systems considering reliability indices improvement. **International Journal of Electrical Power and Energy Systems**, v. 78, p. 837–845, 2016.

MANTOVANI, J. R. S.; CASARI, F.; ROMERO, R. A. Reconfiguracao de sistemas de distribuicao radiais utilizando o criterio de queda de tensao. **Controle and Automacao**, v. 11, n. 3, p. 150–159, 2000.

MOMOH, J. Electric power distribution, automation, protection, and control. CRC Press, 2007.

MUHTAZARUDDIN, M. N. Bin et al. Optimal distributed generation and capacitor coordination for power loss minimization. **Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference**, p. 0–4, 2014.

MUJEZINOVIĆ, A. et al. Use of Integer Genetic Algorithm for Optimal Allocation and Sizing of the Shunt Capacitor Banks in the Radial Distribution Networks. **2019 18th International**

Symposium INFOTEH-JAHORINA, INFOTEH 2019 - Proceedings, 20-22 March, 2019.

MURILLO-SÁNCHEZ, C. E. et al. Secure planning and operations of systems with stochastic sources, energy storage, and active demand. **IEEE Transactions on Smart Grid**, v. 4, n. 4, p. 2220–2229, 2013.

NORTHCOTE-GREEN, J.; WILSON, R. Control and automation of electrical power distribution systems. 1. ed., CRC Press, 2007.

OLIVEIRA, D. Q. et al. Multiobjective voltage control in smart distribution power systems.

2015 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT LATAM 2015, p. 7–12, 2016.

OLIVEIRA, D. Q. et al. An artificial immune approach for service restoration in smart distribution systems. **2015 IEEE PES Innovative Smart Grid Technologies Latin America**, **ISGT LATAM 2015**, p. 1–6, 2016.

PARK, J. et al. System Considering Operation Costs. **IEEE Transactions on Power Systems**, v. 24, n. 1, p. 462–468, 2009.

RAHIM, S. R. A. et al. Implementation of DG for loss minimization and voltage profile in distribution system. **PEOCO 2010 - 4th International Power Engineering and Optimization Conference, Program and Abstracts**, n. June, p. 490–494, 2010.

SHENGQI, L. et al. Optimal reactive power planning of radial distribution systems with distributed generation. Proceedings of the 2013 3rd International Conference on Intelligent System Design and Engineering Applications, ISDEA 2013, p. 1030–1033, 2013.

ZHANG, L.; ZHANG, K.; ZHANG, G. Power distribution system reconfiguration based on genetic algorithm. **Proceedings of 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2016**, n. 3, p. 80–84, 2017.

ZHANG, X. et al. Loading balance of distribution network by applying immune algorithm. **2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference, APPEEC**, p. 1440–1444, 2016.

ZIMMERMAN, R. D. et al. MATPOWER : Steady-State Operations , Systems Research and Education. **IEEE Transactions on Power Systems**, v. 26, n. 1, p. 12–19, 2011.

ANEXO A – DADOS DO SISTEMA DE 136 BARRAS

Trata-se de uma rede real com tensão base de 13,8 kV e potência base de 100 MVA. A Tabela A.1 a seguir contém os dados completos.

Ramo	Ramo inicial	Ramo final	Resistência (Ω)	Reatância (Ω)	Fluxo de potência ativa (kW)	Barra	Demanda Ativa (kW)	Demanda Reativa (kVAr)
1	1	2	0,33205	0,76653	2445,4	1	0	0
2	2	3	0,00188	0,00433	2432,74	2	0	0
3	3	4	0,22324	0,51535	2384,89	3	47,78	19,009
4	4	5	0,09943	0,22953	2334,16	4	42,551	16,929
5	5	6	0,15571	0,35945	2243,62	5	87,022	34,622
6	6	7	0,16321	0,37677	1927,2	6	311,31	123,855
7	7	8	0,11444	0,26417	381,953	7	148,869	59,228
8	7	9	0,05675	0,05666	1392,38	8	238,672	94,956
9	9	10	0,52124	0,27418	230,525	9	62,299	24,786
10	9	11	0,10877	0,1086	1352,38	10	124,598	49,571
11	11	12	0,39803	0,20937	116,848	11	140,175	55,768
12	11	13	0,91744	0,31469	249,569	12	116,813	46,474
13	11	14	0,11823	0,11805	844,449	13	249,203	99,145
14	14	15	0,50228	0,26421	304,018	14	291,447	115,952
15	14	16	0,05675	0,05666	248,397	15	303,72	120,835
16	16	17	0,29379	0,15454	198,661	16	215,396	85,695
17	1	18	0,33205	0,76653	2670,38	17	198,586	79,007
18	18	19	0,00188	0,00433	2655,13	18	0	0
19	19	20	0,22324	0,51535	2655,04	19	0	0
20	20	21	0,10881	0,25118	2644,79	20	0	0
21	21	22	0,71078	0,37388	231,229	21	30,127	14,729
22	21	23	0,18197	0,42008	2378,43	22	230,972	112,92
23	23	24	0,30326	0,15952	231,083	23	60,256	29,458
24	23	25	0,02439	0,0563	2080,33	24	230,972	112,92
25	25	26	0,04502	0,10394	1811,44	25	120,507	58,915
26	26	27	0,01876	0,04331	1175,53	26	0	0
27	27	28	0,11823	0,11805	1118,36	27	56,981	27,857
28	28	29	0,02365	0,02361	752,641	28	364,665	178,281
29	29	30	0,18954	0,0997	181,68	29	0	0

Tabela A.1 - Sistema de 136 barras. Fonte: adaptado de (ALVES, 2019)

20			0.20002	0 20027	5 (0, 0,00	20	104 647	(0.020
30	30	31	0,39803	0,20937	570.864	30	124,047	00,939
31	29	32	0,05075	0,03000	570,804 482.027	31	0	27,857
32	32	33	0,09477	0,04985	482,957	32	0	0 41 797
24	33	34	0,41099	0,21934	397,312	<u> </u>	85,475	41,/8/
25	34	35	0,11372	0,05982	390,839	34 25	0	0
35	32	36	0,07566	0,07555	8/7,897	35	396,735	193,96
36	36	37	0,3696	0,19442	423,888	36	0	0
37	37	38	0,26536	0,13958	242,279	37	181,152	88,563
38	36	39	0,05675	0,05666	336,105	38	242,172	118,395
39	1	40	0,33205	0,76653	3127,41	39	75,316	36,821
40	40	41	0,11819	0,27283	3106,67	40	0	0
41	41	42	296,288	101,628	62,747	41	1,254	0,531
42	41	43	0,00188	0,00433	3091,76	42	6,274	2,66
43	43	44	0,06941	0,16024	3091,64	43	0	0
44	44	45	0,81502	0,42872	626,886	44	117,88	49,971
45	44	46	0,06378	0,14724	2906,76	45	62,668	26,566
46	46	47	0,13132	0,30315	2730,95	46	172,285	73,034
47	47	48	0,06191	0,14291	2265,98	47	458,556	194,388
48	48	49	0,11444	0,26417	430,906	48	262,962	111,473
49	49	50	0,28374	0,28331	396,214	49	235,761	99,942
50	50	51	0,28374	0,28331	396,176	50	0	0
51	49	52	0,04502	0,10394	155,344	51	109,215	46,298
52	52	53	0,02626	0,06063	790,138	52	0	0
53	53	54	0,06003	0,13858	231,576	53	72,809	30,865
54	54	55	0,03002	0,06929	269,233	54	258,473	109,57
55	55	56	0,02064	0,04764	960,978	55	69,169	29,322
56	53	57	0,10881	0,25118	485,64	56	21,843	9,26
57	57	58	0,25588	0,1346	485,473	57	0	0
58	58	59	0,41699	0,21934	464,551	58	20,527	8,702
59	59	60	0,50228	0,26421	313,414	59	150,548	63,819
60	60	61	0,3317	0,17448	924,026	60	220,687	93,552
61	61	62	0,20849	0,10967	0	61	92,384	39,163
62	48	63	0,13882	0,32047	246,535	62	0	0
63	1	64	0,0075	0,01732	2060,06	63	226,693	96,098
64	64	65	0,27014	0,62362	2059,86	64	0	0
65	65	66	0,3827	0,88346	1758,63	65	294,016	116,974
66	66	67	0.33018	0,7622	1668,07	66	83,015	33.028
67	67	68	0.3283	0,75787	949,313	67	83,015	33,028
68	68	69	0.17072	0.39409	843.598	68	103.77	41.285
69	69	70	0,55914	0,29412	830.396	69	176,408	70,184
70	69	71	0,05816	0,13425	583.344	70	83.015	33.028
71	71	72	0.7013	0.3689	283.728	71	217.917	86.698
72	72	73	102.352	0.53839	50.752	72	23.294	9.267
72	72	73	102,352	0,53839	50,752	12	23,294	9,267

73	71	74	0,06754	0,15591	336,92	73	5,075	2,019
74	74	75	132,352	0,45397	407,395	74	72,638	28,899
75	1	76	0,01126	0,02598	1720,48	75	405,99	161,524
76	76	77	0,72976	168,464	1720,27	76	0	0
77	77	78	0,22512	0,51968	1226,52	77	100,182	42,468
78	78	79	0,20824	0,48071	1305,99	78	142,523	60,417
79	79	80	0,0469	0,10827	1207,67	79	96,042	40,713
80	80	81	0,6195	0,61857	1080,05	80	300,454	127,366
81	81	82	0,34049	0,33998	934,611	81	141,238	59,873
82	82	83	0,56862	0,29911	873,404	82	279,847	118,631
83	82	84	0,10877	0,1086	565,702	83	87,312	37,013
84	84	85	0,56862	0,29911	155,945	84	243,849	103,371
85	137	86	0,01126	0,02598	2514,49	85	247,75	105,025
86	86	87	0,41835	0,96575	2514,04	86	0	0
87	87	88	0,10499	0,13641	1138,14	87	89,878	38,101
88	87	89	0,43898	101,338	1269,4	88	1137,28	482,108
89	89	90	0,0752	0,02579	806,535	89	458,339	194,296
90	90	91	0,07692	0,17756	421,022	90	385,197	163,29
91	91	92	0,33205	0,76653	1368,2	91	0	0
92	92	93	0,08442	0,19488	518,222	92	79,608	33,747
93	93	94	0,1332	0,30748	798,393	93	87,312	37,013
94	94	95	0,2932	0,29276	345,312	94	0	0
95	95	96	0,21753	0,21721	271,101	95	74,001	31,37
96	96	97	0,26482	0,26443	389,574	96	232,05	98,369
97	94	98	0,10318	0,23819	452,496	97	141,819	60,119
98	98	99	0,13507	0,31181	452,329	98	0	0
99	1	100	0,00938	0,02165	2194,59	99	76,449	32,408
100	100	101	0,16884	0,38976	2194,3	100	0	0
101	101	102	0,11819	0,27283	2137,8	101	51,322	21,756
102	102	103	228,608	0,78414	90,662	102	59,874	25,381
103	102	104	0,45587	105,236	2065,41	103	9,065	3,843
104	104	105	0,696	160,669	855,97	104	2,092	0,887
105	105	106	0,45774	105,669	1356,78	105	16,735	7,094
106	106	107	0,20298	0,26373	155,677	106	1506,52	638,634
107	107	108	0,21348	0,27737	468,732	107	313,023	132,694
108	108	109	0,54967	0,28914	460,116	108	79,831	33,842
109	109	110	0,54019	0,28415	250,83	109	51,322	21,756
110	108	111	0,0455	0,05911	1008,94	110	0	0
111	111	112	0,47385	0,24926	106,488	111	202,435	85,815
112	112	113	0,86241	0,45364	456,298	112	60,823	25,784
113	113	114	0,56862	0,29911	0	113	45,618	19,338
114	109	115	0,77711	0,40878	157,197	114	0	0
115	115	116	108,038	0,5683	0	115	157,07	66,584

			-	-		_	-	-
116	110	117	109,933	0,57827	250,606	116	0	0
117	117	118	0,47385	0,24926	0	117	250,148	106,041
118	105	119	0,32267	0,74488	316,018	118	0	0
119	119	120	0,14633	0,33779	246,001	119	69,809	29,593
120	120	121	0,12382	0,28583	213,872	120	32,072	13,596
121	1	122	0,01126	0,02598	1852,86	121	61,084	25,894
122	122	123	0,6491	149,842	1852,61	122	0	0
123	123	124	0,04502	0,10394	1743,74	123	94,622	46,26
124	124	125	0,5264	0,18056	123,218	124	49,858	24,375
125	124	126	0,02064	0,04764	1569,77	125	123,164	60,214
126	126	127	0,53071	0,27917	234,252	126	78,35	38,304
127	126	128	0,09755	0,2252	1725,35	127	145,475	71,121
128	128	129	0,11819	0,27283	299,121	128	21,369	10,447
129	128	130	0,13882	0,32047	1403,05	129	74,789	36,564
130	130	131	0,04315	0,09961	1420,24	130	227,926	111,431
131	131	132	0,09192	0,2122	1384,08	131	35,614	17,411
132	132	133	0,16134	0,37244	1589,87	132	249,295	121,877
133	133	134	0,37832	0,37775	831,409	133	316,722	154,842
134	134	135	0,39724	0,39664	495,972	134	333,817	163,199
135	135	136	0,2932	0,29276	246,099	135	249,295	121,877
136	8	74	0,13132	0,30315	143,182	136	0	0
137	10	25	0,26536	0,13958	147,656			
138	16	84	0,14187	0,14166	165,691			
139	39	136	0,08512	0,08499	411,461			
140	26	52	0,04502	0,10394	634,921			
141	51	97	0,14187	0,14166	696,015			
142	56	99	0,14187	0,14166	117,937			
143	63	121	0,0394	0,09094	197,774			
144	67	80	0,12944	0,29882	629,823			
145	80	132	0,01688	0,03898	456,221			
146	85	136	0,3317	0,17448	918,839			
147	92	105	0,14187	0,14166	766,301			
148	91	130	0,07692	0,17756	246,897			
149	91	104	0,07692	0,17756	1194,16			
150	93	105	0,07692	0,17756	711,973			
151	93	133	0,07692	0,17756	438,848			
152	97	121	0,26482	0,26443	172,47			
153	111	48	0,49696	0,64567	1318,15			
154	127	77	0,17059	0,08973	379,885			
155	129	78	0,05253	0,12126	224,272			
156	136	99	0,2932	0,29276	257,483			

ANEXO B – PUBLICAÇÃO RESULTANTE DESTE TRABALHO

Leonardo L. Gomes, Juan S. Giraldo, Carlos A. Castro, A Novel Artificial Immune System for Distribution System Reconfiguration, CIGRE South East European Regional Council Conference 2020, 16-19 de junho de 2020, Viena, Áustria.

ANEXO C – FLUXO DE CARGA LINEARIZADO

Conforme (GARCES, 2016), o princípio básico do fluxo de carga linearizado é descrito a seguir.

C.1 Formulação básica

As tensões e correntes nodais são relacionadas pela matriz de admitância:

$$\begin{bmatrix} I_S \\ I_N \end{bmatrix} = \begin{bmatrix} Y_{SS} & Y_{SN} \\ Y_{NS} & Y_{NN} \end{bmatrix} \cdot \begin{bmatrix} V_S \\ V_N \end{bmatrix}$$
(C.1)

onde *S* representa a barra *slack* e *N* é o conjunto formado pelas outras barras. Cada corrente nodal é relacionada à tensão pelo modelo ZIP:

$$I_{k} = \frac{S_{Pk}^{*}}{V_{k}^{*}} + h \cdot S_{Ik}^{*} + h^{2} \cdot S_{Zk}^{*} \cdot V_{k}$$
(C.2)

onde $h = 1/V_{nom}$ (representação por unidade, implicando que h = 1). Note que o modelo ZIP é linear em V_k exceto para cargas com potência constante (S_P). Este termo é aproximado com a intenção de se obter um FC linear.

Figura C.1 - Representação esquemática da linearização proposta. a) Valores de *V* no plano complexo. b) Porcentagem do erro total. Fonte: (GARCES, 2016)

C.2 Aproximação linear

Uma aproximação linear é desenvolvida em números complexos e não em reais como as formulações do FC convencional. A função $f(\Delta V) = 1/(1 - \Delta V)$ é analítica para todos $||\Delta V|| < 1$. Sua série de Taylor em torno de zero é:

$$\frac{1}{1 - \Delta V} = \sum_{n=0}^{+\infty} (\Delta V)^n, \quad ||\Delta V|| < 1$$
(C.3)

Negligenciando os termos de ordem maior que um e definindo $V = 1 - \Delta V$, uma forma linear é obtida:

$$\frac{1}{V} = \frac{1}{1 - \Delta V} \approx 1 + \Delta V = 2 - V \tag{C.4}$$

O erro percentual para essa aproximação é calculado pela definição de uma função $\Psi(V) = 100 \cdot ||(1/V) - (2 - V)||$. Esta função é avaliada em cada ponto dentro da área preenchida na Figura C.1 a) resultando na área preenchida na Figura C.1 b). Por exemplo, o erro para V = 0.8 (i.e., $\Delta V = 0.2$) é aproximadamente 5% e decresce à medida que V se aproxima de 1. Essa propriedade é utilizada para a formulação do FC.

C.3 Aproximação do FC

Uma expressão linear para a corrente nodal (C.2) é obtida como:

$$I_{k} = h \cdot S_{Pk}^{*} \cdot (2 - h \cdot V_{k}^{*}) + h \cdot S_{Ik}^{*} + h^{2} \cdot S_{Zk}^{*} \cdot V_{k}$$
(C.5)

Utilizando (C.1) e depois rearranjando alguns termos, uma formulação linear é obtida:

$$A + B \cdot V_N^* + C \cdot V_N = 0 \tag{C.6}$$

com

$$A = Y_{NS} \cdot V_S - 2h \cdot S_{PN}^* - h \cdot S_{IN}^* \tag{C.7}$$

$$B = h^2 \cdot \operatorname{diag}(S_{PN}^*) \tag{C.8}$$

$$C = Y_{NN} - h^2 \cdot \operatorname{diag}(S_{ZN}^*). \tag{C.9}$$

Note que (C.6) requer ser resolvida em representação retangular representado como:

$$\begin{bmatrix} -A_r \\ -A_i \end{bmatrix} = \begin{bmatrix} B_r + C_r & B_i - C_i \\ B_i + C_i & -B_r + C_r \end{bmatrix} \cdot \begin{bmatrix} V_r \\ V_i \end{bmatrix}$$
(C.10)

onde $r \in i$ indicam parte real e imaginária, respectivamente.

C.4 Extensão para caso desbalanceado

Este tópico foge do escopo desse trabalho, porém seu desenvolvimento pode ser verificado em (GARCES, 2016).